JP2012510555A - Phase change material, method for producing the same, and method for producing module using phase change material - Google Patents

Phase change material, method for producing the same, and method for producing module using phase change material Download PDF

Info

Publication number
JP2012510555A
JP2012510555A JP2011539435A JP2011539435A JP2012510555A JP 2012510555 A JP2012510555 A JP 2012510555A JP 2011539435 A JP2011539435 A JP 2011539435A JP 2011539435 A JP2011539435 A JP 2011539435A JP 2012510555 A JP2012510555 A JP 2012510555A
Authority
JP
Japan
Prior art keywords
metal
solvent
change material
phase change
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011539435A
Other languages
Japanese (ja)
Other versions
JP5474999B2 (en
Inventor
イ・ソクペ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quantum Energy Research Centre
Original Assignee
Quantum Energy Research Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quantum Energy Research Centre filed Critical Quantum Energy Research Centre
Publication of JP2012510555A publication Critical patent/JP2012510555A/en
Application granted granted Critical
Publication of JP5474999B2 publication Critical patent/JP5474999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

【課題】本発明は、相転移物質、この製造方法及びこれを用いたモジュールの製造方法を開示する。
【解決手段】前記相転移物質は、配位結合を形成する金属及び前記金属を溶解できる溶媒を含むことを特徴とし、前記相転移物質の製造方法は、金属を真空状態に置いて空気中の水分と酸素を除去する段階(S1段階)と、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された容器に前記金属を注入し、前記一面に溶媒を注入でき、真空状態にできる連結装置を繋ぐ段階(S2段階)と、前記連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記連結装置を介して前記溶媒を注入する段階(S3段階)と、前記容器内の金属と溶媒を均一に混合して溶液を製造する段階(S4段階)と、前記容器を−10〜10℃で保管し前記溶液を膨張させて前記連結装置により流出させる段階(S5段階)を含むことを特徴とし、前記モジュールの製造方法は、前記相転移物質を用いることを特徴とする。前記相転移物質とこれを用いて製造されるモジュールは、熱により損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産でき、さらにはコンピュータのような電子機器装置で発生する熱を効果的に放出することができる。
【選択図】図3
The present invention discloses a phase change material, a method for producing the same, and a method for producing a module using the same.
The phase change material includes a metal that forms a coordination bond and a solvent that can dissolve the metal, and the method for producing the phase change material is performed by placing the metal in a vacuum state in air. A step of removing moisture and oxygen (S1 step), preparing the metal as powder or flakes, injecting the metal into a container whose one side is opened in an inert gas atmosphere, and injecting the solvent into the one side, vacuum Connecting a connecting device that can be brought into a state (step S2), maintaining a vacuum state by the connecting device for a certain period of time, maintaining an ambient temperature at a boiling point or a freezing point of the solvent, and inducing a temperature equilibrium state; Injecting the solvent through (S3 step), uniformly mixing the metal and solvent in the container to produce a solution (S4 step), storing the container at −10 to 10 ° C. Before inflating the solution Coupling device by then comprising the step of flowing out (S5 step), the manufacturing method of the module, characterized by using the phase change material. The phase change material and a module manufactured using the phase change material can produce energy efficiently by converting energy lost by heat into electrical energy, and further, generated in an electronic device such as a computer. Heat can be effectively released.
[Selection] Figure 3

Description

本発明は、相転移物質、その製造方法及び相転移物質を用いたモジュールの製造方法に関するものであり、より詳しくは、熱として損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産することができ、さらに、コンピュータのような電子機器装置で発生する熱を効果的に放出させることができる相転移物質、その製造方法及びそれを用いたモジュールの製造方法に関する。   The present invention relates to a phase change material, a method for producing the same, and a method for producing a module using the phase change material. More specifically, the present invention relates to a method for producing energy by converting energy lost as heat into electric energy. Further, the present invention relates to a phase change material capable of effectively releasing heat generated by an electronic device such as a computer, a method for manufacturing the phase change material, and a method for manufacturing a module using the phase change material.

従来の熱発電システムは、熱エネルギーを電気エネルギーに変換する技術であって、サーモエレクトリックパワージェネレーション(Thermoelectric Power Generation:TPG)と呼ばれる。熱エネルギーを電気エネルギーに変換することができる特性を示す多様な熱電物質に対して長年研究が行われている。   A conventional thermoelectric power generation system is a technology for converting thermal energy into electric energy, and is called thermoelectric power generation (TPG). Many years of research have been conducted on a variety of thermoelectric materials that exhibit the property of converting thermal energy into electrical energy.

このような分野において、現在まで開発された最も効率的なシステムは、接合半導体(n型−p型半導体接合)を用いた熱電発電システムである。この熱電発電システムは、効率的な面で略15%の出力を得ることができ商品化されているが、効率性が非常に低い。   In such a field, the most efficient system developed to date is a thermoelectric power generation system using a junction semiconductor (n-type-p-type semiconductor junction). This thermoelectric power generation system can obtain an output of approximately 15% in terms of efficiency, and is commercialized, but the efficiency is very low.

上記表1を参照すると、多様なエネルギー変換器による変換効率が確認できる。   Referring to Table 1 above, the conversion efficiency by various energy converters can be confirmed.

一方、熱電物質の特性は、次のゼーベック係数(Seebeck coefficient)を含んだ性能指数(Figure of Merit)の形態で表現できるが、これを下記の数式1、2によって定義する。   On the other hand, the characteristics of the thermoelectric material can be expressed in the form of figure of merit including the following Seebeck coefficient, which is defined by the following formulas 1 and 2.

上の数式2に示した性能指数は、x−y座標で示すことができ、図1に示した。図1は、熱伝達物質の特性である性能指数のグラフである。   The figure of merit shown in Equation 2 above can be shown in xy coordinates and is shown in FIG. FIG. 1 is a graph of a figure of merit that is a characteristic of a heat transfer material.

これを参照すると、ゼーベック係数の単位は通常、μV/Kであり、1ケルビン(K)当りに作られる電圧の量で表現される。最大1200μV/Kを表す物質を使用するものがあるが、例えば、ケイ素−ケイ素ゲルマニウム量子井戸熱電物質(Si/SiGe Quantum Well Thermoelectric materials)がこれに該当する。   Referring to this, the unit of the Seebeck coefficient is usually μV / K, and is expressed by the amount of voltage generated per Kelvin (K). Some materials use a maximum of 1200 μV / K, for example, a silicon-silicon germanium quantum well thermoelectric material.

このような物質が用いられる場合、10ケルビンの温度差に対して約0.012V程度の電圧差を生じ、これに該当する性能指数は約4.4程度であることが知られている。   When such a material is used, it is known that a voltage difference of about 0.012 V is generated with respect to a temperature difference of 10 Kelvin, and the corresponding figure of merit is about 4.4.

一方、熱電発電システムの原理は、温度差によって電子密度の変化が誘導され電圧が生成される現象を利用するものである。つまり、温度変化による自由電子が発生し、このような自由電子の分布によって部位別に密度の差が発生するため、結果的に電位が生成されるのである。   On the other hand, the principle of a thermoelectric power generation system uses a phenomenon in which a change in electron density is induced by a temperature difference and a voltage is generated. That is, free electrons are generated due to a temperature change, and a density difference is generated for each region due to the distribution of such free electrons, resulting in the generation of a potential.

前述の接合半導体に対して、図2を参照して詳しい原理をみることができる。図2を参照すると、外部の熱吸収部(Absorbed Heat)で熱を吸収すると同時に、外部の熱放出部(Released Heat)に熱を放出する。このような温度差によってn型半導体では熱吸収部から熱放出部へ自由電子の移動(Electron Flow)が起き、p型半導体では熱吸収部から熱放出部へ正孔の移動(Hole Flow)が起きる。   The detailed principle can be seen for the above-mentioned junction semiconductor with reference to FIG. Referring to FIG. 2, heat is absorbed by an external heat absorbing part (Absorbed Heat), and at the same time, heat is released to an external heat releasing part (Released Heat). This temperature difference causes free electron movement (Electron Flow) from the heat absorption part to the heat emission part in the n-type semiconductor, and hole movement (Hole Flow) from the heat absorption part to the heat emission part in the p-type semiconductor. Get up.

よって、このようなn型半導体とp型半導体を複数個で交互に電気的な回路を構成すると、その両端では電位の差が発生することになる。   Therefore, when an electrical circuit is configured by alternately including a plurality of such n-type semiconductors and p-type semiconductors, a potential difference occurs between both ends.

しかし、前記のn型−p型半導体接合は15%以上の変換効率を生むことができず、通常使用が予想される常温程度の温度差で得られる電圧の差は微弱である。逆に作業現場で使用できる一定電圧を得るために数十から数百ケルビンの温度差を必要とするという短所がある。   However, the above-mentioned n-type-p-type semiconductor junction cannot produce a conversion efficiency of 15% or more, and the voltage difference obtained at a temperature difference of about room temperature expected to be used normally is very weak. On the other hand, there is a disadvantage that a temperature difference of several tens to several hundreds Kelvin is required to obtain a constant voltage that can be used at the work site.

また、前記のn型−p型半導体接合は、実際に使用できる物質が非常に制約されている。このような物質は体積が大きく、かつ重量も重く、様々な用途に利用するのは困難であった。   In the n-type-p-type semiconductor junction, materials that can actually be used are very limited. Such a substance is large in volume and heavy, and it has been difficult to use for various purposes.

さらに、稼動中に多量の熱が発生するので効率が低減され、高い電力生産用にこのような物質を使用するのは困難である。   In addition, the efficiency is reduced because a large amount of heat is generated during operation, and it is difficult to use such materials for high power production.

近年、超高密度集積回路を用いたコンピュータシステムが開発され、商業的にコンピュータ自体のエネルギー効率的な面で集積回路が作り出す熱を分散することができる素材の開発が要求され続けている。このような分野でも前述の熱電物質の特徴を逆に利用して、電圧を印加することによりシステムを冷却させることができる原理を利用して熱源を分散させる技術も併せて集中的に研究されている。   In recent years, computer systems using ultra-high density integrated circuits have been developed, and the development of materials that can disperse the heat generated by the integrated circuits in the energy efficient aspect of the computer itself continues to be required. In this field as well, technology that disperses the heat source using the principle that the system can be cooled by applying a voltage by utilizing the characteristics of the thermoelectric materials described above is also intensively studied. Yes.

上述の熱分散が必要な分野において、テーマは大きく二つに分けられる。一つは熱電物質を利用する方式と、他に多重相転移(multi-phase transition:MPT)を行うことができる物質の相転移時に生じる潜熱(Latent Heat)を利用して熱を吸収する方式がある。   In the above-mentioned fields that require heat dispersion, themes can be broadly divided into two. One is a method using a thermoelectric material, and the other is a method of absorbing heat using latent heat (Latent Heat) generated at the time of phase transition of a substance capable of performing multi-phase transition (MPT). is there.

上記の熱分散システムでは、熱電現象を利用するペルチェ現象(Peltier effect)の応用に基づいて、コンピュータの中央処理装置(CPU)から直接熱源を冷却させる特性を利用する。しかし、外部に連結されている反対部分には熱力学的第2法則によってより多量の熱が生成され、結果的には熱源の位置を外に出すことになる。   The above heat distribution system uses the characteristic of directly cooling the heat source from the central processing unit (CPU) of the computer based on the application of the Peltier effect using the thermoelectric phenomenon. However, more heat is generated by the second law of thermodynamics in the opposite part connected to the outside, and as a result, the position of the heat source goes out.

このような場合、熱伝達物質の特性によって冷却の特性が決定される。接触(contact)方式で熱を引き出す場合、厚さ5mmのペルチェ素子を重複して連結することにより熱を冷却させることになり、システムの重さと体積が非常に大きくなるという深刻な短所がある。システムの冷却限界を超えると十分な作動が行われず、周辺の温度がより高くなるという問題点を有している。   In such a case, the cooling characteristics are determined by the characteristics of the heat transfer material. When extracting heat by a contact method, heat is cooled by overlapping and connecting Peltier elements having a thickness of 5 mm, and there is a serious disadvantage that the weight and volume of the system become very large. When the cooling limit of the system is exceeded, sufficient operation is not performed and the ambient temperature becomes higher.

よって、熱分散システムで多重相転移物質を利用して熱源を分散させる方法については、物質自体が有している潜熱の大きさと種類(相の多重性)により熱を吸収する特性を有する新たな物質を開発する必要性が要求されている。   Therefore, a method for dispersing a heat source using a multiple phase transition material in a heat dispersion system is a new method that absorbs heat depending on the size and type of latent heat (phase multiplicity) of the material itself. There is a need to develop materials.

本発明が解決しようとする第一の技術的課題は、熱として損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産することができ、さらには、コンピュータのような電子機器装置から発生する熱を効果的に放出させることができる相転移物質を提供することである。   A first technical problem to be solved by the present invention is that energy lost as heat can be converted into electric energy to produce electric energy with high efficiency, and further, an electronic device such as a computer. It is to provide a phase change material capable of effectively releasing heat generated from a device.

本発明が解決しようとする第二の課題は、熱として損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産することができ、さらには、コンピュータのような電子機器装置から発生する熱を効果的に放出させることができる相転移物質の製造方法を提供することである。   The second problem to be solved by the present invention is that energy lost as heat can be converted into electric energy to produce electric energy with high efficiency, and further, from an electronic device such as a computer. It is an object of the present invention to provide a method for producing a phase change material capable of effectively releasing generated heat.

本発明が解決しようとする第三の技術的課題は、熱として損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産することができ、さらには、コンピュータのような電子機器装置で発生する熱を効果的に放出させることができる相転移物質を用いたモジュール(module)を提供することである。   A third technical problem to be solved by the present invention is that energy lost as heat can be converted into electric energy to produce electric energy with high efficiency, and further, an electronic device such as a computer. To provide a module using a phase change material capable of effectively releasing heat generated in the apparatus.

本発明は、上述の第一の技術的課題を解決するために、配位結合が可能な金属及び前記金属を溶解できる溶媒を含むことを特徴とする相転移物質を提供する。   In order to solve the above-mentioned first technical problem, the present invention provides a phase change material comprising a metal capable of coordinating bond and a solvent capable of dissolving the metal.

本発明の一実施例によると、前記溶媒は、次式1により表される可逆的多段階相転位(Reversible Multi-step phase-transitions)特性を有することができる。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
本発明の別の実施例によると、前記金属と溶媒の比率は、1:0.1〜1:6であり得る。
According to an embodiment of the present invention, the solvent may have a reversible multi-step phase-transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
According to another embodiment of the present invention, the ratio of the metal to the solvent may be 1: 0.1 to 1: 6.

本発明のまた別の実施例によると、前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであり得る。   According to another embodiment of the present invention, the metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium. , Rubidium, strontium, yttrium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal.

本発明のまた別の実施例によると、前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖(Main Chain)の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子、またはアミンが主鎖に連結されたポリアミン類であり得る。   According to another embodiment of the present invention, the solvent includes ammonia, ethylenediamine, hexamethylenediamine, melamine, or amines having a main chain length of 4 or less and salts thereof, phenyl group. It may be an amine and its salt, a polymer in which an amide containing polyethyleneamine is contained in the main chain, or a polyamine in which an amine is linked to the main chain.

本発明のまた別の実施例によると、前記溶媒はジメチルジステアリルアンモニウム(dimethyldistearylammonium)、トリメチルテトラデシルアンモニウム(trimethyltetradecyl ammonium)、トリメチルヘキサデシルアンモニウム(trimethylhexadecyl ammonium)、トリメチルオクタデシルアンモニウム(trimethyloctadecyl ammonium)、ベンジルトリメチルアンモニウム(benzyltrimethyl ammonium)、ベンジルトリエチルアンモニウム(benzyltriethyl ammonium)、フェニルトリメチルアンモニウム(phenyltrimethyl ammonium)及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであり得る。   According to another embodiment of the present invention, the solvent may be dimethyldistearylammonium, trimethyltetradecyl ammonium, trimethylhexadecyl ammonium, trimethyloctadecyl ammonium, benzyltrimethyl. At least one selected from the group consisting of benzyltrimethyl ammonium, benzyltriethyl ammonium, phenyltrimethyl ammonium and aromatic quaternary ammonium, cationic surfactants and cationic polymers It can be.

本発明は、上述の第二の課題を解決するために、
金属を真空状態に置いて空気中の水分と酸素を除去する段階(S1段階)と、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された容器に前記金属を注入し、前記一面に溶媒を注入でき、真空状態にできる連結装置を繋ぐ段階(S2段階)と、前記連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記連結装置を介して前記溶媒を注入する段階(S3段階)と、前記容器内の金属と溶媒を均一に混合して溶液を製造する段階(S4段階)と、前記容器を−10〜10℃で保管し前記溶液を膨張させて前記連結装置により流出させる段階(S5段階)を含むことを特徴とする相転移物質の製造方法を提供する。
In order to solve the second problem described above, the present invention
A step of removing moisture and oxygen in the air by placing the metal in a vacuum state (S1 step), preparing the metal as powder or flakes, and injecting the metal into a container opened on one side in an inert gas atmosphere A step of connecting a connecting device capable of injecting a solvent into the one surface and creating a vacuum state (step S2), and maintaining the vacuum at the boiling point or the freezing point of the solvent after maintaining the vacuum state for a certain time by the connecting device; Inducing an equilibrium state, injecting the solvent through the coupling device (S3), uniformly mixing the metal and the solvent in the container to produce a solution (S4), and the container Is stored at −10 to 10 ° C., and the solution is expanded and discharged by the connecting device (step S5).

