JP2012509762A - Apparatus and method for depositing a powder mixture for forming an object having a composition gradient - Google Patents

Apparatus and method for depositing a powder mixture for forming an object having a composition gradient Download PDF

Info

Publication number
JP2012509762A
JP2012509762A JP2011537982A JP2011537982A JP2012509762A JP 2012509762 A JP2012509762 A JP 2012509762A JP 2011537982 A JP2011537982 A JP 2011537982A JP 2011537982 A JP2011537982 A JP 2011537982A JP 2012509762 A JP2012509762 A JP 2012509762A
Authority
JP
Japan
Prior art keywords
powder
powder mixture
collector
mixture
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011537982A
Other languages
Japanese (ja)
Other versions
JP5738194B2 (en
Inventor
ギリア オリヴィエ
カイエン バジル
Original Assignee
コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ filed Critical コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ
Publication of JP2012509762A publication Critical patent/JP2012509762A/en
Application granted granted Critical
Publication of JP5738194B2 publication Critical patent/JP5738194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/74Spray-mixers, e.g. for mixing intersecting sheets of material with rotating parts, e.g. discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/90Falling particle mixers, e.g. with repeated agitation along a vertical axis with moving or vibrating means, e.g. stirrers, for enhancing the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2722Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/805Mixing plants; Combinations of mixers for granular material
    • B01F33/8051Mixing plants; Combinations of mixers for granular material with several silos arranged in a row or around a central delivery point, e.g. provided with proportioning means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71785Feed mechanisms characterised by the means for feeding the components to the mixer using slides or vibrating tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71815Feed mechanisms characterised by the means for feeding the components to the mixer using vibrations, e.g. standing waves or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/81Forming mixtures with changing ratios or gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/892Forming a predetermined ratio of the substances to be mixed for solid materials, e.g. using belts, vibrations, hoppers with variable outlets or hoppers with rotating elements, e.g. screws, at their outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • B05B7/1445Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means involving vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/45Mixing in metallurgical processes of ferrous or non-ferrous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/04Apparatus specially adapted for applying particulate materials to surfaces the particulate material being projected, poured or allowed to flow onto the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/06Storage, supply or control of the application of particulate material; Recovery of excess particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient

Abstract

本発明は、包括的には、組成勾配を有する物体を形成するために粉体混合物を堆積させる装置(1)であって、異なる粉体(A1,…,An)のそれぞれを収容するための複数のタンク(R1,…,Rn)と、タンクの下方に配置し、回転可能に取り付けた混合部材(32)を含む粉体ミキサ(30)と、タンクとそれぞれが協働し、タンクからミキサへ向かって排出される粉体の質量流量を調整するようそれぞれを設計した、複数の粉体分配手段(4,6)と、ミキサの下に配置した粉体混合物コレクタ(56)と、コレクタの下に配置した粉体混合物ディスペンサ(60)と、を備える装置に関する。
【選択図】図1
The present invention is generally an apparatus (1) for depositing a powder mixture to form an object having a composition gradient for accommodating each of different powders (A1,..., An). A plurality of tanks (R1,..., Rn), a powder mixer (30) including a mixing member (32) disposed below the tank and rotatably attached thereto, and the tank cooperate with each other. A plurality of powder distribution means (4, 6), each designed to adjust the mass flow rate of the powder discharged toward the head, a powder mixture collector (56) arranged under the mixer, And a powder mixture dispenser (60) disposed below.
[Selection] Figure 1

Description

本発明は、包括的には、FGM(「傾斜機能材料」)という名称でも知られている組成勾配を有する物体の分野に関する。   The present invention relates generally to the field of objects having compositional gradients, also known as FGM ("functionally graded material").

このタイプの物体は、非常に多数の技術分野で応用される。一例として、これは、セラミック材料及び金属材料から構成した物体とすることができ、混合物中のこれら両方の材料の質量比とも称される質量の割合は、同じ物体内で経時的に変化し、その時々のニーズに従って設定される。例えば、ある物体を、その所与の方向で完全にセラミック材料の組成から完全に金属材料の組成へ、これら両方の材料間の遷移混合領域を通過しながら徐々に変化するように設計することができる。これを、該当する物体のこの所与の方向での組成勾配と言う。   This type of object is applied in a very large number of technical fields. As an example, this can be an object composed of a ceramic material and a metal material, and the proportion of mass, also referred to as the mass ratio of both of these materials in the mixture, varies over time in the same object, Set according to the occasional needs. For example, an object can be designed to gradually change in its given direction from a completely ceramic material composition to a completely metallic material composition, passing through a transition mixing region between both materials. it can. This is referred to as the composition gradient of this object in this given direction.

このタイプの物体を作製するためには、粉体を堆積させる技法を用い、続いて堆積物を、既知の技法、例えば焼結又は熱間等方圧縮により圧密する。   To make this type of object, a technique of depositing powder is used, followed by consolidation of the deposit by known techniques such as sintering or hot isostatic pressing.

それ故に、このタイプの組成勾配を有する物体を作製するために用いる装置は、粉体混合物を堆積させる装置を備え、これを、混合物の堆積を意図する支持体に対して例えばロボットにより可動とする。   Therefore, the apparatus used to make an object with this type of composition gradient comprises an apparatus for depositing a powder mixture, which is movable, for example by a robot, with respect to a support intended to deposit the mixture. .

しかしながら、既知の堆積装置の設計では、そこから出された粉体混合物を完璧で申し分なく均一にすることが不可能であり、これは、作製した物体と所望の物体との間に整合性の欠如が生じ得ることを意味する。当然ながら、この欠点は、所望の物体の再現性の問題としても現れる。   However, with known deposition equipment designs, it is not possible to perfect and satisfactorily homogenize the resulting powder mixture, which is consistent between the fabricated object and the desired object. It means that lack can occur. Of course, this drawback also appears as a problem of the reproducibility of the desired object.

これらの欠点に対する救済策を見出すために、まず、本発明の目的は、組成勾配を有する物体を形成するために粉体混合物を堆積させる装置であって、
異なる粉体(A1,…,An)のそれぞれを収容するための複数のタンク(R1,…,Rn)と、
上記タンク(R1,…,Rn)の下方に配置した粉体ミキサであり、回転可能に取り付けた混合部材を含み、タンクからの粉体(A1,…,An)を衝突させるための粉体ミキサと、
タンク(R1,…,Rn)とそれぞれが協働し、タンクから上記ミキサへ向かって排出される粉体の質量流量を調整するようそれぞれを設計した、複数の粉体分配手段と、
上記ミキサの下方に配置してミキサに連通させた粉体混合物コレクタと、
上記粉末混合物コレクタの下方に配置して粉体混合物コレクタに連通させた粉体混合物ディスペンサと、
を備える装置である。
In order to find a remedy for these drawbacks, first, the object of the present invention is an apparatus for depositing a powder mixture to form an object having a composition gradient,
A plurality of tanks (R1,..., Rn) for accommodating each of the different powders (A1,..., An);
A powder mixer disposed below the tank (R1,..., Rn), including a rotatably mounted mixing member, for causing the powder (A1,..., An) from the tank to collide When,
A plurality of powder distribution means, each of which cooperates with the tanks (R1,..., Rn), each designed to adjust the mass flow rate of the powder discharged from the tank toward the mixer;
A powder mixture collector disposed below the mixer and in communication with the mixer;
A powder mixture dispenser disposed below the powder mixture collector and in communication with the powder mixture collector;
It is an apparatus provided with.

本発明による装置は、ディスペンサから出る粉体混合物を十分に均一にすること、作製した物体と所望の物体との間の整合性の欠如を抑制すること、又は完全になくすことさえ可能にする単純な設計を有することが有利である。したがって、この堆積装置は、物体の、信頼性が高く且つ制御されて再現性のある製造を可能にして、形成した物体の各点で特定の組成を確保する。   The device according to the invention is simple enough to make the powder mixture exiting the dispenser sufficiently uniform, to suppress the lack of consistency between the created object and the desired object, or even to eliminate it completely. It is advantageous to have a simple design. Thus, this deposition apparatus enables reliable, controlled and reproducible production of the object and ensures a specific composition at each point of the formed object.

タンクの数「n」は、同じ物体を製造するのに所望される異なる粉体の数に応じて選択される。したがって、これは決して2つに限定するものではない。さらに、装置内に組み込むタンクの数に関係なく、タンクは、当然ながら、複数の所与の粉体の混合物に相当する粉体をすでに収容していてもよい。   The number of tanks “n” is selected depending on the number of different powders desired to produce the same object. Therefore, this is by no means limited to two. Furthermore, regardless of the number of tanks incorporated in the apparatus, the tank may of course already contain a powder corresponding to a mixture of a plurality of given powders.

好ましくは、上記回転可能に取り付けた混合部材は、この部材の回転軸線に相当する軸を有する概ね円錐形の第1の粉体衝突面を有する。   Preferably, the rotatably mounted mixing member has a generally conical first powder impingement surface having an axis corresponding to the rotational axis of the member.

好ましくは、上記ミキサは、概ね円錐形の第2の粉体衝突面を含み、第2の粉体衝突面は、上記第1の粉体衝突面との間に粉体を通すための概ね円錐形の間隙を形成するために、第1の粉体衝突面と同軸上に対向して配設する。   Preferably, the mixer includes a generally conical second powder impingement surface, the second powder impingement surface being generally conical for passing powder between the first powder impingement surface. In order to form a gap of the shape, the first powder impingement surface is disposed coaxially and oppositely.

好ましくは、概ね円錐形の上記第1の粉体衝突面は、1つ又は複数の凹部を有する。これらの凹部は、粉体の混合をさらになお改善させるものである。   Preferably, the generally conical first powder impingement surface has one or more recesses. These recesses further improve powder mixing.

好ましくは、上記混合部材は、ミキサの案内部品に回転可能に取り付け、案内部品に、上記粉体混合物コレクタの上方でこれに連通する1つ又は複数の通過オリフィスを設ける。   Preferably, the mixing member is rotatably mounted on a guide part of the mixer, and the guide part is provided with one or more passage orifices in communication therewith above the powder mixture collector.

好ましくは、案内部品を通る粉体混合物の重力により効率的な流れを得るために、通過オリフィスのそれぞれを区画形成する画定面の任意の点で、この画定面に垂直線と40°未満、好ましくは30°未満の角度を形成する。   Preferably, in order to obtain an efficient flow due to the gravity of the powder mixture through the guide part, at any point of the defining surface that defines each of the passage orifices, it is less than 40 ° perpendicular to this defining surface, preferably Forms an angle of less than 30 °.

同様の目的で、上記粉体混合物コレクタの画定面の任意の点で、この画定面が垂直線と40°未満、好ましくは30°未満の角度を形成することが好ましい。   For the same purpose, it is preferred that at any point of the defining surface of the powder mixture collector, this defining surface forms an angle with the vertical line of less than 40 °, preferably less than 30 °.

選択的に、上記装置は、上記分配手段の下方で、これと上記ミキサとの間に配置した粉体(A1,…,An)のコレクタをさらに含む。このことに関して、このコレクタ内で粉体の重力による効率的な流れを得るというやはり同様の目的で、上記粉体コレクタ(A1,…,An)の画定面の任意の点で、この画定面が垂直線と40°未満、好ましくは30°未満の角度を形成することが好ましい。   Optionally, the apparatus further comprises a collector of powder (A1,..., An) disposed below the distribution means and between it and the mixer. In this regard, for the same purpose of obtaining an efficient flow of the powder by gravity within the collector, this defining surface is at any point of the defining surface of the powder collector (A1,..., An). It is preferred to form an angle with the vertical line of less than 40 °, preferably less than 30 °.

好ましくは、上記分配手段のそれぞれは、粉体支持要素の振動による粉体送出装置の形態をとる。したがって、送出手段の振動の周波数及び振幅に応じて、各分配手段から排出される粉体の質量流量を完璧に制御することが可能である。この結果として、得られる物体の組成も完璧な制御下にある。   Preferably, each of the distribution means takes the form of a powder delivery device by vibration of the powder support element. Therefore, it is possible to completely control the mass flow rate of the powder discharged from each distribution means in accordance with the vibration frequency and amplitude of the delivery means. As a result of this, the composition of the resulting object is also under perfect control.

本発明の目的は、組成勾配を有する物体を形成するための粉体混合物を堆積させる設備であって、空間的移動手段に取り付けた上述のような堆積装置を備え、且つ上記移動手段及び上記分配手段のそれぞれを制御することができる制御ユニットを備える、設備でもある。   An object of the present invention is an installation for depositing a powder mixture for forming an object having a composition gradient, comprising a deposition apparatus as described above attached to a spatial movement means, and said movement means and said distribution It is also a facility with a control unit that can control each of the means.

好ましくは、上記制御ユニットは、上記分配手段のそれぞれを期間Tにわたって制御するために、
上記期間Tにわたる、堆積させるべき粉体混合物中の粉体A1,…,Anの質量比の経時的変化と、
この混合物中の粉体A1,…,Anの質量比に応じた、堆積後の粉体混合物の比重の代表値と、
所与の質量比を有する粉体混合物を得るために粉体分配手段に制御を伝送する瞬間から、この粉体混合物を堆積させる瞬間までの間に経過した時間に相当する、堆積装置に関連する待ち時間(tl)と、
を考慮する。
Preferably, the control unit controls each of the distribution means over a period T,
Change over time of the mass ratio of the powders A1,..., An in the powder mixture to be deposited over the period T;
A representative value of the specific gravity of the powder mixture after deposition according to the mass ratio of the powders A1, ..., An in the mixture;
Associated with a deposition apparatus, which corresponds to the time elapsed between the moment when control is transmitted to the powder distribution means to obtain a powder mixture having a given mass ratio and the moment when this powder mixture is deposited Waiting time (tl),
Consider.

好ましくは、期間Tは、粉体混合物層全体を形成する継続時間に、又は複数の層を重ね合わせて形成する継続時間にさえ対応する。   Preferably, the period T corresponds to the duration of forming the entire powder mixture layer, or even the duration of forming a plurality of layers superimposed.

期間Tにわたる、堆積させるべき粉体混合物中の粉体A1,…,Anの質量比の経時的変化は、製造すべき物体の各点における所望の組成に応じて予め決定する。この経時的変化は、所与の瞬間の値を有する、時間に対する連続曲線の形態、又は任意の他の形態をとり得る。   The change over time of the mass ratio of the powders A1,..., An in the powder mixture to be deposited over a period T is predetermined according to the desired composition at each point of the object to be produced. This change over time can take the form of a continuous curve over time, having a given instantaneous value, or any other form.

好ましくは、特に複数層の重ね合わせを目的として、堆積させた粉体混合物層が実質的に一定の厚さを有することを確実にするために、期間Tの各時間tに関する各粉体の質量流量は、この時間tにおける混合物の所望の質量比と、堆積後のこの混合物の比重の代表値とから実際には決定する。これに関して、これらの代表値を、例えばキャリブレーションによって予め決定することができることに留意されたい。これは、実比重、密度、又はさらにそれを表すと推定される任意の他の値とすることができる。   Preferably, the mass of each powder for each time t of period T, in order to ensure that the deposited powder mixture layer has a substantially constant thickness, especially for the purpose of overlaying multiple layers. The flow rate is actually determined from the desired mass ratio of the mixture at this time t and a representative value of the specific gravity of the mixture after deposition. In this regard, it should be noted that these representative values can be predetermined, for example by calibration. This can be the actual specific gravity, density, or any other value that is estimated to represent it.

また、上記したところから分かるように、装置内の粉体の通過時間を考慮するため、期間Tの各時間tに適用すべき質量流量の決定は、上述の待ち時間を考慮に入れて行う。待ち時間は、換言すれば、粉体に関連する分配命令から粉体がディスペンサを出た後で支持体上に実際に堆積するまでの、粉体に生じる遅延に相当する。   Further, as can be seen from the above, in order to take into account the passage time of the powder in the apparatus, the determination of the mass flow rate to be applied at each time t in the period T is performed taking the above-described waiting time into consideration. The waiting time, in other words, corresponds to the delay that occurs in the powder from the dispensing instruction associated with the powder until the powder actually deposits on the support after it exits the dispenser.

次に、上述の方法で決定した粉体の質量流量を、これらの粉体の分配手段の制御に変換し、これらの制御は、例えばこれらの手段に供給する電気信号の形態をとり、流量と制御との間のリンクもまた、例えばキャリブレーションよって予め決定する。   Next, the mass flow rate of the powder determined by the above-mentioned method is converted into control of the distribution means of these powders, and these controls take the form of electric signals supplied to these means, for example, The link to the control is also predetermined, for example by calibration.

好ましくは、上記制御ユニットは、期間Tにわたって上記堆積装置始動手段を制御するため、期間Tにわたる粉体混合物ディスペンサで採用すべき位置(x,y)の経時的変化を考慮する。   Preferably, the control unit takes into account changes over time of the position (x, y) to be employed in the powder mixture dispenser over the period T in order to control the deposition apparatus starting means over the period T.

位置の座標x及びyは、粉体混合物層を堆積させるべき支持体に関連する平面基準座標系(planar reference system)に対応させることができる。層の重ね合わせにより物体を作製することを意図する場合は、前記座標に、層を堆積させる支持体に対するディスペンサの高さに関する変数zをさらに含ませることができる。   The position coordinates x and y can correspond to a planar reference system associated with the support on which the powder mixture layer is to be deposited. If it is intended to produce the object by layer superposition, the coordinates can further include a variable z relating to the height of the dispenser relative to the support on which the layer is deposited.

当然のことながら、装置始動手段の制御及び分配手段の制御は、それぞれが互いに時間的に固定されていることが確実である。   As a matter of course, it is certain that the control of the device starting means and the control of the distributing means are fixed in time with respect to each other.

本発明の目的は、上述の装置又は設備により組成勾配を有する物体を作製する方法であって、上記粉体混合ディスペンサを支持体に対して移動させることにより、該支持体上に堆積した少なくとも1つの粉体混合物層の形成から組成勾配を有する物体を作製する方法でもある。   An object of the present invention is a method for producing an object having a composition gradient by the above-described apparatus or equipment, wherein at least one deposited on the support by moving the powder mixing dispenser relative to the support. It is also a method for producing an object having a composition gradient from the formation of two powder mixture layers.

好ましくは、上記粉体混合物層を生成するため、上記粉体混合物ディスペンサを移動させて、上記層を堆積させるべき支持体の表面のスイープを行い、このスイープ中に、分配手段の少なくとも一方の制御を変化させる。これにより、1つ又は複数の組成勾配を、堆積層の厚さの平面において有利に得ることができるため、これらの勾配を、組成が異なる複数の層の重ね合わせにより得ることができるものに加えることができる。   Preferably, to produce the powder mixture layer, the powder mixture dispenser is moved to sweep the surface of the support on which the layer is to be deposited, during which control of at least one of the dispensing means To change. This allows one or more compositional gradients to be advantageously obtained in the plane of the thickness of the deposited layer, so that these gradients are added to those that can be obtained by superposition of multiple layers with different compositions. be able to.

本発明の他の利点及び特徴は、以下の非限定的な詳細な説明で明らかとなるであろう。   Other advantages and features of the invention will become apparent from the following non-limiting detailed description.

この説明は、添付図面を参照して行う。   This description is made with reference to the accompanying drawings.

本発明の好適な実施形態による、粉体混合物を堆積させる装置の断面図を示す。FIG. 2 shows a cross-sectional view of an apparatus for depositing a powder mixture according to a preferred embodiment of the present invention. 図1に示す装置の一部の斜視図を示す。FIG. 2 shows a perspective view of a portion of the apparatus shown in FIG. 図1及び図2に示す装置に属する混合部材の斜視図を示す。The perspective view of the mixing member which belongs to the apparatus shown in FIG.1 and FIG.2 is shown. 図1及び図2に示す装置に属する粉体ミキサの案内部品の斜視図を示す。FIG. 3 shows a perspective view of a guide component of a powder mixer belonging to the apparatus shown in FIGS. 1 and 2. 図1及び図2に示す装置に属する粉体混合物コレクタの斜視図を示す。FIG. 3 shows a perspective view of a powder mixture collector belonging to the apparatus shown in FIGS. 1 and 2. 図1及び図2に示す装置の一体部分であって、振動により粉体を送出する装置に属する粉体支持体の斜視図を示す。The perspective view of the powder support body which is an integral part of the apparatus shown in FIG.1 and FIG.2, and belongs to the apparatus which sends out powder by vibration is shown. 振動による粉体送出装置の動作を示す概略図である。It is the schematic which shows operation | movement of the powder delivery apparatus by vibration. 図1〜図5に示す堆積装置を組み込んだ、粉体混合物を堆積する設備の部分斜視図を示す。FIG. 6 shows a partial perspective view of a facility for depositing a powder mixture incorporating the deposition apparatus shown in FIGS. 図6の設備が備える制御ユニットの動作を概略的に示す。The operation | movement of the control unit with which the installation of FIG. 6 is provided is shown schematically. 本発明の好適な実施形態による組成勾配を有する物体を作製する方法の適用中に行う、粉体混合物層を生成するためにディスペンサにより行うスイープを概略的に示す。Fig. 4 schematically illustrates a sweep performed by a dispenser to produce a powder mixture layer performed during application of a method for producing an object having a composition gradient according to a preferred embodiment of the present invention. 図8と同様であり、代替的な実施形態によるスイープを示す。FIG. 9 is similar to FIG. 8 and shows a sweep according to an alternative embodiment. 組成勾配を有する所望の物体を複数の粉体混合物層の積層体から作製する、本発明の好適な実施形態による方法を概略的に示す。1 schematically illustrates a method according to a preferred embodiment of the present invention in which a desired object having a composition gradient is made from a stack of a plurality of powder mixture layers. 図9と同様であり、代替的な実施形態を示す。It is similar to FIG. 9 and shows an alternative embodiment. 本発明により得ることができる組成勾配を有する物体の断面図である。1 is a cross-sectional view of an object having a composition gradient obtainable by the present invention. 本発明により得ることができる組成勾配を有する物体の断面図である。1 is a cross-sectional view of an object having a composition gradient obtainable by the present invention. 本発明により得ることができる組成勾配を有する物体の断面図である。1 is a cross-sectional view of an object having a composition gradient obtainable by the present invention.

図1及び図2を参照すると、本発明の好適な実施形態による、粉体混合物を堆積する装置1が示されている。堆積ヘッドと称されることのあるこの装置1は、この装置の軸線2の方向に対応して垂直方向に連続的に位置決めした一連の要素を有し、軸線2は、物体の作製中に粉体混合物の堆積を意図する支持体に対して実質的に直交するように設けることが好ましい。これにより、特に、以下に詳述するように、粉体が装置1からの排出前に本質的に重力により装置1を通過することを確実にすることが可能である。   Referring to FIGS. 1 and 2, there is shown an apparatus 1 for depositing a powder mixture according to a preferred embodiment of the present invention. This apparatus 1, sometimes referred to as a deposition head, has a series of elements that are continuously positioned in a vertical direction corresponding to the direction of the axis 2 of the apparatus, and the axis 2 is used during the production of the object. It is preferably provided so as to be substantially perpendicular to the support intended for the deposition of the body mixture. This makes it possible in particular to ensure that the powder essentially passes through the device 1 by gravity before being discharged from the device 1, as will be described in detail below.

複数の粉体タンクを、ヘッド1の上側部分に配設する。より具体的には、図示の好適な実施形態では、2つの別個のタンクを設け、すなわち、タンクR1及びR2を軸線2の周りに配設する。一指標として、上から見て、すなわち軸線2の方向に沿って見て、タンクを、タンク全体の対称中心を形成するこの軸に対して偏心させて位置決めすることが好ましいことに留意されたい。   A plurality of powder tanks are arranged in the upper part of the head 1. More specifically, in the preferred embodiment shown, two separate tanks are provided, ie tanks R 1 and R 2 are arranged around axis 2. As an indication, it should be noted that the tank is preferably positioned eccentric with respect to this axis which forms the center of symmetry of the entire tank, as viewed from above, ie along the direction of the axis 2.

タンクR1には、粉体A1を充填し、タンクR2には、A1とは異なる組成を有する粉体A2を充填する。   Tank R1 is filled with powder A1, and tank R2 is filled with powder A2 having a composition different from that of A1.

指標的な例として、粉体A1は、例えば、Special Metalsが販売しているInconel600という銘柄で知られるタイプの金属材料であり、これは、少量の炭素、ケイ素、及びマグネシウムを含有したニッケル、クロム、及び鉄の複合合金に相当し、高い耐食性及び優れた機械的特性の両方を有する。その粒径は、約50μm〜120μmとすることができる。やはり一例として、粉体A2は、随意に三酸化イットリウムYと予め混合した例えば酸化ジルコニウムZrOタイプのセラミック材料である。その粒径は、約1μm〜120μmとすることができる。 As an index example, the powder A1 is a metal material of the type known for example as Inconel 600 sold by Special Metals, which is nickel, chromium containing small amounts of carbon, silicon and magnesium. , And an iron composite alloy having both high corrosion resistance and excellent mechanical properties. The particle size can be about 50 μm to 120 μm. Also by way of example, the powder A2 is a ceramic material of, for example, zirconium oxide ZrO 2 type, optionally premixed with yttrium trioxide Y 2 O 3 . The particle size can be about 1 μm to 120 μm.

したがって、図示の実施形態では、それぞれ異なる材料を収容した2つのタンクだけを、堆積装置内に設けている。しかしながら、所望の物体に応じて、この物体を得るのに必要な異なる粉体の数を2つよりも多く、例えば3つ、4つ、又はさらにそれよりも多くすることが可能である。そのような場合、本発明による堆積装置は、必要な数のタンクを、好ましくはやはり軸線2を中心に分布して組み込むよう構成する。また、詳細を後述するこの装置の制御は、当然ながら塗布する異なる粉体の数に従って適合させる。   Therefore, in the illustrated embodiment, only two tanks containing different materials are provided in the deposition apparatus. However, depending on the desired object, it is possible to increase the number of different powders required to obtain this object to more than two, for example three, four or even more. In such a case, the deposition apparatus according to the invention is configured to incorporate the required number of tanks, preferably also distributed around the axis 2. Also, the control of this apparatus, which will be described in detail later, is naturally adapted according to the number of different powders to be applied.

各タンクは、装置に粉体を充填するための上側開口と、垂直方向に沿って開口の反対側に位置付けた出口オリフィスとを有することが好ましい。さらに、各タンクの画定面の任意の点で、この画定面は、垂直線と好ましくは40°未満、さらにより優先的にはこの方向に対して30°未満の角度を形成する。これにより、粉体は、重力のみにより、タンクの上から下に出口オリフィスへ向かって適切に流れることができる。   Each tank preferably has an upper opening for filling the apparatus with powder and an outlet orifice positioned on the opposite side of the opening along the vertical direction. Furthermore, at any point on the defining surface of each tank, this defining surface forms an angle with the vertical, preferably less than 40 °, and even more preferentially less than 30 ° relative to this direction. Thereby, the powder can flow appropriately from the top to the bottom of the tank toward the exit orifice only by gravity.

各タンクR1,R2には、関連するタンクの下に配設されてそのタンクの出口オリフィスと協働する粉体分配手段を設ける。   Each tank R1, R2 is provided with a powder distribution means disposed below the associated tank and cooperating with the outlet orifice of that tank.

図示の好適な実施形態では、各分配手段は、粉体支持要素の振動による粉体送出装置の形状をとり、このタイプの送出装置は、それ自体が既知であり、例えば、参照により本明細書に援用される仏国特許第2666077号明細書に記載されたタイプである。   In the preferred embodiment shown, each dispensing means takes the form of a powder delivery device by vibration of a powder support element, this type of delivery device being known per se, for example by reference herein. Is the type described in French Patent No. 2666077, which is incorporated by reference.

したがって、送出装置4はタンクR1に結合され、送出装置6はタンクR2に結合される。概して、各装置4,6は、ロッド10を駆動してこのロッドの軸線12に沿って往復運動させる振動発生器8を有し、軸線12は、装置4に関して図1に示すように水平線に沿って角度αだけ傾いている。角度αは、約20°〜40°とすることができる。   Accordingly, the delivery device 4 is coupled to the tank R1, and the delivery device 6 is coupled to the tank R2. In general, each device 4, 6 has a vibration generator 8 that drives a rod 10 to reciprocate along an axis 12 of this rod, the axis 12 being along a horizontal line as shown in FIG. Is inclined by an angle α. The angle α can be about 20 ° to 40 °.

ロッド10の反対端は、分配板とも称される粉体支持体14に固定して支持させ、粉体支持要素14は、水平に、又は水平線に対してわずかに傾けて配置することが好ましい。したがって、振動発生器8に通電すると、支持体14は、この振動発生器8に印加した制御信号に応じて所与の振幅及び周波数に従って、軸線12の方向に対応する方向に高速往復運動を行う。   The opposite end of the rod 10 is fixedly supported on a powder support 14, also referred to as a distribution plate, and the powder support element 14 is preferably arranged horizontally or slightly inclined with respect to the horizontal line. Accordingly, when the vibration generator 8 is energized, the support 14 performs a high-speed reciprocating motion in a direction corresponding to the direction of the axis 12 according to a given amplitude and frequency according to a control signal applied to the vibration generator 8. .

図5において、送出装置6の動作を説明するためにその一部を表している。図4で分かり得るように、粉体支持体14は、ロッド10に連結するための取り付け部分16と、粉体を切り出すための反対部分18とを備える。反対部分18は、図5に示すように、粉体を放出するためのノッチ20を有する粉体レセプタクルを形成し、タンクR2の出口オリフィス22は、このレセプタクル18の底部に対向してそこからわずかに離れて位置付ける。出口オリフィス22とレセプタクル18の底部との間の隙間は、その時々のニーズに応じて調整することができ、例えば約1mm〜2mmに設定することができる。   FIG. 5 shows a part of the operation of the sending device 6 in order to explain it. As can be seen in FIG. 4, the powder support 14 comprises an attachment portion 16 for connection to the rod 10 and an opposite portion 18 for cutting out the powder. The opposite portion 18 forms a powder receptacle having a notch 20 for discharging powder, as shown in FIG. 5, and the outlet orifice 22 of the tank R2 faces the bottom of the receptacle 18 and is slightly away therefrom. Position away from. The clearance between the outlet orifice 22 and the bottom of the receptacle 18 can be adjusted according to the needs of the moment, and can be set to about 1 mm to 2 mm, for example.

支持体14が、これが受ける往復運動の方向に沿った向きの両方向矢印24で図式化するように振動すると、オリフィス22から出てレセプタクル18の底部に収容された粉体A2は、ノッチ20へ向かって徐々に移動した後に、後述する粉体コレクタ26へ向かって重力により落下する。   When the support 14 vibrates as schematically represented by a double arrow 24 oriented along the direction of reciprocation it receives, the powder A2 exiting the orifice 22 and contained in the bottom of the receptacle 18 is directed toward the notch 20. And then gradually fall toward the powder collector 26 described later by gravity.

ノッチ20を通って排出され重力のみによりコレクタ26に落下する粉体A2の質量流量は、支持体14の振動の振幅及び周波数に応じて、非常に正確に調整することができる。これに関して、送出装置6に適用される、例えば電気信号等の制御と、タンクR2から排出される流量に一致し得る支持体20から排出される粉体A2の質量流量との間には、予め相関関係が成立する。例えば値対応テーブルの形態をとるこの相関関係は、装置1を用いて物体を作製するに先立って、装置1で実施するキャリブレーション作業によって得ることが好ましい。したがって、このような相関関係は、使用を意図する粉体ごとに成立する。さらに、装置6の動作のみを説明している場合であっても、装置4が同じ設計であることから、装置4の動作も同一又は類似であることを理解されたい。   The mass flow rate of the powder A2 discharged through the notch 20 and falling onto the collector 26 only by gravity can be adjusted very accurately according to the amplitude and frequency of the vibration of the support 14. In this regard, between the control of, for example, an electrical signal applied to the delivery device 6 and the mass flow rate of the powder A2 discharged from the support 20 that can match the flow rate discharged from the tank R2, in advance. A correlation is established. This correlation, for example in the form of a value correspondence table, is preferably obtained by a calibration operation performed on the apparatus 1 prior to producing an object using the apparatus 1. Therefore, such a correlation is established for each powder intended for use. Further, even if only the operation of the device 6 is described, it should be understood that the operation of the device 4 is the same or similar because the device 4 is of the same design.

振動送出装置4,6は、その巨大さ故に、それらの支持体14から軸線2に対して実質的に半径方向外方へ延びる。   Due to their enormous size, the vibration delivery devices 4, 6 extend substantially radially outward with respect to the axis 2 from their support 14.

したがって、図1を図2と合わせて再度参照すれば、堆積ヘッド1は、両方の支持体14の下に粉体コレクタ26を有するので、それぞれのノッチから排出される粉体A1及びA2は、重力によりこのコレクタ内に落下する。   Thus, referring again to FIG. 1 in conjunction with FIG. 2, the deposition head 1 has a powder collector 26 under both supports 14, so that the powders A1 and A2 discharged from the respective notches are It falls into this collector by gravity.

粉体コレクタ26は、軸線2を有する実質的に円錐状の画定面28を有する収束管の形状をとる。やはりこの収束管26内での重力による粉体A1,A2の流れを促すために、画定面28の任意の点で、この面は、好ましくは、垂直線と40°未満、さらにより優先的には、この方向に対して30°未満の角度をなす。   The powder collector 26 takes the form of a converging tube having a substantially conical defining surface 28 having an axis 2. Again, at any point of the defining surface 28, this surface is preferably less than 40 °, and even more preferentially, at any point of the defining surface 28 to facilitate the flow of the powders A1, A2 due to gravity within the converging tube 26. Makes an angle of less than 30 ° with respect to this direction.

コレクタ26は、粉体ミキサ30内に通じるように下方に開口しており、粉体ミキサ30は、軸線2を中心として軸線2に沿って回転可能に取り付けた混合部材32を備える。この混合部材32は、ヘッド1の上側部分に向かってコレクタ26を貫通するロッド34を有し、このロッドの上端は、軸線2を中心とした回転を開始させる手段36、例えば伝動ベルトを備えるモータと結合する。   The collector 26 is opened downward so as to communicate with the powder mixer 30, and the powder mixer 30 includes a mixing member 32 attached so as to be rotatable along the axis 2 around the axis 2. The mixing member 32 has a rod 34 that penetrates the collector 26 toward the upper portion of the head 1, and the upper end of this rod has a means 36 for starting rotation about the axis 2, for example, a motor comprising a transmission belt. Combine with.

このロッド34の下端は、混合部材32のうち第1の粉体衝突面40を形成するより大きな部分に連結し、これは、軸線2を有する概ね円錐形であり、下方に広がっている。さらに、ミキサ30は、回転混合部材32を包囲する外側固定部分も含む。この固定部分は、第2の粉体衝突面42を有し、これは、軸線2を有する概ね円錐形であり、下方に広がっており、これを第1の衝突面40に面して配設することにより、粉体を通すための同じく概ね円錐形の間隙44を形成する。   The lower end of the rod 34 is connected to a larger portion of the mixing member 32 that forms the first powder impingement surface 40, which is generally conical with the axis 2 and extends downward. In addition, the mixer 30 also includes an outer fixed portion that surrounds the rotating mixing member 32. This fixed part has a second powder impingement surface 42 which is generally conical with an axis 2 and extends downwards and is arranged facing the first impingement surface 40. This also forms a generally conical gap 44 for the passage of powder.

図3に示すように、粉体衝突面40は、1つ又は複数の凹部46を有し、これは、例えば軸線2を通る垂直面内で円錐面の母線に沿って延びることが好ましい。凹部46が図3において1つしか見えなくても、回転部材32の動的挙動の理由から、複数の凹部を優先的に軸線2の周りに360°にわたって等角度で分配して設けることに留意されたい。   As shown in FIG. 3, the powder impingement surface 40 has one or more recesses 46, which preferably extend along a conical surface generatrix, for example, in a vertical plane passing through the axis 2. Note that even if only one recess 46 is visible in FIG. 3, due to the dynamic behavior of the rotating member 32, a plurality of recesses are preferentially distributed equidistantly around the axis 2 over 360 °. I want to be.

両方の粉体衝突面40,42間に形成した実質的に円錐状の間隙44は、粉体を部材32の面40及び/又は面42に複数回衝突させることができるように配設する。したがって、軸線2に相当する円錐の軸線に直交する方向に沿って考えた間隙の厚さを、1mm〜1cmに構成することが有利である。間隙44の厚さは、凹部46があることにより変動し、この厚さは、3mm〜7mmの変動があることに留意されたい。   A substantially conical gap 44 formed between both powder impingement surfaces 40, 42 is arranged so that the powder can impinge on the surface 40 and / or surface 42 of the member 32 multiple times. Therefore, it is advantageous that the thickness of the gap considered along the direction orthogonal to the axis of the cone corresponding to the axis 2 is 1 mm to 1 cm. Note that the thickness of the gap 44 varies due to the presence of the recess 46, and this thickness varies from 3 mm to 7 mm.

したがって、コレクタ26の出口オリフィスとこのオリフィスを通るロッド34とが形成する環状空間内に重力により落下する粉体A1及びA2を、間隙44に案内するとともに、その間隙内で、凹部46を有する円錐面40と最初に衝突したらすぐによく混合させる。これに関して、ユニット32の回転速度は、例えば、同じ粉体粒子をミキサ内での滞留中に回転面40と約10回衝突させることを可能にする値に設定し、このことを表す回転速度は、例えば、手段36が加える約3,000rpmである。有利には、作動時に、回転部材32を凹部46が向いている方向とは逆の方向に回転させることで、これらの凹部36における材料の蓄積を回避する。そのため図3に示す例では、回転部材32は、矢印47で示す反時計方向に回転させる。したがって、凹部の性質及び方向によって、部材32の回転方向が優先的に決まる。   Therefore, the powders A1 and A2 that fall by gravity in the annular space formed by the outlet orifice of the collector 26 and the rod 34 passing through the orifice are guided to the gap 44, and the cone having the recess 46 in the gap. Mix well as soon as it first strikes the surface 40. In this regard, the rotational speed of the unit 32 is set to a value that allows, for example, the same powder particles to collide with the rotating surface 40 about 10 times during residence in the mixer, and the rotational speed representing this is For example, about 3,000 rpm applied by means 36. Advantageously, during operation, the rotating member 32 is rotated in a direction opposite to the direction in which the recesses 46 are oriented to avoid material accumulation in these recesses 36. Therefore, in the example shown in FIG. 3, the rotating member 32 is rotated in the counterclockwise direction indicated by the arrow 47. Therefore, the rotation direction of the member 32 is preferentially determined by the nature and direction of the recess.

部材32の回転を案内するため、例えば転がり軸受50を、ロッド34の上側部分に設け、別の転がり軸受50を、部材32の下端と板の形態の案内部品52との間に配置する。外方に広がった概ね円錐形の間隙44の下方に水平に配置したこの部品52には、粉体ミキサコレクタ56の上でこれと連通する1つ又は複数の通過オリフィス54を設ける。   In order to guide the rotation of the member 32, for example, a rolling bearing 50 is provided in the upper part of the rod 34 and another rolling bearing 50 is arranged between the lower end of the member 32 and a guide part 52 in the form of a plate. Located horizontally below the generally conical gap 44 that extends outwardly, this part 52 is provided with one or more passage orifices 54 above and in communication with the powder mixer collector 56.

重力の影響下で粉体混合物を通過させることを意図した各オリフィス54は、その画定面の任意の点でこの面が垂直線と40°未満、さらにより優先的にはこの方向と30°未満の角度を形成するようになっており、その目的はやはり、堆積ヘッド1内での粉体の適切な流れを促すことにある。軸線2の周りに分配したこれらのオリフィス54は、全体的に収束した形状を有し、これは、案内板52の例示的な実施形態を示す図3aに最もよく示されている。この図3aでは、軸線2を中心とした部品52が、転がり軸受を受け入れるための中央ハウジング55を有するハブ53を全体的に備え、ハブ53の傾斜外面57が、オリフィス54の半径方向内面を形成することが分かる。外側フェルール59を、ハブ53と同心に配置し、その傾斜内面61は、オリフィス54の半径方向外面を形成する。他方、放射状アーム63が、ハブ53を外側フェルール59に連結する。各アーム63は、やはり垂直線に対する角度に関する上記の定義を満たす傾斜面により、両側に2つのオリフィス54を画成する。各放射状アーム63の上側部分は、できる限り薄いエッジの形状をとることが好ましく、これにより、これらのエッジ上での粉体の蓄積の危険性を抑えることできる。   Each orifice 54 intended to allow the powder mixture to pass under the influence of gravity is less than 40 ° with respect to the vertical at any point of its defining surface, and even more preferentially with this direction less than 30 °. Again, the purpose is to promote proper flow of powder in the deposition head 1. These orifices 54 distributed around the axis 2 have a generally converging shape, which is best shown in FIG. 3 a showing an exemplary embodiment of the guide plate 52. In this FIG. 3 a, the part 52 about the axis 2 generally comprises a hub 53 having a central housing 55 for receiving rolling bearings, the inclined outer surface 57 of the hub 53 forming the radial inner surface of the orifice 54. I understand that An outer ferrule 59 is disposed concentrically with the hub 53, and its inclined inner surface 61 forms a radially outer surface of the orifice 54. On the other hand, radial arms 63 connect the hub 53 to the outer ferrule 59. Each arm 63 defines two orifices 54 on either side with an inclined surface that also satisfies the above definition for the angle to the vertical. The upper part of each radial arm 63 is preferably in the shape of as thin an edge as possible, thereby reducing the risk of powder accumulation on these edges.

図2を再度参照すれば、部品52を通るオリフィス54と同様に、この部品52の下方に位置させた粉体混合物コレクタ56が全体的に収束した形状を有することが分かる。ここでもまた、このコレクタ56の画定面58の任意の点で、この面は、垂直線と40°未満、さらにより優先的には30°未満の角度をなす。軸線2を中心としたコレクタ56は、座部56を形成する上側部分を有し、そこに案内部品52の外側フェルールを載せる。コレクタ56は、部品52に設けたオリフィス54のそれぞれから漏出する粉体混合物を回収可能にするために、適当な寸法を有する。図3bに示すように、手段67を、相互に90°で交差する2枚のステンレス鋼板の形態でさらに設けることができ、コレクタ56内に挿入したこの手段67により、オリフィス54の出口において粉体混合物が示すボルテックス効果を解消することができる。   Referring again to FIG. 2, it can be seen that the powder mixture collector 56 located below the part 52 has a generally converged shape, similar to the orifice 54 through the part 52. Again, at any point on the defining surface 58 of the collector 56, this surface makes an angle with the vertical line of less than 40 °, and even more preferentially less than 30 °. The collector 56 centering on the axis 2 has an upper portion forming a seat portion 56 on which the outer ferrule of the guide component 52 is placed. The collector 56 has suitable dimensions to allow the powder mixture leaking from each of the orifices 54 provided in the part 52 to be collected. As shown in FIG. 3 b, means 67 can further be provided in the form of two stainless steel plates that intersect each other at 90 °, and by this means 67 inserted in the collector 56, the powder at the outlet of the orifice 54 The vortex effect exhibited by the mixture can be eliminated.

コレクタ56の延長上の下方には、粉体混合物ディスペンサ60を取り付けており、これを通して、装置1から混合物をやはり単に重力により取り出す。このディスペンサは、軸線2を中心として小径の、例えば2mm〜5mmの直線流路の形態を有する。   Below the extension of the collector 56 is mounted a powder mixture dispenser 60, through which the mixture is again simply removed by gravity. This dispenser has a form of a linear flow path having a small diameter around the axis 2, for example, 2 mm to 5 mm.

装置は、金属要素、例えばステンレス要素316から組み立てられることを意図することに留意されたい。   Note that the device is intended to be assembled from metal elements, such as stainless steel elements 316.

したがって、上記したところから明らかなように、粉体A1,A2は、タンクR1,R2、振動送出装置の支持体14,14、コレクタ26、案内部品52の通過用のオリフィス54、コレクタ56、及びディスペンサ60を連続的に通過した後に、粉体混合物層を形成するためにヘッド1から排出される。そのため、「粉体混合物」という表現は、広義に解釈されるべきである。すなわち、この表現は、堆積ヘッド1から出る粉体A1及びA2からなる組成物と、このヘッド1から出る粉体A1のみ又は粉体A2のみからなる組成物との両方を指すべきであることに留意されたい。   Therefore, as apparent from the above, the powders A1 and A2 are composed of the tanks R1 and R2, the support 14 and 14 of the vibration delivery device, the collector 26, the orifice 54 for passing the guide component 52, the collector 56, and After continuously passing through the dispenser 60, it is discharged from the head 1 to form a powder mixture layer. Therefore, the expression “powder mixture” should be interpreted broadly. That is, this expression should refer to both the composition consisting of the powders A1 and A2 exiting the deposition head 1 and the composition consisting only of the powder A1 exiting from the head 1 or only the powder A2. Please keep in mind.

最後に、粉体と接触し得る装置1の各面には、例えば平均表面粗さRaで0.4μm程度の、低い粗度を与えることが示唆される。   Finally, it is suggested that each surface of the apparatus 1 that can come into contact with the powder is given a low roughness of, for example, an average surface roughness Ra of about 0.4 μm.

次に図6を参照すると、上述の堆積ヘッド1を組み込んだ粉体混合物を堆積させる設備100を見ることができる。ヘッド1は、好ましくはロボットタイプの空間的始動装置102に取り付ける。このロボット102は、ヘッドを正規直交基準座標系(direct orthonormal reference system)x,y,zの任意の点で移動させるように設計することが好ましく、基準座標系の座標zは、ヘッド1の高さの方向、したがって軸線2と平行な方向に対応する。   Referring now to FIG. 6, an installation 100 for depositing a powder mixture incorporating the deposition head 1 described above can be seen. The head 1 is preferably attached to a spatial starter 102 of the robot type. The robot 102 is preferably designed to move the head at any point in a direct orthonormal reference system x, y, z, where the coordinate z of the reference coordinate system is the height of the head 1. This corresponds to the direction of the thickness, and thus the direction parallel to the axis 2.

設備100は、制御ユニット104を備え、この制御ユニット104によれば、ロボット102を、出力S’1によって制御することができ、また、粉体A1に関連する切り出し手段4を、出力S1によって制御することができ、そして、粉体A2に関連する供給手段6を、出力S2によって制御することができる。さらに、この制御ユニット104は、コンピュータタイプ、コンバータタイプその他の従来の要素を含むものであって、図示されていないとしても、混合部材32の回転を開始させる手段36の制御も扱うことができる。   The equipment 100 includes a control unit 104. According to the control unit 104, the robot 102 can be controlled by the output S′1, and the cutting means 4 related to the powder A1 is controlled by the output S1. And the supply means 6 associated with the powder A2 can be controlled by the output S2. Further, the control unit 104 includes a computer type, a converter type, and other conventional elements, and can handle the control of the means 36 for starting the rotation of the mixing member 32 even if not shown.

図7に、例示的な制御ユニット104の概略図を示す。第1の部分は、粉体分配手段の制御の発生専用であり、第2の部分は、ロボット102の制御専用である。   FIG. 7 shows a schematic diagram of an exemplary control unit 104. The first part is dedicated to generating control of the powder distribution means, and the second part is dedicated to controlling the robot 102.

第1の部分に関して、ユニット104は、入力E1,E2,E3を通して数個の情報を受け取る。入力E1は、堆積すべき粉体混合物中の粉体A1,A2の質量比の経時的変化に関するものであり、この経時的変化は、期間Tにわたって決定され、この期間Tはその後、粉体混合物層全体を堆積することを可能にする期間とみなされる。当然ながら、混合物の質量比のこの経時的変化は、堆積すべき層の所望の組成に従って決定し、所望の組成は、堆積すべき層の任意の点において可変であるか又はある特定の場合には一定である。   For the first part, unit 104 receives several pieces of information through inputs E1, E2, E3. The input E1 relates to the change over time of the mass ratio of the powders A1, A2 in the powder mixture to be deposited, which change over time is determined over a period T, which is then determined by the powder mixture. It is considered as a period that allows the entire layer to be deposited. Of course, this change in the mass ratio of the mixture over time is determined according to the desired composition of the layer to be deposited, the desired composition being variable at any point of the layer to be deposited or in certain cases. Is constant.

入力E2は、堆積後の粉体混合物中の粉体A1,A2の質量比に応じた、この混合物の比重の代表値に関する。これらの代表値は、好ましくはこの同じ設備で実施するキャリブレーションによって予め決定することができる。これは、実比重又は密度とすることができる。   The input E2 relates to a representative value of the specific gravity of the mixture according to the mass ratio of the powders A1 and A2 in the powder mixture after deposition. These representative values can preferably be determined in advance by calibration performed on this same equipment. This can be the actual specific gravity or density.

入力E3は、所与の質量比を有する粉体混合物を得るために粉体分配手段4,6に制御を伝送する瞬間から、この粉体混合物がディスペンサ60から出た後にこれが堆積する瞬間までの経過時間に相当する、堆積装置1に関連する待ち時間(tl)に相当する。この待ち時間も、この同じ設備で実施するキャリブレーションによって決定することができる。   The input E3 is from the moment when control is transmitted to the powder distribution means 4, 6 to obtain a powder mixture having a given mass ratio, until the moment when this powder mixture is deposited after leaving the dispenser 60. This corresponds to the waiting time (tl) associated with the deposition apparatus 1 corresponding to the elapsed time. This waiting time can also be determined by calibration performed on this same equipment.

ユニット104は、まず、期間Tにわたる採用すべき粉体A1,A2の質量流量の経時的変化を決定することから開始する。概して、期間Tの時間tごとに、入力E1は、両方の流量間の比の設定を可能にし、入力E2は、命令した比を観察しながらこれら2つの流量のそれぞれの値を設定することを可能にし、入力E3は、流量の命令を時間的に早めることを可能にし、それにより、流量命令を出した時間と、粉体をディスペンサ60からの抽出後に堆積する時間との間に存在する遅延を補填することができる。   The unit 104 starts by first determining the change over time of the mass flow rate of the powders A1, A2 to be employed over the period T. In general, at every time t of period T, input E1 allows the setting of the ratio between both flow rates, and input E2 sets the respective values of these two flow rates while observing the commanded ratio. The input E3 allows the flow rate command to be advanced in time, so that a delay exists between the time the flow rate command is issued and the time the powder is deposited after extraction from the dispenser 60. Can be compensated.

入力E2を考慮することにより、流量を、実質的に一定の厚さを有する層の形成を確保する値に、この層内の粉体混合物の組成の経時的変化に関係なく設定することが可能であることに留意されたい。これは、所望の物体が複数の層の重ね合わせを必要とするような場合に特に有利であることが分かっており、このような場合は、任意の所与の層が、積層体における直上の(direct uppermost)層を適切に支持するために実質的に平面状且つ水平の上面を有するべきであることを意味する。   By considering the input E2, it is possible to set the flow rate to a value that ensures the formation of a layer having a substantially constant thickness, irrespective of changes over time in the composition of the powder mixture in this layer. Please note that. This has been found to be particularly advantageous when the desired object requires multiple layer superpositions, in which case any given layer is directly above the stack. (Direct uppermost) means that it should have a substantially planar and horizontal top surface to properly support the layer.

次に、期間Tにわたる流量の所要の経時的変化から、ユニット104は、出力S1において粉体A1を供給する第1の手段4の制御を発生させるとともに、出力S2において粉体A2を供給する第2の手段6の制御を発生させる。そのために、送出装置4,6に適用した制御と、支持体20から排出される粉体A1,A2の質量流量との間で予め成立した上述の相関関係を優先的に用いる。   Next, from the required change over time of the flow rate over the period T, the unit 104 generates the control of the first means 4 for supplying the powder A1 at the output S1, and also supplies the powder A2 at the output S2. The control of the second means 6 is generated. Therefore, the above-described correlation established in advance between the control applied to the delivery devices 4 and 6 and the mass flow rates of the powders A1 and A2 discharged from the support 20 is preferentially used.

ユニット104の、ロボット102の制御専用である第2の部分は、入力E’1から、ヘッド1のディスペンサ60で採用すべき位置(x,y)での、期間Tにわたる経時的変化に関する情報を受け取る。これらの情報は、予め決定されたものであり、粉体混合物層を得るために望ましくはディスペンサ60が辿るべき経路と、望ましくはこの経路をカバーすべき期間Tにわたって随意に経時的に変化し得るが優先的には一定である速度とを、全体的に表す。ユニット104は、E’1から、S’1において堆積ヘッド1の始動手段の制御を発生させることで、xy平面内でのその運動を確保する。   The second part of the unit 104, dedicated to the control of the robot 102, receives from the input E'1 information on the change over time over the period T at the position (x, y) to be adopted by the dispenser 60 of the head 1. receive. These pieces of information are predetermined and can change over time, preferably over the path that the dispenser 60 should follow to obtain a powder mixture layer, and preferably over the period T that should cover this path. Is generally expressed as a speed that is preferentially constant. The unit 104 ensures its movement in the xy plane by generating control of the starting means of the deposition head 1 in S′1 from E′1.

所望の層を得るために、当然ながら、装置始動手段の制御及び分配手段の制御のそれぞれを、互いに時間的に固定することが確実である。   In order to obtain the desired layer, it is of course certain that the control of the device starting means and the control of the dispensing means are fixed in time with each other.

次に図8を参照すると、基準座標系x,y,zを、層の堆積が予定されている支持体、すなわち基板108に関連付けることができることが分かる。ディスペンサ60の例示的な経路110を、概ねディスク形の層である特定の場合で示す。この経路は、支持体108の表面において層に辿らせることを意図したスイープに対応し、例えば方向xに沿った複数の往復行程の形態をとり、これは各行程間で方向yに沿って移動する。この移動中、粉体混合物の組成は、当然ながら、得られる層のxy平面における1つ又は複数の勾配組成の形成を特に目的として、経時的に変化させることができる。代替的な実施形態を図8aに示し、この図では経路110aを渦巻形としている。   Referring now to FIG. 8, it can be seen that the reference coordinate system x, y, z can be associated with a substrate, i.e., substrate 108, on which a layer is to be deposited. An exemplary path 110 of the dispenser 60 is shown in the specific case of being a generally disc shaped layer. This path corresponds to a sweep intended to follow the layer at the surface of the support 108, for example in the form of a plurality of reciprocating strokes along the direction x, which moves along the direction y between each stroke. To do. During this movement, the composition of the powder mixture can of course be changed over time, especially for the purpose of forming one or more gradient compositions in the xy plane of the resulting layer. An alternative embodiment is shown in FIG. 8a, where the path 110a is spiral.

最後に、図9で示すように、この方法を、方向zに沿って複数の層114を積層させることによる物体の形成に拡張できることに留意されたい。この場合、制御S1,S2、及びS’1は、これらの層のすべてを作製するために必要な継続時間に相当する期間Tにわたって提供することができる。このことは、特に、制御S’1が、好ましくはディスペンサ60の下端と予め堆積した層との間の距離を常に実質的に同一に保つために、支持体108の表面に対するディスペンサ60の高さzをも操作することを意味する。   Finally, it should be noted that this method can be extended to the formation of objects by stacking multiple layers 114 along direction z, as shown in FIG. In this case, the controls S1, S2, and S'1 can be provided over a period T corresponding to the duration required to make all of these layers. This is particularly true because the control S′1 preferably keeps the height of the dispenser 60 relative to the surface of the support 108 so that the distance between the lower end of the dispenser 60 and the pre-deposited layer is always substantially the same. It means that z is also manipulated.

図9において、支持体108は容器120の一体部分であって、その底部を形成することが分かる。z軸に沿って1つ又は複数の組成勾配を有し得る所望の積層体を形成するために、種々の層114をこの容器120内に順次堆積する。   In FIG. 9, it can be seen that the support 108 is an integral part of the container 120 and forms the bottom thereof. Various layers 114 are sequentially deposited in the container 120 to form a desired stack that may have one or more compositional gradients along the z-axis.

代替的な実施形態は、図9aで図式化したように、底部108をz軸に沿って可動にし、ディスペンサ60をこの同一方向に固定してなる。この状況では、底部108は、各層の作製後に好ましくは層の厚さに近い距離又は層の厚さと同一の距離に沿って下方へ移動するピストンの形状をとる。   An alternative embodiment comprises the bottom 108 movable along the z-axis and the dispenser 60 fixed in this same direction, as schematically illustrated in FIG. 9a. In this situation, the bottom 108 takes the form of a piston that moves downward after the creation of each layer, preferably along a distance close to or equal to the layer thickness.

一指標として、各層114は約0.25mmの厚さ、最終積層体は約27mmの厚さを有し得ることに留意されたい。   As an indication, it should be noted that each layer 114 may have a thickness of about 0.25 mm and the final laminate may have a thickness of about 27 mm.

さらに、粉体混合物の堆積が終了したら、任意の既知の技法に従ってその圧密化を進めることで、組成勾配を有する物体を得ることができる。図9に示す例では、組立体を操作可能にするため、すなわち、積層体の粉体を乱すおそれを取り除くため、続いて積層体を冷間圧縮する。次に、製造法を、HTCとも称される熱間等方圧縮作業で組立体を緻密化することにより続けるが、本発明の範囲から逸脱することなく、他の技法を用いることができる。この熱間等方圧縮を行うために、圧縮した積層体をまずガス抜きし、積層体が入っている容器120で該積層体を密閉する。次に、熱間等方圧縮を得るため、約1,325℃の温度及び約1,400barの圧力で密閉容器に組立体を入れて、緻密化を得る。   Furthermore, once the powder mixture has been deposited, the compaction can proceed according to any known technique to obtain an object with a composition gradient. In the example shown in FIG. 9, the laminate is subsequently cold-compressed to make the assembly operable, i.e., to eliminate the risk of disturbing the laminate powder. The manufacturing process then continues by densifying the assembly with a hot isotropic compression operation, also referred to as HTC, although other techniques can be used without departing from the scope of the present invention. In order to perform this hot isostatic compression, the compressed laminate is first degassed and the laminate is sealed with a container 120 containing the laminate. Next, to obtain hot isostatic compression, the assembly is placed in a closed vessel at a temperature of about 1,325 ° C. and a pressure of about 1,400 bar to obtain a densification.

上述のように、得られる三次元物体は、基準座標系x,y,zの任意の方向に1つ又は複数の組成勾配を有し得る。これに関して、図10a〜図10cは、xz平面に沿った断面図として、本発明で得ることができる物体を示す。   As described above, the resulting three-dimensional object may have one or more composition gradients in any direction of the reference coordinate system x, y, z. In this regard, FIGS. 10a to 10c show objects that can be obtained with the present invention as cross-sectional views along the xz plane.

これらの図では、色が濃いほど、混合物中の粉体A1の質量比が大きく、色が薄いほど、混合物中の粉体A2の質量比が大きい。したがって、図10a及び図10bは、xz平面において組成勾配が徐々に異なる実施形態を示しているが、図10cの白点は、これとは異なる材料でできた黒色エンベロープ内に組み込まれた球体に相当し得る。   In these figures, the darker the color, the greater the mass ratio of the powder A1 in the mixture, and the lighter the color, the greater the mass ratio of the powder A2 in the mixture. Thus, while FIGS. 10a and 10b show embodiments with gradually different composition gradients in the xz plane, the white dots in FIG. 10c are due to spheres embedded in a black envelope made of a different material. It can be equivalent.

こうして作製した組成勾配を有する物体には、複数の用途が考えられる。こうした用途には、航空機ジェットエンジン、特に原子炉の熱交換器、水蒸気改質器、バイオマス反応器、燃料電池、電解槽等が含まれる。   A plurality of uses can be considered for the object having the composition gradient thus produced. Such applications include aircraft jet engines, particularly reactor heat exchangers, steam reformers, biomass reactors, fuel cells, electrolyzers and the like.

当然ながら、単に非限定的な例として、上述した本発明の当業者は様々な変更を行うことができる。   Of course, those skilled in the art of the present invention described above can make various modifications, merely as a non-limiting example.

Claims (15)

組成勾配を有する物体を形成するために粉体混合物を堆積させる装置(1)であって、
異なる粉体(A1,…,An)のそれぞれを収容するための複数のタンク(R1,…,Rn)と、
該タンク(R1,…,Rn)の下方に配置した粉体ミキサ(30)であり、回転可能に取り付けた混合部材(32)を含み、前記タンクからの前記粉体(A1,…,An)を衝突させるための粉体ミキサ(30)と、
前記タンク(R1,…,Rn)とそれぞれが協働し、該タンクから前記ミキサへ向かって排出される前記粉体の質量流量を調整するようそれぞれを設計した、複数の粉体分配手段(4,6)と、
前記ミキサ(30)の下方に配置して該ミキサに連通させた粉体混合物コレクタ(56)と、
該粉体混合物コレクタ(56)の下方に配置して該粉体混合物コレクタに連通させた粉体混合物ディスペンサ(60)と、
を備える装置。
An apparatus (1) for depositing a powder mixture to form an object having a composition gradient,
A plurality of tanks (R1,..., Rn) for accommodating each of the different powders (A1,..., An);
A powder mixer (30) disposed below the tank (R1,..., Rn), including a mixing member (32) mounted rotatably, the powder (A1,..., An) from the tank A powder mixer (30) for colliding
A plurality of powder distribution means (4) each designed to adjust the mass flow rate of the powder discharged from the tank toward the mixer in cooperation with the tanks (R1,..., Rn). , 6) and
A powder mixture collector (56) disposed below and in communication with the mixer (30);
A powder mixture dispenser (60) disposed below the powder mixture collector (56) and in communication with the powder mixture collector;
A device comprising:
請求項1に記載の装置において、前記回転可能に取り付けた混合部材(32)は、該部材の回転軸線に相当する軸(2)を有する概ね円錐形の第1の粉体衝突面(40)を有することを特徴とする装置。   2. A device according to claim 1, wherein the rotatably mounted mixing member (32) has a generally conical first powder impingement surface (40) having an axis (2) corresponding to the axis of rotation of the member. A device characterized by comprising: 請求項2に記載の装置において、前記ミキサ(30)は、概ね円錐形の第2の粉体衝突面(42)を含み、該第2の粉体衝突面は、前記第1の粉体衝突面(40)との間に前記粉体を通すための概ね円錐形の間隙(44)を形成するために、前記第1の粉体衝突面と同軸上に対向して配設したことを特徴とする装置。   3. The apparatus of claim 2, wherein the mixer (30) includes a generally conical second powder impact surface (42), the second powder impact surface being the first powder impact surface. In order to form a generally conical gap (44) for passing the powder between the first powder collision surface and the surface (40), the first powder collision surface is disposed coaxially. Equipment. 請求項2に記載の装置において、概ね円錐形の前記第1の粉体衝突面(40)は、1つ又は複数の凹部(4,6)を有することを特徴とする装置。   3. A device according to claim 2, characterized in that the generally conical first powder impingement surface (40) has one or more recesses (4, 6). 請求項1〜4のいずれか1項に記載の装置において、前記混合部材(32)は、前記ミキサの案内部品(52)に回転可能に取り付け、該案内部品に、前記粉体混合物コレクタ(56)の上方で該粉体混合物コレクタと連通する1つ又は複数の通過オリフィス(54)を設けたことを特徴とする装置。   5. The device according to claim 1, wherein the mixing member (32) is rotatably attached to a guide part (52) of the mixer, and the powder mixture collector (56) is attached to the guide part. ) And one or more passage orifices (54) in communication with the powder mixture collector. 請求項5に記載の装置において、前記通過オリフィス(54)のそれぞれの画定面の任意の点で、該画定面は、垂直線と40°未満、好ましくは30°未満の角度を形成することを特徴とする装置。   6. The device according to claim 5, wherein at any point of each defining surface of the passage orifice (54), the defining surface forms an angle with the vertical line of less than 40 [deg.], Preferably less than 30 [deg.]. Features device. 請求項1〜6のいずれか1項に記載の装置において、前記粉体混合物コレクタ(56)の画定面(58)の任意の点で、該画定面は、垂直線と40°未満、好ましくは30°未満の角度を形成することを特徴とする装置。   The device according to any one of the preceding claims, wherein at any point of the defining surface (58) of the powder mixture collector (56), the defining surface is less than 40 ° with respect to a vertical line, preferably A device characterized in that it forms an angle of less than 30 °. 請求項1〜7のいずれか1項に記載の装置において、前記分配手段(4,6)の下方で該分配手段と前記ミキサと(30)の間に配置した前記粉体(A1,…,An)のコレクタ(26)をさらに含むことを特徴とする装置。   The device according to any one of claims 1 to 7, wherein the powder (A1, ..., ...) disposed between the distributing means and the mixer (30) below the distributing means (4, 6). An) further comprising a collector (26) of An). 請求項8に記載の装置において、前記粉体(A1,…,An)の前記コレクタ(26)の画定面(28)の任意の点で、該画定面(28)は、垂直線と40°未満、好ましくは30°未満の角度をなすことを特徴とする装置。   9. The apparatus according to claim 8, wherein at any point of the defining surface (28) of the collector (26) of the powder (A1,..., An), the defining surface (28) An apparatus having an angle of less than, preferably less than 30 °. 請求項1〜9のいずれか1項に記載の装置において、前記分配手段(4,6)のそれぞれは、粉体支持要素(14)の振動による粉体送出装置の形態をとることを特徴とする、装置。   10. A device according to any one of the preceding claims, characterized in that each of the distribution means (4, 6) takes the form of a powder delivery device by vibration of the powder support element (14). Do the equipment. 組成勾配を有する物体を形成するための粉体混合物を堆積させる設備(100)であって、空間的移動手段(102)に取り付けた請求項1〜10のいずれか1項に記載の装置(1)を備え、且つ前記移動手段(102)及び前記分配手段(4,6)のそれぞれを制御することができる制御ユニット(104)を備える設備。   11. Apparatus (1) according to any one of the preceding claims, wherein the apparatus (100) for depositing a powder mixture for forming an object having a composition gradient is attached to a spatial movement means (102). And a control unit (104) capable of controlling each of the moving means (102) and the distributing means (4, 6). 請求項11に記載の設備において、前記制御ユニット(104)は、前記分配手段(4,6)のそれぞれを期間Tにわたって制御するために、
該期間Tにわたる、堆積させるべき粉体混合物中の粉体(A1,…,An)の質量比の経時的変化と、
前記混合物中の前記粉体(A1,…,An)の質量比に応じた、堆積後の前記粉体混合物の比重の代表値と、
所与の質量比を有する粉体混合物を得るために前記粉体分配手段に制御を伝送する瞬間から、前記粉体混合物を堆積する瞬間までの間に経過した時間に相当する、前記堆積装置に関連する待ち時間(tl)と、
を考慮することを特徴とする設備。
12. The installation according to claim 11, wherein the control unit (104) controls each of the distribution means (4, 6) over a period T.
Change over time of the mass ratio of the powders (A1,..., An) in the powder mixture to be deposited over the period T;
A representative value of the specific gravity of the powder mixture after deposition according to the mass ratio of the powder (A1,..., An) in the mixture;
The deposition apparatus corresponding to the time elapsed between the moment when control is transmitted to the powder distribution means to obtain a powder mixture having a given mass ratio and the moment when the powder mixture is deposited; The associated waiting time (tl),
Equipment characterized by considering.
請求項11又は12に記載の設備において、前記制御ユニット(104)は、期間Tにわたって前記堆積装置始動手段(102)を制御するために、前記期間Tにわたる粉体混合物ディスペンサ(60)で採用すべき位置(x,y)の経時的変化を考慮することを特徴とする設備。   13. The installation according to claim 11 or 12, wherein the control unit (104) is employed in the powder mixture dispenser (60) over the period T to control the deposition apparatus starting means (102) over the period T. A facility characterized by taking into account changes in power position (x, y) over time. 請求項1〜10のいずれか1項に記載の装置(1)又は請求項11〜13のいずれか1項に記載の設備(100)により組成勾配を有する物体を作製する方法であって、前記粉体混合ディスペンサ(60)を支持体(108)に対して始動させることにより、該支持体(108)上に堆積した少なくとも1つの粉体混合物層(114)の形成から組成勾配を有する物体を作製する方法。   A method for producing an object having a composition gradient with the apparatus (1) according to any one of claims 1 to 10 or the equipment (100) according to any one of claims 11 to 13, comprising: By starting the powder mixing dispenser (60) relative to the support (108), an object having a composition gradient from the formation of at least one powder mixture layer (114) deposited on the support (108). How to make. 請求項14に記載の方法において、前記粉体混合物層(114)を作製するために、前記粉体混合物ディスペンサ(60)を始動させて、前記層を堆積させるべき前記支持体(108)の表面のスイープを行い、前記スイープ中に、分配手段(4,6)の少なくとも一方の制御を変化させることを特徴とする方法。   15. The method of claim 14, wherein in order to produce the powder mixture layer (114), the powder mixture dispenser (60) is started and the surface of the support (108) on which the layer is to be deposited. And a control of at least one of the distribution means (4, 6) is changed during the sweep.
JP2011537982A 2008-11-27 2009-11-26 Apparatus and method for depositing a powder mixture to form an object having a composition gradient Expired - Fee Related JP5738194B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0858065 2008-11-27
FR0858065A FR2938836B1 (en) 2008-11-27 2008-11-27 DEVICE AND METHOD FOR DEPOSITING A MIXTURE OF POWDERS FOR THE FORMATION OF A COMPOSITE GRADIENT OBJECT
PCT/EP2009/065932 WO2010060969A1 (en) 2008-11-27 2009-11-26 Device and method for depositing a powder mixture for forming an object with composition gradients

Publications (2)

Publication Number Publication Date
JP2012509762A true JP2012509762A (en) 2012-04-26
JP5738194B2 JP5738194B2 (en) 2015-06-17

Family

ID=40792728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537982A Expired - Fee Related JP5738194B2 (en) 2008-11-27 2009-11-26 Apparatus and method for depositing a powder mixture to form an object having a composition gradient

Country Status (8)

Country Link
US (1) US9010272B2 (en)
EP (1) EP2367614B1 (en)
JP (1) JP5738194B2 (en)
KR (1) KR20110092279A (en)
CN (1) CN102238999B (en)
FR (1) FR2938836B1 (en)
RU (1) RU2515320C2 (en)
WO (1) WO2010060969A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996628B1 (en) 2012-10-04 2014-12-26 Commissariat Energie Atomique HYDROGEN STORAGE TANK WITH SIMPLIFIED MANUFACTURED HYDRAULIC HYDRONES AND STORAGE DEVICE COMPRISING AT LEAST ONE SUCH TANK
CN102886224A (en) * 2012-10-09 2013-01-23 安徽红星阀门有限公司 Stirring pot
WO2014117097A2 (en) * 2013-01-28 2014-07-31 National Oilwell Varco, L.P. Accurate placement of powders to form optimized polycrystalline diamond cutter elements and cutting tools
DE102014213914A1 (en) * 2014-07-17 2016-01-21 Siemens Aktiengesellschaft Powder switch for mixing
EP3433071B1 (en) * 2016-07-27 2021-01-27 Hewlett-Packard Development Company, L.P. Providing powder in three-dimensional (3d) additive manufacturing
AU2018431621B2 (en) * 2018-07-11 2020-07-23 Edgar Donald Knott A method and apparatus for the manufacture of foamed plaster
CN111871318A (en) * 2020-08-10 2020-11-03 重庆市大足区瑞丰现代农业发展有限公司 Integrated sheep manure collecting and dispersing device with specific multi-material mixing function
CN112893878B (en) * 2021-01-18 2022-11-29 韶关学院 Gradient material powder mixing device and method thereof
CN113333746B (en) * 2021-07-21 2022-12-16 浙江中平粉末冶金有限公司 Stamping equipment for powder metallurgy
DE102022104741A1 (en) * 2022-02-28 2023-09-14 Bredent Gmbh & Co. Kg Device and method for mixing components of a ceramic starting material
CN115401207A (en) * 2022-07-23 2022-11-29 杭州新川新材料有限公司 Apparatus for producing mixed metal powder
CN115091758B (en) * 2022-08-26 2022-11-01 成都新杉宇航科技有限公司 Multi-powder composite powder laying device applied to 3D printer and application method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125357A (en) * 1974-03-22 1975-10-02
US4443109A (en) * 1981-09-21 1984-04-17 Vol-Pro Systems, Inc. Method and apparatus for continuous feeding, mixing and blending
JPS61500306A (en) * 1984-03-15 1986-02-27 ホドソン,ハリ− Method and equipment for producing colloidal mixtures
JPS6187804A (en) * 1984-10-02 1986-05-06 Honda Motor Co Ltd Compaction molding method of powder material
FR2666077A1 (en) * 1990-08-21 1992-02-28 Commissariat Energie Atomique Device for conveying by means of vibrations
JPH0889775A (en) * 1994-09-28 1996-04-09 Mitsubishi Materials Corp Method and device for disintegrating and mixing mixed oxide powder of uranium and plutonium
JPH08257382A (en) * 1995-03-23 1996-10-08 Misawa Ceramics Kk Powdery or granular material mixer
JPH0910572A (en) * 1995-07-03 1997-01-14 Shinko Sellbick:Kk Kneading device
US5913602A (en) * 1996-12-16 1999-06-22 Dynamic Air Inc. On-the-go mixing system
JP2003275555A (en) * 2002-01-15 2003-09-30 Sumitomo Bakelite Co Ltd Mixing method and mixing device for solid and liquid materials
JP2006151770A (en) * 2004-11-30 2006-06-15 Concrete Service:Kk Method for manufacturing regenerated aggregate and apparatus for manufacturing regenerated aggregate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190369A (en) * 1976-10-13 1980-02-26 National Engineering Company Method and apparatus for making molds
SU689739A1 (en) * 1976-10-21 1979-10-05 Предприятие П/Я В-2869 Article metallisation plant
SU900978A1 (en) * 1980-04-11 1982-01-30 Челябинский государственный институт по проектированию металлургических заводов "Челябгипромез" Set for preparing multi-component powder mixtures
JPS62277136A (en) * 1986-05-26 1987-12-02 Hoya Corp Automatic blender
US5148943A (en) * 1991-06-17 1992-09-22 Hydreclaim Corporation Method and apparatus for metering and blending different material ingredients
CA2285154C (en) * 1999-10-05 2004-08-03 Ronald W. T. Birchard Apparatus and method for blending dry materials
RU2191063C1 (en) * 2001-01-31 2002-10-20 Кемеровский технологический институт пищевой промышленности Centrifugal mixer
US6811301B2 (en) * 2002-03-29 2004-11-02 Hydreclaim, Inc. Feeder control system for an automated blender system
FR2838752B1 (en) * 2002-04-22 2005-02-25 Snecma Moteurs METHOD FOR FORMING A CERAMIC COATING ON A SUBSTRATE BY PHYSICAL PHASE DEPOSITION IN ELECTRON BEAM PHASE
WO2004002395A2 (en) * 2002-06-27 2004-01-08 Oriel Therapeutics, Inc. Apparatus, systems and related methods for processing, dispensing and/or evaluating non-pharmaceutical dry powders
FR2862893B1 (en) * 2003-11-28 2006-02-24 Commissariat Energie Atomique DEVICE FOR FILLING A MOLD WITH A POWDER OR A MIXTURE OF POWDERS
DE102007050268B4 (en) * 2007-10-18 2010-01-07 Plast-Control Gmbh Device for metered mixing of pourable material components and plastic processing machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125357A (en) * 1974-03-22 1975-10-02
US4443109A (en) * 1981-09-21 1984-04-17 Vol-Pro Systems, Inc. Method and apparatus for continuous feeding, mixing and blending
JPS61500306A (en) * 1984-03-15 1986-02-27 ホドソン,ハリ− Method and equipment for producing colloidal mixtures
JPS6187804A (en) * 1984-10-02 1986-05-06 Honda Motor Co Ltd Compaction molding method of powder material
FR2666077A1 (en) * 1990-08-21 1992-02-28 Commissariat Energie Atomique Device for conveying by means of vibrations
JPH0889775A (en) * 1994-09-28 1996-04-09 Mitsubishi Materials Corp Method and device for disintegrating and mixing mixed oxide powder of uranium and plutonium
JPH08257382A (en) * 1995-03-23 1996-10-08 Misawa Ceramics Kk Powdery or granular material mixer
JPH0910572A (en) * 1995-07-03 1997-01-14 Shinko Sellbick:Kk Kneading device
US5913602A (en) * 1996-12-16 1999-06-22 Dynamic Air Inc. On-the-go mixing system
JP2003275555A (en) * 2002-01-15 2003-09-30 Sumitomo Bakelite Co Ltd Mixing method and mixing device for solid and liquid materials
JP2006151770A (en) * 2004-11-30 2006-06-15 Concrete Service:Kk Method for manufacturing regenerated aggregate and apparatus for manufacturing regenerated aggregate

Also Published As

Publication number Publication date
EP2367614B1 (en) 2013-12-11
US9010272B2 (en) 2015-04-21
RU2515320C2 (en) 2014-05-10
CN102238999A (en) 2011-11-09
FR2938836A1 (en) 2010-05-28
EP2367614A1 (en) 2011-09-28
US20110262638A1 (en) 2011-10-27
WO2010060969A1 (en) 2010-06-03
KR20110092279A (en) 2011-08-17
RU2011126188A (en) 2013-01-10
FR2938836B1 (en) 2011-09-23
CN102238999B (en) 2013-12-11
JP5738194B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5738194B2 (en) Apparatus and method for depositing a powder mixture to form an object having a composition gradient
Wei et al. 3D printing of multiple metallic materials via modified selective laser melting
Fauchais et al. Understanding of suspension DC plasma spraying of finely structured coatings for SOFC
CN108748975A (en) A kind of nano high-precision increasing material manufacturing equipment
CN108405863A (en) A kind of parallel type metal 3 D-printing forming method based on induction melting
CN108296628B (en) A kind of agitating friction preparation large scale function-graded material method
CN108555301A (en) A kind of Paralleled formula 3 D-printing forming method of large-scale precision metal parts
Yang et al. Recent developments in the research of splat formation process in thermal spraying
Ramachandran et al. Synthesis, spheroidization and spray deposition of lanthanum zirconate using thermal plasma process
CN108015286A (en) High-entropy alloy droplet ejection increasing material manufacturing apparatus and method
Yao et al. Deposition behavior of semi-molten spray particles during flame spraying of porous metal alloy
CN106142571B (en) The ultrasonic droplet ejection increasing material manufacturing device and method of many materials of variable speed
JP6571308B2 (en) Thermal spray material, production method thereof, and thermal spray method
Takagi et al. Preparation of monosized copper micro particles by pulsated orifice ejection method
CN105750550A (en) Digital spray atomization and deposition device
CA2607550A1 (en) Methods and apparatuses for material deposition
CN107761058B (en) Preparation facilities of complex alloy thin film and preparation method thereof
CN102363852B (en) Method for preparing uniform and dense W-Cu composite material with high tungsten content
Song et al. Combinatorial aerosol deposition of bismuth–antimony thermoelectric coatings with tunable composition
CN207681483U (en) High-entropy alloy droplet ejection increasing material manufacturing device
Bidron et al. Flattening behavior of micro-and nano-sized yttria-stabilized zirconia particles plasma-sprayed on smooth preheated (610 K) nickel substrate: part I
CN209022445U (en) A kind of nano high-precision increasing material manufacturing equipment
Yang et al. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism
Cai et al. Preparation of tritium breeding Li2TiO3 ceramic pebbles via newly developed piezoelectric micro‐droplet jetting
CN207435536U (en) The preparation facilities of complex alloy thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees