JP2012515520A - 低抵抗型の高効率発電機 - Google Patents

低抵抗型の高効率発電機 Download PDF

Info

Publication number
JP2012515520A
JP2012515520A JP2011544941A JP2011544941A JP2012515520A JP 2012515520 A JP2012515520 A JP 2012515520A JP 2011544941 A JP2011544941 A JP 2011544941A JP 2011544941 A JP2011544941 A JP 2011544941A JP 2012515520 A JP2012515520 A JP 2012515520A
Authority
JP
Japan
Prior art keywords
stator
rotor
slot
pole
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011544941A
Other languages
English (en)
Inventor
ロバート, レイ ホルコーム,
Original Assignee
リデムプティヴ テクノロジーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リデムプティヴ テクノロジーズ リミテッド filed Critical リデムプティヴ テクノロジーズ リミテッド
Publication of JP2012515520A publication Critical patent/JP2012515520A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Braking Arrangements (AREA)

Abstract

従来の発電機の潜在的効率をほぼ80%低下させる、固定子の磁場と回転子の磁場との間の破壊的相互作用力を分離することにより、発電機に入力された運動エネルギの大半を、駆動軸を通して、使用できる電力出力に変換することにより、全負荷でほぼ80%の追加の電気エネルギの解放を可能とする、低抵抗型高効率発電機のための方法、機器、およびシステムに関する。より具体的には、従来の発電機の電機子および固定子を、固定子の誘導コイル巻き線を露出する固定子の外側の周囲上に電線スロットを有する固定子で置き換えた。回転子は固定子の複数のスロットのすぐ近くに配置された複数の回転子要素を有し、各回転子要素は、複数のスロットに対して回転される磁気極性を有し、かつ励起される磁極を形成する電機子機構、ならびに回転させるため、および電流を発生させるために駆動軸に結合される回転子を有する。
【選択図】図1

Description

本発明は、抵抗が減じられた(decreased drag)少した高効率発電機に関し、より詳細には、環境内の電子によるエネルギを交流(AC)または直流(DC)の形の電気エネルギに変換するために運動エネルギを使用するための、発電機機械内部の電磁抵抗を減少させた方法および装置に関する。
我々が住むこの地球は、数えきれない年数存在してきた。人類は数千年から数百万年間にわたって地球上に住んできたと言っても過言ではない。自分たちが住み、生命維持のすべてを依存する地球そのものを人類自らが破壊し始めたのは過去僅か400年間のことである。我々は、地球から非常に大量の有限エネルギを大部分は化石燃料の形で使用している。我々は自らのエネルギ資源を急速に枯渇させ、環境を汚染し、地球温暖化を加速させつつある。我々は代替エネルギ供給源を必要とし、なおかつ現在のエネルギ供給源をより効率的に生み出し、使用する必要がある。
地球の平衡を無限に破壊することのない発電装置が必要なことは明白である。利用できる再生可能資源はどれも、可用性、信頼性、および費用という大きな問題がある。そのような資源には太陽、風、水力電気、静電気、温度差、および地熱がある。利用できるとすれば、重力が最も魅力的である。
既存の従来型発電機では、、変化または移動する磁場を発生させることにより、運動エネルギ入力が電気エネルギに変換されるという概念に基づいて、我々はその発電方法を理解している。発電機が負荷に電流を供給するときの発電機内での運動反応中、負荷電流が発電機の電機子の回転に反抗する逆起電力を発生させる。導体中の電流が増加する場合、抵抗に対する反力が増加する。電機子が速度を落とさないようにするには、負荷が増すにつれ、破壊的相互作用力を上回るべくより大きな力が電機子に加えられなければならない。
したがって、前記制約に対処するか、または少なくとも前記制約を軽減し、かつ従来型発電機の全体効率を改善するために、発電機内の効率を増大させ、抵抗を減少させる必要がある。
本発明の実施形態によれば、80%の電気エネルギを従来の発電機では散逸させそれにより従来の発電機の潜在的効率をほぼ80%減少させる、固定子磁極と回転子磁極との間の破壊的相互作用力を分離することにより、ほぼ80%の追加の電気エネルギの解放を全負荷で可能にする、発電機に入力された運動エネルギの大半を、駆動軸を介して、使用できる電力出力に変換するための方法、装置、およびシステムが開示される。
本発明の一態様が、それぞれのスロットが固定子の誘導コイル巻き線を露出する、固定子の外面に沿って形成される複数のスロットを有する固定子と、固定子の複数のスロットのすぐ近くに配置される複数の回転子要素を有する回転子とを含む発電機であり、各回転子要素は、励磁され、複数のスロットに対して回転させられる磁気極性を有する磁極を形成する電機子機構、および回転させるためにおよび電流を発生させるために駆動軸に結合される回転子を有する。
本発明の一態様が、それぞれのスロットが固定子の誘導コイル巻き線を露出する、固定子の外面に沿って形成される複数のスロットを有する固定子を配置するステップと、固定子の複数のスロットのすぐ近くに配置される複数の回転子要素を有する回転子を配置するステップとを含む、発電機内で電気を発生させる方法であり、各回転子要素は、励磁され、複数のスロットに対して回転させられる磁気極性を有する磁極を形成する電機子機構、および回転させるためにおよび電流を発生させるために駆動軸に結合される回転子を有する。
一実施形態によれば、旧来の発電機の回転子および/または電機子は、電機子アセンブリを備える複数の回転子要素を有する回転子で置き換えられる。回転子要素は、指定された順序で各固定子電線スロットの上を回転し、それにより固定子および回転子の極性力との相互作用を減少させる。回転子要素はそれぞれ遮蔽され、各電線スロットの幅にわたり1つの開放スロットしか有しないそれぞれのスロット回転子の周囲に、たとえば回転子要素の表面から構築されるかまたはそれに適用される遮蔽材(たとえば薄層状のミュー合金および鋼鉄)から作られる、形態が管状または同種の磁気遮蔽を含み、それにより固定子と回転子の磁極間の相互作用をさらに減少させる。回転子の遮蔽は、回転子要素の開口部と固定子のスロットとの間の回転子要素の開口部で発生する相互作用を除き、固定子の磁場と回転子の磁場との間の相互作用を防止する。小さな個々のスロットの磁気回転子が、スロットのすぐ近くに回転子を保持する支持手段内に含まれる、軸の各末端上の支持軸受の中に構築される。
一実施形態によれば、固定子のアセンブリでは、非常に薄い鋼鉄の薄層状のシートが、円形固定子の上に/中に適用され、電線スロットが固定子の表面に沿ってまたは周囲の周りに配置される。スロット固定子の数は応用に応じて変わるが、一実施形態では、薄層状の鋼鉄固定子の内側の半径および/または外側の半径上に48の電線スロットがあることが理解されよう。固定子は支持手段により支えられ、固定子は、固定子の絶縁された電線スロット中の誘導の巻き線を使って構成される。固定子内の誘導コイルは、3相、単層、または2相の電力の発生を可能にする適切な順序およびパターンで接続されるが、3相、単層、または2相の交流に限定されるものではない。固定子は、電線スロットを除く複数の回転子要素から遮蔽し、およびそれから遮蔽されるための材料を含む。固定子の表面に対しては、遮蔽、たとえば薄い炭素鋼または同種のものを使って薄層で覆われるミュー合金が適用され、固定子内部の磁極を回転子の磁極から分離する構成要素の1つとして各電線スロット間の固定子歯(teeth)の平坦な面に取り付けられ、それにより電磁抵抗力を除去する。固定子の遮蔽は、固定子のスロットと回転子要素の開口部との間の固定子のスロットで発生する相互作用を除いて、固定子の磁場と回転子の磁場との間の相互作用を防止する。
一実施形態によれば、機械的回転子が固定子の内側または外側で回転することのない旧来の発電機の回転子と同じ方法で、中性の非磁性ゾーンにより分離される磁極が固定子電線スロットの周りを回転するように、スロット回転子が一定の順序に配列される。各スロット回転子は分離され、一方のスロット回転子から次のスロット回転子まで2つの磁極回転子に対して15°、および4つの磁極回転子に対して7.5°の向きを有する。回転子磁極の順序付けは、360°パターンで3相48スロット4極交流モータに対して、8スロットがN極磁束によりカバーされ、続いて4スロットが磁束なしで、続いて8スロットがS極磁束によりカバーされ、続いて4スロットが磁束なしで、続いて8スロットがN極磁束によりカバーされ、続いて4スロットが磁束なしで、続いて8スロットがS極磁束によりカバーされ、続いて4スロットが磁束なしとなるように配置される。駆動する際、電動装置を、高効率発電機出力および/または電力網から整流器を介して再充電される直流電池により電力を供給される方形波可変速度コントローラにより駆動される電気的3相駆動モータで構成してもよい。
一実施形態では、発電機は、駆動源たとえばモータまたはタービンにより駆動される主電動装置に接続する軸を介して、一定の順序に配列される回転子を駆動するように構成される。スロット回転子は、静的な磁力または電磁力からなることができ、電磁回転子は意のままにオンおよびオフされることができるので、電磁回転子が好まれる。発電機は、電線スロットの上を直接通過する磁極だけが励起され、スロット回転子間の好ましくない相互作用が全くないようにスロットから離れ去るときにオフされるように一定の順序に配列されるブラシおよびスリップリングを備える2極または4極の回転子に電力を供給するように構成することができる。スロット回転子を一定の順序に配列することは、所望の効果を達成するために磁極をオンおよびオフするためにコントローラによりたとえばソリッドステート機構、主コメテイタ(整流子)機構、または同種のものによって制御されることがある。回転子は、発電機出力および電力網から整流器を介して充電される直流電池により電力を供給されてもよい。
提供されるものは、発電機内部の大きな電磁抵抗なしに発電を達成することができる方法である。固定子と電機子との間の電磁抵抗の除去は、同じ機械的エネルギまたは運動エネルギの入力を使って4倍以上の電気エネルギ出力の増加を可能にすることができる。提供されるものは、たとえば本発明の発電機を駆動する1馬力電気モータの機械的入力である。1馬力の機械的エネルギは、746ワットを発生するよりはむしろほぼ3,000ワット以上を発生させることができる。したがって、旧来の電気モータは、本発明の発電機を駆動しているとき、746ワットの電気エネルギを消費し、3,000ワットを発生させ、それにより2,254ワットの使用できるエネルギを発生させることになる。また、本出願で明らかにされるのが、本発明の3つの実施形態である。第1の実施形態は、固定子の外側の半径上に電線スロットを備える3相50サイクルまたは60サイクルの発電機を明らかにする。本発明のこの実施形態では、回転する磁石が双極でも4極でもよい。固定子が3相4磁極巻き線を備える48スロットを含み、かつ双極磁石が励磁回転要素として使用される場合、これらの磁石は隣接する前の磁極の向きから15°遅延して順に回転する。固定子が48スロットおよび4極3相巻き線を含む場合、4極の回転する磁石が、隣接する前の4極の回転する磁石要素から7.5°遅延して順に回転する。4極の場合、回転する磁石の2つの部分がN極で満たされ、2つの部分がS極で満たされる。電磁石の磁化された面は交互にN極、S極、N極、S極などとなり、各極の間に磁化されないセグメントがある。磁化されたセグメントは、磁化されないセグメントと比較して、回転する磁極の面の全周囲の2倍の割合を含む。この空間的配列により、磁石が1500rpmで回転されたときに50サイクルまたは50Hzの電流が発生できるようにし、磁石が1800rpmで回転されたときに60サイクルまたは60Hzの電流を発生できるようにする。N−S極双曲磁石回転子の場合、本体が3,000rpmで回転されるときに50サイクルまたは50Hzの電流が発生され、磁石が3600rpmで回転されるときに60サイクルまたは60Hzが発生される。回転する磁石回転子は、固定子電線スロットのすぐ近くに配置される円筒空洞内に含まれる。遮蔽された空洞は、電線スロットの開口部よりもほぼ60%広いが電線スロットの中央に置かれた電線スロットと同じ長さのスロットを含む。このことは、磁束が電線スロットを貫通することを可能にするが、回転する磁気回転子を固定子の電磁抵抗力との相互作用から保護する。この実施形態の固定子は、標準的発電機の場合のように、内面上ではなくむしろ円形薄層状鋼鉄固定子の外面上の電線スロットを使って構築される。外面上に48スロットあるが、48スロットに限定されるものではない。発電機は、好ましくは12コイル、すなわち3相グループおよびグループあたり4コイルを含む3相巻き線で巻かれ、「タップ」3相巻き線パターンで巻かれる。固定子の中央空洞は、電機子機構の48の4極または双極の磁気回転子が取り付けられる円形支持手段を使ってライザ(riser)を支える、取り付けられた円形要素を含む。この新しい電機子機構は、電動装置の駆動軸への結合を介して付着する、一方の末端の軸および他方の末端の軸上のコメテイタ機構を使って、軸受ブロック内の軸受けにより両方の末端で支えられる。磁石は一定の順序に配列され、電動装置内部でタイミングを調節される。磁石が電動装置の歯車機構により順に回転させられるとき、その効果は、遮蔽により、および小型電機子が固定子場内部で回転し、かつ固定子磁極の磁束線を通って移動しないという事実により、抵抗が大部分除去されることを除き、(現在の技術で使用されるような)大きな回転する磁化された電機子と同じである。発電機が最大効率で電力を発生するためには、発電機の4つの磁極のそれぞれの間に中性のまたは磁気的不感帯がなければならない。固定子内の48スロットの中で、各磁極が任意の時宜にかなった時点で8スロットをカバーする(8スロット−S極、8スロット−N極、8スロット−S極、8スロット−N極)。その他の16スロットは、磁気的に中性のまたは不感の磁気回転子によりカバーされる(4つの不感帯の電線スロットは各磁極の間にある)。磁極間の不感帯は、それぞれの回転する磁石の末端上の小型コメテイタまたはスリップリングを送り込む主コメテイタ機構により達成される。ミュー合金遮蔽により、N極およびS極には、電線スロット内の電線を通って来る反対の固定子磁極(磁極は、N極またはS極を向く組織化された磁束密度と規定される)の狭いセグメントしか見えない。反対の固定子磁極は、電線スロットをきわめて不十分に通り抜ける。N極およびS極の磁石は、隣接する前の磁極から7.5°遅延して順に回転するので、静止した光景を見ると、8スロットがN極で、続いて4スロットに動力が全くなく、したがって、磁場がない(以下同様)ように見えて、全体として2つのN極、2つのS極、および4つの中性ゾーンを生み出す。この順序が、標準的発電機の電機子と同じ配置バランスおよび効果で全く一致した同じ4つの回転する磁極および中性領域を生み出す。しかし、この構成は、標準的発電機内に存在することが分かっている10%未満の抵抗が発生できるようにする。これは、12,000ワットのエネルギが、少なくとも80,000ワットの正味の電力を取り出す発電機を作動させるモータを駆動することができるようにする。
この構成は、固定子と電機子との間の大きな磁気相互作用を可能としない。電流の流れが固定子の電線スロット内で増加するように負荷が流れ始めるとき、存在する任意の相互作用と、したがって任意の抵抗が減少する。
発電機の回転子と固定子との間の電磁相互作用を大きく減少させ、それにより電磁抵抗を減少させて、電力の発生をより高い効率で可能にする方法を提供することが、本発明の一実施形態の主要な目的である。
本発明の発電機の固定子の単一電線スロットの上を所望の磁極が回転するときだけ励磁される、小型で細長く直流で電力が供給される2極または4極の電磁電機子を提供することが本発明の一実施形態のさらなる目的である。
一連の双極永久磁性体が、遮蔽された円筒内に閉じ込められる、本発明の第2の実施形態が明らかにされる。小型円筒は、電線スロットの上の領域だけが、回転する双極永久磁性体の磁場に露出されるように、発電機の固定子の中に押し込まれる、より大きな円筒挿入物内に収容される。これらの磁性体は、電線スロットの長さを伸ばす。これらの磁性体は、発電機末端のベルを通して中央軸により回転され、かつ機械駆動システムに付着する歯車機構により回転される。この構成は、この場合も固定子と電機子との間の大きな磁気相互作用を可能にしない。存在する任意の相互作用と、したがって任意の抵抗は、電線スロット内の電流の流れが増加するように負荷が発電機にかけられるときに減少することになる。
電磁抵抗を大きく減少させ、かつより高効率で電力を発生するように標準的発電機を改良できる方法を提供することが、本発明のこの第2の実施形態の主要な目的である。
新たに設計された高効率発電機の様々な構成要素を明らかにすることが、本発明の一実施形態のさらなる目的である。本発明の第1の実施形態で説明される中性ゾーンはこの実施形態でも重要であるが、これは電力出力を最大にすることが望まれる場合には遮蔽を回転させることにより達成することができる。
本発明の各実施形態を、非限定的な例によって完全に、またより明白に理解できるように、同様の参照番号が同様のまたは対応する要素、領域、および部分を示す添付の図面と併せて以下の説明が行われる。
本発明の一実施形態に従って4極磁場が固定子の周囲360°に発生されるように、7.5°離れて一定の順序で配列される48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図1に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図2に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図3に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図4に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図5に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図6に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図7に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図8に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図9に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図10に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図11に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図12に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図13に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図14に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図15に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図16に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図17に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図18に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図19に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図20に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図21に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図22に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図23に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図24に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図25に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図26に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図27に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図28に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図29に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図30に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図31に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図32に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図33に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図34に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図35に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図36に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図37に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図38に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図39に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図40に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図41に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図42に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図43に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図44に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図45に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図46に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 図47に対して時計回り方向に7.5°先に進んだ48の4極電機子挿入物の描写を伴う、本発明の一実施形態の固定子の図である。 本発明の一実施形態による磁極巻き線およびミュー合金遮蔽を示す、本発明の電磁スロット磁極の図である。 本発明の一実施形態の電磁スロット磁極の上側面投影図である。 本発明の一実施形態によるスロット磁極封じ込め手段のためのミュー合金ステンレス鋼遮蔽スリーブ封じ込め手段および磁気遮蔽手段の上側面投影図である。 本発明の一実施形態が電力網と相互作用するときの、本発明の一実施形態の概略図である。 ハウジングまたは末端ベルを描写しない、電機子挿入物を含む本発明の一実施形態の固定子の図である。 本発明の一実施形態による電機子機構の磁極を含む電機子挿入物の非強磁性円筒挿入物部分の図である。 本発明の一実施形態による電機子機構の非強磁性円筒挿入物部分内に含まれるミュー合金の薄層状スリーブ内部に含まれる磁極の図である。 本発明の一実施形態による軸受けおよび歯車機構と共に本発明の電機子機構の磁極のための非強磁性封じ込め手段を示す図である。 図56の磁極封じ込め手段のためのミュー合金ステンレス鋼遮蔽スリーブ封じ込め手段および磁気遮蔽手段の上側面投影図である。 本発明の一実施形態による電機子の歯車駆動機構と共に本発明の末端ベルを示す側面斜視図である。 本発明の一実施形態の固定子を示す側面斜視図である。 本発明の一実施形態による180°回転させた上方コイルスロット上でのN極の同期回転の図である。 本発明の一実施形態による180°回転させた下方コイルスロット上でのS極の同期回転の図である。 本発明の一実施形態に従って、電力網からの電力を拡大し、かつ新しく発生された電力を電力網に戻すための本発明の使用の図である。 本発明の3相4極時計回り重ね巻きの図である。 本発明の一実施形態の3相4極反時計回り重ね巻きの図である。 本発明の一実施形態による、8スロットをカバーする4つの回転する磁極を発生し、4つの中性ゾーンがそれぞれ4つのスロットをカバーすることにより分離される、固定子の全周囲360°に対して一方から他方に15°進められて一定の順序で配列された48双極回転子を示す、48スロット3相4極重ね巻き発電機の図である。 本発明の一実施形態の3相4極「ハイ−Y(high−wye)」巻き線の内部接続の概略図である。 本発明の一実施形態による磁極巻き線、はめば歯車駆動、およびミュー合金遮蔽を示す、本発明の一実施形態の電磁スロット磁極の図である。 本発明の一実施形態による磁極巻き線、はめば歯車駆動、およびミュー合金遮蔽を示す、本発明の一実施形態の電磁スロット磁極の図である。 本発明の一実施形態の電磁スロット磁極の上側面図である。
本発明の実施形態の方法および装置は、環境中の電子から交流(AC)または直流(DC)の形の電気エネルギへエネルギ変換するための、この変換を行う発電機機械内部の電磁抵抗を減少させ、したがって効率を大きく改善した運動エネルギの使用に関する。
本発明の実施形態は、機械的エネルギ入力からの電気出力を増大させるための方法を明らかにする。典型的には、通常の発電機は、供給される機械的動力の99%近くを電力に変換する。しかし、これは、電流発生器設計に基づき、100%の効率で746ワットの電気を発生させるために1馬力が使用されるという、技術に影響される公式に基づいている。科学界では、超伝導コイルがより効率的であるだろうとされている。超伝導発電機は、従来型発電機の10分の1の大きさになり得る。交流または直流の発電機の電機子から反力すなわち磁気抵抗を除去した場合、効率は400〜500%増大され得る。したがって、1馬力で3,730ワットまで発生させることができる。超伝導と電力抵抗の除去を組み合わせることにより、結果的に10倍を上回る効率が得られると見積もられている。
あらゆる原子は、正に帯電した陽子と帯電していない中性子からなる核を有する。負に帯電した電子が核の周りを回る。大部分の原子では、電子の数は核内の陽子の数に等しく、その結果、正味の電荷はない。電子の数が陽子の数よりも少ない場合、原子は正味の正電荷を有する。電子の数が陽子の数よりも多い場合、原子は正味の負電荷を有する。宇宙内部では電気的中性が存在するが、生物学的システムおよび物理的システムではそれぞれに至る所で電荷の局所的集中がある。これらの局所的集中はすべての電気的活動の原因となる。宇宙では、すべての電子が物質の構造に関与するわけではなく、緩やかに結合した「自由な電子」である膨大な数の電子が存在する。これらの「自由な電子」は環境内で原子の外殻電子と平衡状態にある。この電子のプールから電流が発生される。これらの電子は、大気中および地面の中にある。動いている電子が電流を構成する。したがって、発電機からの電気的圧力が電気伝導体、たとえば導線に加えられ、回路が閉じられる場合、電子は電線に沿って負から正に、最後にはアースに流れる。これらの電子は、原子から原子へ通過し、電流が得られる。かなり自由に動く電子は、緩やかに結合された電子、すなわち「自由な」電子である。これらの電子は、直立して置かれたドミノにたとえることができる。最初のドミノ牌が倒されると、そのドミノ牌が次のドミノ牌を倒し、順次同様に倒していく。この一連のエネルギの移動は光の速度、すなわちほぼ186,000マイル/秒(299,338km/秒)で起こる。直流電源に接続された電線は、水が管を通って流れるのと同様に、電子が電線を通って流れるようにする。このことは、どの電子の経路も電線の容積範囲内の任意の場所(すなわち、中心、中間、半径、または表面)にあり得ることを意味する。交流電圧が電線の両端間に印加されると、交流電圧は電子を前後に振動させる。この振動過程で、電子は磁場を発生させる。磁場は電子を電線の表面に向けて押す。印加される信号の周波数が増大するにつれて、電子は中心から次第に離れて表面に向けて押される。
既存の従来型発電機は、変化または移動する磁場を発生させることにより運動エネルギ入力が電気エネルギに変換されるという理解に基づく。これは表面的概念である。電力発生の過程を分析すると、運動エネルギ入力が磁場を動かすことが分かる。発電機固定子の電線スロット内導線の両端間を移動するこの変化する磁場が、電流に発電機固定子のコイル内を流れさせる。固定子のコイル内を流れる電流は、コイルおよびコイルが巻かれる薄層状の鋼鉄の物理的構成によって磁場を発生させる。この新しく生成された磁場は、電力が発電機から強く引き出されるにつれて強さが増し、磁場の元の発生源、すなわち回転子または電機子にほぼ等しく、また異極性である。この固定子場が磁場の元の発生源と相互作用し、そのことが最後的にシステムへの運動エネルギ入力を散逸させる。
したがって、運動エネルギが電気エネルギに変換されているように見えるかかもしれない。しかし、実際には、運動エネルギは電気エネルギを引き出しているだけに過ぎず、電気エネルギは、発電機の設計によって、元の磁気励起エネルギと反対方向に作用することにより運動エネルギ入力を散逸させている。このことは、発電機の過程で不可避なことというよりはむしろ発電機設計の問題である。発電機設計の変更により、発電過程を達成せずに二次起磁(mmf)力により抵抗の形を呈する逆起電力という不要な副産物を解消することができる。運動エネルギの入力は、もはや電気出力には関連付けられない。本発明はこれらの問題に取り組み、対処する。より具体的には、本発明は、磁気的に偏極した回転子が、固定子内の各電線スロット上方全体に、接近して固定され、各磁性体が小型永久磁石電機子または巻かれた誘導磁気電機子として構築される、一連の遮蔽された(たとえば、ミュー合金−銅およびモリブデンを加えて焼きなまされた75%のニッケル15%の鉄など)磁極で置き換えられる発電機システムの様々な実施形態に関する。好ましい設計独自の設計は、遮蔽されていない電線スロット上方全体にわたってで磁極が回転されるときだけ磁極が励磁されるように、ブラシおよびスリップリング、またはコメテイタ機構により磁極コイルを励磁する直流電源により電力を供給される。小型電機子機構は、固定子の電線スロット上方全体の開放スロットを除いて、固定子の磁場と回転子の磁場との間の相互作用を遮蔽する固定子の歯面上に配置されるミュー合金遮蔽により逆mmfから分離される。さらに、ミュー合金遮蔽円筒は、小型電機子機構を完全に囲む。これらの円筒は固定子の電線スロットに対してだけ開かれている。遮蔽された磁極または電磁極は、固定子誘導コイルのスロット上方全体にわたる、動く磁場に電線スロットを効果的に露出する伝導機構により回転させられる。遮蔽された電磁極の場合、遮蔽された電磁極は、誘導コイルのスロット上方全体にわたる、動く磁場に対して固定子の電線スロットを効果的に露出する伝導機構により回転される。電機子機構の磁極は、電機子機構が電線スロット上方全体にわたり回転するときだけ励磁される。磁極の励磁順序に応じて、交流(AC)または直流(DC)を発生させることができる。本発明の特質は、効率が大きく改善された事実上無制限のサイズの発電機が構築されることができるようにする。今日の発電技術と比較して、効率増大が著しい。
一般に、発電機内の運動反応については、発電機が負荷に電流を供給するとき、負荷電流が発電機の電機子の回転に反抗する力を生成する。導体内の電流が増加する場合、抵抗に対する反力が増加する。電機子が遅くならないように、負荷が増加するにつてより大きな力が電機子に加えられなければならない。本発明の実施形態では、運動反力は、発電機の各電線スロット上方の磁気遮蔽により遮蔽される磁石の軸線上で双極または4極の磁石を回転させることにより減少させられることができる。遮蔽されたミュー合金ステンレス鋼の薄層状の円筒内部に含まれる磁石はスロットと同じ長さであり、本発明では、磁場は、銅マグネットワイヤが巻かれ直流電流により励磁される磁極により発生され、固定子の薄層状の鋼鉄はミュー合金遮蔽によりスロット間で遮蔽される。
実施形態I−抵抗が減少した電気3相発電機
本発明のこの実施形態の構造および仕組みは、現在利用できる化石燃料に駆動されるエネルギ供給源により、大きく増大した効率で電気エネルギを発生させることができるようにするので、より少ない化石燃料が消費されることになり、したがって、温室効果ガスがより少なく発生されることになる。
効率は、システムから電磁抵抗を除去することにより高められる。旧来の電機子および固定子は、電線スロットが外側の周囲上にあり、かつ「背面の鉄(back iron)」が内側の周囲上にある薄層状の鋼鉄固定子で置き換えられている。支持手段も、固定子の末端部分の平面が支持手段の基部と平行となるように固定子を支える内側の周囲に取り付けられる。電機子軸受ブロックおよび支持手段も基部支持手段に取り付けられる。この電機子支持手段は、適切な磁束を電線スロットに届けるために、固定子スロットの適切な近傍で48の4極電機子機構を支える。48の電機子機構は、固定子電線スロットの直上の遮蔽内に適切な開放スロットを備えるミュー合金(磁気遮蔽材料)の円筒内に含まれる。4極電磁棒(electromagnetic bar)アセンブリは、固定子内の誘導コイルの開かれた電線スロットの中に交番するN極およびS極のエネルギを提供するために回転される。磁極は、磁極が電線スロットの上を通過するときだけ励磁されるように、ブラシおよびスリップリングの装置、または別の集合体のソリッドステート機構を介して直流電流で励磁される。ミュー合金の薄層状の遮蔽は、正確に電線スロットの上でだけ開かれる。電機子機構は、固定子の磁極のほんの小さな部分内で電機子軸線を中心に回転している。これらの特徴は、回転する4極電磁電機子に対して最小の電磁抵抗しか可能としない。
図に戻り、まず、電線スロットの上方に48の電機子機構が描かれている、本発明の固定子の概略の端面図が示されている図1を参照する。薄層状の鋼鉄固定子11が、「Y」接続を有する3相発電機[相1(5)、相2(6)、および相3(7)]の誘導コイルを含む一連の48スロット8を含む。回転するN極−S極−N極−S極のエネルギが、各磁極間の磁気空隙の領域により分離される(N/空隙/S/空隙/N/空隙/S/空隙)。この配列および順序は、標準的4極交流3相発電機を正確に模倣している。48の4極スロット電機子が、360°または48スロットの全体に対して7.5°離して一定の順序に配列される。この順序付けは、磁極エネルギが、磁極ゾーンマーカ1、2、3、および4と示されるような回転方法で8スロット内の誘導コイル電線の端から端まで磁束を送ることができるようにする。スロット電機子9は60Hzに対しては1800rpmで、50Hzに対しては1500rpmで回転する。これらのスロット電機子9は時計回りで回転し、磁極は固定子の周りを反時計回りで回転する。磁極間の磁気空隙分離は、磁極発生のために必要とされるスロット電機子に電力を送り込むだけで主コメテイタにより維持される。たとえば、図1では、N極電機子[5](角括弧は図の電線スロット空間内の番号を示す)が電力を供給されたとき、磁極電機子[45]が電力を失い、したがって、どんな磁場もない。スロット電機子9の網掛けは、電力がオンであり磁極が励起され開かれていることを示し、異なる網掛けは、磁極がオフであるかまたは励起されていないことを示す。この同じ順序で、S極4では、[9]が電力を失うとき、[17]が電力を供給される。N極3では、[29]が電力を供給されるとき、[21]が電力を失う。S極2では、[41]が電力を供給されるとき、[33]が電力を失い、それによりこの順序は磁束条件を生成し続けて、旧来の発電機と同じ方法で電力を発生するが電磁抵抗は大きく減少される。図2から図48は、前の図から時計回りの方法でスロット電機子が7.5°回転する順次的な図面である。
図49は、磁極巻き線およびミュー合金遮蔽を例示する、本発明の電磁スロット磁極電機子機構の図である。直流導体電線を収容するために中心の下に中空の穴を有する軸18上のスリップリングおよびコメテイタから生ずる中性の電源回路を通して、直流電力が磁極15、17、19、および20に送り込まれる。軸18は、軸受ブロック内に含まれる軸受アセンブリにより支えられ、両端で支持手段により支えられる。N極17および20は銅マグネットワイヤを使って反時計回り方向に巻かれる。S極15および19は銅マグネットワイヤを使って時計回り方向に巻かれる。中性点が軸18に取り付けられたスリップリングからブラシを介して絶えず供給され、電線が、軸18の中心にある図50の穴23を通り、磁極巻き線のそれぞれの中性点に取り付けられる。1つの磁極だけが一度に、かつ誘導コイル12を含む電線スロット13の上を通過するときだけ励磁されるように、直流電流リード線が、コミュテータセクタと接触するブラシを介して4磁極巻き線に供給される。電磁石15、17、19、および20のヘッドがミュー合金遮蔽16内の開口部21を回転して通過するとき、誘導コイル12の銅マグネットワイヤを横切って移動する磁束線が電子を適切な方向に押して、電力の発生をもたらす。固定子上のミュー合金遮蔽14およびミュー合金円筒遮蔽16が、固定子の磁極から電機子機構31の磁極を分離する。
図50は、発明の電磁スロット磁極31の上側面投影図である。電磁スロット磁極31は、適切な支持手段内に含まれる軸受ブロック内に保持される適切な軸受機構内の軸18により固定子スロットのすぐ近くに保持される。N極17は磁極コイル33を形成するために反時計回りに巻かれる。S極15は磁極コイル26を形成するために時計回りに巻かれる。N極20は磁極コイル25を形成するために反時計回りに巻かれる。S極19は磁極コイル35を形成するために時計回りに巻かれる。
図51は、電磁スロット磁極31が円筒開口部36の内側に含まれるミュー合金ステンレス鋼の薄層状のスリーブ16の上側面投影図である。薄層はミュー合金の層39、ステンレス鋼の層38、およびミュー合金の別の層37から作られる。スロットブリッジ40、42、43が円筒の完全性を維持する。電線スロットの中への磁束がスロット44を通過する。
図52は、本発明のこの実施形態の応用で電力網と相互作用するような、本発明のこの実施形態の概略図である。高効率発電機の支持フレーム45が、図1の3相4極固定子巻き線が巻かれる48電線スロット8を含む薄層状鋼鉄固定子11を支える。巻き線は実施形態II図66のように「ハイ−Y」接続で接続される。発電機からの出力は、相(1)71、相(2)70、および相(3)69を通る。3相レッグ(3 phase legs)L−1、L−2、およびL−3が、導体57、58、および59を通り電力網までの接続のために利用できる。3相レッグはまた、直流/交流ブリッジ整流器72、73、および74と共に進んでいく。直流電流に整流された後の3相電力は、電池75、76、および77と共に進んでいく。電池のアースは、導体81、82、および83を通ってアース56まで進んでいく。発電機に電力を供給するために使用される方形波可変速度3相モータ64は、導体65および可変速度コントローラ85を通して、ならびに続けて導体86を通して電力が供給される。駆動モータ64は、導体68を通してアース56まで回路の中性点側を形成する。駆動モータ64は滑車62を駆動し、滑車62はベルト82を駆動して滑車63を駆動し、滑車63は駆動軸87を駆動し、駆動軸87はコメテイタ90を運び、かつ電動装置66の歯車機構を駆動し、電動装置66の歯車機構は駆動軸67を駆動し、駆動軸67はスロット磁極31に接続する。スロット磁極31は、支持手段88および89により支えられる軸受け52および53により支えられる。スロット磁極31の4磁極の電気的順序付けは、主コメテイタ90およびブラシカラー51により達成される。コメテイタ90は、コメテイタ90上の環状接点78に接触する主ブラシ79に電力を供給する導体60を通して電力を供給される。環状接点78は、コメテイタ90の4つのセグメントに電力を供給する。これらの4つのセグメント61はそれぞれ8つのスロット磁極に電力を供給し、4つのスロット磁極をカバーする4つの絶縁されたセグメントにより分離される。48のスロット磁極のそれぞれは、磁極セグメントが電線スロット8の上を通過するときだけ磁極セグメントを励磁させる2つのN極セグメントおよび2つのS極セグメントを含むスロット磁極コメテイタ47と接触するブラシ48に接続する導体50を介してブラシリード線80により電力を供給される。回路は、スリップリング46を通りブラシ49に至り、導体55を通り中性点56に至り完成される。上記で説明されるような主コメテイタ90の設計は、8スロット磁極のセグメントが、電力を供給されない4つのスロット磁極により分離され電力を供給されることができるようにする。それにより、それぞれ8スロットをカバーする2つのN極およびそれぞれ8スロットをカバーする2つのS極を発生させ、すべてが、全く同様に電力を供給されない4つのスロットにより分離され、標準的4極3相発電機回転子により発生される場と同一の場を発生させる。
図67A〜図67Bおよび図68に示される別の実施形態では、空洞は、図67A〜図67Bおよび図68に示される双極電磁棒217のための封じ込め手段および軸受けを含む。封じ込め手段および磁気棒は、回転する磁場が、回転する電機子の効果を付随する電磁抵抗なしに近似するように順次回転される。双極電磁棒の封じ込め手段内の双極電磁棒は、軸223により駆動される車輪に取り付けられた支持手段上に歯車のはめば216を接触させることにより図67Bの歯車機構218を介して双極電磁棒の軸線を中心に回転される。固定子の鉄は、発電機ハウジングの中に押し込まれる。リード線は上に向かされ、シェルの外側に引き出される。図67A〜図67Bおよび図68の電磁棒217は、円筒が固定子の中に押し込まれる前に順に整列させられる。電磁体が適切な順序になり、歯車の車輪がはめば218と適切にかみ合わされると、電磁体はピンなどを用いて一緒に固定される。次に、円筒が固定子内側の場所に押し込まれ、取り付け手段が固定される。次に、ロックピンが取り除かれる。次に、軸223が支持手段内の軸受けを介して配置されるとき、磁気スロット磁極支持手段が円筒挿入物に取り付けられる。図67A〜図67Bの電磁コイル221および222からのリード線が、図67A〜図67Bの軸223の中心にあるボアホールを通してスリップリングまで引き出され、次に、回路は、直流電源に付着するリード線に取り付けられたブラシに進む。スリップリングは、電線スロットを通過している磁極だけの励磁がいずれかの時点で行われることができるようにし、交番するN極およびS極がそれぞれ励磁されることができるようにする。ブラシは支持手段によりスリップリングと接触した状態に保持される。末端ベルは末端ベル開口部を通して軸受けの中に軸を押し込むことにより適用される。次に、ボルトが末端の穴を通して配置され、今度は適切なトルクまでしっかり締めるナットがボルトに適用される。
ここで、この実施形態の構成のいくつかの詳細について考えてみる。図67A〜図67Bは、遮蔽手段219および220に加えて、双極電磁誘導棒217、軸223、プーリ218、および電線スロット204の横断面図である。磁束は、図67A〜図67Bの中空の軸223を通ってリード線224、225、224a、および225aまで横断するリード線でスリップリングにより届けられる直流励磁機電流を介して、両方、およびN極、およびS極だけで励磁される。回路の中性点側は、回路の周囲360°全体に伝導面を有するスリップリングを通して絶えず閉じられている。回路の電力側は、スリップリングの120°が全120°に対して電線スロットを横断して回転するときにN極に供給するように、スリップリングを通して図67A〜図67Bのコイル221および222に給電する。スリップリング上に60°の絶縁された面がある。ブラシが120°のN極セグメントを励磁させた後、スリップリングの絶縁された部分は、ブラシがスリップリングの60°の絶縁されたセグメントを横断して移動するときに回路が開くことができるようにし、次に、ブラシがスリップリングの反対側の励磁セグメントを横断して移動するとき、ブラシが電線スロットに露出されている120°に対してS極セグメントを励磁させ、それにより、上記S極セグメントに対して直流回路を閉じる。薄層状のステンレス鋼およびミュー合金遮蔽219により、図67Aの固定子スロット開口部213の上を除いて、固定子と回転する電機子極との間のいかなる磁束相互作用も遮蔽される。図67A〜図67Bの開かれているスロット213は、磁束が図67A〜図67Bの遮蔽スロット230を通って移動し、電線スロット内の巻き線マグネットワイヤを通過し移動することができるようにし、それにより、電子がコイルに押し通され、誘導コイル内に電圧を発生させる。誘導コイル回路が負荷に対して閉じられているとき、電流が流れ、したがって、アンペア数を乗じた電圧が、電磁抵抗のほとんどないかまたは全くない電力を生成する。この設計が、標準的発電機と比べると、はるかに大きな効率を生み出す。
実施形態II−抵抗が減少した発電機
本発明のこの実施形態の構造および機構は、現在の化石燃料で駆動される機械的エネルギ源により、大きく増大した効率で電気エネルギを発生させることができるようにするので、より少ない化石燃料が消費されることになり、したがって、温室効果ガスの発生がより少なくなる。本発明はまた、電気エネルギの拡大を可能にする。
システムから電磁抵抗を除去することにより、効率が高められる。旧来の電機子は、固定子の中に押し込まれた円筒で置き換えられる。円筒はミュー合金で遮蔽された空洞を含み、さらにまた、空洞は、固定子内の誘導コイルの開かれた電線スロットの中に交番するN極およびS極のエネルギを供給するために回転される双極磁気棒アセンブリを収容する。ミュー合金の薄層状の遮蔽が、正確に電線スロットの上だけで開かれる。したがって、回転する双極磁気棒の上では最小の抵抗が発生する。
図に戻り、まず、電機子機構挿入物を含む、本発明の固定子の概略端面図を示す図53を参照する。薄層状の鋼鉄固定子101が、一連の、コイルの高い部分を含むスロット102およびコイルの低い部分を含むスロット109を含む。この具体的描写では、巻き線は4グループのコイルを有し、グループあたり3コイルを有する単相である。6つのグループの第1のコイルがスロット#1およびスロット#4の中に配置される。グループの第2のコイルがスロット#2およびスロット#5の中に置かれる。グループの第3のコイルがスロット#3およびスロット#6の中に置かれる。残りの3つのコイルグループが同じ方法で電線スロット内に配置される。第1のコイルグループのリード線104が連結されないままであり、発電機の中性点になる。各コイルグループは、各グループに対して、各グループの電力リード線110の間で中性点112への接続を行うことにより、隣接するグループと共に形成される。コイルグループのすべてが一緒に巻かれたとき、グループ4の電力リード線105が発電機の電力リード線となる。ステンレス鋼挿入物103は、薄層状の固定子101内の各電線スロット近傍の壁を完全に貫通するいくつかの円形空洞を含む。図54の空洞117は図53の薄層状固定子101内の電線スロット開口部の幅とマッチするように無蓋である。図54の空洞17は、図53の双極磁石棒107に対する封じ込め手段および軸受けを含む。封じ込め手段および磁気棒は、回転する磁場が、回転する電機子の磁気効果を電磁抵抗なしに近似するように順に回転させられる。双極磁気棒の封じ込め手段内の双極磁気棒は、図53および図58の軸111により駆動される図53および図58の車輪133bに取り付けられた図58の支持手段133a上に歯車はめば133を接触させることにより、図56の歯車機構119を介して双極磁気棒の軸線を中心に回転される。固定子の鉄101が、図59の発電機ハウジングの中に押し込まれる。図59のリード線104および105が組み立てられ、図59のシェル114の外側に引かれる。図54の円筒107が固定子の中に押し込まれる前に、図53の磁性体107が順に整列させられる。磁性体が適切な順序になったとき、歯車車輪133aおよび円筒103が図53のピン113により一緒に固定される。次に、円筒103は固定子101内側の定位置に押し込まれ、図53の取り付け手段108が固定される。次に、ロックピン113が取り除かれる。図58の末端ベル130および134は、図58の133cがガイドとして使用され、図58の軸111を図58の軸受け131および135に押し込むことにより、適用される。次に、ボルトが末端の穴132を通して配置され、ボルトナットが適用されしっかり締められる。
ここで、構成のいくつかの詳細について考える。図55は双極磁石棒封じ込め手段および遮蔽126の横断面図である。磁束は、薄層状のステンレス鋼121、ミュー合金120、および鋼鉄122により固定子電線スロット開口部118の上を除き遮蔽される。磁石棒107はステンレス鋼封じ込め手段126aの中に接着剤で接合される。図56は磁石棒封じ込め手段126aの縦方向の立面図を表す。開放スロット125は、磁束が遮蔽スロット118を通って移動し、かつ電線スロット内の巻き線マグネットワイヤを過ぎて移動することができるようにし、それによりコイルを通って電子を押し出す。封じ込め手段126aは、図56の歯車機構119により引かれる図56の軸受け124上で図54および57の薄層状遮蔽126の内側で回転する。図57は磁極封じ込め手段のためのミュー合金ステンレス鋼遮蔽の上側面図を表し、軸受台127、128、および129を明らかにする。図60は、45°の増分で明らかにされる本発明のN極磁石の180°にわたる同期回転を表す。図61は、45°の増分で明らかにされる本発明のS極磁石の180°にわたる同期回転を表す。
図62は、電力網からの電力を拡大し、かつ新しく発生された電力を電力網に戻すために本発明を使用できる方法の概念図である。引用された値は予備データに基づく推定値である。10hp(馬力)モータ170を駆動するためにコンジット(conduit)169(7.46kw)を介して電力網166から電力が取り込まれる。10hpモータ170は軸171を通して25kw発電機172を作動させる。25kw電力出力から10.08kwが電力網にフィードバックされ、7.46kwがコンジット173および174を介して2つの電気モータ177および175のそれぞれに供給される。発電機178および176は、コンジット167および168を介して電力網にフィードバックされるさらなる25kwをそれぞれ発生させる。電力網への電力供給が連続して拡大することができることが当業者にはより容易に理解できよう。代わりの方法としては、実施形態IおよびUSPTOの米国仮特許出願第61/269,755号明細書−Inductive Magnetic Armatures As Components of Decreased Drag Electric Generatorsのように、巻かれた電磁体で回転子の永久磁性体を置き換えることである。
図63は、本発明の一実施形態の巻かれた固定子の概略図である。固定子の鉄301は、12相コイルが巻かれている絶縁された電線スロット305を含む。3相があり、相コイルあたり4コイルを有する。相コイル366(相1)、368(相2)、および367(相3)が、4磁極回転子が120°の電気度が隔たれた3相を発生するように巻かれ、配置される。重ね巻きは時計回りである。図64は、重ね巻きが反時計回りであることを除き、図63と同じである。図65は、図63および図64と同じ3相巻き線を表す。さらに図65は、永久スロット磁極磁性体369がスロットの上で回転するときに移動する磁極を形成するように一定の順序に配列された永久スロット磁極磁性体369を表す。N極の描写370は、N極磁束をスロット4、3、2、1、48、47、46、および45の中に送る。スロット5、6、7、および8は中性であり、S極371の描写は、回転する磁極が電線スロット9、10、11、12、13、14、15、および16の中にS極磁束を注入する範囲をカバーし、スロット17、18、19、および20は中性である。N極の描写372は、回転する磁極が電線スロット21、22、23、24、25、26、27、および28の中にN極磁束を注ぎ込む範囲をカバーする。スロット29、30、31、および32は中性であり、S極の描写373は、回転する磁極が電線スロット33、34、35、36、37、38、39、および40の中にS極磁束を注ぎ込む範囲をカバーする。スロット41、42、43、および44は中性である。
図66は、本発明の一実施形態の3相4極12コイル発電機の内部接続の概略図である。この接続は、「ハイ−Y」接続と呼ばれ、各相が直列に接続でき、かつ480ボルトを発生する「ハイ−Y」接続と呼ばれる2つの回路を有するか、または2つの回路が「ロー−Y(Low Wye)」接続と呼ばれるように並列とすることができ、240ボルトを発生するが、電力出力が各接続に対して同じとなるように「ハイ−Y」のようにアンペア数を2倍にする。ここで、電力出力リード線から回路を通り中性点の「Y」接続に至る相回路をたどることにする。相Aレッグ370は、反時計回り(N極)方向((1)で入り、(4)で出る)に巻かれるコイルグループ389まで作り上げられる。出力リード線376は、時計回り方向((1)で入り、(4)で出る)(S極)に巻かれるコイルグループ392と共に進んでいく。これら2つのコイルグループの出力リード線は、反時計回り方向(N極)((7)で入り、(10)で出る)に巻かれるコイルグループ395と共に進んでいく。出力リード線378は、時計回り方向−S極((7)で入り、(10)で出る)に巻かれるコイルグループ398上に進んでいく。出力リード線379はその他の2相と「Y」384を作り上げる。
相Bレッグ371は、反時計回り(N極)方向((2)で入り、(5)で出る)に巻かれるコイル391まで作り上げられる。出力リード線380は、時計回り方向(S極)((2)で入り、(5)で出る)に巻かれるコイルグループ394と共に進んでいく。出力リード線381は、反時計回り方向(N極)((8)で入り、(11)で出る)に巻かれるコイルグループ397と共に進んでいく。出力リード線382は、時計回り方向(S極)((8)で入り、(11)で出る)に巻かれるコイルグループ400と共に進んでいく。出力リード線383からリード線374までが「Y」384接続の部分を作り上げる。
相Cレッグ372は、反時計回り(N極)方向((3)で入り、(6)で出る)に巻かれるコイル393まで作り上げられる。出力リード線385は、時計回り(S極)方向((3)で入り、(6)で出る)に巻かれる極396と共に進んでいく。出力リード線386は、反時計回り(N極)方向((9)で入り、(12)で出る)に巻かれるコイルグループ399と共に進んでいく。出力リード線387は、時計回り(S極)方向((9)で入り、(12)で出る)に巻かれるコイルグループ390と共に進んでいく。出力リード線388は、「Y」接続384の第3レッグを形成する375と共に進んでいく。
固定子の具体的間隔およびこの内部接続を使って、各シュー(shoe)に対して60°および各シュー間で30°を有する4極回転子が利用され適切な速度で回転されたとき、電気的に120°隔てられた相レッグにより3相電力が発生させられる。
以上、本発明の実施形態が説明され、図示されてきたが、本発明を逸脱することなく設計または構成の詳細について多くの変更または修正を行うことができることが当業者には理解されよう。
一実施形態では、発電機は、駆動源たとえばモータまたはタービンにより駆動される主電動装置に接続する軸を介して、一定の順序に配列される回転子を駆動するように構成される。スロット回転子は、静的な磁力または電磁力からなることができ、電磁回転子は意のままにオンおよびオフされることができるので、電磁回転子が好まれる。発電機は、電線スロットの上を直接通過する磁極だけが励起され、スロット回転子間の好ましくない相互作用が全くないようにスロットから離れ去るときにオフされるように一定の順序に配列されるブラシおよびスリップリングを備える2極または4極の回転子に電力を供給するように構成することができる。スロット回転子を一定の順序に配列することは、所望の効果を達成するために磁極をオンおよびオフするためにコントローラによりたとえばソリッドステート機構、主コミュテータ(整流子)機構、または同種のものによって制御されることがある。回転子は、発電機出力および電力網から整流器を介して充電される直流電池により電力を供給されてもよい。
提供されるものは、発電機内部の大きな電磁抵抗なしに発電を達成することができる方法である。固定子と電機子との間の電磁抵抗の除去は、同じ機械的エネルギまたは運動エネルギの入力を使って4倍以上の電気エネルギ出力の増加を可能にすることができる。提供されるものは、たとえば本発明の発電機を駆動する1馬力電気モータの機械的入力である。1馬力の機械的エネルギは、746ワットを発生するよりはむしろほぼ3,000ワット以上を発生させることができる。したがって、旧来の電気モータは、本発明の発電機を駆動しているとき、746ワットの電気エネルギを消費し、3,000ワットを発生させ、それにより2,254ワットの使用できるエネルギを発生させることになる。また、本出願で明らかにされるのが、本発明の3つの実施形態である。第1の実施形態は、固定子の外側の半径上に電線スロットを備える3相50サイクルまたは60サイクルの発電機を明らかにする。本発明のこの実施形態では、回転する磁石が双極でも4極でもよい。固定子が3相4磁極巻き線を備える48スロットを含み、かつ双極磁石が励磁回転要素として使用される場合、これらの磁石は隣接する前の磁極の向きから15°遅延して順に回転する。固定子が48スロットおよび4極3相巻き線を含む場合、4極の回転する磁石が、隣接する前の4極の回転する磁石要素から7.5°遅延して順に回転する。4極の場合、回転する磁石の2つの部分がN極で満たされ、2つの部分がS極で満たされる。電磁石の磁化された面は交互にN極、S極、N極、S極などとなり、各極の間に磁化されないセグメントがある。磁化されたセグメントは、磁化されないセグメントと比較して、回転する磁極の面の全周囲の2倍の割合を含む。この空間的配列により、磁石が1500rpmで回転されたときに50サイクルまたは50Hzの電流が発生できるようにし、磁石が1800rpmで回転されたときに60サイクルまたは60Hzの電流を発生できるようにする。N−S極双曲磁石回転子の場合、本体が3,000rpmで回転されるときに60サイクルまたは50Hzの電流が発生され、磁石が3600rpmで回転されるときに60サイクルまたは60Hzが発生される。回転する磁石回転子は、固定子電線スロットのすぐ近くに配置される円筒空洞内に含まれる。遮蔽された空洞は、電線スロットの開口部よりもほぼ60%広いが電線スロットの中央に置かれた電線スロットと同じ長さのスロットを含む。このことは、磁束が電線スロットを貫通することを可能にするが、回転する磁気回転子を固定子の電磁抵抗力との相互作用から保護する。この実施形態の固定子は、標準的発電機の場合のように、内面上ではなくむしろ円形薄層状鋼鉄固定子の外面上の電線スロットを使って構築される。外面上に48スロットあるが、48スロットに限定されるものではない。発電機は、好ましくは12コイル、すなわち3相グループおよびグループあたり4コイルを含む3相巻き線で巻かれ、「タップ」3相巻き線パターンで巻かれる。固定子の中央空洞は、電機子機構の48の4極または双極の磁気回転子が取り付けられる円形支持手段を使ってライザ(riser)を支える、取り付けられた円形要素を含む。この新しい電機子機構は、電動装置の駆動軸への結合を介して付着する、一方の末端の軸および他方の末端の軸上のコミュテータ機構を使って、軸受ブロック内の軸受けにより両方の末端で支えられる。磁石は一定の順序に配列され、電動装置内部でタイミングを調節される。磁石が電動装置の歯車機構により順に回転させられるとき、その効果は、遮蔽により、および小型電機子が固定子場内部で回転し、かつ固定子磁極の磁束線を通って移動しないという事実により、抵抗が大部分除去されることを除き、(現在の技術で使用されるような)大きな回転する磁化された電機子と同じである。発電機が最大効率で電力を発生するためには、発電機の4つの磁極のそれぞれの間に中性のまたは磁気的不感帯がなければならない。固定子内の48スロットの中で、各磁極が任意の時宜にかなった時点で8スロットをカバーする(8スロット−S極、8スロット−N極、8スロット−S極、8スロット−N極)。その他の16スロットは、磁気的に中性のまたは不感の磁気回転子によりカバーされる(4つの不感帯の電線スロットは各磁極の間にある)。磁極間の不感帯は、それぞれの回転する磁石の末端上の小型コミュテータまたはスリップリングを送り込む主コミュテータ機構により達成される。ミュー合金遮蔽により、N極およびS極には、電線スロット内の電線を通って来る反対の固定子磁極(磁極は、N極またはS極を向く組織化された磁束密度と規定される)の狭いセグメントしか見えない。反対の固定子磁極は、電線スロットをきわめて不十分に通り抜ける。N極およびS極の磁石は、隣接する前の磁極から7.5°遅延して順に回転するので、静止した光景を見ると、8スロットがN極で、続いて4スロットに動力が全くなく、したがって、磁場がない(以下同様)ように見えて、全体として2つのN極、2つのS極、および4つの中性ゾーンを生み出す。この順序が、標準的発電機の電機子と同じ配置バランスおよび効果で全く一致した同じ4つの回転する磁極および中性領域を生み出す。しかし、この構成は、標準的発電機内に存在することが分かっている10%未満の抵抗が発生できるようにする。これは、12,000ワットのエネルギが、少なくとも80,000ワットの正味の電力を取り出す発電機を作動させるモータを駆動することができるようにする。
したがって、運動エネルギが電気エネルギに変換されているように見えるかかもしれない。しかし、実際には、運動エネルギは電気エネルギを引き出しているだけに過ぎず、電気エネルギは、発電機の設計によって、元の磁気励起エネルギと反対方向に作用することにより運動エネルギ入力を散逸させている。このことは、発電機の過程で不可避なことというよりはむしろ発電機設計の問題である。発電機設計の変更により、発電過程を達成せずに二次起磁(mmf)力により抵抗の形を呈する逆起電力という不要な副産物を解消することができる。運動エネルギの入力は、もはや電気出力には関連付けられない。本発明はこれらの問題に取り組み、対処する。より具体的には、本発明は、磁気的に偏極した回転子が、固定子内の各電線スロット上方全体に、接近して固定され、各磁性体が小型永久磁石電機子または巻かれた誘導磁気電機子として構築される、一連の遮蔽された(たとえば、ミュー合金−銅およびモリブデンを加えて焼きなまされた75%のニッケル15%の鉄など)磁極で置き換えられる発電機システムの様々な実施形態に関する。好ましい設計独自の設計は、遮蔽されていない電線スロット上方全体にわたってで磁極が回転されるときだけ磁極が励磁されるように、ブラシおよびスリップリング、またはコミュテータ機構により磁極コイルを励磁する直流電源により電力を供給される。小型電機子機構は、固定子の電線スロット上方全体の開放スロットを除いて、固定子の磁場と回転子の磁場との間の相互作用を遮蔽する固定子の歯面上に配置されるミュー合金遮蔽により逆mmfから分離される。さらに、ミュー合金遮蔽円筒は、小型電機子機構を完全に囲む。これらの円筒は固定子の電線スロットに対してだけ開かれている。遮蔽された磁極または電磁極は、固定子誘導コイルのスロット上方全体にわたる、動く磁場に電線スロットを効果的に露出する伝導機構により回転させられる。遮蔽された電磁極の場合、遮蔽された電磁極は、誘導コイルのスロット上方全体にわたる、動く磁場に対して固定子の電線スロットを効果的に露出する伝導機構により回転される。電機子機構の磁極は、電機子機構が電線スロット上方全体にわたり回転するときだけ励磁される。磁極の励磁順序に応じて、交流(AC)または直流(DC)を発生させることができる。本発明の特質は、効率が大きく改善された事実上無制限のサイズの発電機が構築されることができるようにする。今日の発電技術と比較して、効率増大が著しい。
図に戻り、まず、電線スロットの上方に48の電機子機構が描かれている、本発明の固定子の概略の端面図が示されている図1を参照する。薄層状の鋼鉄固定子11が、「Y」接続を有する3相発電機[相1(5)、相2(6)、および相3(7)]の誘導コイルを含む一連の48スロット8を含む。回転するN極−S極−N極−S極のエネルギが、各磁極間の磁気空隙の領域により分離される(N/空隙/S/空隙/N/空隙/S/空隙)。この配列および順序は、標準的4極交流3相発電機を正確に模倣している。48の4極スロット電機子が、360°または48スロットの全体に対して7.5°離して一定の順序に配列される。この順序付けは、磁極エネルギが、磁極ゾーンマーカ1、2、3、および4と示されるような回転方法で8スロット内の誘導コイル電線の端から端まで磁束を送ることができるようにする。スロット電機子9は60Hzに対しては1800rpmで、50Hzに対しては1500rpmで回転する。これらのスロット電機子9は時計回りで回転し、磁極は固定子の周りを反時計回りで回転する。磁極間の磁気空隙分離は、磁極発生のために必要とされるスロット電機子に電力を送り込むだけで主コュテータにより維持される。たとえば、図1では、N極電機子[5](角括弧は図の電線スロット空間内の番号を示す)が電力を供給されたとき、磁極電機子[45]が電力を失い、したがって、どんな磁場もない。スロット電機子9の網掛けは、電力がオンであり磁極が励起され開かれていることを示し、異なる網掛けは、磁極がオフであるかまたは励起されていないことを示す。この同じ順序で、S極4では、[9]が電力を失うとき、[17]が電力を供給される。N極3では、[29]が電力を供給されるとき、[21]が電力を失う。S極2では、[41]が電力を供給されるとき、[33]が電力を失い、それによりこの順序は磁束条件を生成し続けて、旧来の発電機と同じ方法で電力を発生するが電磁抵抗は大きく減少される。図2から図48は、前の図から時計回りの方法でスロット電機子が7.5°回転する順次的な図面である。
図49は、磁極巻き線およびミュー合金遮蔽を例示する、本発明の電磁スロット磁極電機子機構の図である。直流導体電線を収容するために中心の下に中空の穴を有する軸18上のスリップリングおよびコミュテータから生ずる中性の電源回路を通して、直流電力が磁極15、17、19、および20に送り込まれる。軸18は、軸受ブロック内に含まれる軸受アセンブリにより支えられ、両端で支持手段により支えられる。N極17および20は銅マグネットワイヤを使って反時計回り方向に巻かれる。S極15および19は銅マグネットワイヤを使って時計回り方向に巻かれる。中性点が軸18に取り付けられたスリップリングからブラシを介して絶えず供給され、電線が、軸18の中心にある図50の穴23を通り、磁極巻き線のそれぞれの中性点に取り付けられる。1つの磁極だけが一度に、かつ誘導コイル12を含む電線スロット13の上を通過するときだけ励磁されるように、直流電流リード線が、コミュテータセクタと接触するブラシを介して4磁極巻き線に供給される。電磁石15、17、19、および20のヘッドがミュー合金遮蔽16内の開口部21を回転して通過するとき、誘導コイル12の銅マグネットワイヤを横切って移動する磁束線が電子を適切な方向に押して、電力の発生をもたらす。固定子上のミュー合金遮蔽14およびミュー合金円筒遮蔽16が、固定子の磁極から電機子機構31の磁極を分離する。
図52は、本発明のこの実施形態の応用で電力網と相互作用するような、本発明のこの実施形態の概略図である。高効率発電機の支持フレーム45が、図1の3相4極固定子巻き線が巻かれる48電線スロット8を含む薄層状鋼鉄固定子11を支える。巻き線は実施形態II図66のように「ハイ−Y」接続で接続される。発電機からの出力は、相(1)71、相(2)70、および相(3)69を通る。3相レッグ(3 phase legs)L−1、L−2、およびL−3が、導体57、58、および59を通り電力網までの接続のために利用できる。3相レッグはまた、直流/交流ブリッジ整流器72、73、および74と共に進んでいく。直流電流に整流された後の3相電力は、電池75、76、および77と共に進んでいく。電池のアースは、導体81、82、および83を通ってアース56まで進んでいく。発電機に電力を供給するために使用される方形波可変速度3相モータ64は、導体65および可変速度コントローラ85を通して、ならびに続けて導体86を通して電力が供給される。駆動モータ64は、導体68を通してアース56まで回路の中性点側を形成する。駆動モータ64は滑車62を駆動し、滑車62はベルト82を駆動して滑車63を駆動し、滑車63は駆動軸87を駆動し、駆動軸87はコミュテータ90を運び、かつ電動装置66の歯車機構を駆動し、電動装置66の歯車機構は駆動軸67を駆動し、駆動軸67はスロット磁極31に接続する。スロット磁極31は、支持手段88および89により支えられる軸受け52および53により支えられる。スロット磁極31の4磁極の電気的順序付けは、主コミュテータ90およびブラシカラー51により達成される。コミュテータ90は、コミュテータ90上の環状接点78に接触する主ブラシ79に電力を供給する導体60を通して電力を供給される。環状接点78は、コミュテータ90の4つのセグメントに電力を供給する。これらの4つのセグメント61はそれぞれ8つのスロット磁極に電力を供給し、4つのスロット磁極をカバーする4つの絶縁されたセグメントにより分離される。48のスロット磁極のそれぞれは、磁極セグメントが電線スロット8の上を通過するときだけ磁極セグメントを励磁させる2つのN極セグメントおよび2つのS極セグメントを含むスロット磁極コミュテータ47と接触するブラシ48に接続する導体50を介してブラシリード線80により電力を供給される。回路は、スリップリング46を通りブラシ49に至り、導体55を通り中性点56に至り完成される。上記で説明されるような主コメテイタ90の設計は、8スロット磁極のセグメントが、電力を供給されない4つのスロット磁極により分離され電力を供給されることができるようにする。それにより、それぞれ8スロットをカバーする2つのN極およびそれぞれ8スロットをカバーする2つのS極を発生させ、すべてが、全く同様に電力を供給されない4つのスロットにより分離され、標準的4極3相発電機回転子により発生される場と同一の場を発生させる。

Claims (52)

  1. 発電機であって、
    固定子の外面に沿って形成され、前記固定子の誘導コイル巻き線をそれぞれ露出する複数のスロットを有する前記固定子と、
    前記固定子の前記複数のスロットのすぐ近くに配置される複数の回転子要素を有し、回転するためおよび電流を発生させるために駆動軸に結合される回転子であって、各回転子要素が、励磁されかつ前記複数のスロットに対して回転される磁気極性を有する磁極を形成する電機子機構を有する回転子と、
    を備える発電機。
  2. 前記固定子が、前記固定子の各スロットの所を除き、前記固定子の磁場と前記回転子の磁場との間の相互作用を遮蔽するための遮蔽を有する、請求項1に記載の発電機。
  3. 各回転子要素が開口部を有する遮蔽を有し、前記遮蔽が、前記回転子要素の前記開口部と前記固定子の前記スロットとの間の前記回転子要素の前記開口部で発生する相互作用を除き、前記固定子の磁場と前記回転子の磁場との間の相互作用を遮蔽するためのものである、請求項1または2に記載の発電機。
  4. 前記遮蔽が絶縁材をコートされた電気用鋼鉄の薄層シートを備える、請求項のいずれか一項に記載の発電機。
  5. 前記遮蔽が前記薄層状の鋼鉄を有するM−15またはM−19(29−ゲージまたは26−ゲージ)を備える、請求項4に記載の発電機。
  6. 前記遮蔽が、前記固定子内部の前記磁極を前記回転子の前記磁極から分離するための構成要素の1つとして、各電線スロット間の前記固定子の前記表面に炭素鋼で薄層状に覆ったミュー合金シートを備える、請求項4に記載の発電機。
  7. 前記ミュー合金シートの厚さが0.05インチ(0.127センチメートル)から0.01インチ(0.0254センチメートル)までの範囲内であり、前記薄層状の炭素鋼の厚さが0.03インチ(0.0762センチメートル)から0.09インチ(0.2286センチメートル)までの範囲内である、請求項6に記載の発電機。
  8. 前記固定子が円形である、請求項1〜7のいずれか一項に記載の発電機。
  9. スロットの数が48電線スロットである、請求項1〜8のいずれか一項に記載の発電機。
  10. 前記スロットが前記固定子の内側の半径上に配置される、請求項1〜9のいずれか一項に記載の発電機。
  11. 前記スロットが前記固定子の外側の半径上に配置される、請求項1〜9のいずれか一項に記載の発電機。
  12. 前記固定子および前記回転子が、適切な向きで支持手段により支えられる、請求項1〜11のいずれか一項に記載の発電機。
  13. 前記誘導コイルが前記固定子の前記絶縁されたスロットの中に巻かれる、請求項1〜12のいずれか一項に記載の発電機。
  14. 前記誘導コイルが、単相、2相、3相、または別の適切な相の電気相の電力の発生を可能にするために順序付けられた順序およびパターンで接続される、請求項13に記載の発電機。
  15. 前記回転子要素が各固定子電線スロットの上を指定された順序で回転し、それにより、前記固定子の極性力と前記回転子の極性力との相互作用を低減する、請求項1〜14のいずれか一項に記載の発電機。
  16. 前記回転子要素が管状の軸であり前記軸末端のそれぞれの上の軸受けで支えられ、前記支持が、前記固定子電線スロットのすぐ近くで前記回転子を保持する支持手段内に含まれている、請求項1〜15のいずれか一項に記載の発電機。
  17. 前記磁極をオンおよびオフし、前記極性を回転させるために、各回転子要素内の各電機子機構の前記極性を一定の順序に配列するためのコントローラをさらに備える、請求項のいずれか一項に記載の発電機。
  18. 前記磁極が、前記磁極を運ぶ前記固定子の内側または外側で回転する機械的回転子の使用なしに、旧来の発電機の回転子と同じ方法で前記固定子電線スロットの周りを、および横切って回転する中性非磁性ゾーンにより分離されるように、前記回転子を一定の順序に配列することをさらに備える、請求項17に記載の発電機。
  19. 48電線スロット固定子で利用されるとき、あるスロット回転子から次のスロット回転子までの向きを2極回転子に対して15°、4極回転子に対して7.5°隔てることをさらに備える、請求項18に記載の発電機。
  20. 360°パターンで8電線スロットがN極磁束によりカバーされ、続いて4スロットに磁束がなく、続いて8スロットがS極磁束によりカバーされ、続いて4スロットに磁束がなく、続いて8スロットにN極磁束があり、続いて4スロットに磁束がなく、続いて8スロットがS極磁束によりカバーされ、続いて4スロットに磁束がないように、3相48スロット4極交流発電機に対する前記回転子磁極を一定の順序で配列することをさらに備える、請求項18または19に記載の発電機。
  21. 駆動源、たとえばモータまたはタービンにより駆動される主電動装置に接続する軸を通して前記一定の順序で配列された回転子を駆動することをさらに備える、請求項18〜20のいずれか一項に記載の発電機。
  22. 前記発電機が前記固定子の前記電線スロットのすぐ近くに、磁化されたスロット回転子を配置することをさらに備え、前記スロット回転子が、永久磁石で動力を供給されるかまたは電磁石で動力を供給された、電磁回転子を備える回転子からなることがある、請求項18〜21のいずれか一項に記載の発電機。
  23. 真上を通過する前記磁極だけが電気的に励起され、前記スロット回転子間の望まれない好ましくない相互作用がないように、前記磁極が前記電線スロットから離れ去るときにオフされるように一定の順序で配列されるブラシおよびスリップリングを使って前記2極または4極の磁気回転子に電力を供給するための機構を組み立てることをさらに備える、請求項18〜22のいずれか一項に記載の発電機。
  24. 所望の効果を達成するために前記磁極をオンおよびオフにするために、ソリッドステート機構または主コミュテータ機構により前記スロット回転子を一定の順序で配列するための機構をさらに備える、請求項1〜23のいずれか一項に記載の発電機。
  25. 前記発電機出力および/または電力網から整流器を通して充電される直流電池を通して電力を供給される前記回転子要素を配置することをさらに備える、請求項1〜24のいずれか一項に記載の発電機。
  26. 高効率発電機出力および/または前記電力網から整流器を通して再充電される前記直流電池を通して電力を供給される方形波可変速度コントローラにより駆動される電気3相駆動モータをさらに備える、請求項1〜25のいずれか一項に記載の発電機。
  27. 発電機内で電気を発生させる方法であって、
    固定子の外面に沿って形成される、前記固定子の誘導コイル巻き線をそれぞれ露出する複数のスロットを有する前記固定子を配置するステップと、
    前記固定子の前記複数のスロットのすぐ近くに配置される複数の回転子要素を有する回転子を配置するステップであって、各回転子要素が、励磁されかつ前記複数のスロットに対して回転される磁気極性を有する磁極を形成する電機子機構、ならびに回転するためおよび電流を発生させるために駆動軸に結合される前記回転子を有するステップと、からなる方法。
  28. 前記固定子が、前記固定子の各スロットの所を除き、前記固定子の磁場と前記回転子の磁場との間の相互作用を遮蔽するための遮蔽を有する、請求項27に記載の方法。
  29. 各回転子要素が開口部を有する遮蔽を有し、前記遮蔽が、前記回転子要素の前記開口部と前記固定子の前記スロットとの間の前記回転子要素の前記開口部で発生する相互作用を除き、前記固定子の磁場と前記回転子の磁場との間の相互作用を遮蔽するためのものである、請求項27または28に記載の方法。
  30. 前記遮蔽が絶縁材をコートされた電気用鋼鉄の薄層シートを備える、請求項27〜29のいずれか一項に記載の方法。
  31. 前記遮蔽が前記薄層状の鋼鉄を有するM−15またはM−19(29−ゲージまたは26−ゲージ)を備える、請求項30に記載の方法。
  32. 前記遮蔽が、前記固定子内部の前記磁極を前記回転子の前記磁極から分離するための構成要素の1つとして、各電線スロット間の前記固定子の前記表面に炭素鋼を薄層状に覆われたミュー合金シートを備える、請求項30に記載の方法。
  33. 前記ミュー合金シートの厚さが0.05インチ(0.127センチメートル)から0.01インチ(0.0254センチメートル)までの範囲内であり、前記薄層状の炭素鋼の厚さが0.03インチ(0.0762センチメートル)から0.09インチ(0.2286センチメートル)までの範囲内である、請求項32に記載の方法。
  34. 前記固定子が円形である、請求項27〜33のいずれか一項に記載の方法。
  35. スロットの数が48電線スロットである、請求項27〜34のいずれか一項に記載の方法。
  36. 前記スロットが前記固定子の内側の半径上に配置される、請求項27〜35のいずれか一項に記載の方法。
  37. 前記スロットが前記固定子の外側の半径上に配置される、請求項27〜35のいずれか一項に記載の方法。
  38. 前記固定子および前記回転子が、適切な向きで支持手段により支えられる、請求項27〜37のいずれか一項に記載の方法。
  39. 前記誘導コイルが前記固定子の前記絶縁されたスロットの中に巻かれる、請求項27〜38のいずれか一項に記載の方法。
  40. 前記誘導コイルが、単相、2相、3相、または別の適切な相の電気相の電力の発生を可能にするために順序付けられた順序およびパターンで接続される、請求項39に記載の方法。
  41. 前記回転子要素が各固定子電線スロットの上を指定された順序で回転し、それにより前記固定子の極性力と前記回転子の極性力との相互作用を低減する、請求項27〜40のいずれか一項に記載の方法。
  42. 前記回転子要素が管状の軸であり前記軸の末端のそれぞれの上の軸受けで支えられ、前記支持が、前記固定子電線スロットのすぐ近くで前記回転子を保持する支持手段内に含まれている、請求項27〜41のいずれか一項に記載の方法。
  43. 前記磁極をオンおよびオフし、前記極性を回転させるために、各回転子要素内の各電機子機構の前記極性を一定の順序に配列するためのコントローラをさらに備える、請求項27〜42のいずれか一項に記載の方法。
  44. 前記磁極が、前記磁極を運ぶ前記固定子の内側または外側で回転する機械的回転子の使用なしに、旧来の発電機の回転子と同じ方法で前記固定子電線スロットの周りを、および横切って回転する中性非磁性ゾーンにより分離されるように、前記回転子を一定の順序に配列するステップをさらに含む、請求項27〜43のいずれか一項に記載の方法。
  45. 48電線スロット固定子で利用されるとき、あるスロット回転子から次のスロット回転子までの向きを2極回転子に対して15°、4極回転子に対して7.5°隔てるステップをさらに含む、請求項27〜44のいずれか一項に記載の方法。
  46. 360°パターンで8電線スロットがN極磁束によりカバーされ、続いて4スロットに磁束がなく、続いて8スロットがS極磁束によりカバーされ、続いて4スロットに磁束がなく、続いて8スロットにN極磁束があり、続いて4スロットに磁束がなく、続いて8スロットがS極によりカバーされ、続いて4スロットに磁束がないように、3相48スロット4極交流発電機に対する前記回転子磁極を一定の順序で配列するステップをさらに含む、請求項44または45に記載の方法。
  47. 駆動源、たとえばモータまたはタービンにより駆動される主電動装置に接続する軸を通して前記一定の順序で配列された回転子を駆動するステップをさらに含む、請求項44〜46のいずれか一項に記載の方法。
  48. 前記方法が前記固定子の前記電線スロットのすぐ近くに、磁化されたスロット回転子を配置するステップをさらに含み、前記スロット回転子が、永久磁石で動力を供給されるかまたは電磁石で動力を供給された、電磁回転子を備える回転子からなることがある、請求項44〜47のいずれか一項に記載の方法。
  49. 真上を通過する前記磁極だけが電気的に励起され、前記スロット回転子間の望まれない好ましくない相互作用がないように、前記磁極が前記電線スロットから離れ去るときにオフされるように一定の順序で配列されるブラシおよびスリップリングを使って前記2極または4極の磁気回転子に動力を供給するための機構を組み立てるステップをさらに含む、請求項27〜49のいずれか一項に記載の方法。
  50. 所望の効果を達成するために前記磁極をオンおよびオフにするために、ソリッドステート機構または主コミュテータ機構により前記スロット回転子を一定の順序で配列するための機構をさらに備える、請求項27〜49のいずれか一項に記載の方法。
  51. 前記発電機出力および/または電力網から整流器を通して充電される直流電池を通して電力を供給される前記回転子要素を配列するステップをさらに含む、請求項27〜50のいずれか一項に記載の方法。
  52. 高効率発電機出力および/または前記電力網から整流器を通して再充電される前記直流電池を通して電力を供給される方形波可変速度コントローラにより駆動される電気3相駆動モータをさらに備える、請求項27〜51のいずれか一項に記載の方法。
JP2011544941A 2009-01-12 2010-01-12 低抵抗型の高効率発電機 Pending JP2012515520A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US20484609P 2009-01-12 2009-01-12
US61/204,846 2009-01-12
US26975509P 2009-06-29 2009-06-29
US61/269,755 2009-06-29
US28005609P 2009-10-29 2009-10-29
US61/280,056 2009-10-29
PCT/IB2010/000043 WO2010079424A1 (en) 2009-01-12 2010-01-12 Decreased drag high efficiency electric generator

Publications (1)

Publication Number Publication Date
JP2012515520A true JP2012515520A (ja) 2012-07-05

Family

ID=42316291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544941A Pending JP2012515520A (ja) 2009-01-12 2010-01-12 低抵抗型の高効率発電機

Country Status (21)

Country Link
US (1) US20110278975A1 (ja)
EP (1) EP2386136A1 (ja)
JP (1) JP2012515520A (ja)
KR (1) KR20110114642A (ja)
CN (1) CN102273053A (ja)
AP (1) AP2011005804A0 (ja)
AU (1) AU2010204155A1 (ja)
BR (1) BRPI1006138A2 (ja)
CA (1) CA2749360A1 (ja)
CL (1) CL2011001691A1 (ja)
CR (1) CR20110383A (ja)
CU (1) CU20110149A7 (ja)
DO (1) DOP2011000223A (ja)
EA (1) EA201190105A1 (ja)
IL (1) IL213885A0 (ja)
MX (1) MX2011007330A (ja)
PE (1) PE20120604A1 (ja)
SG (1) SG172815A1 (ja)
TW (1) TW201106578A (ja)
WO (1) WO2010079424A1 (ja)
ZA (1) ZA201105097B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825514B1 (en) 2014-02-05 2017-11-21 Maestra Energy, Llc Electrical generator or motor with variable coil winding patterns exhibiting multiple wires incorporated into a plurality of independent three stage coil configurations and incorporating a belt drive arrangement exhibiting first and second rotating pully wheels in combination with opposite belt rotating magnet and coil supporting components for providing increased power output
US9906105B1 (en) 2014-01-28 2018-02-27 Maestra Energy, Llc Electrical induction motor with reconfigured rotor mounted commutators for receiving an armature current from a stator mounted brush component along with a reversing gear arrangement for driving a pair of opposite gear rings
US9906106B1 (en) 2014-01-31 2018-02-27 Maestra Energy, Llc Electrical generator or motor with variable coil winding patterns exhibiting multiple wires incorporated into a plurality coil configurations defined around a rotor and incorporating a gearbox arrangement exhibiting oppositely driven rotor and stator gears configured with multi-tiered reversing gears exhibiting both straight and helical patterns and for varying turning ratios for establishing either of acceleration or deceleration aspects for increased power output
US10523074B2 (en) 2014-01-16 2019-12-31 Maestra Energy, Llc Electrical energy conversion system in the form of an induction motor or generator with variable coil winding patterns exhibiting multiple and differently gauged wires according to varying braid patterns

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098859A1 (en) * 2009-10-29 2011-08-18 Redemptive Technologies Limited Decreased drag electric machine with dual stator and distributed high flux density slot rotor pairs
US20120074803A1 (en) * 2010-03-16 2012-03-29 Wendell Ray Walker Electric generator
KR101913858B1 (ko) * 2011-12-06 2018-10-31 타이코에이엠피 주식회사 스티어링 칼럼의 비틀림을 측정하기 위한 토크센서 및 이를 이용한 측정방법
US10008916B2 (en) 2011-12-15 2018-06-26 Redemptive Technologies Ltd High efficiency AC DC electric motor, electric power generating system with variable speed, variable power, geometric isolation and high efficiency conducting elements
US9394887B2 (en) * 2011-12-21 2016-07-19 Wobben Properties Gmbh Wind turbine nacelle
IN2014KN02979A (ja) * 2012-05-18 2015-05-08 Redemptive Technologies Ltd
US9476948B2 (en) * 2014-04-22 2016-10-25 Gm Global Technology Operations, Llc Automotive magnetic shield
US10030961B2 (en) 2015-11-27 2018-07-24 General Electric Company Gap measuring device
CN107524567A (zh) * 2017-09-09 2017-12-29 刘宾 车载综合发电装置
JP7218377B2 (ja) * 2017-11-01 2023-02-06 アニュメクス・ビーヴイ 終端ユニット
EP3696949B1 (en) 2019-02-12 2023-08-16 Goodrich Actuation Systems Limited Motor with regenerative braking resistor
US11641150B2 (en) * 2021-02-25 2023-05-02 O Chan KWON Smart generator
IT202200004922A1 (it) * 2022-03-14 2022-06-14 Antonio Rizzi Sistema autoalimentato per la produzione continua di energia elettrica

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782328A (en) * 1952-04-18 1957-02-19 Edward J Lindberg Dynamoelectric generators
US2903641A (en) * 1957-03-22 1959-09-08 Letourneau Westinghouse Compan Alternator
WO1983001353A1 (en) * 1981-09-30 1983-04-14 Lin, A., Oscar Pulse electro-magnets rotation energy accumulation method and system
CA1191535A (en) * 1983-09-22 1985-08-06 Leslie G. Meszaros Rolling magnetic friction electricity generator
US4831296A (en) * 1986-05-12 1989-05-16 Koichi Nagaba Rotary device
US5955809A (en) * 1992-08-17 1999-09-21 Intellectual Property Law Department Sundstrand Corporation Permanent magnet generator with auxiliary winding
GB2271025B (en) * 1992-09-26 1996-11-20 Pitt Steele Ian Broderick Electric motor
US6472790B2 (en) * 2000-02-24 2002-10-29 Briggs & Stratton Corporation Stator for an electric motor/generator with a half-integer winding
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
JP3873634B2 (ja) * 2001-02-28 2007-01-24 株式会社日立製作所 風力発電システム
WO2003044927A1 (en) * 2001-05-09 2003-05-30 Abb Ab Electrical machine
JP3767554B2 (ja) * 2002-12-27 2006-04-19 三菱電機株式会社 電動パワーステアリング装置用ブラシモータ
GB2417140B (en) * 2004-08-09 2008-01-23 Alstom Rotating superconducting machines
JP4466671B2 (ja) * 2007-03-28 2010-05-26 株式会社日立製作所 誘導機
CN201118293Y (zh) * 2007-11-27 2008-09-17 东元电机股份有限公司 旋转电机
US8232700B2 (en) * 2008-12-19 2012-07-31 Pratt & Whitney Canada Corp. Multi-rotor electric machine
US7902708B2 (en) * 2009-01-07 2011-03-08 Shimon Elmaleh Electro-magnetic motor generator system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523074B2 (en) 2014-01-16 2019-12-31 Maestra Energy, Llc Electrical energy conversion system in the form of an induction motor or generator with variable coil winding patterns exhibiting multiple and differently gauged wires according to varying braid patterns
US9906105B1 (en) 2014-01-28 2018-02-27 Maestra Energy, Llc Electrical induction motor with reconfigured rotor mounted commutators for receiving an armature current from a stator mounted brush component along with a reversing gear arrangement for driving a pair of opposite gear rings
US9906106B1 (en) 2014-01-31 2018-02-27 Maestra Energy, Llc Electrical generator or motor with variable coil winding patterns exhibiting multiple wires incorporated into a plurality coil configurations defined around a rotor and incorporating a gearbox arrangement exhibiting oppositely driven rotor and stator gears configured with multi-tiered reversing gears exhibiting both straight and helical patterns and for varying turning ratios for establishing either of acceleration or deceleration aspects for increased power output
US9825514B1 (en) 2014-02-05 2017-11-21 Maestra Energy, Llc Electrical generator or motor with variable coil winding patterns exhibiting multiple wires incorporated into a plurality of independent three stage coil configurations and incorporating a belt drive arrangement exhibiting first and second rotating pully wheels in combination with opposite belt rotating magnet and coil supporting components for providing increased power output

Also Published As

Publication number Publication date
TW201106578A (en) 2011-02-16
CU20110149A7 (es) 2012-06-21
SG172815A1 (en) 2011-08-29
CR20110383A (es) 2012-01-06
CA2749360A1 (en) 2010-07-15
AP2011005804A0 (en) 2011-08-31
BRPI1006138A2 (pt) 2016-02-23
DOP2011000223A (es) 2011-10-31
PE20120604A1 (es) 2012-06-09
WO2010079424A1 (en) 2010-07-15
EP2386136A1 (en) 2011-11-16
US20110278975A1 (en) 2011-11-17
AU2010204155A1 (en) 2011-07-21
KR20110114642A (ko) 2011-10-19
CL2011001691A1 (es) 2011-10-14
EA201190105A1 (ru) 2012-02-28
ZA201105097B (en) 2012-06-27
IL213885A0 (en) 2011-07-31
MX2011007330A (es) 2011-09-27
CN102273053A (zh) 2011-12-07
WO2010079424A9 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
JP2012515520A (ja) 低抵抗型の高効率発電機
RU2450411C1 (ru) Аксиальная двухвходовая бесконтактная электрическая машина-генератор
CN103208893A (zh) 感应励磁式混合励磁无刷同步电机
CN101562383B (zh) 单相磁阻发电机
WO2007105319A1 (ja) 発電機、発電方法及びモータ
US20120206002A1 (en) High efficiency electric motor and power cogeneration unit
KR20150035712A (ko) 가변적 속도, 가변적 전력, 기하학적 분리 및 고효율 전도성 엘리먼트를 갖는 고효율 ac dc 전기 모터, 전기 전력 생성 시스템
US20120206003A1 (en) Brushless direct current (dc) electric generator with decreased electromagnetic drag
US4982128A (en) Double air gap alternator
JP2012515433A (ja) ソリッドステート回転場電力コージェネレーション装置
Bala et al. The performance enhancement of BLDC motor using Halbach array rotor
KR100960225B1 (ko) 계자극 발생기와 회전하는 직류공급용 브러쉬에 의한 교류 발전장치
CN201188577Y (zh) 单相磁阻发电机
JP2012533273A (ja) 界磁極発生器と回転する直流供給用ブラシによる交流発電装置及び直流発電装置
WO2011098859A1 (en) Decreased drag electric machine with dual stator and distributed high flux density slot rotor pairs
US20200381986A1 (en) Permanent magnet generator and methods of making and using the same
RU2311716C2 (ru) Электрическая машина (варианты)
KR20190090755A (ko) 모터와 알터네이터를 융합한 구동기계
KR102012552B1 (ko) 직류공급용 다중회로 브러시의 회전을 이용하는 직류발전장치
WO2013090539A1 (en) High efficiency electric generator with electric motor forces
JP2010035394A (ja) ソレノイド発電機
US20050087989A1 (en) Apparatus and process for generating electric power by utilizing high frequency high voltage oscillating current as a carrier for high EMF DC in an armature board
KR100561011B1 (ko) 회전 전기자형 교류발전기
CN104659998A (zh) 一种两相四线控制换向同时发电的直流电动机
CN115622444A (zh) 一种永磁铁磁变定转子传动结构及其磁变能源系统