本発明の一実施例によると、前記S5段階で前記溶液の色が濃い藍色になるように前記S3段階から繰り返す段階をさらに含むことができる。   According to an embodiment of the present invention, the method may further include repeating from the step S3 so that the color of the solution becomes a deep indigo color in the step S5.

本発明の他の実施例によると、前記溶媒は次式1により表される可逆的多段階相転移(Reversible Multi-step phase-transitions)特性を有することができる。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
本発明のまた別の実施例によると、前記金属と溶媒の比率は、1:0.1〜1:6であり得る。
According to another embodiment of the present invention, the solvent may have a reversible multi-step phase-transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
According to another embodiment of the present invention, the metal to solvent ratio may be 1: 0.1 to 1: 6.

本発明のまた別の実施例によると、前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであり得る。   According to another embodiment of the present invention, the metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium. , Rubidium, strontium, yttrium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal.

本発明のまた別の実施例によると、前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖(Main chain)の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であり得る。   According to another embodiment of the present invention, the solvent includes ammonia, ethylenediamine, hexamethylenediamine, melamine, or amines having a main chain length of 4 or less and salts thereof, phenyl groups. The polymer may be amines and salts thereof, a polymer in which an amide containing polyethyleneamine is contained in the main chain, or a polyamine in which an amine is linked to the main chain.

本発明のまた別の実施例によると、前記溶媒はジメチルジステアリルアンモニウム(dimethyldistearylammonium)、トリメチルテトラデシルアンモニウム(trimethyltetradecyl ammonium)、トリメチルヘキサデシルアンモニウム(trimethylhexadecyl ammonium)、トリメチルオクタデシルアンモニウム(trimethyloctadecyl ammonium)、ベンジルトリメチルアンモニウム(benzyltrimethyl ammonium)、ベンジルトリエチルアンモニウム(benzyltriethyl ammonium)、フェニルトリメチルアンモニウム(phenyltrimethyl ammonium)及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであり得る。   According to another embodiment of the present invention, the solvent may be dimethyldistearylammonium, trimethyltetradecyl ammonium, trimethylhexadecyl ammonium, trimethyloctadecyl ammonium, benzyltrimethyl. At least one selected from the group consisting of benzyltrimethyl ammonium, benzyltriethyl ammonium, phenyltrimethyl ammonium and aromatic quaternary ammonium, cationic surfactants and cationic polymers It can be.

本発明の上述の第三の技術的課題を解決するために、
金属を真空状態に置いて空気中の水分と酸素を除去する段階(S6段階)と、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された第1容器と第2容器に前記金属をそれぞれ注入し、それぞれの一面に溶媒を注入でき、真空状態にできる第1連結装置及び第2連結装置をそれぞれ繋げる段階(S7段階)と、前記第1、2連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記第1、2連結装置を介して前記溶媒を注入する段階(S8段階)と、前記第1、2容器内の金属と溶媒を均一に混合して溶液を製造する段階(S9段階)と、前記第1、2容器を−10〜10℃で保管して前記溶液を膨張させ、前記連結装置により流出させる段階(S10段階)と、前記第1、2容器を常温で結合するがその間に絶縁体を挿入する段階(S11段階);を含むことを特徴とする相転移物質を用いたモジュール(module)の製造方法を提供する。
In order to solve the above third technical problem of the present invention,
A step of removing moisture and oxygen in the air by placing the metal in a vacuum state (step S6), a first container and a second container prepared by powder or flakes and opened on one side in an inert gas atmosphere The step of connecting the first and second connecting devices that can inject the metal into the respective surfaces and injecting the solvent onto one surface of each of the surfaces to form a vacuum state (step S7), and the vacuum state by the first and second connecting devices. Maintaining the ambient temperature at the boiling point or freezing point of the solvent to induce a temperature equilibrium state, and injecting the solvent through the first and second coupling devices (step S8), A step of preparing a solution by uniformly mixing a metal and a solvent in the first and second containers (step S9), storing the first and second containers at −10 to 10 ° C. to expand the solution, and connecting Step of letting out by the device (S10 And a step of inserting an insulator between the first and second containers at room temperature (step S11), and a method of manufacturing a module using a phase change material. provide.

本発明の一実施例によると、前記S10段階で前記溶液の色が濃い藍色になるように前記S8段階から繰り返す段階をさらに含むことができる。   According to an embodiment of the present invention, the method may further include repeating from the step S8 so that the color of the solution becomes a deep indigo color in the step S10.

本発明の他の実施例によると、前記溶媒は次式1により表される可逆的多段階相転移(Reversible Multi-step phase-transitions)特性を有することができる。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
本発明のまた別の実施例によると、前記金属と溶媒の比率は、1:0.1〜1:6であり得る。
According to another embodiment of the present invention, the solvent may have a reversible multi-step phase-transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
According to another embodiment of the present invention, the metal to solvent ratio may be 1: 0.1 to 1: 6.

本発明のまた別の実施例によると、前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであり得る。   According to another embodiment of the present invention, the metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium. , Rubidium, strontium, yttrium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal.

本発明のまた別の実施例によると、前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖(Main chain)の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であり得る。   According to another embodiment of the present invention, the solvent includes ammonia, ethylenediamine, hexamethylenediamine, melamine, or amines having a main chain length of 4 or less and salts thereof, phenyl groups. The polymer may be amines and salts thereof, a polymer in which an amide containing polyethyleneamine is contained in the main chain, or a polyamine in which an amine is linked to the main chain.

本発明のまた別の実施例によると、前記溶媒はジメチルジステアリルアンモニウム(dimethyldistearylammonium)、トリメチルテトラデシルアンモニウム(trimethyltetradecyl ammonium)、トリメチルヘキサデシルアンモニウム(trimethylhexadecyl ammonium)、トリメチルオクタデシルアンモニウム(trimethyloctadecyl ammonium)、ベンジルトリメチルアンモニウム(benzyltrimethyl ammonium)、ベンジルトリエチルアンモニウム(benzyltriethyl ammonium)、フェニルトリメチルアンモニウム(phenyltrimethyl ammonium)及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであり得る。   According to another embodiment of the present invention, the solvent may be dimethyldistearylammonium, trimethyltetradecyl ammonium, trimethylhexadecyl ammonium, trimethyloctadecyl ammonium, benzyltrimethyl. At least one selected from the group consisting of benzyltrimethyl ammonium, benzyltriethyl ammonium, phenyltrimethyl ammonium and aromatic quaternary ammonium, cationic surfactants and cationic polymers It can be.

以上の通り、本発明の相転移物質、相転移物質の製造方法及び相転移物質を用いたモジュールの製造方法によれば、熱として損失されるエネルギーを電気エネルギーに変換して高効率的に電気エネルギーを生産でき、さらには、コンピュータのような電子機器装置から発生する熱を効果的に放出することができる。   As described above, according to the phase change material, the method for producing the phase change material, and the method for producing the module using the phase change material of the present invention, the energy lost as heat is converted into electric energy and highly efficiently Energy can be produced, and furthermore, heat generated from an electronic device such as a computer can be effectively released.

熱伝達物質の特性である性能指数グラフである。It is a figure of merit figure which is a characteristic of a heat transfer substance. n型−p型接合半導体を用いた熱電システムを示す概略図である。It is the schematic which shows the thermoelectric system using an n-type-p-type junction semiconductor. 本発明の相転移物質の相転移グラフである。It is a phase transition graph of the phase change material of the present invention. 本発明の相転移物質の金属別蒸気圧を表したグラフである。It is a graph showing the vapor pressure according to metal of the phase change material of this invention. 本発明の相転移物質のリチウムとアンモニアとメチルアミンとの溶液に対する蒸気圧を表したグラフである。It is the graph showing the vapor pressure with respect to the solution of lithium of the phase change material of this invention, ammonia, and methylamine. 本発明の相転移物質が常温で温度差が10℃の場合に生成される電圧を時間別に測定したグラフである。6 is a graph in which the voltage generated when the phase change material of the present invention is normal temperature and the temperature difference is 10 ° C. is measured according to time. 本発明の相転移物質において常温で温度差をなくした場合に消滅する電圧を時間別に測定したグラフである。6 is a graph in which the voltage that disappears when the temperature difference is eliminated at room temperature in the phase change material of the present invention is measured over time.

以下、本発明の内容をより詳しく説明する。   Hereinafter, the contents of the present invention will be described in more detail.

明細書では、本発明の理解を助けるために好ましい実施例を提示するが、これは本発明をより理解し易くするために提供するに過ぎなく、これによって本発明の内容が限定されたり制限されると解釈してはならなく、添付の図面は理解の便宜のために誇張される場合があるため、同様にこれによって本発明が制限されてはならない。   In the description, preferred embodiments are presented to aid the understanding of the present invention, but are provided only for a better understanding of the invention, which limit or limit the content of the invention. The accompanying drawings may not be construed as exaggerated for convenience of understanding, and so the invention should not be limited thereby.

本発明の相転移物質は、配位結合が可能な金属と前記金属を溶解できる溶媒を含むことを特徴とするが、前記金属は周期律表上1族(アルカリ金属)、2族(アルカリ土類金属)、3族、転移金属(transition)、ランタニド系金属(lanthanide)、アクチニド系金属(actinide)であり得、前記溶媒は前記金属と配位結合が可能な溶媒である。このような溶媒は、構造的には金属に配位結合する形態を有し、このような配位結合が溶媒の濃度と周辺の温度、圧力のような環境によってその配位数が変わることにより、多様な相転移や配位結合数が変化する現象を表す。   The phase change material according to the present invention includes a metal capable of coordinating bonds and a solvent capable of dissolving the metal. The metal is a group 1 (alkali metal) or group 2 (alkaline earth) in the periodic table. Metal), group 3, transition metal, lanthanide metal, actinide metal, and the solvent is a solvent capable of coordinating with the metal. Such a solvent is structurally coordinated to a metal, and the coordination number varies depending on the concentration of the solvent and the environment such as ambient temperature and pressure. It represents various phase transitions and phenomena in which the number of coordination bonds changes.

また、前記溶媒は沸点が低いため容易に気化でき、可逆的多段階相転移(Reversible Multi-step phase-transitions)特性を有し得るが、これを下記式1に表す。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
前記の可逆的多段階相転移特性は、図3によって説明できる。図3は、本発明の相転移物質の相転移グラフである。
In addition, since the solvent has a low boiling point, it can be easily vaporized and may have reversible multi-step phase-transitions, which is represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
The reversible multi-stage phase transition characteristic can be explained by FIG. FIG. 3 is a phase transition graph of the phase change material of the present invention.

図3を参照すると、y軸は温度(K)を表し、x軸は濃度を表す。MPMは金属のモルパーセント(Mole Percent of Metal)の略字である。図3のグラフは、前記金属がアンモニアを含むアミン類に溶解されたことを表す。   Referring to FIG. 3, the y-axis represents temperature (K) and the x-axis represents concentration. MPM is an abbreviation for Mole Percent of Metal. The graph of FIG. 3 shows that the metal was dissolved in amines containing ammonia.

ここで、濃度が約14.3の場合は[M(R)]に該当し、濃度が20, 33及び100の場合はそれぞれ[M(R)]、[M(R)]、[M]に該当することが分かる。 Here, when the concentration is about 14.3, it corresponds to [M (R) 6 ], and when the concentration is 20, 33 and 100, [M (R) 4 ], [M (R) 2 ], It turns out that it corresponds to [M].

前記溶媒(R)の濃度が濃い場合、例えばMPMが20以上の場合、通常、低い温度、例えば−35℃では[M(R)]が存在するが、温度が高くなるほど配位結合数が減少して前記金属の酸化状態が変化する。このような酸化状態変化に影響を与える要因は通常、前記金属と溶媒間濃度、温度、内部圧力のような環境条件であり得る。このような環境条件によって一定の配位数を有する安定した結合相(Phase)が存在することが分かる。 When the concentration of the solvent (R) is high, for example, when the MPM is 20 or more, [M (R) 6 ] usually exists at a low temperature, for example, −35 ° C., but the number of coordination bonds increases as the temperature increases. It decreases and changes the oxidation state of the metal. Factors that influence such oxidation state changes can typically be environmental conditions such as the metal-solvent concentration, temperature, and internal pressure. It can be seen that a stable binder phase having a certain coordination number exists under such environmental conditions.

ここで、多数の配位結合された状態である[M(R)]に対してより詳しく説明すると、温度の上昇により配位結合が途切れ、気化される溶媒(R)の量が増加して分圧が増加する特性が図4及び5から分かる。 Here, [M (R) 6 ], which is a state in which a large number of coordination bonds are formed, will be described in more detail. As the temperature rises, the coordination bonds are interrupted and the amount of the solvent (R) to be vaporized increases. The characteristics of the partial pressure increase can be seen from FIGS.

図4は本発明の相転移物質の金属別蒸気圧を表したグラフであり、図5は本発明の相転移物質のリチウムとアンモニアとメチルアミンとの溶液に対する蒸気圧を表したグラフである。   FIG. 4 is a graph showing the vapor pressure for each phase of the phase change material of the present invention, and FIG. 5 is a graph showing the vapor pressure of the phase change material of the present invention for a solution of lithium, ammonia and methylamine.

上述の通り、気化される溶媒の、多数の配位結合された状態である[M(R)]に対する電位変化は、下記の表2に表す。 As described above, the change in potential of the vaporized solvent with respect to [M (R) 6 ], which is in a state of many coordinate bonds, is shown in Table 2 below.

前記表2に見られるものとは異なり、配位数が4である場合、物質の特性上、略常温(20℃)で安定した結合を成す。この状態では電位差が0に近いが、4以下の場合も少量(+δ)の電位変化が伴い得る。   Unlike those shown in Table 2, when the coordination number is 4, a stable bond is formed at a substantially normal temperature (20 ° C.) due to the characteristics of the substance. In this state, the potential difference is close to 0, but even when the potential difference is 4 or less, a small amount (+ δ) of potential change may accompany.

一方、前記金属と溶媒の比率は、1:0.1〜1:6であり得るが、前記比率が1:0.1未満だと、前記金属は約1000℃で非常に不安定になり、励起状態のように存在し得る。前記比率が1:6を超えると、相以外の溶媒が反応に関与せず、液体あるいは気体の状態で存在するため、電極生成に障害が生じ得る。また、高圧が生成されて安定したシステムの運用を阻害し得る。   Meanwhile, the ratio of the metal to the solvent can be 1: 0.1 to 1: 6, but if the ratio is less than 1: 0.1, the metal becomes very unstable at about 1000 ° C., It can exist like an excited state. When the ratio exceeds 1: 6, a solvent other than the phase does not participate in the reaction and exists in a liquid or gas state, which may cause an obstacle to electrode generation. In addition, high pressure is generated, which can hinder stable system operation.

ここで、前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであり得る。   Here, the metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium, rubidium, strontium, yttrium, niobium. , Molybdenum, technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal.

また、前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖(Main chain)の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であり得、ジメチルジステアリルアンモニウム(dimethyldistearylammonium)、トリメチルテトラデシルアンモニウム(trimethyltetradecyl ammonium)、トリメチルヘキサデシルアンモニウム(trimethylhexadecyl ammonium)、トリメチルオクタデシルアンモニウム(trimethyloctadecyl ammonium)、ベンジルトリメチルアンモニウム(benzyltrimethyl ammonium)、ベンジルトリエチルアンモニウム(benzyltriethyl ammonium)、フェニルトリメチルアンモニウム(phenyltrimethyl ammonium)及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであり得る。   The solvent may be ammonia, ethylenediamine, hexamethylenediamine, melamine, or amines having a main chain length of 4 or less and their salts, amines containing phenyl groups and their salts, polyethyleneamine. Polymers containing amides in the main chain or polyamines with amines linked to the main chain can be dimethyldistearylammonium, trimethyltetradecyl ammonium, trimethylhexadecyl ammonium ), Trimethyloctadecyl ammonium, benzyltrimethyl ammonium, benzyltriethyl ammonium, phenyltrimethyl ammonium mmonium) and aromatic quaternary ammonium, a cationic surfactant, and a cationic polymer.

本発明の相転移物質の製造方法は、金属を真空状態に置いて空気中の水分と酸素を除去する段階(S1段階)と、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された容器に前記金属を注入し、前記一面に溶媒を注入でき、真空状態にできる連結装置を繋ぐ段階(S2段階)と、前記連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記連結装置を介して前記溶媒を注入する段階(S3段階)と、前記容器内の金属と溶媒を均一に混合して溶液を製造する段階(S4段階)と、前記容器を−10〜10℃で保管して前記溶液を膨張させ前記連結装置により流出させる段階(S5段階)を含む。   The method for producing a phase change material of the present invention includes a step of removing moisture and oxygen in the air by placing the metal in a vacuum state (S1 step), preparing the metal as powder or flakes, and in a non-active gas atmosphere. Injecting the metal into the container opened, connecting the connecting device capable of injecting the solvent into the one surface and making the vacuum state (step S2), and maintaining the vacuum state for a certain time by the connecting device, the ambient temperature is adjusted. Maintaining the boiling point or freezing point of the solvent to induce a temperature equilibrium state, injecting the solvent through the connecting device (step S3), uniformly mixing the metal and the solvent in the container to obtain a solution A step of manufacturing (step S4) and a step of storing the container at −10 to 10 ° C. to expand the solution and let it flow out by the connecting device (step S5).

先ず、S1段階を見ると、S1段階は前記金属を真空状態に置いて空気中の水分と酸素のような異物質を除去する。そして、ヘキサンのような物質を利用して前記金属を活性化(Activation)させることもできる。   First, looking at step S1, step S1 places the metal in a vacuum to remove foreign substances such as moisture and oxygen in the air. In addition, the metal may be activated using a substance such as hexane.

ここで、前記真空状態は、10−5〜10−7Torrに維持することが好ましく、もし10−5Torr未満だと不純物が残存して変化効率が減少し得、逆に10−7Torrを超えると過度なエネルギーの使用により製造費用が増加し得る。 Here, the vacuum state is preferably maintained at 10 −5 to 10 −7 Torr, and if it is less than 10 −5 Torr, impurities may remain and change efficiency may be reduced, and conversely, 10 −7 Torr is reduced. Beyond that, the use of excessive energy can increase manufacturing costs.

前記溶媒は、式1により表される可逆的多段階相転移(Reversible Multi-step phase-transitions)特性を有し得る。これは前述の式1と同一または類似するためここでの説明は省略する。これは、下記の内容についても同一に適用する。   The solvent may have a reversible multi-step phase-transition characteristic represented by Formula 1. Since this is the same as or similar to Equation 1 described above, the description thereof is omitted here. The same applies to the following contents.

また、前記金属と溶媒の比率は1:0.1〜1:6であり得、前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであり得る。   The ratio of the metal to the solvent may be 1: 0.1 to 1: 6, and the metal may be lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, Selected from the group consisting of iron, cobalt, nickel, copper, gallium, selenium, rubidium, strontium, yttrium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metals and actinium metals Can be at least one.

さらに、前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖(Main chain)の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であり得、前記溶媒は、ジメチルジステアリルアンモニウム(dimethyldistearylammonium)、トリメチルテトラデシルアンモニウム(trimethyltetradecyl ammonium)、トリメチルヘキサデシルアンモニウム(trimethylhexadecyl ammonium)、トリメチルオクタデシルアンモニウム(trimethyloctadecyl ammonium)、ベンジルトリメチルアンモニウム(benzyltrimethyl ammonium)、ベンジルトリエチルアンモニウム(benzyltriethyl ammonium)、フェニルトリメチルアンモニウム(phenyltrimethyl ammonium)及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであり得る。   Further, the solvent includes ammonia, ethylenediamine, hexamethylenediamine, melamine, or amines having a main chain length of 4 or less and their salts, amines containing phenyl groups and their salts, polyethyleneamine. The solvent may be a polymer containing an amide in the main chain or a polyamine having an amine linked to the main chain, and the solvent may be dimethyldistearylammonium, trimethyltetradecyl ammonium, trimethylhexadecyl. Ammonium (trimethylhexadecyl ammonium), trimethyloctadecyl ammonium, benzyltrimethyl ammonium, benzyltriethyl ammonium, phenyltrimethylammonium (Phenyltrimethyl ammonium) and aromatic quaternary ammonium, it may be at least one selected from the group consisting of cationic surfactants and cationic polymers.

次に、S2段階は、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された容器に前記金属を注入し、前記一面に溶媒を注入でき、真空状態にできる連結装置を繋ぐ段階である。前記金属を粉末や薄片にして反応面積を増加させ、前記締結装置は、パイプ形態のT字形状で3つの面に連結部位が備えられており、第1面は前記容器に連結され、第2面は溶媒供給源に連結され、第3面は真空ポンプに連結できる。   Next, the step S2 prepares the metal as powder or flakes, injects the metal into a container whose one side is opened in an inert gas atmosphere, and injects the solvent into the one side, and a connecting device that can be in a vacuum state. It is a connecting stage. The reaction area is increased by making the metal into powder or flakes, and the fastening device has a pipe-shaped T-shape and is provided with connecting portions on three surfaces, the first surface is connected to the container, and the second surface The surface can be connected to a solvent source and the third surface can be connected to a vacuum pump.

また、前記容器は一面を除いた全ての面が閉鎖されているが、例えばシリンダー状に備えることができる。   Further, the container is closed on all surfaces except for one surface, but can be provided in a cylindrical shape, for example.

次に、S3段階は、前記連結装置により真空状態を一定時間維持した後、周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記連結装置により前記溶媒を注入する段階である。   Next, in step S3, after maintaining the vacuum state by the connecting device for a certain period of time, maintaining the ambient temperature at the boiling point or freezing point of the solvent to induce a temperature equilibrium state, and injecting the solvent by the connecting device It is.

ここで、前記維持温度を溶媒の沸点または凝固点に維持した状態で、もし前記維持温度を各有機溶媒の沸点以上に維持すると金属を溶解し難いという問題が生じ得、逆に凝固点以下になると溶媒が凍ってしまい溶解を試料の合成が行われないという問題が生じ得る。   Here, in the state where the maintenance temperature is maintained at the boiling point or the freezing point of the solvent, if the maintenance temperature is maintained above the boiling point of each organic solvent, it may be difficult to dissolve the metal. May freeze up and cause the problem that the sample is not synthesized for lysis.

また、前記の一定時間は20分〜2時間だが、もし20分未満だと溶媒と金属間の十分な溶解反応が起こらず不均一な試料が作られ得、逆に2時間を超えると本段階の工程時間が長くなり全体的な製造費用が増加し得る。   In addition, the above-mentioned fixed time is 20 minutes to 2 hours, but if it is less than 20 minutes, sufficient dissolution reaction between the solvent and the metal does not occur and a non-uniform sample can be made. The process time becomes longer and the overall manufacturing cost can be increased.

次に、S4段階は、前記容器内の金属と溶媒を均一に混合して溶液を製造する段階であり、このときの温度は前記溶媒の沸点または凝固点程度に維持される状態である。   Next, step S4 is a step of producing a solution by uniformly mixing the metal and the solvent in the container, and the temperature at this time is maintained at the boiling point or the freezing point of the solvent.

次に、S5段階は、前記容器を−10〜10℃で保管し、前記溶液を膨張させ前記連結装置により流出させる段階であり、前記金属と溶媒による溶液の周辺温度が上昇することにより、溶液の体積が増加して前記連結装置により溶液が外部に流出することになる。   Next, step S5 is a step in which the container is stored at −10 to 10 ° C., the solution is expanded and discharged by the connecting device, and the ambient temperature of the solution by the metal and the solvent is increased, so that the solution The volume of the liquid increases, and the solution flows out to the outside by the connecting device.

ここで、外部に流出した溶液を肉眼で確認すると、色が透明又は無色の場合と、濃い藍色の場合がある。濃い藍色が[M(R)2+の典型的な色であるため、色が透明又は無色の場合は上述のS3段階から繰り返して前記の溶液の色が濃い藍色になるようにする。 Here, when the solution that has flowed to the outside is confirmed with the naked eye, the color may be transparent or colorless, or the color may be deep indigo. Since the dark indigo color is a typical color of [M (R) 6 ] 2+ , when the color is transparent or colorless, the above solution is repeated from the above step S3 so that the color of the solution becomes a deep indigo color. .

また、このような電位差の特性を有する相転移物質は、絶縁状態で密封された後、両端に導体からなる電極を有する回路を構成すると、熱電システムに応用できる。これに対する詳細な説明は後述する。   In addition, a phase change material having such potential difference characteristics can be applied to a thermoelectric system by forming a circuit having electrodes made of conductors at both ends after sealing in an insulated state. A detailed description thereof will be described later.

さらに、このような状態で化学式構造は[M(R)+2(s)と[M(R)](s)が一定の比率で共存し、この比率は、密封作業を行ったときの周辺温度によって下記表3で見られるように、平均値であるnを有する。 Furthermore, in such a state, [M (R) 6 ] +2 (s) and [M (R) 4 ] (s) coexist in a certain ratio, and this ratio is obtained when the sealing operation is performed. As shown in Table 3 below, the average value of n is n.

即ち、電位差を有する2状態が共存して熱力学的に平衡状態を維持することが分かる。   That is, it can be seen that two states having a potential difference coexist and maintain an equilibrium state thermodynamically.

一方、本発明の相転移物質を用いたモジュール(module)の製造方法は、金属を真空状態に置いて空気中の水分と酸素を除去する段階(S6段階)と、前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された第1容器と第2容器に前記金属をそれぞれ注入し、それぞれの一面に溶媒を注入でき、真空状態にできる第1連結装置及び第2連結装置をそれぞれ繋げる段階(S7段階)と、前記第1、2連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記第1、2連結装置を介して前記溶媒を注入する段階(S8段階)と、前記第1、2容器内の金属と溶媒を均一に混合して溶液を製造する段階(S9段階)と、前記第1、2容器を−10〜10℃で保管して前記溶液を膨張させ、前記連結装置により流出させる段階(S10段階)と、前記第1、2容器を常温で結合するがその間に絶縁体を挿入する段階(S11段階);を含むことができる。   Meanwhile, the module manufacturing method using the phase change material according to the present invention includes a step of removing moisture and oxygen in the air by placing the metal in a vacuum state (step S6), and the metal in powder or flakes. A first connecting device and a second connecting device that can be prepared, injecting the metal into a first container and a second container, each of which is opened in a non-active gas atmosphere, and injecting a solvent into each of the surfaces, so that a vacuum can be achieved. Are connected to each other (step S7), and after maintaining the vacuum state for a certain time by the first and second connecting devices, the ambient temperature is maintained at the boiling point or freezing point of the solvent to induce a temperature equilibrium state, A step of injecting the solvent through two connecting devices (step S8), a step of uniformly mixing the metal and the solvent in the first and second containers to produce a solution (step S9), the first, Store 2 containers at -10 to 10 ° C Expanding the solution and letting it flow out by the connecting device (step S10), and joining the first and second containers at room temperature, but inserting an insulator therebetween (step S11). .

先ず、S6段階は、上述のS1段階の内容と同一または類似するため、ここでの説明は省略する。   First, since step S6 is the same as or similar to the content of step S1 described above, description thereof is omitted here.

次に、S7段階は、前記金属を粉末や薄片で準備して非活性気体雰囲気で一面が開封された第1容器と第2容器にそれぞれ注入し、それぞれの一面に溶媒を注入でき、真空状態にできる第1連結装置及び第2連結装置をそれぞれ繋ぐ段階である。容器及び連結装置をそれぞれ2個ずつ使用している点を除いては、S2段階と類似するため、詳細な説明は省略する。   Next, in step S7, the metal is prepared in powder or flakes and injected into a first container and a second container each of which is opened in an inert gas atmosphere, and a solvent can be injected into each of the surfaces. The first connecting device and the second connecting device can be connected to each other. Except for the fact that two containers and two coupling devices are used, the detailed description is omitted because it is similar to the step S2.

次に、S8段階は、前記第1、2連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記第1、2連結装置により前記溶媒を注入する段階である。上述のS3段階と類似するため、説明は省略する。   Next, in step S8, after the vacuum state is maintained for a certain time by the first and second coupling devices, the ambient temperature is maintained at the boiling point or the freezing point of the solvent to induce a temperature equilibrium state. Injecting the solvent. Since it is similar to the above-described step S3, description thereof is omitted.

次に、S9段階は、前記第1、2容器内の金属と溶媒を均一に混合して溶液を製造する段階である。上述のS4段階と類似するため、説明は省略する。   Next, step S9 is a step of preparing a solution by uniformly mixing the metal and the solvent in the first and second containers. Since it is similar to the above-described step S4, description thereof is omitted.

次に、S10段階は、前記第1、2容器を−10〜10℃で保管して前記溶液を膨張させ、前記連結装置により流出させる段階である。上述のS5段階と類似するため、説明は省略する。   Next, step S10 is a step of storing the first and second containers at −10 to 10 ° C. to expand the solution and let it flow out by the connecting device. Since it is similar to the above-described step S5, description thereof is omitted.

次に、S11段階は、前記第1、2容器を常温で結合するがその間に絶縁体を挿入する段階である。絶縁体は石英(quartz)を使用できる。   Next, step S11 is a step of inserting an insulator between the first and second containers at room temperature. The insulator can be quartz.

また、前記S10段階で、前記溶液の色が濃い藍色になるように前記S8段階から繰り返す段階をさらに含むことができる。   In addition, the method may further include the step of repeating from the step S8 so that the solution has a deep indigo color in the step S10.

ここで、前記金属としてリチウムを用いて溶液を製造する場合の特性を下記表4に表す。   Here, the characteristics in the case of producing a solution using lithium as the metal are shown in Table 4 below.

上記表4のように、温度と濃度によって反応エンタルピーが吸熱反応あるいは発熱反応の特性を示し、常温に近くなるほどこのような特性はより鮮明に表れることが分かる。   As shown in Table 4 above, it can be seen that the reaction enthalpy shows the characteristics of endothermic reaction or exothermic reaction depending on the temperature and concentration, and such characteristics appear more clearly as the temperature approaches normal temperature.

即ち、前記金属の濃度が高いほど発熱反応の特性を表し、薄い濃度の領域で[M(R)+2(s)と[M(R)](s)の場合は、吸熱反応の特性を表すため、温度差による電位差が生成される反応が行われるほど、外部の熱エネルギーを吸収しながら反応が行われることが分かる。 That is, the higher the concentration of the metal, the more the exothermic reaction characteristic is expressed. In the case of [M (R) 6 ] +2 (s) and [M (R) 4 ] (s) in the low concentration region, the endothermic reaction In order to represent the characteristics, it is understood that the reaction is performed while absorbing external heat energy as the reaction that generates the potential difference due to the temperature difference is performed.

また、このような特性によって温度が高い熱源部位は、吸熱反応の特性が表れると共に、電位差が生成される純反応方向に行われ続け、前記熱源部位の反対部分は末端から気化されたR(g)によって分圧が増加し、結局、ルシャトリエの原理によって逆方向への反応が行われてより大きい電位差が得られ、発熱反応を起こして熱源で発生する熱を放出させるようになる。   In addition, the heat source part having a high temperature due to such characteristics exhibits endothermic reaction characteristics and continues to be performed in a pure reaction direction in which a potential difference is generated, and the opposite part of the heat source part is vaporized from the end R (g ), The partial pressure is increased, and the reaction in the reverse direction is performed according to the Le Chatelier's principle to obtain a larger potential difference, causing an exothermic reaction to release the heat generated in the heat source.

即ち、温度差が発生すると、高い温度部分で電圧を発生し、周辺の熱を吸収しながら、溶媒(R)が気化する。それにより分圧が増加して反対方向では逆方向に結合反応が起こると共に、周辺熱を放出し、反対電圧が生成することになる。これは、図6と図7により表す。   That is, when a temperature difference occurs, a voltage is generated at a high temperature portion, and the solvent (R) is vaporized while absorbing the surrounding heat. As a result, the partial pressure increases, and in the opposite direction, a binding reaction occurs in the opposite direction, and ambient heat is released to generate an opposite voltage. This is represented by FIG. 6 and FIG.

図6は、常温での本発明の相転移物質が温度差が10℃の場合に生成される電圧を時間帯別に測定したグラフであり、図7は常温での本発明の相転移物質の温度差がなくなる場合に消滅される電圧を時間帯別に測定したグラフである。   FIG. 6 is a graph in which the voltage generated when the temperature difference of the phase change material of the present invention is 10 ° C. at normal temperature is measured for each time zone, and FIG. 7 is the temperature of the phase change material of the present invention at normal temperature. It is the graph which measured the voltage extinguished when a difference disappears according to the time zone.

図6及び7を参照すると、常温での温度差によって急激な電圧の上昇を表し、比例関係が維持され、線は一定の電圧に収束し、逆に常温での温度差をなくす場合は、熱的平衡状態に到達するまで一定の傾きの下降グラフを形成し、線はその後0(zero)に近い一定の電圧に収束することが分かる。   Referring to FIGS. 6 and 7, when the temperature difference at room temperature represents a sudden increase in voltage, the proportional relationship is maintained, the line converges to a constant voltage, and conversely the temperature difference at room temperature is eliminated. It can be seen that a descending graph with a constant slope is formed until a static equilibrium state is reached, after which the line converges to a constant voltage close to zero.

Claims (20)

配位結合を形成する金属及び前記金属を溶解できる溶媒を含むことを特徴とする相転移物質。   A phase change material comprising a metal forming a coordinate bond and a solvent capable of dissolving the metal. 前記溶媒は、次式1により表される可逆的多段階相転移特性を有することを特徴とする請求項1に記載の相転移物質。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
The phase change material according to claim 1, wherein the solvent has a reversible multi-stage phase transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
前記金属と溶媒の比率は、1:0.1〜1:6であることを特徴とする請求項2に記載の相転移物質。   The phase change material according to claim 2, wherein a ratio of the metal to the solvent is 1: 0.1 to 1: 6. 前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであることを特徴とする請求項1に記載の相転移物質。   The metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium, rubidium, strontium, yttrium, niobium, molybdenum, 2. The phase change material according to claim 1, wherein the phase change material is at least one selected from the group consisting of technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal, and actinium metal. 前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子、またはアミンが主鎖に連結されたポリアミン類であることを特徴とする請求項1に記載の相転移物質。   The solvent is composed of ammonia, ethylenediamine, hexamethylenediamine, melamine or amines having a main chain length of 4 or less and their salts, amines containing phenyl groups and salts thereof, and amides containing polyethyleneamine in the main chain. The phase change material according to claim 1, wherein the phase change material is a polymer or polyamines in which an amine is linked to a main chain. 前記溶媒は、ジメチルジステアリルアンモニウム、トリメチルテトラデシルアンモニウム、トリメチルヘキサデシルアンモニウム、トリメチルオクタデシルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、フェニルトリメチルアンモニウム及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであることを特徴とする 請求項1に記載の相転移物質。   The solvents include dimethyl distearyl ammonium, trimethyl tetradecyl ammonium, trimethyl hexadecyl ammonium, trimethyl octadecyl ammonium, benzyl trimethyl ammonium, benzyl triethyl ammonium, phenyl trimethyl ammonium and aromatic quaternary ammonium, cationic surfactants and cations The phase change material according to claim 1, wherein the phase change material is at least one selected from the group consisting of functional polymers. 金属を真空状態に置いて空気中の水分と酸素を除去する段階(S1段階);
前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された容器に前記金属を注入し、前記一面に溶媒を注入でき、真空状態にできる連結装置を繋ぐ段階(S2段階);
前記連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記連結装置を介して前記溶媒を注入する段階(S3段階);
前記容器内の金属と溶媒を均一に混合して溶液を製造する段階(S4段階);
前記容器を−10〜10℃で保管し前記溶液を膨張させて前記連結装置により流出させる段階(S5段階);を含むことを特徴とする相転移物質の製造方法。
Removing the moisture and oxygen in the air by placing the metal in a vacuum (step S1);
Preparing the metal in powder or flakes, injecting the metal into a container whose one side is opened in an inert gas atmosphere, and connecting a connecting device that can inject a solvent into the one side and can be in a vacuum state (step S2);
Maintaining the ambient temperature at the boiling point or freezing point of the solvent after maintaining the vacuum state for a certain time by the connecting device, inducing a temperature equilibrium state, and injecting the solvent through the connecting device (step S3);
A step of uniformly mixing the metal and the solvent in the container to produce a solution (step S4);
Storing the container at −10 to 10 ° C., expanding the solution, and allowing the solution to flow out by the connecting device (step S5).
前記S5段階は、前記溶液の色が濃い藍色になるように前記S3段階から繰り返す段階をさらに含むことを特徴とする請求項7に記載の相転移物質の製造方法。   The method of claim 7, wherein the step S5 further includes a step of repeating from the step S3 so that the solution has a deep indigo color. 前記溶媒は次式1により表される可逆的多段階相転移特性を有することを特徴とする請求項7に記載の相転移物質の製造方法。
<式1>
[M(R)n]+a(s)+ae(R溶液中) ⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
The method for producing a phase change material according to claim 7, wherein the solvent has a reversible multi-stage phase transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
前記金属と溶媒の比率は、1:0.1〜1:6であることを特徴とする請求項9に記載の相転移物質の製造方法。   The method for producing a phase change material according to claim 9, wherein the ratio of the metal to the solvent is 1: 0.1 to 1: 6. 前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであることを特徴とする請求項7に記載の相転移物質の製造方法。   The metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium, rubidium, strontium, yttrium, niobium, molybdenum, The production of the phase change material according to claim 7, which is at least one selected from the group consisting of technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal. Method. 前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であることを特徴とする請求項7に記載の相転移物質の製造方法。   The solvent is composed of ammonia, ethylenediamine, hexamethylenediamine, melamine or amines having a main chain length of 4 or less and their salts, amines containing phenyl groups and salts thereof, and amides containing polyethyleneamine in the main chain. The method for producing a phase change material according to claim 7, wherein the polymer or amine contained is a polyamine having a main chain linked thereto. 前記溶媒は、ジメチルジステアリルアンモニウム、トリメチルテトラデシルアンモニウム、トリメチルヘキサデシルアンモニウム、トリメチルオクタデシルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、フェニルトリメチルアンモニウム及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであることを特徴とする請求項7に記載の相転移物質。   The solvents include dimethyl distearyl ammonium, trimethyl tetradecyl ammonium, trimethyl hexadecyl ammonium, trimethyl octadecyl ammonium, benzyl trimethyl ammonium, benzyl triethyl ammonium, phenyl trimethyl ammonium and aromatic quaternary ammonium, cationic surfactants and cations The phase change material according to claim 7, wherein the phase change material is at least one selected from the group consisting of conductive polymers. 金属を真空状態に置いて空気中の水分と酸素を除去する段階(S1段階)
前記金属を粉末又は薄片で準備し、非活性気体雰囲気で一面が開封された第1容器と第2容器に前記金属をそれぞれ注入し、それぞれの一面に溶媒を注入でき、真空状態にできる第1連結装置及び第2連結装置をそれぞれ繋げる段階(S2段階);
前記第1、2連結装置により真空状態を一定時間維持した後に周辺温度を前記溶媒の沸点または凝固点に維持して温度平衡状態を誘導し、前記第1、2連結装置を介して前記溶媒を注入する段階(S3段階);
前記第1、2容器内の金属と溶媒を均一に混合して溶液を製造する段階(S4段階);
前記第1、2容器を−10〜10℃で保管して前記溶液を膨張させ、前記連結装置により流出させる段階(S5段階);
前記第1、2容器を常温で結合するがその間に絶縁体を挿入する段階(S6段階);を含むことを特徴とする相転移物質を用いたモジュールの製造方法。
Step of removing moisture and oxygen from the air by placing the metal in a vacuum state (Step S1)
First, the metal can be prepared as powder or flakes, the metal can be injected into a first container and a second container, each of which has been opened in an inert gas atmosphere, and a solvent can be injected into each of the first and vacuum states. Connecting each of the connecting device and the second connecting device (step S2);
After maintaining the vacuum state for a certain time by the first and second coupling devices, the ambient temperature is maintained at the boiling point or freezing point of the solvent to induce a temperature equilibrium state, and the solvent is injected through the first and second coupling devices. Stage (S3 stage);
A step of uniformly mixing the metal and the solvent in the first and second containers to produce a solution (step S4);
Storing the first and second containers at −10 to 10 ° C. to expand the solution and let it flow out by the connecting device (step S5);
A method of manufacturing a module using a phase change material, comprising: bonding the first and second containers at room temperature, and inserting an insulator therebetween (step S6).
前記S5段階は、前記溶液の色が濃い藍色になるように前記S3段階から繰り返す段階をさらに含むことを特徴とする請求項14に記載の相転移物質を用いたモジュールの製造方法。   The method of claim 14, wherein the step S5 further includes a step of repeating from the step S3 so that the solution has a deep indigo color. 前記溶媒は、次式1により表される可逆的多段階相転移特性を有することを特徴とする請求項14に記載の相転移物質を用いたモジュールの製造方法。
<式1>
[M(R)n]+a(s)+ae(R溶液中)⇔ [M(R)n−a](s)+aR(g) −Qn(J)
(M:金属、R:溶媒、n=1,2,…,6、a=1,2,…,6、そしてQ(J):n番目相転移段階の潜熱量)
The method for manufacturing a module using a phase change material according to claim 14, wherein the solvent has a reversible multi-stage phase transition characteristic represented by the following formula 1.
<Formula 1>
[M (R) n ] + a (s) + ae (in R solution) ⇔ [M (R) n−a ] (s) + aR (g) −Q n (J)
(M: metal, R: solvent, n = 1, 2,..., 6, a = 1, 2,..., 6 and Q n (J): latent heat amount at the n-th phase transition stage)
前記金属と溶媒の比率は、1:0.1〜1:6であることを特徴とする請求項16に記載の相転移物質を用いたモジュールの製造方法。   The method of manufacturing a module using the phase change material according to claim 16, wherein the ratio of the metal to the solvent is 1: 0.1 to 1: 6. 前記金属は、リチウム、バリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、セレニウム、ルビジウム、ストロンチウム、イットリウム、ニオビウム、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、テルリウム、セシウム、ランタン系金属及びアクチニウム系金属からなる群から選ばれる少なくとも一つであることを特徴とする請求項14に記載の相転移物質を用いたモジュールの製造方法。   The metal is lithium, barium, boron, sodium, magnesium, aluminum, potassium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, selenium, rubidium, strontium, yttrium, niobium, molybdenum, The phase change material according to claim 14, wherein the phase change material is at least one selected from the group consisting of technetium, ruthenium, rhodium, palladium, silver, indium, tellurium, cesium, lanthanum metal and actinium metal. The manufacturing method of the module. 前記溶媒は、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、メラミン又は主鎖の長さが炭素数4以下のアミン類及びその塩類、フェニルグループを含むアミン類及びその塩類、ポリエチレンアミンを含むアミドが主鎖に含まれた高分子またはアミンが主鎖に連結されたポリアミン類であることを特徴とする請求項14に記載の相転移物質を用いたモジュールの製造方法。   The solvent is composed of ammonia, ethylenediamine, hexamethylenediamine, melamine or amines having a main chain length of 4 or less and their salts, amines containing phenyl groups and salts thereof, and amides containing polyethyleneamine in the main chain. 15. The method for producing a module using a phase change material according to claim 14, wherein the polymer or amine contained is a polyamine having an amine linked to the main chain. 前記溶媒はジメチルジステアリルアンモニウム、トリメチルテトラデシルアンモニウム、トリメチルヘキサデシルアンモニウム、トリメチルオクタデシルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、フェニルトリメチルアンモニウム及び芳香族4級アンモニウム、陽イオン性界面活性剤及び陽イオン性高分子からなる群から選ばれた少なくとも一つであることを特徴とする請求項14に記載の相転移物質を用いたモジュールの製造方法。   The solvent is dimethyl distearyl ammonium, trimethyl tetradecyl ammonium, trimethyl hexadecyl ammonium, trimethyl octadecyl ammonium, benzyl trimethyl ammonium, benzyl triethyl ammonium, phenyl trimethyl ammonium and aromatic quaternary ammonium, cationic surfactant and cationic The method for producing a module using the phase change material according to claim 14, wherein the module is at least one selected from the group consisting of polymers.
JP2011539435A 2008-12-03 2008-12-16 Phase change material, method for producing the same, and method for producing module using phase change material Expired - Fee Related JP5474999B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0121623 2008-12-03
KR1020080121623A KR101034794B1 (en) 2008-12-03 2008-12-03 Phase-transition composite, method of manufacturing thereof, method of manufacturing module with phase-transition composite
PCT/KR2008/007451 WO2010064756A1 (en) 2008-12-03 2008-12-16 Phase-transitional material, method of manufacturing thereof and method of manufacturing module with phase-transitional material

Publications (2)

Publication Number Publication Date
JP2012510555A true JP2012510555A (en) 2012-05-10
JP5474999B2 JP5474999B2 (en) 2014-04-16

Family

ID=42233395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011539435A Expired - Fee Related JP5474999B2 (en) 2008-12-03 2008-12-16 Phase change material, method for producing the same, and method for producing module using phase change material

Country Status (6)

Country Link
US (1) US20110232067A1 (en)
EP (1) EP2370540A1 (en)
JP (1) JP5474999B2 (en)
KR (1) KR101034794B1 (en)
CN (1) CN102257093B (en)
WO (1) WO2010064756A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034794B1 (en) 2008-12-03 2011-05-17 주식회사 퀀텀에너지연구소 Phase-transition composite, method of manufacturing thereof, method of manufacturing module with phase-transition composite
CN103273062B (en) * 2013-06-13 2015-11-18 中国科学院过程工程研究所 A kind of High-temperature metal phase change heat storage and preparation method
US10734640B2 (en) * 2018-03-16 2020-08-04 Polymorph Quantum Energy Non-chemical electric battery using two-phase working material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166554A (en) * 1991-12-13 1993-07-02 Nippon Telegr & Teleph Corp <Ntt> Storage type temperature difference battery
JPH06176800A (en) * 1992-12-08 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Temperature difference battery
WO2001071821A1 (en) * 2000-03-24 2001-09-27 Shin-Etsu Chemical Co., Ltd. Thermoelectric power generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684590A (en) * 1986-08-29 1987-08-04 Eltron Research, Inc. Solvated electron lithium electrode for high energy density battery
US6080907A (en) * 1998-04-27 2000-06-27 Teledyne Commodore, L.L.C. Ammonia fluidjet cutting in demilitarization processes using solvated electrons
JP2002517593A (en) * 1998-06-10 2002-06-18 ロデール ホールディングス インコーポレイテッド Polishing composition and polishing method in metal CMP
US7358009B2 (en) * 2002-02-15 2008-04-15 Uchicago Argonne, Llc Layered electrodes for lithium cells and batteries
EP1490916B1 (en) * 2002-03-22 2015-04-08 LG Chem, Ltd. Lithium secondary battery comprising overdischarge-preventing agent
KR100524529B1 (en) * 2002-11-30 2005-10-31 김진권 Preparation Method of Nano-sized Metal Nitride Particle
US6824895B1 (en) * 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
ATE513940T1 (en) * 2004-04-12 2011-07-15 Stella Chemifa Corp MIXED CRYSTAL MATERIAL OF RARE EARTH ELEMENT FLUORIDE (POLYCRYSTAL AND SINGLE CRYSTAL) AND RADIATION DETECTOR AND TEST APPARATUS
KR100713745B1 (en) 2006-02-27 2007-05-07 연세대학교 산학협력단 Water-soluble magnetic or metal oxide nanoparticles coated with ligands and preparation method thereof
CN1948424A (en) * 2006-11-03 2007-04-18 东华大学 Polymer type phase change energy storage luminous material and its preparation method and application
KR101034794B1 (en) 2008-12-03 2011-05-17 주식회사 퀀텀에너지연구소 Phase-transition composite, method of manufacturing thereof, method of manufacturing module with phase-transition composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166554A (en) * 1991-12-13 1993-07-02 Nippon Telegr & Teleph Corp <Ntt> Storage type temperature difference battery
JPH06176800A (en) * 1992-12-08 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Temperature difference battery
WO2001071821A1 (en) * 2000-03-24 2001-09-27 Shin-Etsu Chemical Co., Ltd. Thermoelectric power generator

Also Published As

Publication number Publication date
CN102257093A (en) 2011-11-23
JP5474999B2 (en) 2014-04-16
CN102257093B (en) 2014-05-28
KR20100063215A (en) 2010-06-11
EP2370540A1 (en) 2011-10-05
US20110232067A1 (en) 2011-09-29
KR101034794B1 (en) 2011-05-17
WO2010064756A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
Lindorf et al. Organic-based thermoelectrics
Chen et al. Tunable thermal conductivity of Si1− xGex nanowires
US8716589B2 (en) Doped lead tellurides for thermoelectric applications
Higgins et al. Higher manganese silicide nanowires of nowotny chimney ladder phase
US9130066B2 (en) Power factor enhanced thermoelectric material and method of producing same
JP6563031B2 (en) Thermoelectric material, thermoelectric element and thermoelectric module including the same
CN1926695A (en) Monolithic thin-film thermoelectric device including complementary thermoelectric materials
Tan et al. Oriented growth of A2Te3 (A= Sb, Bi) films and their devices with enhanced thermoelectric performance
CN102149845A (en) SiGe matrix nanocomposite materials with an improved thermoelectric figure of merit
JP5474999B2 (en) Phase change material, method for producing the same, and method for producing module using phase change material
O'Dwyer et al. Scientific and technical challenges in thermal transport and thermoelectric materials and devices
JPWO2004095594A1 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, and power generation method and cooling method using the element
US20110129668A1 (en) Organic-inorganic hybrid nanofiber for thermoelectric application and method of forming the same
JP2013070020A (en) Thermoelectric material, method for preparing the same, and thermoelectric module including the same
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
Singsoog et al. Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation
KR20110053405A (en) Phase-transite composition, method of manufacturing thereof, method of manufacturing module with phase-transition composition and module for phase-transition composite
Wu et al. Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Horii et al. Maximum Thermoelectric Power Factor and Optimal Carrier Concentration of Bilayer Graphene at Various Temperatures
Ghanbaripour et al. Thermoelectric Properties of Graphene Like Nanotube Structure Due to Next-to-nearest Neighbor Hopping Amplitude
KR102058687B1 (en) Thermoelectric module and method for manufacturing the same
KR20240069837A (en) Thermally conductive filler and thermoelectric cooler for thermal management using same and its manufacturing method
Kassou et al. Electronic structure and Thermoelectric Properties of Hybrid Organic-Inorganic Perovskites [NH3-(CH2) 3-COOH] 2CdCl4
Tyagi et al. 10 Carbon and Graphene-Nanotubes Based
Haleoot Theoretical Investigations of the Electronic, Magnetic, and Thermoelectric Properties of Transition-Metal Based Compounds

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131010

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees