JP2012514611A - Functional materials for printed electronic components - Google Patents

Functional materials for printed electronic components Download PDF

Info

Publication number
JP2012514611A
JP2012514611A JP2011544796A JP2011544796A JP2012514611A JP 2012514611 A JP2012514611 A JP 2012514611A JP 2011544796 A JP2011544796 A JP 2011544796A JP 2011544796 A JP2011544796 A JP 2011544796A JP 2012514611 A JP2012514611 A JP 2012514611A
Authority
JP
Japan
Prior art keywords
oxide
layer
indium
gallium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011544796A
Other languages
Japanese (ja)
Other versions
JP5798041B2 (en
Inventor
ラルフ クーグラー,
アンドレアス クリチェック,
ザビーネ レンカー,
イェルク ヨット. シュナイダー,
ルドルフ ホフマン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2012514611A publication Critical patent/JP2012514611A/en
Application granted granted Critical
Publication of JP5798041B2 publication Critical patent/JP5798041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/02Magnesium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • C07C249/08Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes by reaction of hydroxylamines with carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/70Metal complexes of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2204Not belonging to the groups C07F7/2208 - C07F7/2296
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本発明は、電子部品のための、オキシメートのクラスからの少なくとも1種のリガンドを含む、金属有機アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体ならびにその混合物製の印刷可能な前駆体、ならびに製造方法に関する。本発明はさらに、対応するプリント電子部品、好ましくは電界効果トランジスタに関する。The present invention relates to metallic organoaluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complexes and mixtures thereof comprising at least one ligand from the oximate class for electronic components The present invention relates to a printable precursor and a manufacturing method. The invention further relates to a corresponding printed electronic component, preferably a field effect transistor.

Description

本発明は、電子部品のためのアルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ含有前駆体、ならびに製造方法に関する。さらに、本発明は、対応するプリント電子部品およびこれらに適する製造方法に関する。   The present invention relates to aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin-containing precursors for electronic components, and a manufacturing method. Furthermore, the present invention relates to corresponding printed electronic components and manufacturing methods suitable for them.

プリント・エレクトロニクスを、大量適用(例えば個別のパッケージでのRFID(=radio frequency identification)チップ)において用いるために、確立された大量印刷プロセスを用いることが、所望される。一般的に、プリント電子部品および系は、導体、例えば接点用、半導体、例えば活性材料として、絶縁体、例えば障壁層として、などの複数の材料部分からなる。   In order to use print electronics in mass applications (eg RFID (= radio frequency identification) chips in individual packages) it is desirable to use established mass printing processes. In general, printed electronic components and systems consist of a plurality of material parts such as conductors, for example for contacts, semiconductors, for example as active materials, insulators, for example as barrier layers.

製造プロセスは通常、蒸着段階、即ちそれぞれの材料を支持材料(基板)に適用すること、および後続のプロセス段階からなり、それによって材料の所望の特性が確実になる。大量対応、例えばロールトゥーロール加工に関して、フレキシブル基板(フィルムまたは箔)を用いることが所望される。プリント回路を製造するための以前のプロセスは、本質的な利点を有するが、欠点も有している:   The manufacturing process usually consists of a vapor deposition stage, i.e. applying the respective material to a support material (substrate) and subsequent process stages, thereby ensuring the desired properties of the material. For high volume handling, for example roll to roll processing, it is desirable to use a flexible substrate (film or foil). Previous processes for manufacturing printed circuits have essential advantages, but also have drawbacks:

従来技術(WO 2004086289を参照):ここでは、従来のSiロジックユニットおよび追加の構造化部品、またはプリント部品のハイブリッド(例えばRFIDチップの場合において金属アンテナ)が、高コスト方式で組み立てられている。しかし、このプロセスは、実際の量産適用目的のためには過度に複雑であるとされる。 Prior art (see WO 2004086289): Here, a conventional Si logic unit and an additional structured part, or a hybrid of printed parts (for example a metal antenna in the case of an RFID chip) is assembled in a high-cost manner . However, this process is considered overly complex for actual mass production purposes.

・有機材料(DE 19851703、WO 2004063806、WO 2002015264を参照):これらの系は、液相からのポリマーに基づくプリント電子部品である。これらの系は、以前から知られている材料(従来技術)と比較して、単純プロセスにより、溶液と区別される。ここで考慮するべき唯一のプロセス段階は、溶媒の乾燥である。しかし、例えば半導体材料または導電性材料の場合において達成可能な効率は、材料に典型的な特性の限定、いわゆるホッピング機構による、例えば電荷キャリア移動度<10cm/Vsなどによって、制限される。この制限は、適用の可能性に影響を及ぼす:プリントトランジスタの効率は、半導体チャネルの減少程度に伴って増大し、それは現在、大量プロセスを用いて〜40μmより小さく印刷することができない。当該技術のさらなる制限は、有機材料の周囲条件に対する感受性である。これによって、製造中のプロセス性能が複雑化され、場合によってはプリント部品のより短い寿命を生じさせる。 Organic materials (see DE 19851703, WO 2004063806, WO 2002015264) : These systems are printed electronic components based on polymers from the liquid phase. These systems are distinguished from solutions by a simple process compared to previously known materials (prior art). The only process step to be considered here is solvent drying. However, the achievable efficiencies, for example in the case of semiconductor materials or conductive materials, are limited by the properties typical of the material, for example by the so-called hopping mechanism, for example charge carrier mobility <10 cm 2 / Vs. This limitation affects the applicability: Print transistor efficiency increases with the degree of semiconductor channel reduction, which currently cannot be printed smaller than ˜40 μm using high volume processes. A further limitation of the technology is the sensitivity of organic materials to ambient conditions. This complicates process performance during manufacturing and in some cases results in a shorter life of the printed part.

無機材料:有機材料と比較して異なる固有特性(例えばUV誘起分解に対する安定性)のために、このクラスの材料は一般的に、プリント・エレクトロニクスにおける使用において、効率向上の可能性を有する。 Inorganic materials : Due to different intrinsic properties (eg stability to UV-induced degradation) compared to organic materials, this class of materials generally has the potential for increased efficiency in use in printed electronics.

原則として、2種の異なる方法を、この領域において用いることができる:
i)追加のプロセス段階のない、気相からの調製:この場合において、極めて良好に絶縁する薄層を製造することが可能であるが、付随する高コストの真空技術および緩慢な層形成によって、大量市場における使用が限定される。
In principle, two different methods can be used in this area:
i) Preparation from the gas phase without additional process steps: in this case it is possible to produce very well insulating thin layers, but with the associated high-cost vacuum technique and slow layer formation, Limited use in the mass market.

ii)前駆体材料から開始した湿式化学調製であって、当該材料を、液相から、例えば回転塗布または印刷などによって適用する(US 6867081、US 6867422、US 2005/0009225を参照)。いくつかの場合において、無機材料と有機マトリックスとの混合物もまた、用いられる(US 2006/0014365を参照)。 ii) Wet chemical preparation starting from a precursor material, which is applied from the liquid phase, for example by spin coating or printing (see US 6867081, US 6867422, US 2005/0009225). In some cases, a mixture of an inorganic material and an organic matrix is also used (see US 2006/0014365).

製造される層の一貫した電気的特性を保証するために、溶媒の蒸発を超えるプロセス段階が、通常必要である。すべての場合において、湿式相からの前駆体がさらに、所望の活性材料に変換される、互いに混ざり合う(run into one another)領域を有する形態を製造することが必要である。これによって、所望の機能性が生じる(半導体の場合:高電荷キャリア移動度)。したがって、加工は>300℃の温度にて行われるが、これによって、フィルムコーティングのためのこのプロセスの使用ができない。   In order to ensure consistent electrical properties of the layers produced, process steps beyond solvent evaporation are usually necessary. In all cases, it is necessary to produce a form having run into one another regions where the precursor from the wet phase is further converted into the desired active material. This produces the desired functionality (in the case of semiconductors: high charge carrier mobility). Thus, processing takes place at temperatures> 300 ° C., which makes it impossible to use this process for film coating.

MgOのための前駆体物質を用いる例は、例えば、Stryckmans et al. Thin Solid Films 1996, 283, 17(260℃より高温のマグネシウムアセチルアセトネートから)またはRaj et al. Crystal Research and Technology 2007, 42, 867(多段階における300℃からの酢酸マグネシウムから)に記載されている。両方の場合において、噴霧熱分解が、気相からの層蒸着に用いられる。この場合において、溶液を、加熱した基板(400℃より高温)上に噴霧し、任意になおより高温にて後処理する。所要の高温によって、印刷プロセスにおける使用ができない。   Examples using precursor materials for MgO are, for example, Stryckmans et al. Thin Solid Films 1996, 283, 17 (from magnesium acetylacetonate above 260 ° C.) or Raj et al. Crystal Research and Technology 2007, 42 867 (from magnesium acetate from 300 ° C. in multiple stages). In both cases, spray pyrolysis is used for layer deposition from the gas phase. In this case, the solution is sprayed onto a heated substrate (higher than 400 ° C.) and optionally post-treated at still higher temperatures. Due to the required high temperature, it cannot be used in the printing process.

可溶性ZrO前駆体材料を用いる例は、Ismail et al. Powder Technology 1995, 85, 253(ジルコニウムアセチルアセトネートから多段階にわたり200〜600℃にて)に記載されている。
可溶性HfOを用いる例は、例えば、Zherikova et al. Journal of Thermal Analysis and Calorimetry 2008, 92, 729(ハフニウムアセチルアセトネートから長時間にわたりT=150〜500℃にて)から知られている。
Examples using soluble ZrO 2 precursor materials are described in Ismail et al. Powder Technology 1995, 85, 253 (from zirconium acetylacetonate over multiple steps at 200-600 ° C.).
Examples using soluble HfO 2 are known, for example, from Zherikova et al. Journal of Thermal Analysis and Calorimetry 2008, 92, 729 (from hafnium acetylacetonate for long periods at T = 150-500 ° C.).

ベータ−ジケトナート、例えばジルコニウムおよびハフニウムのアセチルアセトネートなどは、化学蒸着法(CVD)による気相からの層蒸着において用いられる。ここで、当該化合物は、高真空において気化し、加熱した基板(500℃より高温)上に蒸着する。酸化物セラミックス(oxidic ceramics)への変換は、不連続な多種の中間体を介して行われるが、これらは、機能性材料としては用いられない。このように、所定の反応を保証する高温が必要であり、それによって、印刷プロセスにおける使用ができない。   Beta-diketonates, such as zirconium and hafnium acetylacetonates, are used in layer deposition from the gas phase by chemical vapor deposition (CVD). Here, the compound is vaporized in a high vacuum and deposited on a heated substrate (higher than 500 ° C.). Conversion to oxide ceramics takes place via a variety of discontinuous intermediates, but these are not used as functional materials. In this way, high temperatures are required to ensure a certain reaction, which makes it impossible to use in the printing process.

酸化インジウムスズ(「ITO」と略される)の調製のために、使用される前駆体は、例えばエタノールアミンなどのアミンの存在下での、例えばスズおよびインジウム塩のゾルである(Prodi et al. Journal of Sol-Gel Science and Technology 2008, 47, 68)。酸化物への変換は、ここでは500〜600℃より高い温度にて行われる。所要の高温によって、温度感受性基板に対する印刷プロセスにおける使用ができない。   For the preparation of indium tin oxide (abbreviated “ITO”), the precursor used is, for example, a sol of tin and indium salts in the presence of an amine such as ethanolamine (Prodi et al Journal of Sol-Gel Science and Technology 2008, 47, 68). The conversion to oxide is carried out here at a temperature higher than 500-600 ° C. The required high temperature makes it unusable in the printing process for temperature sensitive substrates.

非晶質であり、半導体酸化物セラミックスの調製は、注目すべきである(K. Nomura et al. Nature 2004, 432, 488-492;H. Hosono Journal of Non-Crystalline Solids 2006, 352, 851-858;T. Kamiya et al. Journal of Display Technology 2009, 5, 273-288)。インジウム−ガリウム−スズ−亜鉛−酸素相系が、ここで詳細に調査されている。典型的な例は、インジウムガリウム亜鉛酸化物(「IGZO」と略される)および亜鉛スズ酸化物(「ZTO」と略される)であり、またインジウム亜鉛スズ酸化物(「IZTO」と略される)である。   The preparation of semiconductor oxide ceramics that are amorphous is noteworthy (K. Nomura et al. Nature 2004, 432, 488-492; H. Hosono Journal of Non-Crystalline Solids 2006, 352, 851- 858; T. Kamiya et al. Journal of Display Technology 2009, 5, 273-288). The indium-gallium-tin-zinc-oxygen phase system is now investigated in detail. Typical examples are indium gallium zinc oxide (abbreviated “IGZO”) and zinc tin oxide (abbreviated “ZTO”), and indium zinc tin oxide (abbreviated “IZTO”). Is).

半導体層の蒸着は通常、気相を介して行われるが、溶液に基づくプロセスもまた、知られている。しかし、ここで用いられるゾルによって、比較的高い加工温度が必要になる。亜鉛スズ酸化物を、無水塩化スズ(II)または酢酸スズ(II)および酢酸亜鉛六水和物から、塩基、例えばエタノールアミンなどの存在下で得ることができる。酸化物への変換(スズ構成成分の酸化を伴うもの)を、空気中での焼成中の反応能力に依存して、少なくとも350℃(D. Kim et al. Langmuir 2009, 25, 11149-11154)または400〜500℃(S.J. Seo et al. Journal of Physics D: Applied Physics, 2009, 42, 035106)にて行う。インジウム亜鉛スズ酸化物は、エチレングリコール中の無水塩化インジウム、塩化亜鉛および塩化スズ(II)から、水酸化ナトリウム溶液との反応および後続の600℃における焼成によって得られる(D.H. Lee et al. Journal of Materials Chemistry 2009, 19, 3135-3137)。   The deposition of the semiconductor layer is usually done via the gas phase, but solution-based processes are also known. However, the sol used here requires a relatively high processing temperature. Zinc tin oxide can be obtained from anhydrous tin (II) chloride or tin (II) acetate and zinc acetate hexahydrate in the presence of a base such as ethanolamine. Conversion to oxide (with oxidation of tin components) is at least 350 ° C. (D. Kim et al. Langmuir 2009, 25, 11149-11154) depending on the reaction capacity during calcination in air Alternatively, it is carried out at 400 to 500 ° C. (SJ Seo et al. Journal of Physics D: Applied Physics, 2009, 42, 035106). Indium zinc tin oxide is obtained from anhydrous indium chloride, zinc chloride and tin (II) chloride in ethylene glycol by reaction with sodium hydroxide solution and subsequent calcination at 600 ° C. (DH Lee et al. Journal of Materials Chemistry 2009, 19, 3135-3137).

これらの従来の前駆体の、プリント回路製造のための使用は、大量印刷用途の大量生産における、その適用性において制限される。   The use of these conventional precursors for printed circuit manufacturing is limited in their applicability in mass production for mass printing applications.

したがって、本発明の目的は、誘電特性、半導体特性および導電特性を、一方で材料組成によって、および他方でプリント材料の調製方法によって調節することができる無機材料を提供することにあった。このために、当該目的は、無機材料の利点を維持する材料系を開発することにある。湿式相からの材料を印刷プロセスによって加工することが可能でなければならない。各々の場合において平面上における所望される材料の電子的効率、およびフレキシブル基板は、エネルギーの低入力のみを必要とするプロセス段階を用いて製造されなければならない。   The object of the present invention was therefore to provide an inorganic material in which the dielectric properties, semiconductor properties and conductive properties can be adjusted on the one hand by the material composition and on the other hand by the method for preparing the printing material. To this end, the aim is to develop a material system that maintains the advantages of inorganic materials. It should be possible to process the material from the wet phase by a printing process. In each case, the electronic efficiency of the desired material on the plane, and the flexible substrate must be manufactured using process steps that require only a low input of energy.

驚くべきことに、新規な有機金属前駆体材料が調製され、表面に適用され、その後低温にて誘電的に活性な材料、即ち絶縁性材料に、およびまた電気的に半導体性または導電性材料に変換されるプロセスが開発された。当該プロセスにおいて製造される層は、印刷プロセスに有利である表面特性によって区別される。   Surprisingly, a novel organometallic precursor material is prepared and applied to the surface and then to a dielectrically active material at low temperature, ie an insulating material, and also electrically to a semiconducting or conducting material A process to be converted was developed. The layers produced in the process are distinguished by surface properties that are advantageous for the printing process.

図面の索引
本発明を、多数の例示的態様を参照して、以下により詳細に説明する(図1〜8bを参照)。
図1は、メトキシエタノール中のハフニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]溶液についての、前駆体含量に対する動的粘度の依存性を示す図である。測定を、標準環境条件(standard environmental conditions)(DIN 50 014-23)下で行った。 図2は、酸素中でのジルコニウムおよびハフニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]の熱重量分析を示す(1=ジルコニウム錯体の曲線、2=ハフニウム錯体の曲線)図である。温度の関数としての相対的質量の減少によって、必須反応温度について結論づけることができる。
Drawing Index The invention is described in more detail below with reference to a number of exemplary embodiments (see FIGS. 1-8b).
FIG. 1 shows the dependence of dynamic viscosity on precursor content for a hafnium hydroxo [2- (methoxyimino) propanoate] solution in methoxyethanol. Measurements were made under standard environmental conditions (DIN 50 014-23). FIG. 2 shows a thermogravimetric analysis of zirconium and hafnium hydroxo [2- (methoxyimino) propanoate] in oxygen (1 = curve of the zirconium complex, 2 = curve of the hafnium complex). By reducing the relative mass as a function of temperature, one can conclude on the essential reaction temperature.

図3は、各々の場合において、シリコン基板上での回転塗布および種々の温度にて30分間加工することによって、2−メトキシエタノール/2−ブタノール中のジルコニウムオキシメートを含む本発明のフィルムのX線光電子分光法(XPS)による分析を示す図である。(a=Zr3dシグナル。b=N1sシグナル。c=C1sシグナル。1=さらなる加工なし。2=200℃にて加工。3=250℃にて加工。)XPSスペクトルによって、試料中に存在する元素および酸化状態について、ならびに混合比について結論づけることができる。このように、酸化ジルコニウムが加工後にフィルム中に存在することを示すことができる。FIG. 3 shows in each case X of a film of the invention comprising zirconium oximate in 2-methoxyethanol / 2-butanol by spin coating on a silicon substrate and processing for 30 minutes at various temperatures. It is a figure which shows the analysis by a line photoelectron spectroscopy (XPS). (A = Zr3d signal, b = N1s signal, c = C1s signal, 1 = no further processing, 2 = processing at 200 ° C., 3 = processing at 250 ° C.) The XPS spectrum shows the elements present in the sample and Conclusions can be made about the oxidation state, as well as the mixing ratio. Thus, it can be shown that zirconium oxide is present in the film after processing.

図4は、各々の場合において、シリコン基板上での回転塗布および種々の温度にて30分間加工することによって、2−メトキシエタノール中のマグネシウムオキシメートを含む本発明のフィルムのX線光子分光法(XPS)による分析を示す図である。いくつかの測定の場合において、測定チャンバ中でスパッタリングによって表面を洗浄した。(a=Mg1sシグナル。b=O1sシグナル。c=C1sシグナル。1=210℃にて加工+スパッタリング。2=450℃にて加工。3=450℃にて加工+スパッタリング。)XPSスペクトルによって、試料中に存在する元素および酸化状態について、ならびに混合比について結論づけることができる。このように、酸化マグネシウムが加工後にフィルム中に存在することを示すことができる。FIG. 4 shows in each case X-ray photon spectroscopy of a film of the invention comprising magnesium oximate in 2-methoxyethanol by spin coating on a silicon substrate and processing for 30 minutes at various temperatures. It is a figure which shows the analysis by (XPS). In some measurements, the surface was cleaned by sputtering in the measurement chamber. (A = Mg1s signal, b = O1s signal, c = C1s signal, 1 = processing at 210 ° C. + sputtering, 2 = processing at 450 ° C., 3 = processing at 450 ° C. + sputtering) Sample by XPS spectrum Conclusions can be made about the elements and oxidation states present therein, as well as the mixing ratio. Thus, it can be shown that magnesium oxide is present in the film after processing.

図5は、各々の場合において、シリコン基板上での回転塗布および種々の温度にて30分間加工することによって、2−メトキシエタノール/2−ブタノール中のハフニウムオキシメートを含む本発明のフィルムのX線光子分光法(XPS)による分析を示す図である。(a=Hf4fシグナル。b=N1sシグナル。c=C1sシグナル。1=加工なし。2=200℃にて加工。3=250℃にて加工。)XPSスペクトルによって、試料中に存在する元素および酸化状態について、ならびに混合比について結論づけることができる。このように、酸化ハフニウムが加工後にフィルム中に存在することを示すことができる。FIG. 5 shows in each case X of a film of the invention comprising hafnium oximate in 2-methoxyethanol / 2-butanol by spin coating on a silicon substrate and processing at various temperatures for 30 minutes. It is a figure which shows the analysis by a line photon spectroscopy (XPS). (A = Hf4f signal, b = N1s signal, c = C1s signal, 1 = no processing, 2 = processing at 200 ° C., 3 = processing at 250 ° C.) Elements and oxidation present in the sample by XPS spectrum One can conclude about the condition as well as the mixing ratio. Thus, it can be shown that hafnium oxide is present in the film after processing.

図6は、本発明の誘電体層の構造の線図を示す図である。(1=導体−金またはアルミニウム、2=誘電体−酸化ジルコニウム、3=導体−金またはアルミニウム、4=基板/絶縁体−ガラス)。FIG. 6 shows a diagram of the structure of the dielectric layer of the present invention. (1 = conductor-gold or aluminum, 2 = dielectric-zirconium oxide, 3 = conductor-gold or aluminum, 4 = substrate / insulator-glass). 図7は、図6からの部品における絶縁破壊電圧の決定のための電流/電圧曲線を示す図である。電流/電圧曲線は、誘電体の典型的な形状を示す;絶縁破壊電圧を、材料の重要なパラメーターとして、それにより決定することができる。FIG. 7 shows a current / voltage curve for the determination of the breakdown voltage in the component from FIG. The current / voltage curve shows the typical shape of the dielectric; the breakdown voltage can be determined thereby as an important parameter of the material.

図8a:薄膜電界効果トランジスタの構造の線図を示す図である(1=導体(ドレインおよびソース)、2=半導体、3=誘電体、4=導体(ゲート))。当該部品は、トップコンタクト配置(top-contact arrangement)に電極を有する。 図8b:薄膜電界効果トランジスタの構造の線図を示す図である(1=半導体、2=導体(ドレインおよびソース)、3=誘電体、4=導体(ゲート))。当該部品は、ボトムコンタクト配置(bottom-contact arrangement)に電極を有する。 FIG. 8a : Diagram showing the structure of a thin film field effect transistor (1 = conductor (drain and source), 2 = semiconductor, 3 = dielectric, 4 = conductor (gate)). The component has electrodes in a top-contact arrangement. FIG. 8b : Diagram showing the structure of a thin film field effect transistor (1 = semiconductor, 2 = conductor (drain and source), 3 = dielectric, 4 = conductor (gate)). The part has electrodes in a bottom-contact arrangement.

したがって、本発明は、電子部品をコーティングするための前駆体であって、オキシメートのクラスからの少なくとも1種のリガンドを含有する、有機金属アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体あるいはその混合物を含むことを特徴とする、前記前駆体に関する。 反応が好適な方法で行われる場合には、前駆体を、アルカリ金属を含まずに調製することもできる。これは、アルカリ金属含有残留物が電子的特性に対して悪影響を有し得るため、電子部品における使用に有利であり得る。これらの元素は、結晶中の外来原子として、当該特性に対して好ましくない影響を有し得る。   Accordingly, the present invention is a precursor for coating electronic components and contains at least one ligand from the oximate class, organometallic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium And / or a tin complex or a mixture thereof. If the reaction is carried out in a suitable manner, the precursor can also be prepared without alkali metals. This can be advantageous for use in electronic components since alkali metal-containing residues can have an adverse effect on electronic properties. These elements can have an unfavorable effect on the properties as foreign atoms in the crystal.

好ましい態様において、前駆体は印刷可能であり、プリント電界効果トランジスタ(FET)、好ましくは薄膜トランジスタ(TFT)をコーティングするための印刷用インクまたは印刷用ペーストの形態である。
用語「印刷可能な前駆体」は、その材料特性のために、湿式相から印刷プロセスによって加工することができる前駆体材料を意味するものと解釈される。印刷プロセス中、印刷用インクまたは印刷用ペーストを、印刷プロセスに応じて、貯蔵容器から基板に輸送する。
In a preferred embodiment, the precursor is printable and is in the form of a printing ink or printing paste for coating a printed field effect transistor (FET), preferably a thin film transistor (TFT).
The term “printable precursor” is taken to mean a precursor material that, due to its material properties, can be processed by a printing process from the wet phase. During the printing process, printing ink or printing paste is transported from the storage container to the substrate, depending on the printing process.

したがって、前駆体材料は、印刷プロセスに適する印刷プロセス中の粘性および安定性を有し、好適な湿潤性および基板への粘着力を有する、このタイプの印刷用インクまたは印刷用ペーストへの変換が可能でなければならない。
経験上、インクまたはペーストの種々の粘性範囲は、異なる印刷プロセスについて好ましいことが示される;例えば、インクジェット印刷(サーマル方式)について1〜5mPa・s、インクジェット印刷(ピエゾ方式)について5〜20mPa・s、グラビア印刷について50〜200mPa・s、フレキソ印刷について50〜500mPa・sおよびスクリーン印刷について2000〜40,000mPa・sである。
Thus, the precursor material has a viscosity and stability during the printing process suitable for the printing process, and is suitable for conversion to this type of printing ink or printing paste with suitable wettability and adhesion to the substrate. Must be possible.
Experience shows that different viscosity ranges of inks or pastes are preferred for different printing processes; for example, 1-5 mPa · s for ink jet printing (thermal), 5-20 mPa · s for ink jet printing (piezo). The gravure printing is 50 to 200 mPa · s, the flexographic printing is 50 to 500 mPa · s, and the screen printing is 2000 to 40,000 mPa · s.

すでに上記で記載したように、前駆体は、オキシメートのクラスからの少なくとも1種のリガンドを有する有機金属アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体を含む。本発明に従い、アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体のリガンドが、2−(メトキシイミノ)アルカノエート、2−(エトキシイミノ)アルカノエートまたは2−(ヒドロキシイミノ)アルカノエートを含有することが、好ましい。リガンドを、塩基の存在下で、水性またはメタノール性溶液中における、アルファ−ケト酸またはオキソカルボン酸のヒドロキシルアミンまたはアルキルヒドロキシルアミンとの縮合によって合成する。   As already described above, the precursors comprise organometallic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complexes with at least one ligand from the oximate class. According to the present invention, the ligand of aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complex is 2- (methoxyimino) alkanoate, 2- (ethoxyimino) alkanoate or 2- (hydroxyimino) It is preferable to contain an alkanoate. The ligand is synthesized by condensation of alpha-keto acid or oxocarboxylic acid with hydroxylamine or alkylhydroxylamine in an aqueous or methanolic solution in the presence of a base.

前駆体またはアルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体は、室温にて、例えば炭酸水素テトラエチルアンモニウムまたは炭酸水素ナトリウムなどの塩基の存在下での、オキソカルボン酸と、少なくとも1種のヒドロキシルアミンまたはアルキルヒドロキシルアミンとの反応、およびそれに続く、無機アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ塩、例えば硝酸アルミニウム九水和物、硝酸ガリウム六水和物、無水三塩化ネオジム、三塩化ルテニウム六水和物、硝酸マグネシウム六水和物、オキソ塩化ジルコニウム八水和物、オキソ塩化ハフニウム八水和物、無水塩化インジウムおよび/または塩化スズ五水和物などの添加によって生成する。あるいはまた、少なくとも1種のヒドロキシルアミンまたはアルキルヒドロキシルアミンの存在下で、オキソカルボン酸を、例えばハイドロマグネサイトMg(CO(OH)・4HOなどのマグネシウム、ハフニウムまたはジルコニウムのヒドロキソ炭酸塩と反応させることができる。 The precursor or aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complex is an oxocarboxylic acid in the presence of a base such as tetraethylammonium bicarbonate or sodium bicarbonate at room temperature. Reaction with at least one hydroxylamine or alkylhydroxylamine, followed by inorganic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin salts, such as aluminum nitrate nonahydrate, Gallium nitrate hexahydrate, anhydrous neodymium trichloride, ruthenium trichloride hexahydrate, magnesium nitrate hexahydrate, oxozirconium chloride octahydrate, oxohafnium chloride octahydrate, anhydrous indium chloride Generated by the addition of such presence and / or tin chloride pentahydrate. Alternatively, in the presence of at least one hydroxylamine or alkylhydroxylamine, an oxocarboxylic acid can be formed of magnesium, hafnium or zirconium, for example hydromagnesite Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O. Can be reacted with hydroxocarbonate.

用いることができるオキソカルボン酸は、このクラスの化合物のすべてを代表するものである。しかし、好ましいのは、オキソ酢酸、オキソプロピオン酸またはオキソ酪酸の使用である。   The oxocarboxylic acids that can be used are representative of all of this class of compounds. However, preference is given to using oxoacetic acid, oxopropionic acid or oxobutyric acid.

アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムもしくはジルコニウム錯体前駆体の、絶縁特性を有する機能性酸化アルミニウム、酸化ガリウム、酸化ネオジム、酸化マグネシウム、酸化ハフニウムもしくは酸化ジルコニウム層への熱変換、またはルテニウム錯体前駆体の酸化ルテニウム層への熱変換を、≧80℃の温度にて行う。当該温度は、好ましくは150〜200℃である。   Thermal conversion of aluminum, gallium, neodymium, magnesium, hafnium or zirconium complex precursors into functional aluminum oxide, gallium oxide, neodymium oxide, magnesium oxide, hafnium or zirconium oxide layers with insulating properties, or ruthenium complex precursors Is converted to a ruthenium oxide layer at a temperature of ≧ 80 ° C. The temperature is preferably 150 to 200 ° C.

インジウムおよびスズ錯体前駆体の、導電特性を有する機能性酸化インジウムスズ層への熱変換を、≧150℃の温度にて行う。当該温度は、好ましくは150〜250℃である。
インジウム、ガリウムおよび亜鉛錯体前駆体の、半導体特性を有する機能性インジウムガリウム亜鉛酸化物層への熱変換を、≧150℃の温度にて行う。当該温度は、好ましくは150〜250℃である。
亜鉛およびスズ錯体前駆体の、半導体特性を有する機能性亜鉛スズ酸化物層への熱変換を、≧150℃の温度にて行う。当該温度は、好ましくは150〜250℃である。
Thermal conversion of the indium and tin complex precursors to a functional indium tin oxide layer having conductive properties is performed at a temperature of ≧ 150 ° C. The temperature is preferably 150 to 250 ° C.
Thermal conversion of indium, gallium and zinc complex precursors into a functional indium gallium zinc oxide layer having semiconductor properties is performed at a temperature of ≧ 150 ° C. The temperature is preferably 150 to 250 ° C.
Thermal conversion of the zinc and tin complex precursor to a functional zinc tin oxide layer having semiconductor properties is performed at a temperature of ≧ 150 ° C. The temperature is preferably 150 to 250 ° C.

アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムもしくはジルコニウム錯体前駆体の、絶縁特性を有する機能性酸化アルミニウム、ガリウム、マグネシウム、ハフニウムもしくはジルコニウム層への変換、またはルテニウム錯体前駆体の酸化ルテニウムへの変換、またはインジウムおよびスズ錯体前駆体の、導電特性を有する機能性酸化インジウムスズ層への変換、またはインジウム−ガリウム−亜鉛およびスズ錯体前駆体の、半導体特性を有する機能性酸化物層への変換を、他の好ましい態様において、<400nmの波長を有するUV光を照射することによって行う。   Conversion of an aluminum, gallium, neodymium, magnesium, hafnium or zirconium complex precursor to a functional aluminum oxide, gallium, magnesium, hafnium or zirconium layer with insulating properties, or conversion of a ruthenium complex precursor to ruthenium oxide, or Conversion of indium and tin complex precursors into functional indium tin oxide layers with conductive properties, or conversion of indium-gallium-zinc and tin complex precursors into functional oxide layers with semiconductor properties, etc. In a preferred embodiment, the irradiation is performed by irradiating with UV light having a wavelength of <400 nm.

波長は、好ましくは150〜380nmである。UV照射の場合における利点は、それによって製造された酸化アルミニウム、酸化ガリウム、酸化ネオジム、酸化ルテニウム、酸化マグネシウム、酸化ハフニウム、酸化ジルコニウム、酸化インジウムスズおよびインジウムガリウム亜鉛酸化物または亜鉛スズ酸化物層が、より低減された表面粗さを有することである。これは、表面の増大した粗さが、後続の薄い層について、これらの層を均一に形成することができず、したがって電気的に機能性でない(例えば損傷した誘電体層による短絡)という、リスク増加を意味するであろうからである。   The wavelength is preferably 150 to 380 nm. The advantage in the case of UV irradiation is that the aluminum oxide, gallium oxide, neodymium oxide, ruthenium oxide, magnesium oxide, hafnium oxide, zirconium oxide, indium tin oxide and indium gallium zinc oxide or zinc tin oxide layer produced thereby are Having a reduced surface roughness. This is a risk that the increased roughness of the surface does not allow these layers to be formed uniformly for subsequent thin layers and is therefore not electrically functional (eg, a short circuit due to a damaged dielectric layer). This will mean an increase.

対応する前駆体から製造される酸化アルミニウム、酸化ガリウム、酸化ネオジム、酸化マグネシウム、酸化ハフニウムまたは酸化ジルコニウム層は、2種の導体の間で>0.1MV/cmの絶縁破壊電圧を示す。好ましいのは、1〜10MV/cmの絶縁破壊電圧である。
絶縁破壊電圧を、DIN EN ISO 2376:2009-07に記載されている測定および評価方法によって決定することができる。
酸化インジウムスズ層(ITO層)は、好ましくは<10−3オーム・cmの比抵抗(四点測定によって決定)を有する。10−3〜10−5オーム・cmの比抵抗が、好ましい。
伝導率を、直流四探針法によって決定することができる。この測定法は、DIN 50431またはASTM F43-99に記載されている。
Aluminum oxide, gallium oxide, neodymium oxide, magnesium oxide, hafnium oxide or zirconium oxide layers produced from the corresponding precursors exhibit a breakdown voltage of> 0.1 MV / cm between the two conductors. Preferred is a breakdown voltage of 1 to 10 MV / cm.
The breakdown voltage can be determined by the measurement and evaluation methods described in DIN EN ISO 2376: 2009-07.
The indium tin oxide layer (ITO layer) preferably has a resistivity (determined by four-point measurement) of <10 −3 ohm · cm. A specific resistance of 10 −3 to 10 −5 ohm · cm is preferred.
The conductivity can be determined by the direct current four probe method. This measurement method is described in DIN 50431 or ASTM F43-99.

インジウムガリウム亜鉛酸化物(IGZO)層または亜鉛スズ酸化物(ZTO)層は、好ましくは>10−3cm/Vsの電荷キャリア移動度を有する。好ましいのは、0.1〜10cm/Vsの電荷キャリア移動度である。
半導体材料のパラメーターの特性評価および決定を、IEEE 1620に記載されている測定および評価方法によって行うことができる。
The indium gallium zinc oxide (IGZO) layer or the zinc tin oxide (ZTO) layer preferably has a charge carrier mobility of> 10 −3 cm 2 / Vs. Preferred is a charge carrier mobility of 0.1 to 10 cm 2 / Vs.
The characterization and determination of the parameters of the semiconductor material can be performed by the measurement and evaluation methods described in IEEE 1620.

本発明はさらに、本発明の有機金属アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体または前駆体の、電界効果トランジスタにおける1つまたは2つ以上の機能性層を製造するための使用に関する。   The present invention further comprises one or more functional layers in a field effect transistor of the organometallic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complex or precursor of the present invention. Relates to use for manufacturing.

本発明に従い、基板は、例えばガラス、セラミックス、金属もしくはプラスチック基板などの硬質基板、またはフレキシブル基板であり、特にプラスチックフィルムもしくは金属箔のいずれかであり得る。本発明に従い、フレキシブル基板(フィルムまたは箔)を、好ましくは用いる。   In accordance with the present invention, the substrate is a rigid substrate, such as, for example, a glass, ceramic, metal or plastic substrate, or a flexible substrate, and in particular can be either a plastic film or a metal foil. In accordance with the present invention, a flexible substrate (film or foil) is preferably used.

本発明の前駆体溶液の、例えば浸漬塗布、回転塗布およびインクジェット印刷またはフレキソ印刷/グラビア印刷などの方法による基板への適用は、当業者に既知であり(M.A. Aegerter, M. Menning; Sol-Gel Technologies for Glass Producers and Users, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004を参照)、ここで、インクジェット印刷またはフレキソ印刷/グラビア印刷が、本発明に従って好ましい。   Application of the precursor solution of the invention to a substrate by methods such as dip coating, spin coating and ink jet printing or flexographic / gravure printing is known to those skilled in the art (MA Aegerter, M. Menning; Sol-Gel). Technologies for Glass Producers and Users, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004), where inkjet printing or flexographic / gravure printing is preferred according to the invention.

用語「電界効果トランジスタ(FET)」は、バイポーラトランジスタとは対照的に、1種類の荷電のみが電流輸送に関与するユニポーラトランジスタ(設計に依存して電子またはホールまたは電子欠陥)のグループを意味するものと解釈される。FETの最も広く知られたタイプは、MOSFET(金属酸化物半導体FET)である。
FETは、3つの接続部を有する:
・ソース
・ゲート
・ドレイン。
The term “field effect transistor (FET)” means a group of unipolar transistors (electrons or holes or electron defects depending on the design) where only one charge is involved in current transport, as opposed to bipolar transistors. To be interpreted. The most widely known type of FET is a MOSFET (metal oxide semiconductor FET).
The FET has three connections:
・ Source, gate, drain.

MOSFETにおいて、第4のバルク(基板)接続もまた、存在する。個々のトランジスタの場合において、これは、すでにソース接続部に内部で接続されており、別個に接続されていない。   In the MOSFET, there is also a fourth bulk (substrate) connection. In the case of individual transistors, this is already connected internally to the source connection and not separately.

本発明に従い、用語「FET」は一般的に、以下のタイプの電界効果トランジスタを包含する:
・障壁層(barrier-layer)電界効果トランジスタ(JFET)
・ショットキー電界効果トランジスタ(MESFET)
・金属酸化物半導体FET(MOSFET)
・高電子移動度トランジスタ(HEMT)
・イオン感応性電界効果トランジスタ(ISFET)
・薄膜トランジスタ(TFT)。
In accordance with the present invention, the term “FET” generally encompasses the following types of field effect transistors:
・ Barrier-layer field effect transistor (JFET)
・ Schottky field effect transistor (MESFET)
・ Metal oxide semiconductor FET (MOSFET)
・ High electron mobility transistor (HEMT)
・ Ion sensitive field effect transistor (ISFET)
Thin film transistor (TFT).

好ましいのは、本発明に従ってTFTであり、それによって大面積電子回路を製造することができる。   Preferred is a TFT according to the present invention, whereby large area electronic circuits can be manufactured.

本発明はさらに、以下の薄層を有するプリント電子部品に関する:
・硬質またはフレキシブル導電性基板、あるいは導電層(ゲート)を有する絶縁基板
・対応する前駆体である、オキシメートのクラスからの少なくとも1種のリガンドを含有する有機金属アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムまたはジルコニウム錯体から得られる酸化アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムまたはジルコニウムを含む、絶縁体
・少なくとも1つの電極(ドレイン電極)
・半導体。
The invention further relates to a printed electronic component having the following thin layers:
A hard or flexible conductive substrate, or an insulating substrate having a conductive layer (gate), a corresponding precursor, organometallic aluminum, gallium, neodymium, magnesium, hafnium containing at least one ligand from the oximate class Or an insulator containing aluminum oxide, gallium, neodymium, magnesium, hafnium or zirconium obtained from a zirconium complex; at least one electrode (drain electrode)
·semiconductor.

酸化アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムまたはジルコニウム層は、15nm〜1μm、好ましくは30nm〜750nmの厚さを有する。層厚は、各々の場合において用いる塗布技法およびそのパラメーターに依存する。回転塗布の場合、これらは、例えば回転速度および時間である。   The aluminum oxide, gallium, neodymium, magnesium, hafnium or zirconium layer has a thickness of 15 nm to 1 μm, preferably 30 nm to 750 nm. The layer thickness depends on the coating technique used in each case and its parameters. In the case of spin coating, these are, for example, the spin speed and time.

本発明はさらに、以下の薄層を有するプリント電子部品に関する:
・対応する前駆体である、オキシメートのクラスからの少なくとも1種のリガンドを含有する有機金属インジウムおよびスズ錯体から得られる酸化インジウムスズ(ITO)を含む、導電層(ゲート)を有する硬質またはフレキシブル導電性基板あるいは絶縁基板
・絶縁体
・少なくとも1つの電極(ドレイン電極)
・半導体。
The invention further relates to a printed electronic component having the following thin layers:
Hard or flexible conductive with a conductive layer (gate) comprising the corresponding precursor, organometallic indium containing at least one ligand from the oximate class and indium tin oxide (ITO) obtained from a tin complex Substrate or insulating substrate / insulator / at least one electrode (drain electrode)
·semiconductor.

酸化インジウムスズ層(ITO層)は、15nm〜1μm、好ましくは100nm〜500nmの厚さを有する。層厚は、各々の場合において用いる塗布技法およびそのパラメーターに依存する。回転塗布の場合、これらは、例えば回転速度および時間である。   The indium tin oxide layer (ITO layer) has a thickness of 15 nm to 1 μm, preferably 100 nm to 500 nm. The layer thickness depends on the coating technique used in each case and its parameters. In the case of spin coating, these are, for example, the spin speed and time.

本発明はさらに、以下の薄層を有するプリント電子部品に関する:
・導電層(ゲート)を有する、硬質またはフレキシブル導電性基板あるいは絶縁基板
・絶縁体
・少なくとも1つの電極(ドレイン電極)
・半導体。半導体は、対応する前駆体であって、オキシメートのクラスからの少なくとも1種のリガンドを含有する、有機金属インジウム、ガリウム、亜鉛錯体または亜鉛およびスズの錯体から得られ、インジウムガリウム亜鉛酸化物(IGZO)または、あるいはまた亜鉛スズ酸化物(ZTO)を含む、多元の(multinary)、非晶質相からなるものでなければならない。
The invention further relates to a printed electronic component having the following thin layers:
・ Hard or flexible conductive substrate or insulating substrate with conductive layer (gate) ・ Insulator ・ At least one electrode (drain electrode)
·semiconductor. The semiconductor is derived from an organometallic indium, gallium, zinc complex or a complex of zinc and tin, which is a corresponding precursor and contains at least one ligand from the oximate class, indium gallium zinc oxide (IGZO). ) Or alternatively it must consist of a multinary, amorphous phase containing zinc tin oxide (ZTO).

インジウムガリウム亜鉛酸化物(IGZO)または亜鉛スズ酸化物(ZTO)層は、15nm〜1μm、好ましくは20nm〜200nmの厚さを有する。層厚は、各々の場合において用いる塗布技法およびそのパラメーターに依存する。回転塗布の場合、これらは、例えば回転速度および時間である。   The indium gallium zinc oxide (IGZO) or zinc tin oxide (ZTO) layer has a thickness of 15 nm to 1 μm, preferably 20 nm to 200 nm. The layer thickness depends on the coating technique used in each case and its parameters. In the case of spin coating, these are, for example, the spin speed and time.

好ましい態様において、上述の電子部品は、ゲート、絶縁層、半導体および電極(ドレインおよびソース)から構築される電界効果トランジスタまたは薄膜トランジスタからなる。ゲートは、好ましくは、薄層または基板材料としての設計に依存して、高濃度にn型ドープされたシリコンウエハ、高濃度にn型ドープされたシリコン薄層、導電性ポリマー(例えばポリピロール−ポリアミノベンゼンスルホン酸またはポリエチレンジオキシチオフェン−ポリスチレンスルホン酸(PEDOT−PSS))、導電性セラミックス(例えば酸化インジウムスズ(ITO)またはAl、GaもしくはInでドープされた酸化スズ(AZO、GZO、IZO)およびFもしくはSbでドープされた酸化スズ(FTO、ATO))または金属(例えば金、銀、チタン、亜鉛)からなる。設計に依存して、薄層を、配置中の半導体層または絶縁層の下方(ボトムゲート)または上方(トップゲート)に適用することができる。   In a preferred embodiment, the electronic component described above consists of a field effect transistor or thin film transistor constructed from a gate, an insulating layer, a semiconductor and electrodes (drain and source). The gate preferably depends on the design as a thin layer or substrate material, a highly n-type doped silicon wafer, a heavily n-type doped silicon thin layer, a conductive polymer (eg polypyrrole-polyamino Benzene sulfonic acid or polyethylenedioxythiophene-polystyrene sulfonic acid (PEDOT-PSS)), conductive ceramics (eg indium tin oxide (ITO) or tin oxide doped with Al, Ga or In (AZO, GZO, IZO)) and It consists of tin oxide (FTO, ATO) doped with F or Sb) or metal (eg gold, silver, titanium, zinc). Depending on the design, the thin layer can be applied below (bottom gate) or above (top gate) the semiconductor or insulating layer being placed.

電子部品は、好ましくは、ポリマー(例えばポリ(4−ビニルフェノール)、ポリメチルメタクリレート、ポリスチレン、ポリイミドもしくはポリカーボネート)またはセラミックス(例えば二酸化ケイ素、窒化ケイ素、酸化アルミニウム、酸化ガリウム、酸化ネオジム、酸化マグネシウム、酸化ハフニウム、酸化ジルコニウム)からなる絶縁層を有する。   The electronic component is preferably a polymer (eg poly (4-vinylphenol), polymethyl methacrylate, polystyrene, polyimide or polycarbonate) or ceramics (eg silicon dioxide, silicon nitride, aluminum oxide, gallium oxide, neodymium oxide, magnesium oxide, An insulating layer made of hafnium oxide or zirconium oxide).

電子部品は、好ましくは、半導体有機化合物(例えばポリチオフェン、オリゴチオフェンもしくはポリトリアリールアミン)またはセラミックス(例えば酸化亜鉛、インジウムガリウム亜鉛酸化物(IGZO)もしくは亜鉛スズ酸化物(ZTO))からなる半導体層を有する。   The electronic component is preferably a semiconductor layer made of a semiconductor organic compound (eg polythiophene, oligothiophene or polytriarylamine) or ceramics (eg zinc oxide, indium gallium zinc oxide (IGZO) or zinc tin oxide (ZTO)). Have

電子部品は、好ましくは、高濃度にn型ドープされたシリコン薄層、導電性ポリマー(例えばポリピロール−ポリアミノベンゼンスルホン酸またはポリエチレンジオキシチオフェン−ポリスチレンスルホン酸(PEDOT−PSS))、導電性セラミックス(例えば酸化インジウムスズ(ITO)またはAl、GaもしくはInでドープされた酸化スズ(AZO、GZO、IZO)およびFもしくはSbでドープされた酸化スズ(FTO、ATO))または金属(例えば金、銀、チタン、亜鉛)を含むソースおよびドレイン電極を有する。設計に依存して、電極(好ましくは本発明において薄層として設計したもの)を、配置中の半導体層または絶縁層の下方(ボトムコンタクト)または上方(トップコンタクト)に配置することができる(図8aおよびbを参照)。   The electronic component is preferably a highly thin n-type doped silicon layer, a conductive polymer (eg polypyrrole-polyaminobenzenesulfonic acid or polyethylenedioxythiophene-polystyrenesulfonic acid (PEDOT-PSS)), conductive ceramics ( For example indium tin oxide (ITO) or tin oxide doped with Al, Ga or In (AZO, GZO, IZO) and tin oxide doped with F or Sb (FTO, ATO)) or metal (eg gold, silver, Source and drain electrodes containing titanium, zinc). Depending on the design, the electrode (preferably designed as a thin layer in the present invention) can be placed below (bottom contact) or above (top contact) the semiconductor or insulating layer being placed (see FIG. See 8a and b).

上述の好ましい態様において、ゲート、絶縁体および半導体を、回転塗布もしくは浸漬塗布、または気相もしくは液相からの蒸着技術によって、体系化されていない方式で適用することができる。さらに、ゲート、絶縁体、半導体および電極を、フレキソ印刷/グラビア印刷、インクジェット印刷または気相もしくは液相からの蒸着技術によって、体系化された方式で適用することができる。好ましいのは、本発明に従って印刷プロセスである。   In the preferred embodiment described above, the gate, insulator and semiconductor can be applied in an unstructured manner by spin coating or dip coating or vapor phase or liquid phase deposition techniques. Furthermore, the gates, insulators, semiconductors and electrodes can be applied in a systematic manner by flexographic / gravure printing, ink jet printing or vapor deposition techniques from the gas phase or liquid phase. Preferred is a printing process according to the present invention.

本発明はさらに、酸化アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ層または表面あるいはその混合物を有する電子構造の製造方法であって、
a)本発明の有機金属アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体またはその混合物を含む前駆体溶液を、達成するべき電子構造体に対応するいずれか1つまたは2つ以上の層において、浸漬塗布、回転塗布またはインクジェット印刷またはフレキソ印刷/グラビア印刷によって基板に適用し、
The invention further relates to a method for producing an electronic structure having an aluminum oxide, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin layer or surface or mixtures thereof,
a) Any one of the inventive organometallic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complexes or mixtures thereof corresponding to the electronic structure to be achieved Or in two or more layers, applied to a substrate by dip coating, spin coating or ink jet printing or flexographic / gravure printing,

b)酸化アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウム、スズまたはインジウムスズ層または表面を形成させながら、適用した前駆体層を空気中で、または酸素雰囲気中で加熱または乾燥し、
c)最後に、適用された電子構造体を、絶縁層によって密封することができ、これに接点を設け、完成する
ことを特徴とする、前記方法に関する。
b) heating or drying the applied precursor layer in air or in an oxygen atmosphere while forming an aluminum oxide, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium, tin or indium tin layer or surface; ,
c) Finally, the applied electronic structure can be sealed by an insulating layer, which is provided with contacts and completed.

このプロセスによって、電子部品およびまた集積回路中の個々の部品の化合物を、共に製造する。
以下の例は、本発明を説明することを意図する。
しかし、それら一切限定と見なされるべきではない。組成物中で用いることができる全ての化合物または成分は、既知であり、商業的に入手できるか、または既知の方法によって合成することができる。
This process produces both electronic components and also compounds of individual components in an integrated circuit.
The following examples are intended to illustrate the present invention.
However, they should not be considered limiting at all. All compounds or components that can be used in the compositions are known, commercially available, or can be synthesized by known methods.

例1:酸化マグネシウム前駆体である、ビス[2−(メトキシイミノ)プロパノエート]マグネシウムの調製
炭酸水素カリウム(12.02g、120mmol)を、少量に分割して、撹拌しながら、100mlの水中の、ピルビン酸ナトリウム(6.60g、60mmol)およびメトキシルアミン塩酸塩(5.01g、60mmol)の溶液に加える。明らかなガスの発生が完了した際に、混合物を、さらに30分間撹拌する。硝酸マグネシウム六水和物(7.69g、30mmol)を、その後加え、混合物を、さらに1時間撹拌する。透明な溶液を、ロータリーエバポレーター中で半分の体積に濃縮し、約5度に冷却する。生成した白色沈殿物を濾別し、高温水から再結晶する。収量2.60g(34.8%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 1 Preparation of Magnesium Oxide Precursor, Bis [2- (methoxyimino) propanoate] Magnesium Potassium bicarbonate (12.02 g, 120 mmol) was divided into small portions and stirred in 100 ml water. Add to a solution of sodium pyruvate (6.60 g, 60 mmol) and methoxylamine hydrochloride (5.01 g, 60 mmol). When overt gas evolution is complete, the mixture is stirred for an additional 30 minutes. Magnesium nitrate hexahydrate (7.69 g, 30 mmol) is then added and the mixture is stirred for an additional hour. The clear solution is concentrated to half volume in a rotary evaporator and cooled to about 5 degrees. The white precipitate formed is filtered off and recrystallized from hot water. Yield 2.60 g (34.8%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例2:酸化マグネシウム前駆体である、ビス[2−(メトキシイミノ)プロパノエート]マグネシウムのアルカリ金属を含まない調製
あるいはまた、以下の反応手順が可能である。
ハイドロマグネサイト(20.0g)を、100mlの水中の、ピルビン酸(10.56g、120mmol)およびメトキシルアミン塩酸塩(10.04g、120mmol)の溶液に、分割して加える。明らかなガスの発生が完了したところで、混合物を1時間撹拌し、未反応のハイドロマグネサイトを濾別する。透明な溶液を、ロータリーエバポレーター中で半分の体積に濃縮し、約5度に冷却する。生成した白色沈殿物を濾別し、高温水から再結晶する。収量6.50g(43.5%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 2: Preparation of the magnesium oxide precursor bis [2- (methoxyimino) propanoate] magnesium without alkali metal Alternatively, the following reaction procedure is possible.
Hydromagnesite (20.0 g) is added in portions to a solution of pyruvic acid (10.56 g, 120 mmol) and methoxylamine hydrochloride (10.04 g, 120 mmol) in 100 ml of water. When apparent gas evolution is complete, the mixture is stirred for 1 hour and unreacted hydromagnesite is filtered off. The clear solution is concentrated to half volume in a rotary evaporator and cooled to about 5 degrees. The white precipitate formed is filtered off and recrystallized from hot water. Yield 6.50 g (43.5%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例3:絶縁体特性を有するマグネシウム前駆体(例1または2からのもの)からのドープされていない酸化マグネシウム層の製造
例1または2に従って調製したマグネシウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後210℃より高い温度にて空気中で10分間加熱する。このようにして得られた酸化マグネシウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質またはナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 3: Production of an undoped magnesium oxide layer from a magnesium precursor with insulator properties (from Example 1 or 2) Magnesium oximate prepared according to Example 1 or 2 is applied to a glass, ceramic or polymer substrate. Applied by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 210 ° C. for 10 minutes. The magnesium oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous or nanocrystalline material. The layer has insulator properties.

例4:二酸化ジルコニウム前駆体である、ジルコニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]の調製
炭酸水素ナトリウム(7.56g、90mmol)を、100mlの水中の、ピルビン酸ナトリウム(9.90g、90mmol)およびメトキシルアミン塩酸塩(7.53g、90mmol)の溶液に、少量に分割して、撹拌しながら加える。明らかなガスの発生が完了したところで、混合物を、さらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのテトラヒドロフラン中の四塩化ジルコニウム(5.24g、22.5mmol)の溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量3.50g。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 4: Preparation of zirconium dioxide precursor, zirconium hydroxo [2- (methoxyimino) propanoate] Sodium bicarbonate (7.56 g, 90 mmol) was added to sodium pyruvate (9.90 g, 90 mmol) in 100 ml water. And a solution of methoxylamine hydrochloride (7.53 g, 90 mmol) in small portions and added with stirring. When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of zirconium tetrachloride (5.24 g, 22.5 mmol) in 125 ml of tetrahydrofuran is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 3.50g. The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例5:二酸化ジルコニウム前駆体からの酸化ジルコニウム層の製造
例4に従って調製したジルコニウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化ジルコニウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質またはナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 5 Production of Zirconium Oxide Layer from Zirconium Dioxide Precursor Zirconium oximate prepared according to Example 4 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The zirconium oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous or nanocrystalline material. The layer has insulator properties.

例6:二酸化ハフニウム前駆体である、ハフニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]の調製
炭酸水素ナトリウム(7.56g、90mmol)を、少量に分割して、撹拌しながら、100mlの水中の、ピルビン酸ナトリウム(9.90g、90mmol)およびメトキシルアミン塩酸塩(7.53g、90mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのテトラヒドロフラン中の四塩化ハフニウム(7.21g、22.5mmol)をの溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量4.75g。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 6: Preparation of Hafnium Hydroxo [2- (methoxyimino) propanoate], a Hafnium Dioxide Precursor Sodium bicarbonate (7.56 g, 90 mmol) was divided into small portions with stirring in 100 ml water. Add to a solution of sodium pyruvate (9.90 g, 90 mmol) and methoxylamine hydrochloride (7.53 g, 90 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of hafnium tetrachloride (7.21 g, 22.5 mmol) in 125 ml of tetrahydrofuran is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 4.75g. The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例7:絶縁体特性を有する酸化ハフニウム層の製造
例6に従って調製したハフニウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化ハフニウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質またはナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 7 Production of Hafnium Oxide Layer with Insulator Properties Hafnium oximate prepared according to Example 6 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The hafnium oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous or nanocrystalline material. The layer has insulator properties.

例8:酸化アルミニウム前駆体である、トリス[2−(メトキシイミノ)プロパノエート]アルミニウムの調製
炭酸水素ナトリウム(1.68g、20mmol)を、少量に分割して、撹拌しながら、50mlの水中の、ピルビン酸ナトリウム(2.20g、20mmol)およびメトキシルアミン塩酸塩(1.67g、20mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのメタノール中の硝酸アルミニウム九水和物(2.50g、6.6mmol)溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を50mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量1.12g(45.30%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 8: Preparation of aluminum oxide precursor, tris [2- (methoxyimino) propanoate] aluminum Sodium bicarbonate (1.68 g, 20 mmol) was divided into small portions and stirred with stirring in 50 ml of water. Add to a solution of sodium pyruvate (2.20 g, 20 mmol) and methoxylamine hydrochloride (1.67 g, 20 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of aluminum nitrate nonahydrate (2.50 g, 6.6 mmol) in 125 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 50 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 1.12 g (45.30%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例9:絶縁体特性を有する酸化アルミニウム層の製造
例8に従って調製したアルミニウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化アルミニウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、ナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 9: Production of an aluminum oxide layer having insulator properties Aluminum oximate prepared according to Example 8 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The aluminum oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of a nanocrystalline material. The layer has insulator properties.

例10:酸化ガリウム前駆体である、トリス[2−(メトキシイミノ)プロパノアト]ガリウムの調製
炭酸水素ナトリウム(1.68g、20mmol)を、少量に分割して、撹拌しながら、50mlの水中の、ピルビン酸ナトリウム(2.20g、20mmol)およびメトキシルアミン塩酸塩(1.67g、20mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのメタノール中の硝酸ガリウム六水和物(2.40g、6.6mmol)溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量0.96g(34.82%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 10 Preparation of Tris [2- (methoxyimino) propanoato] gallium, a gallium oxide precursor Sodium bicarbonate (1.68 g, 20 mmol) was divided into small portions and stirred in 50 ml of water. Add to a solution of sodium pyruvate (2.20 g, 20 mmol) and methoxylamine hydrochloride (1.67 g, 20 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of gallium nitrate hexahydrate (2.40 g, 6.6 mmol) in 125 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 0.96 g (34.82%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例11:絶縁体特性を有する酸化ガリウム層の製造
例10に従って調製したガリウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化ガリウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、ナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 11 Production of Gallium Oxide Layer with Insulator Properties A gallium oximate prepared according to Example 10 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The gallium oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of a nanocrystalline material. The layer has insulator properties.

例12:酸化ネオジム前駆体である、トリス[2−(メトキシイミノ)プロパノアト]ネオジムの調製
炭酸水素ナトリウム(1.68g、20mmol)を、少量に分割して、撹拌しながら、50mlの水中の、ピルビン酸ナトリウム(2.20g、20mmol)およびメトキシルアミン塩酸塩(1.67g、20mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのメタノール中の無水三塩化ネオジム(1.65g、6.6mmol)溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量1.55g(47.83%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 12 Preparation of Tris [2- (methoxyimino) propanoato] neodymium, a Neodymium Oxide Precursor Sodium bicarbonate (1.68 g, 20 mmol) was divided into small portions and stirred in 50 ml of water. Add to a solution of sodium pyruvate (2.20 g, 20 mmol) and methoxylamine hydrochloride (1.67 g, 20 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of anhydrous neodymium trichloride (1.65 g, 6.6 mmol) in 125 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 1.55 g (47.83%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例13:絶縁体特性を有する酸化ネオジム層の製造
例12に従って調製したネオジムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化ネオジムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、ナノ結晶質材料からなる。当該層は、絶縁体特性を有する。
Example 13: Production of a neodymium oxide layer having insulator properties Neodymium oximate prepared according to Example 12 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The neodymium oxide film thus obtained is uniform, has no cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of a nanocrystalline material. The layer has insulator properties.

例14:酸化ルテニウム前駆体である、トリス[2−(メトキシイミノ)プロパノアト]ルテニウムの調製
炭酸水素ナトリウム(1.68g、20mmol)を、少量に分割して、撹拌しながら、50mlの水中の、ピルビン酸ナトリウム(2.20g、20mmol)およびメトキシルアミン塩酸塩(1.67g、20mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのメタノール中の三塩化ルテニウム六水和物(2.08g、6.6mmol)の溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のトルエンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量1.34g(45.33%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 14 Preparation of Tris [2- (methoxyimino) propanoato] ruthenium, a Ruthenium Oxide Precursor Sodium bicarbonate (1.68 g, 20 mmol) was divided into small portions and stirred with stirring in 50 ml of water. Add to a solution of sodium pyruvate (2.20 g, 20 mmol) and methoxylamine hydrochloride (1.67 g, 20 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of ruthenium trichloride hexahydrate (2.08 g, 6.6 mmol) in 125 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of toluene, filtered off and dried in a desiccator. Yield 1.34 g (45.33%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例15:酸化ルテニウム層の製造
例14に従って調製したルテニウムオキシメートを、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた酸化ルテニウムフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、ナノ結晶質材料からなる。
Example 15: Production of a ruthenium oxide layer A ruthenium oximate prepared according to Example 14 is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The ruthenium oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of a nanocrystalline material.

例16:誘電体層の製造
例は、誘電体層の製造を示す。酸化ジルコニウムの層を、高濃度にn型ドープされた導電性シリコンウエハに、回転塗布または印刷によって適用し、その後200℃にて10分間焼成するか、または150mW/cmにて15分間UV照射することによって形成する。対電極を適用した後、誘電体層についての絶縁破壊電圧値を、1MV/cmと決定することができる。
Example 16: Dielectric Layer Fabrication The example illustrates the fabrication of a dielectric layer. A layer of zirconium oxide is applied to a highly doped n-type conductive silicon wafer by spin coating or printing, followed by baking at 200 ° C. for 10 minutes or UV irradiation at 150 mW / cm 2 for 15 minutes. To form. After applying the counter electrode, the breakdown voltage value for the dielectric layer can be determined to be 1 MV / cm.

例17:薄膜トランジスタの製造
例は、図8aおよび8bによる電界効果トランジスタ(FET)を示す。当該部品は、誘電体層が適用された高濃度にn型ドープされたシリコンウエハからなる。次に、半導体層を作製し、金属の蒸着または金属インクの印刷によって作製された金属電極構造が続く(図8a)。あるいはまた、電極構造を先ず作製し、続いて半導体層を適用することができる(図8b)。
Example 17: Fabrication of Thin Film Transistor The example shows a field effect transistor (FET) according to Figures 8a and 8b. The part consists of a highly n-doped silicon wafer with a dielectric layer applied. Next, a semiconductor layer is made, followed by a metal electrode structure made by metal deposition or metal ink printing (FIG. 8a). Alternatively, the electrode structure can be made first, followed by the semiconductor layer (FIG. 8b).

例18:酸化インジウム前駆体である、トリス[2−(メトキシイミノ)プロパノエート]インジウムの調製
炭酸水素ナトリウム(1.68g、20mmol)を、少量に分割して、撹拌しながら、50mlの水中の、ピルビン酸ナトリウム(2.20g、20mmol)およびメトキシルアミン塩酸塩(1.67g、20mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。125mlのメタノール中の無水塩化インジウム(1.95g、6.6mmol)の溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのジクロロメタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のn−ヘキサンを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量1.80g(58.9%)。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 18: Preparation of indium oxide precursor, tris [2- (methoxyimino) propanoate] indium Sodium bicarbonate (1.68 g, 20 mmol) was divided into small portions in 50 ml water with stirring. Add to a solution of sodium pyruvate (2.20 g, 20 mmol) and methoxylamine hydrochloride (1.67 g, 20 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of anhydrous indium chloride (1.95 g, 6.6 mmol) in 125 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of dichloromethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of n-hexane, filtered off and dried in a desiccator. Yield 1.80 g (58.9%). The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例19:酸化スズ前駆体である、スズヒドロキソ[2−(メトキシイミノ)プロパノエート]の調製
炭酸水素ナトリウム(7.56g、90mmol)を、少量に分割して、撹拌しながら、100mlの水中の、ピルビン酸ナトリウム(9.90g、90mmol)およびメトキシルアミン塩酸塩(7.53g、90mmol)の溶液に加える。明らかなガスの発生が完了したところで、混合物をさらに30分間撹拌する。混合物を、その後ロータリーエバポレーター中で完全に蒸発乾固させる。250mlのメタノール中の無水塩化スズ五水和物(7.88g、22.5mmol)溶液を、このようにして得られた白色粉末に加え、混合物を2時間撹拌する。溶液を濾過し、ロータリーエバポレーター中で蒸発乾固させる。残留物を100mlのアセトンまたはジメトキシエタン中に取り込み、このようにして得られた懸濁液を再び濾過する。生成物を、その後大量のジエチルエーテルを用いて濾液から沈殿させ、濾別し、デシケーター中で乾燥する。収量3.7g。このようにして得られた化合物を、IRおよびNMR分光法によって特性評価することができる。
Example 19: Preparation of tin oxide precursor, tin hydroxo [2- (methoxyimino) propanoate] Sodium bicarbonate (7.56 g, 90 mmol) was divided into small portions and stirred in 100 ml water. Add to a solution of sodium pyruvate (9.90 g, 90 mmol) and methoxylamine hydrochloride (7.53 g, 90 mmol). When apparent gas evolution is complete, the mixture is stirred for an additional 30 minutes. The mixture is then completely evaporated to dryness in a rotary evaporator. A solution of anhydrous tin chloride pentahydrate (7.88 g, 22.5 mmol) in 250 ml of methanol is added to the white powder thus obtained and the mixture is stirred for 2 hours. The solution is filtered and evaporated to dryness in a rotary evaporator. The residue is taken up in 100 ml of acetone or dimethoxyethane and the suspension thus obtained is filtered again. The product is then precipitated from the filtrate using a large amount of diethyl ether, filtered off and dried in a desiccator. Yield 3.7g. The compounds thus obtained can be characterized by IR and NMR spectroscopy.

例20:酸化インジウムスズ(ITO)の導電層の製造
例18および19に従って調製したインジウムおよびスズオキシメートを、90:10のモル比で一緒に溶解し、ガラス、セラミックスまたはポリマー基板に回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で60分間加熱するか、またはこれに、UVを150mW/cmにて1時間照射する。このようにして得られた酸化インジウムスズフィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質またはナノ結晶質材料からなる。当該層は、電気伝導性を有する。
Example 20: Production of Indium Tin Oxide (ITO) Conductive Layer Indium and tin oximate prepared according to Examples 18 and 19 were dissolved together in a 90:10 molar ratio and spin coated onto a glass, ceramic or polymer substrate ( Or by dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 60 minutes or it is irradiated with UV at 150 mW / cm 2 for 1 hour. The indium tin oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous or nanocrystalline material. The layer has electrical conductivity.

例21:インジウムガリウム亜鉛酸化物(IGZO)の半導体層の製造
例10および18に従って調製したインジウムおよび/またはガリウムオキシメートならびに亜鉛オキシメート(J.J. Schneider et al. Advanced Materials, 2008, 20, 3383-3387の方法によって得られる)を、好適なモル比で溶解する。半導体相の調製に適するモル比は、H. Hosono, Journal of Non-Crystalline Solids 2006, 352, 851-858に示されている;したがって、例えば、インジウム:ガリウム:亜鉛=1:1:1またはインジウム:亜鉛=2:3である。
Example 21 Production of Semiconductor Layer of Indium Gallium Zinc Oxide (IGZO) Indium and / or gallium oximate and zinc oximate prepared according to Examples 10 and 18 (from JJ Schneider et al. Advanced Materials, 2008, 20, 3383-3387 Is obtained in a suitable molar ratio. Suitable molar ratios for the preparation of the semiconductor phase are given in H. Hosono, Journal of Non-Crystalline Solids 2006, 352, 851-858; thus, for example, indium: gallium: zinc = 1: 1: 1 or indium : Zinc = 2: 3.

このようにして得られた溶液を、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られたインジウムガリウム亜鉛酸化物フィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質材料からなる。当該層は、半導体特性を有する。 The solution thus obtained is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The indium gallium zinc oxide film thus obtained is uniform, has no cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous material. The layer has semiconductor characteristics.

例22:亜鉛スズ酸化物(ZTO)の半導体層の製造
例19に従って調製したスズオキシメートおよび亜鉛オキシメート(J.J. Schneider et al. Advanced Materials, 2008, 20, 3383-3387の方法によって得られる)を、好適な比率で一緒に溶解する。例えば0〜30モルパーセントのスズ含量Sn/(Sn+Zn)が、好適である。当該溶液を、ガラス、セラミックスまたはポリマー基板に、回転塗布(または浸漬塗布、またはまたインクジェット印刷)によって適用する。コーティングを、その後200℃より高い温度にて空気中で10分間加熱するか、またはこれに、UVを150mW/cmにて15分間照射する。このようにして得られた亜鉛スズ酸化物フィルムは、均一であり、亀裂がなく、非孔質の表面形態を示す。焼成温度に依存して、当該層は、非晶質またはナノ結晶質材料からなる。当該層は、半導体特性を有する。
Example 22: Preparation of zinc tin oxide (ZTO) semiconductor layer Tin oximate and zinc oximate prepared according to Example 19 (obtained by the method of JJ Schneider et al. Advanced Materials, 2008, 20, 3383-3387) Dissolve together in a suitable ratio. For example, a tin content of 0-30 mol percent Sn / (Sn + Zn) is suitable. The solution is applied to a glass, ceramic or polymer substrate by spin coating (or dip coating or also ink jet printing). The coating is then heated in air at a temperature above 200 ° C. for 10 minutes or it is irradiated with UV at 150 mW / cm 2 for 15 minutes. The zinc tin oxide film thus obtained is uniform, free of cracks and exhibits a non-porous surface morphology. Depending on the firing temperature, the layer consists of an amorphous or nanocrystalline material. The layer has semiconductor characteristics.

例23〜26:種々の塗布プロセスの記載
すべての場合において、10〜20重量パーセントの前駆体化合物の溶液を用いる。好適な溶媒は、2−メトキシエタノール、2−ブタノール、メタノール、ジメチルホルムアミドまたはそれらの混合物である。
印刷用インクの粘度を、レオメータ、例えばHaakeのMARS Rheometerを用いて決定することができる。決定を、標準環境条件(DIN 50 014-23)下で行う。
Examples 23-26: Description of various coating processes In all cases, a solution of 10-20 weight percent precursor compound is used. Suitable solvents are 2-methoxyethanol, 2-butanol, methanol, dimethylformamide or mixtures thereof.
The viscosity of the printing ink can be determined using a rheometer such as Haake's MARS Rheometer. The decision is made under standard environmental conditions (DIN 50 014-23).

浸漬塗布:引上げ速度 約1mm/秒。用いる基板は、76×26mmのガラスプレートである。
回転塗布:回転塗布のために、150μlの溶液を、基板に適用する。用いる基板は、20×20mmの石英または15×15mmのシリコンである(FETの製造のために金電極を有するもの)。時間および速度について選択されるパラメーターは、1000rpmの初期速度において10秒であり、2000rpmの最終速度において20秒である。
Immersion coating: Pulling speed is about 1 mm / second. The substrate used is a 76 × 26 mm glass plate.
Spin coating: For spin coating, 150 μl of solution is applied to the substrate. The substrate used is 20 × 20 mm quartz or 15 × 15 mm silicon (having gold electrodes for the manufacture of FETs). The parameters selected for time and speed are 10 seconds at an initial speed of 1000 rpm and 20 seconds at a final speed of 2000 rpm.

インクジェット印刷:印刷プロセスを、DimatixのDimatix DMP 2831プリンターを用いて行うことができる。用いた印刷用インクは、ジエチレングリコールモノエチルエーテル中の、酸化ハフニウム前駆体である、ハフニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]を10重量パーセントの溶液であり、それを、0.2μmの孔の大きさを有するシリンジフィルターを用いて導入する。フィルムを、酸化インジウムスズコーティング(Merck)で、例えばガラスなどの基板上に印刷し、後続のUV照射によってセラミックスに変換することができる(FeをドープしたHgランプ;照射時間:400mW/cmにて4分)。 Inkjet printing: The printing process can be performed using a Dimatix Dimatix DMP 2831 printer. The printing ink used is a 10 weight percent solution of hafnium hydroxo [2- (methoxyimino) propanoate], a hafnium oxide precursor, in diethylene glycol monoethyl ether, which has a pore size of 0.2 μm. It is introduced using a syringe filter having a size. The film can be printed on a substrate such as glass with an indium tin oxide coating (Merck) and converted to ceramics by subsequent UV irradiation (Fe-doped Hg lamp; irradiation time: 400 mW / cm 2 4 minutes).

フレキソ印刷:印刷プロセスを、IGT Testing SystemsのIGT F1ユニットを用いて行うことができる。
用いる印刷用インクは、メトキシエタノール中の、酸化ハフニウム前駆体である、ハフニウムヒドロキソ[2−(メトキシイミノ)プロパノエート]をの10重量パーセント溶液である。1mlの溶液を、手動でコンタクトゾーンに適用する。
Flexo printing: The printing process can be performed using an IGT F1 unit from IGT Testing Systems.
The printing ink used is a 10 weight percent solution of hafnium hydroxo [2- (methoxyimino) propanoate], a hafnium oxide precursor, in methoxyethanol. 1 ml of solution is applied manually to the contact zone.

以下の印刷パラメーターを、ナイフコーティングシート/アニロックスロールのために選択する:
・アニロックスロール/プレートシリンダー接触圧 10N
・プレートシリンダー/逆圧シリンダー接触圧 10N
・印刷速度 0.8m/s
・印刷版:フルトーン(full-tone)表面、90%のインク使用量(area coverage)
・アニロックスロール吸収体積 20ml/m
The following printing parameters are selected for the knife coating sheet / anilox roll:
・ Anilox roll / plate cylinder contact pressure 10N
・ Plate cylinder / back pressure cylinder contact pressure 10N
・ Printing speed 0.8m / s
-Printing plate: full-tone surface, 90% ink coverage (area coverage)
・ Anilox roll absorption volume 20ml / m 2

全範囲印刷を、例えばシリコンまたは石英などの基板上で達成することができる。前駆体をその後セラミックスに、UV照射によって変換することができる(FeをドープしたHgランプ;照射時間:400mW/cmにて7分)。 Full-range printing can be achieved on a substrate such as silicon or quartz. The precursor can then be converted to ceramics by UV irradiation (Fe-doped Hg lamp; irradiation time: 7 minutes at 400 mW / cm 2 ).

Claims (16)

電子部品をコーティングするための前駆体であって、オキシメートのクラスからの少なくとも1種のリガンドを含有する、有機金属アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体あるいはその混合物を含むことを特徴とする、前記前駆体。   Precursors for coating electronic components, containing at least one ligand from the oximate class, organometallic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin complexes or Said precursor comprising a mixture thereof. リガンドが、2−(メトキシイミノ)アルカノエート、2−(エトキシイミノ)アルカノエートまたは2−(ヒドロキシイミノ)アルカノエートであることを特徴とする、請求項1に記載の前駆体。   Precursor according to claim 1, characterized in that the ligand is 2- (methoxyimino) alkanoate, 2- (ethoxyimino) alkanoate or 2- (hydroxyimino) alkanoate. 印刷可能であり、プリント電界効果トランジスタ(FET)において印刷用インクまたは印刷用ペーストの形態で用いることを特徴とする、請求項1または2に記載の前駆体。   Precursor according to claim 1 or 2, characterized in that it is printable and used in the form of a printing ink or printing paste in a printed field effect transistor (FET). 以下の薄層:
・硬質またはフレキシブル導電性基板、あるいは導電層(ゲート)を有する絶縁基板
・請求項1〜3のいずれか一項に記載の対応する前駆体から得られる酸化アルミニウム、ガリウム、ネオジム、マグネシウム、ハフニウムまたはジルコニウムを含む、絶縁体
・少なくとも1つの電極(ドレイン電極)
・半導体
を有する、プリント電子部品。
The following thin layers:
A hard or flexible conductive substrate, or an insulating substrate having a conductive layer (gate). Aluminum oxide, gallium, neodymium, magnesium, hafnium obtained from the corresponding precursor according to any one of claims 1 to 3. Insulator containing zirconium and at least one electrode (drain electrode)
-Printed electronic parts with semiconductors.
以下の薄層:
・請求項1〜3のいずれか一項に記載の対応する前駆体から得られる酸化インジウムスズ(ITO)を含む、導電層(ゲート)を有する硬質またはフレキシブル導電性基板あるいは絶縁基板
・絶縁体
・少なくとも1つの電極(ドレイン電極)
・半導体
を有する、プリント電子部品。
The following thin layers:
A hard or flexible conductive substrate or an insulating substrate / insulator having a conductive layer (gate) containing indium tin oxide (ITO) obtained from the corresponding precursor according to claim 1. At least one electrode (drain electrode)
-Printed electronic parts with semiconductors.
以下の薄層:
・導電層(ゲート)を有する硬質またはフレキシブル導電性基板あるいは絶縁基板
・絶縁体
・少なくとも1つの電極(ドレイン電極)
・請求項1〜3のいずれか一項に記載の対応する前駆体から得られる、インジウムガリウム亜鉛酸化物(IGZO)または亜鉛スズ酸化物(ZTO)を含む、半導体
を有する、プリント電子部品。
The following thin layers:
・ Hard or flexible conductive substrate or insulating substrate with conductive layer (gate) ・ Insulator ・ At least one electrode (drain electrode)
A printed electronic component having a semiconductor comprising indium gallium zinc oxide (IGZO) or zinc tin oxide (ZTO) obtained from the corresponding precursor according to claim 1.
基板が、例えばガラス、セラミックス、金属もしくはプラスチック基板などの硬質基板、またはフレキシブル基板、特にプラスチックフィルムもしくは金属箔のいずれかであり得ることを特徴とする、請求項4〜6のいずれか一項に記載のプリント電子部品。   7. The substrate according to any one of claims 4 to 6, characterized in that the substrate can be either a hard substrate, for example a glass, ceramics, metal or plastic substrate, or a flexible substrate, in particular a plastic film or a metal foil. Printed electronic components as described. 請求項1〜3のいずれか一項に記載の前駆体の製造方法であって、少なくとも1種のオキソカルボン酸を、少なくとも1種のヒドロキシルアミンまたはアルキルヒドロキシルアミンと、塩基の存在下で反応させ、無機アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ塩あるいはその混合物を、その後加えることを特徴とする、前記方法。   The method for producing a precursor according to any one of claims 1 to 3, wherein at least one oxocarboxylic acid is reacted with at least one hydroxylamine or alkylhydroxylamine in the presence of a base. Said method, characterized in that inorganic aluminum, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin salts or mixtures thereof are subsequently added. 用いるオキソカルボン酸が、オキソ酢酸、オキソプロピオン酸またはオキソ酪酸であることを特徴とする、請求項8に記載の方法。   9. Process according to claim 8, characterized in that the oxocarboxylic acid used is oxoacetic acid, oxopropionic acid or oxobutyric acid. 酸化アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ層または表面またはその混合物を有する電子構造体の製造方法であって、
a.請求項1〜3のいずれか一項に記載の有機金属アルミニウム、マグネシウム、ガリウム、ネオジム、ルテニウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ錯体またはその混合物を含む前駆体溶液を、達成するべき電子構造体に対応するいずれか1つまたは2つ以上の層において、浸漬塗布、回転塗布またはインクジェット印刷またはフレキソ印刷/グラビア印刷によって基板に適用し、
b.酸化アルミニウム、ガリウム、ネオジム、ルテニウム、マグネシウム、ハフニウム、ジルコニウム、インジウムおよび/またはスズ層または表面あるいはその混合物を形成させながら、適用した前駆体層を空気中で、または酸素雰囲気中で加熱または乾燥し、
c.最後に、適用された電子構造体を、絶縁層によって密封することができ、これに接点を設け、完成する、
ことを特徴とする、前記方法。
A method for producing an electronic structure having an aluminum oxide, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin layer or surface or mixtures thereof,
a. Electronic structure to achieve a precursor solution comprising an organometallic aluminum, magnesium, gallium, neodymium, ruthenium, hafnium, zirconium, indium and / or tin complex or a mixture thereof according to any one of claims 1-3 Applying to the substrate by dip coating, spin coating or ink jet printing or flexographic / gravure printing in any one or more layers corresponding to the body,
b. The applied precursor layer is heated or dried in air or in an oxygen atmosphere while forming an aluminum oxide, gallium, neodymium, ruthenium, magnesium, hafnium, zirconium, indium and / or tin layer or surface or a mixture thereof. ,
c. Finally, the applied electronic structure can be sealed by an insulating layer, provided with contacts and completed.
And said method.
加熱中の温度がT≧80℃であることを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the temperature during heating is T ≧ 80 ° C. 加熱または乾燥を、<400nmの波長を有するUV光を照射することによって行うことを特徴とする、請求項10に記載の方法。   The method according to claim 10, characterized in that the heating or drying is performed by irradiating with UV light having a wavelength of <400 nm. 酸化アルミニウム、酸化ガリウム、酸化ネオジム、酸化ルテニウム、酸化マグネシウム、酸化ハフニウムまたは酸化ジルコニウム層が、2種の導体の間で>0.1MV/cmの絶縁破壊電圧を有することを特徴とする、請求項10〜12のいずれか一項に記載の方法。   The aluminum oxide, gallium oxide, neodymium oxide, ruthenium oxide, magnesium oxide, hafnium oxide or zirconium oxide layer has a breakdown voltage of> 0.1 MV / cm between the two conductors. The method as described in any one of 10-12. 酸化インジウムスズ層(ITO層)が、四点測定によって決定される、<10−3オーム・cmの比抵抗を有することを特徴とする、請求項10〜12のいずれか一項に記載の方法。 13. The method according to claim 10, wherein the indium tin oxide layer (ITO layer) has a specific resistance of <10 −3 ohm · cm, determined by four-point measurement. . インジウムガリウム亜鉛酸化物(IGZO)層または亜鉛スズ酸化物(ZTO)層が、>10−3cm/Vsの電荷キャリア移動度を有することを特徴とする、請求項10〜12のいずれか一項に記載の方法。 The indium gallium zinc oxide (IGZO) layer or the zinc tin oxide (ZTO) layer has a charge carrier mobility of> 10 −3 cm 2 / Vs, according to claim 10. The method according to item. 請求項1〜3のいずれか一項に記載の前駆体の、電界効果トランジスタにおける1つまたは2つ以上の機能性層の製造のための使用。   Use of the precursor according to any one of claims 1 to 3 for the production of one or more functional layers in a field effect transistor.
JP2011544796A 2009-01-09 2009-12-10 Functional materials for printed electronic components Expired - Fee Related JP5798041B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009004491A DE102009004491A1 (en) 2009-01-09 2009-01-09 Functional material for printed electronic components
DE102009004491.4 2009-01-09
PCT/EP2009/008821 WO2010078907A1 (en) 2009-01-09 2009-12-10 Functional material for printed electronic components

Publications (2)

Publication Number Publication Date
JP2012514611A true JP2012514611A (en) 2012-06-28
JP5798041B2 JP5798041B2 (en) 2015-10-21

Family

ID=42016966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544796A Expired - Fee Related JP5798041B2 (en) 2009-01-09 2009-12-10 Functional materials for printed electronic components

Country Status (8)

Country Link
US (1) US8766251B2 (en)
EP (1) EP2376434B1 (en)
JP (1) JP5798041B2 (en)
KR (1) KR101724758B1 (en)
CN (2) CN102272094B (en)
DE (1) DE102009004491A1 (en)
TW (1) TWI495630B (en)
WO (1) WO2010078907A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504767A (en) * 2012-12-17 2016-02-12 メルク パテント ゲーエムベーハー Inorganic barrier layer
JP2017506000A (en) * 2014-01-31 2017-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for manufacturing a UV photodetector

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971832A (en) * 2010-06-29 2013-03-13 默克专利有限公司 Preparation of semiconductor films
US20120082865A1 (en) * 2010-10-01 2012-04-05 Agency For Science, Technology And Research Method for forming a magnetic recording medium and a magnetic recording medium formed thereof
EP2715821A1 (en) 2011-06-01 2014-04-09 Merck Patent GmbH Hybrid ambipolar tfts
DE102012006045A1 (en) 2012-03-27 2013-10-02 Merck Patent Gmbh Production of electroconductive or semiconductive multilayer film used for manufacture of e.g. field effect transistor, involves coating precursor solution or dispersion containing organometallic compound(s) on substrate, and drying
DE102012001508A1 (en) 2012-01-27 2013-08-01 Merck Patent Gmbh Producing electrically conductive or semi-conductive metal oxide, comprises applying metal oxide precursor-solution or -dispersion on substrate, optionally drying the precursor layer, thermally transferring layer, and optionally cooling
KR20140129061A (en) 2012-01-27 2014-11-06 메르크 파텐트 게엠베하 Method for producing electrically semiconductive or conductive layers with improved conductivity
TWI512840B (en) * 2012-02-14 2015-12-11 Innocom Tech Shenzhen Co Ltd Thin film transistor and manufacturing method thereof and display
US10590295B2 (en) 2012-02-29 2020-03-17 Singapore Asahi Chemical & Solder Ind. Pte. Ltd Inks containing metal precursors nanoparticles
CH706216A1 (en) * 2012-03-12 2013-09-13 Von Roll Solar Ag Substrate for thin-film solar cell, has thin insulating layer that is deposited on metal surface of metallic base portion by sol-gel process
US10141497B2 (en) 2012-07-31 2018-11-27 Hewlett-Packard Development Company, L.P. Thin film stack
US9190598B2 (en) 2012-07-31 2015-11-17 Hewlett-Packard Development Company, L.P. Thin film stack
DE102012218647A1 (en) * 2012-10-12 2014-04-17 Schneider Electric Industries Sas operating unit
KR101288106B1 (en) * 2012-12-20 2013-07-26 (주)피이솔브 Metal precursors and their inks
CN103236402B (en) * 2013-04-27 2016-02-03 京东方科技集团股份有限公司 Thin-film transistor and preparation method thereof, array base palte and display unit
WO2014202178A1 (en) 2013-06-20 2014-12-24 Merck Patent Gmbh Method for controlling the optical properties of uv filter layers
US9982154B2 (en) * 2014-04-17 2018-05-29 Electroninks Incorporated Solid ink composition
US9768254B2 (en) 2015-07-30 2017-09-19 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
US11239258B2 (en) * 2016-07-19 2022-02-01 Applied Materials, Inc. High-k dielectric materials comprising zirconium oxide utilized in display devices
CN108022828B (en) * 2017-11-13 2021-05-14 华南理工大学 Method for improving morphology of printed oxide film by UV pretreatment of substrate
JP2020011859A (en) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 Film deposition method, and manufacturing method of semiconductor device
DE102018217977A1 (en) * 2018-10-22 2020-04-23 Zf Friedrichshafen Ag Method and device for adjusting PWM values of a field-oriented control of an electrical machine
EP4343432A1 (en) * 2022-09-22 2024-03-27 Paul Scherrer Institut Use of a metal and/or metalloid-comprising ketoacidoximate and/or a metal-compound-comprising ketoacidoximate as a patterning agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162673A (en) * 1986-12-25 1988-07-06 Nippon Soda Co Ltd Iminoacetyl derivative, its production and fungicide
US20050199959A1 (en) * 2004-03-12 2005-09-15 Chiang Hai Q. Semiconductor device
JP2007201366A (en) * 2006-01-30 2007-08-09 Canon Inc Field effect transistor
JP2008294136A (en) * 2007-05-23 2008-12-04 Canon Inc Electron element using oxide semiconductor and manufacturing method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
DE19851703A1 (en) 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Electronic structure, e.g. FET, is produced by plotting, spraying, spin coating or spreading of insulating, semiconducting and-or conductive layers onto a substrate
JP2000133197A (en) 1998-10-30 2000-05-12 Applied Materials Inc Ion implanting device
WO2002015264A2 (en) 2000-08-18 2002-02-21 Siemens Aktiengesellschaft Encapsulated organic-electronic component, method for producing the same and use thereof
EP1586004B1 (en) 2003-01-09 2011-01-26 PolyIC GmbH & Co. KG Board or substrate for an organic electronic device and use thereof
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US6875661B2 (en) 2003-07-10 2005-04-05 International Business Machines Corporation Solution deposition of chalcogenide films
US6867081B2 (en) 2003-07-31 2005-03-15 Hewlett-Packard Development Company, L.P. Solution-processed thin film transistor formation method
US7242039B2 (en) * 2004-03-12 2007-07-10 Hewlett-Packard Development Company, L.P. Semiconductor device
GB2416428A (en) 2004-07-19 2006-01-25 Seiko Epson Corp Method for fabricating a semiconductor element from a dispersion of semiconductor particles
DE102007043920A1 (en) * 2007-07-17 2009-01-22 Merck Patent Gmbh Functional material for printed electronic components
JP5396709B2 (en) * 2007-12-11 2014-01-22 セイコーエプソン株式会社 Thin film transistor, electro-optical device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162673A (en) * 1986-12-25 1988-07-06 Nippon Soda Co Ltd Iminoacetyl derivative, its production and fungicide
US20050199959A1 (en) * 2004-03-12 2005-09-15 Chiang Hai Q. Semiconductor device
JP2007201366A (en) * 2006-01-30 2007-08-09 Canon Inc Field effect transistor
JP2008294136A (en) * 2007-05-23 2008-12-04 Canon Inc Electron element using oxide semiconductor and manufacturing method therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Registry No. 118589-32-5", DATABASE REGISTRY [ONLINE]: CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, USA. RETRIEVED FROM STN, JPN7014001537, ISSN: 0002816932 *
"Registry No. 118589-36-9", DATABASE REGISTRY [ONLINE]: CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, USA. RETRIEVED FROM STN, JPN7014001536, ISSN: 0002816931 *
APBLETT ALLEN W: "INCORPORATION OF RADIONUCLIDES INTO MINERAL PHASES VIA A THERMALLY UNSTABLE COMPLEXANT LIGAND", PROCEEDINGS OF MATERIALS RESEARCH SOCIETY SYMPOSIUM, JPN5012010860, 1993, US, ISSN: 0002816930 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504767A (en) * 2012-12-17 2016-02-12 メルク パテント ゲーエムベーハー Inorganic barrier layer
JP2017506000A (en) * 2014-01-31 2017-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for manufacturing a UV photodetector

Also Published As

Publication number Publication date
CN104530815A (en) 2015-04-22
KR101724758B1 (en) 2017-04-07
DE102009004491A1 (en) 2010-07-15
CN102272094A (en) 2011-12-07
EP2376434A1 (en) 2011-10-19
CN104530815B (en) 2017-06-06
US8766251B2 (en) 2014-07-01
CN102272094B (en) 2015-04-22
TWI495630B (en) 2015-08-11
KR20110102509A (en) 2011-09-16
JP5798041B2 (en) 2015-10-21
TW201035018A (en) 2010-10-01
US20110272691A1 (en) 2011-11-10
WO2010078907A1 (en) 2010-07-15
EP2376434B1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5798041B2 (en) Functional materials for printed electronic components
KR101507189B1 (en) Organometallic zinc compound for preparing zinc oxide films
Bashir et al. High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere
Thomas et al. Solution-processable metal oxide semiconductors for thin-film transistor applications
US7507618B2 (en) Method for making electronic devices using metal oxide nanoparticles
KR101719853B1 (en) Method for producing layers containing indium oxide, layers containing indium oxide produced according to said method and the use thereof
KR102060492B1 (en) Method for producing high-performing and electrically stable semi-conductive metal oxide layers, layers produced according to the method and use thereof
Bae et al. Soluble oxide gate dielectrics prepared using the self-combustion reaction for high-performance thin-film transistors
US20150087110A1 (en) Low-Temperature Fabrication of Spray-Coated Metal Oxide Thin Film Transistors
US20140367676A1 (en) Process for the production of electrically semiconducting or conducting metal-oxide layers having improved conductivity
WO2011146744A1 (en) Organic-inorganic hybrid multilayer gate dielectrics for thin-film transistors
Sun et al. Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric
Zhu et al. A simple, low cost ink system for drop-on-demand printing high performance metal oxide dielectric film at low temperature
CN106796995B (en) Utilize the Organic Light Emitting Diode and its manufacturing method of the p-type oxide semiconductor containing gallium
JP2010147206A (en) Thin-film transistor and method for manufacturing the same
US9978591B2 (en) Formulations comprising ammoniacal hydroxozinc compounds
WANG et al. Preparation and field-effect property of solution-processed multilayer zinc oxide
JP2015038973A (en) Precursor composition for metal oxide semiconductor layer formation, metal oxide semiconductor layer, manufacturing method thereof, field-effect transistor, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5798041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees