JPH06176800A - Temperature difference battery - Google Patents

Temperature difference battery

Info

Publication number
JPH06176800A
JPH06176800A JP43A JP35176292A JPH06176800A JP H06176800 A JPH06176800 A JP H06176800A JP 43 A JP43 A JP 43A JP 35176292 A JP35176292 A JP 35176292A JP H06176800 A JPH06176800 A JP H06176800A
Authority
JP
Japan
Prior art keywords
temperature
temperature difference
redox
electromotive force
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP3191831B2 (en
Inventor
Kazuhiko Shindo
一彦 新藤
Maki Ishizawa
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP35176292A priority Critical patent/JP3191831B2/en
Publication of JPH06176800A publication Critical patent/JPH06176800A/en
Application granted granted Critical
Publication of JP3191831B2 publication Critical patent/JP3191831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To provide great electromotive force by using redox paired electrolytes whose oxidation-reduction potential greatly changes with a temperature and benzonitrile as solvent to dissolve them. CONSTITUTION:Solution 1 of redox paired electrolytes FeBr2 and FeBr3 for which bezonitrile is used as solvent is filled in between a high-temperature-side electrode E1 and a low-temperature-side electrode E2, different in temperature, and firmly enclosed therein. In addition, these electrodes E1, E2 are installed between a high-temperature heat source 2 and a low-temperature heat source 3 to give a temperature difference therebetween. As a result, the temperature of the high-temperature-side electrode can be set to be 100 deg.C or higher, the oxidation-reduction potential of a redox pair can be easily increased and so the electromotive force of a battery can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度差電池、さらに詳細
には熱を直接電気に変える熱電変換器としての電気化学
的な温度差電池に関するものである。特に、排熱利用お
よびコージェネレーション用途に有効な温度差電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature difference battery, and more particularly to an electrochemical temperature difference battery as a thermoelectric converter that directly converts heat into electricity. In particular, the present invention relates to a temperature difference battery which is effective for utilization of waste heat and cogeneration.

【0002】[0002]

【従来の技術】従来、熱を直接電気に変える熱電変換器
として電気化学的な温度差電池が知られている。この温
度差電池は、高低温電極間に酸化還元電位が温度によっ
て変化するレドックス対イオンを含む電解質水溶液を満
たすことにより、両電極間に電位差を生じさせるもので
ある。これまでレドックス対イオンとして例えば[Fe
(CN)63-および[Fe(CN)64-が知られてお
り、このレドックス対イオンにおいては、高温電極が
負、低温電極が正となる電位差を生じ、高低温電極では
それぞれ以下の反応が進行する。
2. Description of the Related Art Conventionally, an electrochemical temperature difference battery is known as a thermoelectric converter that directly converts heat into electricity. In this temperature difference battery, a high-low temperature electrode is filled with an aqueous electrolyte solution containing a redox counter ion whose redox potential changes with temperature, thereby causing a potential difference between both electrodes. So far, for example, [Fe
(CN) 6 ] 3− and [Fe (CN) 6 ] 4− are known, and in this redox counterion, a potential difference is generated in which the high temperature electrode is negative and the low temperature electrode is positive. The following reactions proceed.

【0003】低温電極[Fe(CN)63-+e-→[F
e(CN)64-
[0003] low-temperature electrode [Fe (CN) 6] 3- + e - → [F
e (CN) 6 ] 4-

【0004】高温電極[Fe(CN)64-→[Fe
(CN)63-+e-
High temperature electrode [Fe (CN) 6 ] 4- → [Fe
(CN) 6] 3- + e -

【0005】ここで低温電極で生成した[Fe(CN)
64-は高温電極へ、高温電極で生成した[Fe(C
N)63-は低温電極へ、拡散対流により循環し、無動
力で定常的に発電させていた。
[Fe (CN) produced at the low temperature electrode here.
6 ] 4− is generated at the high temperature electrode and [Fe (C
N) 6 ] 3− circulated to the low temperature electrode by diffusive convection, and generated power without power.

【0006】このような温度差電池では、レドックス対
イオンの酸化還元電位が温度によってできるだけ大きく
変化するものが好ましく、同じ温度差において高起電力
化が可能となる。これまで最も酸化還元電位が温度によ
って大きく変化するレドックス対として[Fe(CN)
63-/[Fe(CN)64-系レドックス対が知られて
おり、温度差90℃のとき、起電力は126mV(1.
4V/℃)であった。この温度差電池系では、レドック
ス対を溶解させるための溶媒に水を用いていることか
ら、100℃以上になると高温側電極温度の上昇ととも
に電池セル内の圧力が急激に増大し、上記温度差以上を
高低温電極間に付けることは困難であった。したがっ
て、このような温度差電池の性能を向上させるために
は、さらに酸化還元電位が温度によって大きく変化する
レドックス対を用い単位温度差あたりの起電力を大きく
し、溶解性の高い沸点溶媒を用い、高温度差によりさら
に高起電力化を図ることが望まれていた。
[0006] In such a temperature difference battery, it is preferable that the redox potential of the redox counter ion changes as much as possible depending on the temperature, and high electromotive force can be achieved at the same temperature difference. So far, [Fe (CN) has been used as a redox couple whose redox potential varies greatly with temperature.
6 ] 3− / [Fe (CN) 6 ] 4− system redox pair is known, and the electromotive force is 126 mV (1.
4 V / ° C). In this temperature difference battery system, since water is used as the solvent for dissolving the redox couple, the pressure inside the battery cell rapidly increases as the temperature of the electrode on the high temperature side rises at 100 ° C. or higher, and It was difficult to attach the above between the high and low temperature electrodes. Therefore, in order to improve the performance of such a temperature difference battery, a redox couple whose redox potential greatly changes depending on temperature is used to increase the electromotive force per unit temperature difference, and a boiling point solvent with high solubility is used. It has been desired to further increase the electromotive force due to the high temperature difference.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の温度
差電池では、レドックス対の酸化還元電位の温度依存性
が小さく、90℃以上の温度差を付けることができなく
起電力が小さいという問題点を解決するため、酸化還元
電位の温度依存性が大きいレドックス対イオンを用い、
さらにこれを溶解させるための水より沸点の高い有機溶
媒を用いることにより、90℃以上の温度差を付けるこ
とを可能とし、高起電力化を可能にさせた温度差電池を
提供するものである。
SUMMARY OF THE INVENTION According to the present invention, the conventional temperature difference battery has a small temperature dependence of the redox potential of the redox pair, cannot make a temperature difference of 90 ° C. or more, and has a small electromotive force. In order to solve the problem, we used a redox counterion whose temperature dependence of the redox potential is large,
Further, by using an organic solvent having a boiling point higher than that of water for dissolving this, it is possible to provide a temperature difference of 90 ° C. or more, and to provide a temperature difference battery capable of increasing electromotive force. .

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するため、温度の異なる高温側電極および低温側電極間
に、酸化還元電位が温度によって変化するレドックス対
系電解質およびそれを溶解させるための溶媒を有する温
度差電池において、前記溶媒がベンゾニトリルであるこ
とを特徴とする温度差電池である。
In order to solve the above-mentioned problems, the present invention is intended to dissolve a redox pair system electrolyte whose redox potential varies with temperature and an electrode between a high temperature side electrode and a low temperature side electrode having different temperatures. In the temperature difference battery having the solvent, the solvent is benzonitrile.

【0009】また、レドックス対系電解質がFeB
2,FeBr3またはCuBr,CuBr2であること
を特徴とし、さらに詳細に述べれば、本発明の温度差電
池は、単位温度差あたりの起電力を大きくできるレドッ
クス対イオン、およびこれを溶解させるための溶媒に高
沸点の有機溶媒を用いることにより、高起電力化させた
ことを特徴とする。
Further, the redox electrolyte is FeB.
r 2 , FeBr 3 or CuBr, CuBr 2 , and more specifically, the temperature difference battery of the present invention has a redox counter ion capable of increasing an electromotive force per unit temperature difference, and a redox counter ion for dissolving the same. A high boiling point organic solvent is used as a solvent for the purpose of increasing the electromotive force.

【0010】本発明におけるベンゾニトリル有機溶媒を
用いることにより、高温側電極温度をベンゾニトリルの
沸点191.10℃付近まで上昇させることができるの
で、両電極間の温度差を従来の90℃より大きく付ける
ことが可能となり、従来の温度差電池にはない、極めて
大きな起電力を発現させることができる。
By using the benzonitrile organic solvent in the present invention, the temperature of the electrode on the high temperature side can be raised up to the boiling point of benzonitrile of 191.10 ° C., so that the temperature difference between both electrodes is larger than the conventional temperature of 90 ° C. Therefore, it is possible to develop an extremely large electromotive force which is not present in the conventional temperature difference battery.

【0011】以下の本発明を詳細に説明する。The present invention will be described in detail below.

【0012】本発明者らは、水に比べ沸点の高い各種溶
媒を用い、レドックス対の溶解性と温度差間における起
電力値について鋭意実験を重ねた結果、レドックス対系
電解質としてFeBr2,FeBr3またはCuBr,C
uBr2を、またその溶媒としてベンゾニトリルを用い
ることにより、レドックス対系電解質の高い溶解性と高
起電力を発現することを見いだした。
The present inventors conducted various experiments on the solubility of the redox couple and the electromotive force value between the temperature differences using various solvents having a higher boiling point than water. As a result, FeBr 2 and FeBr were used as the redox couple system electrolyte. 3 or CuBr, C
It was found that by using uBr 2 and benzonitrile as a solvent thereof, high solubility and high electromotive force of the redox couple system electrolyte are exhibited.

【0013】本発明において、レドックス対系電解質の
溶媒に用いられるベンゾニトリル有機溶媒は、室温でF
eBr2およびFeBr3を約0.5mol/l、CuB
rおよびCuBr2を約0.1mol/l溶解させるこ
とができ、ベンゾニトリルの沸点である191.10℃
近くまでレドックス対の熱分解等も起こらず良好な溶解
性を示す。また、単位温度差あたりの起電力は、電解液
の濃度が0.1mol/l以上であればほぼ一定の値
2.0mV/℃であり、従来の[Fe(CN)63-
[Fe(CN)64-系に比べ、約1.7倍の値が得ら
れる。
In the present invention, the benzonitrile organic solvent used as the solvent for the redox couple electrolyte is F 2 at room temperature.
About 0.5 mol / l of eBr 2 and FeBr 3 , CuB
r and CuBr 2 can be dissolved in about 0.1 mol / l, and the boiling point of benzonitrile is 191.10 ° C.
Good solubility is exhibited up to the vicinity without thermal decomposition of the redox couple. Further, the electromotive force per unit temperature difference is a substantially constant value of 2.0 mV / ° C when the concentration of the electrolytic solution is 0.1 mol / l or more, which is the same as that of the conventional [Fe (CN) 6 ] 3- /
The value is about 1.7 times that of the [Fe (CN) 6 ] 4− system.

【0014】このようなレドックス型温度差電池では、
単位温度差あたりの起電力は電極で起こるレドックス対
の酸化還元反応に伴うエントロピー変化に大きく依存す
ることが知られているが、特にFeBr2,FeBr3
たはCuBr,CuBr2は酸化還元反応に伴うベンゾ
ニトリルとの溶媒和の変化が大きく、エントロピーも大
きく変化するため、高起電力を発現すると考えられる。
In such a redox type temperature difference battery,
It is known that the electromotive force per unit temperature difference largely depends on the entropy change accompanying the redox reaction of the redox pair occurring at the electrode. Especially, FeBr 2 , FeBr 3 or CuBr, CuBr 2 are involved in the redox reaction. It is considered that a high electromotive force is exhibited because the solvation with benzonitrile changes greatly and the entropy also changes greatly.

【0015】[0015]

【実施例】次に本発明を実施例により、さらに具体的に
説明する。
EXAMPLES Next, the present invention will be described more specifically by way of examples.

【0016】図1に示すように2枚の白金電極(縦20
mm、横7mm、厚さ100μm)E1、E2の間にベン
ゾニトリルを溶媒に用いた0.1mol/lのFeBr
2およびFeBr3溶液1を満たし、密閉固定した。さら
に電極間に電流計および電圧計を接続させた。この温度
差電池を高温熱源2、低温熱源3の間に設置し、電極E
1、E2間に温度差を与えたところ、電極E1温度127
℃、電極E2温度20℃、電極間温度差107℃のと
き、約220mVの開放起電力と約180mAの短絡電
流が得られた。
As shown in FIG. 1, two platinum electrodes (length 20) are used.
mm, width 7 mm, thickness 100 μm) 0.1 mol / l FeBr using benzonitrile as a solvent between E 1 and E 2.
2 and FeBr 3 solution 1 were filled and hermetically fixed. Further, an ammeter and a voltmeter were connected between the electrodes. This temperature difference battery is installed between the high temperature heat source 2 and the low temperature heat source 3, and the electrode E
When a temperature difference was applied between 1 and E 2 , the temperature of the electrode E 1 was 127
When the temperature was 20 ° C., the temperature of the electrode E 2 was 20 ° C., and the temperature difference between the electrodes was 107 ° C., an open electromotive force of about 220 mV and a short circuit current of about 180 mA were obtained.

【0017】同様にベンゾニトリルを溶媒に用いた0.
1mol/lのCuBrおよびCuBr2溶液lを満た
し、電極E1、E2間に温度差を与えたところ、電極E1
温度130℃、電極E2温度25℃、電極間温度差10
5℃のとき、約213mVの開放起電力と約165mA
の短絡電流が得られた。
Similarly, using benzonitrile as a solvent,
When 1 mol / l of CuBr and CuBr 2 solution 1 was filled and a temperature difference was given between electrodes E 1 and E 2 , electrode E 1
Temperature 130 ° C, electrode E 2 temperature 25 ° C, temperature difference between electrodes 10
Open electromotive force of about 213 mV and about 165 mA at 5 ° C
The short circuit current of was obtained.

【0018】以上の結果より、本発明による温度差電池
は、水より高い沸点を有する有機溶媒を用いることによ
り、従来の温度差電池ではできなかった電極間温度差1
00℃以上を達成し、さらに約1.7倍の単位温度差あ
たり起電力の向上が認められた。
From the above results, the temperature difference battery according to the present invention uses an organic solvent having a boiling point higher than that of water.
A temperature of 00 ° C. or higher was achieved, and an improvement in electromotive force per unit temperature difference of about 1.7 times was observed.

【0019】[0019]

【発明の効果】本発明によれば、単位温度差あたりの起
電力の大きいレドックス対−高沸点溶媒系を用いること
により、高温側電極温度を100℃以上に設定でき、レ
ドックス対の酸化還元電位を容易に増大させることが可
能となる。つまり、電池の起電力の増大を可能にでき
る。本発明の温度差電池は排熱利用およびコージェネレ
ーション用途として極めて有効である。
According to the present invention, by using a redox couple-high boiling point solvent system having a large electromotive force per unit temperature difference, the high temperature side electrode temperature can be set to 100 ° C. or higher, and the redox potential of the redox couple can be set. Can be easily increased. That is, the electromotive force of the battery can be increased. The temperature difference battery of the present invention is extremely effective for utilization of exhaust heat and for cogeneration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度差電池の一構成例を示す概念図。FIG. 1 is a conceptual diagram showing a configuration example of a temperature difference battery of the present invention.

【符号の説明】[Explanation of symbols]

1 ベンゾニトリル溶液 2 高温熱源 3 低温熱源 1 Benzonitrile solution 2 High temperature heat source 3 Low temperature heat source

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】温度の異なる高温側電極および低温側電極
間に、酸化還元電位が温度によって変化するレドックス
対系電解質およびそれを溶解させるための溶媒を有する
温度差電池において、前記溶媒がベンゾニトリルである
ことを特徴とする温度差電池。
1. A temperature difference battery comprising a redox pair electrolyte having a redox potential varying with temperature and a solvent for dissolving the redox electrolyte between a high temperature electrode and a low temperature electrode having different temperatures, wherein the solvent is benzonitrile. Is a temperature difference battery.
【請求項2】前記レドックス対系電解質がFeBr2
FeBr3であることを特徴とする請求項1記載の温度
差電池。
2. The redox couple electrolyte is FeBr 2 ,
The temperature difference battery according to claim 1, which is FeBr 3 .
【請求項3】前記レドックス対系電解質がCuBr,C
uBr2であることを特徴とする請求項1記載の温度差
電池。
3. The redox couple electrolyte is CuBr, C.
The temperature difference battery according to claim 1, wherein the temperature difference battery is uBr 2 .
JP35176292A 1992-12-08 1992-12-08 Temperature difference battery Expired - Fee Related JP3191831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35176292A JP3191831B2 (en) 1992-12-08 1992-12-08 Temperature difference battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35176292A JP3191831B2 (en) 1992-12-08 1992-12-08 Temperature difference battery

Publications (2)

Publication Number Publication Date
JPH06176800A true JPH06176800A (en) 1994-06-24
JP3191831B2 JP3191831B2 (en) 2001-07-23

Family

ID=18419440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35176292A Expired - Fee Related JP3191831B2 (en) 1992-12-08 1992-12-08 Temperature difference battery

Country Status (1)

Country Link
JP (1) JP3191831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510555A (en) * 2008-12-03 2012-05-10 クアンタム エナジー リサーチ センター Phase change material, method for producing the same, and method for producing module using phase change material
CN106532095A (en) * 2016-10-12 2017-03-22 中国工程物理研究院化工材料研究所 High-power-density electrolyte thermobattery and preparation method for porous carbon electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510555A (en) * 2008-12-03 2012-05-10 クアンタム エナジー リサーチ センター Phase change material, method for producing the same, and method for producing module using phase change material
CN106532095A (en) * 2016-10-12 2017-03-22 中国工程物理研究院化工材料研究所 High-power-density electrolyte thermobattery and preparation method for porous carbon electrodes
CN106532095B (en) * 2016-10-12 2019-03-22 中国工程物理研究院化工材料研究所 The electrolyte thermoelectric cell of high power density and the preparation method of porous carbon electrodes

Also Published As

Publication number Publication date
JP3191831B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
Clark et al. Photogalvanic cells
Li et al. Electrochemical properties of an all-organic redox flow battery using 2, 2, 6, 6-tetramethyl-1-piperidinyloxy and N-methylphthalimide
Lopez-Atalaya et al. Optimization studies on a Fe/Cr redox flow battery
Ding et al. Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles
SU676189A3 (en) Device for using solar energy
US3294588A (en) Method of operating fuel cell with electrolyte containing quinones or dyes
US3279949A (en) Fuel cell half-cell containing vanadium redox couple
JPS6215770A (en) Redox secondary battery
Savinell et al. Discharge Characteristics of a Soluble Iron‐Titanium Battery System
KR102391441B1 (en) Non-Aqueous Redox Flow Battery
Creager Solvents and supporting electrolytes
Wang et al. Proton‐Coupled Electron Transfer Aided Thermoelectric Energy Conversion and Storage
JPWO2003102971A1 (en) Surface-modified inorganic porous material and fuel cell using the porous material as an electrolyte
JPH06176800A (en) Temperature difference battery
US3948681A (en) Fuel cell utilizing direct hydrocarbon oxidation
RU2187178C2 (en) Solid-state chemical current supply
Habekost Vanadium redox flow batteries with different electrodes and membranes
Zerbinati A direct methanol fuel cell
Harth et al. Application of nafion as a polymer solid electrolyte for voltammetry in the absence of a contacting electrolyte solution
Brandhorst et al. Achieving a high pulse power system through engineering the battery-capacitor combination
JPH04190572A (en) Temperature difference battery
JP3082884B2 (en) Storage type temperature difference battery
RU2126192C1 (en) High-temperature lithium-oxygen (air) storage battery
Wang et al. E-blood: High power aqueous redox flow cell for concurrent powering and cooling of electronic devices
JPH05166554A (en) Storage type temperature difference battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees