JP2012508860A - Heat pump cycle system and cold supply method - Google Patents

Heat pump cycle system and cold supply method Download PDF

Info

Publication number
JP2012508860A
JP2012508860A JP2011535857A JP2011535857A JP2012508860A JP 2012508860 A JP2012508860 A JP 2012508860A JP 2011535857 A JP2011535857 A JP 2011535857A JP 2011535857 A JP2011535857 A JP 2011535857A JP 2012508860 A JP2012508860 A JP 2012508860A
Authority
JP
Japan
Prior art keywords
working medium
heat
tank
heat pump
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011535857A
Other languages
Japanese (ja)
Inventor
蘇慶泉
Original Assignee
蘇慶泉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蘇慶泉 filed Critical 蘇慶泉
Publication of JP2012508860A publication Critical patent/JP2012508860A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本発明は、ヒートポンプサイクルシステム及び冷熱供給方法に関する。該ヒートポンプサイクルシステムが作動媒体タンク(40)、吸収溶液タンク(10)及び圧縮式ヒートポンプを含み、前記作動媒体タンク(40)と吸収溶液タンク(10)の上部が気体通路(50)により接続される。前記圧縮式ヒートポンプが圧縮機(30)、凝縮器(11)、スロットルバルブ(20)及び蒸発器(41)によりパイプラインを通じて順次に接続されてなり、前記作動媒体タンク(40)は、その内に作動媒体が充填され、且つ第1の熱交換器(42)が設けられ、前記蒸発器(41)も該作動媒体タンク内に設けられ、前記吸収溶液タンク(10)は、その内に吸収溶液が充填され、且つ第2の熱交換器(12)が設けられ、前記凝縮器(11)も該吸収溶液タンク内に設けられる。該システムが電気、特にオフピーク電気を用いて圧縮式ヒートポンプサイクルを駆動して吸収溶液の再生工程を完成させる。  The present invention relates to a heat pump cycle system and a cold supply method. The heat pump cycle system includes a working medium tank (40), an absorbing solution tank (10), and a compression heat pump. The working medium tank (40) and the upper part of the absorbing solution tank (10) are connected by a gas passage (50). The The compression heat pump is sequentially connected through a pipeline by a compressor (30), a condenser (11), a throttle valve (20) and an evaporator (41), and the working medium tank (40) includes And the first heat exchanger (42) is provided, the evaporator (41) is also provided in the working medium tank, and the absorbing solution tank (10) absorbs the same. The solution is filled and a second heat exchanger (12) is provided, and the condenser (11) is also provided in the absorbing solution tank. The system uses electricity, particularly off-peak electricity, to drive a compression heat pump cycle to complete the absorption solution regeneration process.

Description

この出願は、出願日が2008年11月17日、出願番号が200810226806.7である中国特許出願の優先権を主張する。
本発明は、熱エネルギーエンジニアリング分野の冷熱供給技術、特に、吸収式ヒートポンプと圧縮式ヒートポンプを結合するヒートポンプサイクルシステム及び冷熱供給方法に関する。
This application claims priority of a Chinese patent application with a filing date of November 17, 2008 and an application number of 2008102266806.7.
The present invention relates to a cold energy supply technique in the field of thermal energy engineering, and more particularly, to a heat pump cycle system and a cold energy supply method that combine an absorption heat pump and a compression heat pump.

従来の吸収式ヒートポンプシステムには、吸収溶液が一定条件下で低沸点成分の蒸気を析出でき、また一条件下で低沸点成分の蒸気を強烈に吸収できる特性を利用して冷却又はヒートポンプサイクルを完成させる。通常、吸収式サイクルは二成分の吸収溶液を用い、現場では、低沸点成分を作動媒体と称し、高沸点成分を吸収剤と称し、両者が作動媒体ペアを構成し、普通には水を作動媒体、臭化リチウムを吸収剤とする水−臭化リチウム作動媒体ペアがある。従来の吸収式ヒートポンプシステムは、主として、熱交換器を内設する発生器、熱交換器を内設する凝縮器、熱交換器を内設する蒸発器及び熱交換器を内設する吸収器、並びに補助設備とする吸収溶液自身熱交換器、吸収溶液パンプ及び流量制御器等を含む。発生器と凝縮器が蒸気通路を通じて接続され、蒸発器と吸収器が蒸気通路を通じて接続される。吸収溶液が吸収溶液パイプラインにより発生器と吸収器との間にサイクルを行う。   In conventional absorption heat pump systems, a cooling or heat pump cycle is performed by utilizing the property that the absorbing solution can deposit low boiling point vapor under certain conditions and can absorb low boiling point vapor strongly under one condition. Finalize. Absorption cycles typically use a two-component absorbent solution, and in the field, the low-boiling component is called the working medium, the high-boiling component is called the absorbent, and they both form a working medium pair, usually running water. There is a water-lithium bromide working medium pair with a medium, lithium bromide as an absorbent. A conventional absorption heat pump system mainly includes a generator having a heat exchanger, a condenser having a heat exchanger, an evaporator having a heat exchanger, and an absorber having a heat exchanger, In addition, the absorption solution itself as an auxiliary equipment includes a heat exchanger, an absorption solution pump, a flow rate controller and the like. The generator and the condenser are connected through the vapor passage, and the evaporator and the absorber are connected through the vapor passage. The absorbing solution is cycled between the generator and the absorber by the absorbing solution pipeline.

従来の吸収式ヒートポンプシステムの動作工程は、(1)駆動熱源(例えば水蒸気、熱水及び燃料ガス等)を用いて発生器で吸収器からの、一定濃度を有する臭化リチウム溶液を加熱して、臭化リチウム溶液における水を蒸発し、形成した濃臭化リチウム溶液が吸収器に循環する工程と、(2)水蒸気が蒸気通路を通じて凝縮器に入り、さらに熱交換器における冷却作動媒体により凝縮されて凝縮水になる工程と、(3)該凝縮水が凝縮水パイプラインを通じて蒸発器に入り、熱交換器において作動媒体の熱量を吸収して低圧水蒸気になり、蒸発器に熱交換器における作動媒体の熱量が吸収された後、温度を下げて、これで該吸収式ヒートポンプシステムが外へ出力する冷却量になる工程と、(4)前記低圧水蒸気が蒸気通路を通じて発生器に入り、発生器からの濃臭化リチウム溶液に吸収されて吸収熱を生じるとともに、臭化リチウム溶液の濃度を低減させ、前記吸収熱が吸収器において熱交換器内の冷却作動媒体により連れられて外へ熱を供給し、低濃度の臭化リチウム溶液が発生器に循環する工程とを含む。   The operation process of the conventional absorption heat pump system consists of (1) heating a lithium bromide solution having a constant concentration from an absorber with a generator using a driving heat source (for example, steam, hot water, fuel gas, etc.). Evaporating water in the lithium bromide solution and circulating the formed concentrated lithium bromide solution to the absorber; (2) water vapor enters the condenser through the vapor passage and is further condensed by the cooling working medium in the heat exchanger (3) the condensed water enters the evaporator through the condensed water pipeline, absorbs the amount of heat of the working medium in the heat exchanger and becomes low-pressure steam, and the evaporator in the heat exchanger After the amount of heat of the working medium is absorbed, the temperature is lowered, and thereby the amount of cooling that the absorption heat pump system outputs to the outside, and (4) the low-pressure steam is generated through the steam passage. And absorbed into the concentrated lithium bromide solution from the generator to generate absorption heat and reduce the concentration of the lithium bromide solution, the absorption heat being taken by the cooling working medium in the heat exchanger in the absorber Supplying heat to the outside and circulating a low concentration lithium bromide solution to the generator.

本発明の主な目的は、ヒートポンプサイクルシステム及び冷熱供給方法を提供することにあり、解決する技術問題は、構造を簡単にさせ、該ヒートポンプサイクルシステムの機能係数及び経済性を向上させて、さらに実用に適応することである。   The main object of the present invention is to provide a heat pump cycle system and a cold supply method, and the technical problem to be solved is to simplify the structure, improve the function coefficient and economy of the heat pump cycle system, and It is to adapt to practical use.

本発明の目的及びその技術問題の解決方法は以下の技術方案により実現される。本発明により提出されるヒートポンプサイクルシステムは、作動媒体タンク、吸収溶液タンク及び圧縮式ヒートポンプを含み、前記圧縮式ヒートポンプは圧縮機、凝縮器、スロットルバルブ及び蒸発器がパイプラインにより順次に接続されてなり、前記作動媒体タンクと吸収溶液タンクの上部が気体通路により接続され、前記作動媒体タンクその内に作動媒体が充填され、且つ第1の熱交換器が設けられ、前記蒸発器も該作動媒体タンク内に設けられ、前記吸収溶液タンクその内に吸収溶液が充填され、且つ第2の熱交換器が設けられ、前記凝縮器も該吸収溶液タンク内に設けられる。   The object of the present invention and the solution of the technical problem are realized by the following technical solution. The heat pump cycle system submitted by the present invention includes a working medium tank, an absorbing solution tank, and a compression heat pump, and the compression heat pump includes a compressor, a condenser, a throttle valve, and an evaporator sequentially connected by a pipeline. The upper part of the working medium tank and the absorption solution tank is connected by a gas passage, the working medium tank is filled with the working medium, and a first heat exchanger is provided, and the evaporator is also provided with the working medium. It is provided in a tank, the absorption solution tank is filled with the absorption solution, a second heat exchanger is provided, and the condenser is also provided in the absorption solution tank.

本発明の目的及びその技術問題の解決方法は、更に以下の技術対策により実現される。   The object of the present invention and the solution to the technical problem are further realized by the following technical measures.

前記ヒートポンプサイクルシステムは、吸収溶液サイクルポンプと、吸収溶液噴出装置と、作動媒体サイクルポンプと、作動媒体噴出装置とを含み、前記吸収溶液サイクルポンプが吸収溶液タンクと吸収溶液噴出装置との間に接続され、該サイクルポンプにより前記吸収溶液タンクと吸収溶液噴出装置との間に吸収溶液を循環し、前記作動媒体サイクルポンプが作動媒体タンクと作動媒体噴出装置との間に接続され、該サイクルポンプにより前記作動媒体タンクと作動媒体噴出装置との間に作動媒体を循環し、前記圧縮式ヒートポンプの蒸発器が前記作動媒体タンク内、又は作動媒体サイクル回路、又は第1の熱交換器のサイクル回路に設けられ、前記圧縮式ヒートポンプの凝縮器が前記吸収溶液タンク内、又は吸収溶液サイクル回路、又は第2の熱交換器のサイクル回路に設けられる。   The heat pump cycle system includes an absorption solution cycle pump, an absorption solution ejection device, a working medium cycle pump, and a working medium ejection device, and the absorption solution cycle pump is disposed between the absorption solution tank and the absorption solution ejection device. Connected, and the cycle pump circulates the absorbing solution between the absorbing solution tank and the absorbing solution jetting device, the working medium cycle pump is connected between the working medium tank and the working media jetting device, and the cycle pump Circulates the working medium between the working medium tank and the working medium jetting device, and the evaporator of the compression heat pump is in the working medium tank, or the working medium cycle circuit, or the first heat exchanger cycle circuit. And the compressor of the compression heat pump is disposed in the absorbent solution tank, or in the absorbent solution cycle circuit, or Provided cycle circuit of the second heat exchanger.

前記ヒートポンプサイクルシステムは、その吸収溶液が作動媒体と吸収剤からなり、前記作動媒体が水、アンモニア、メチルアルコール及びエチルアルコールの内の1種又は複数種の物質の混合物であり、前記吸収剤がLiBr、NaBr、KBr、NHBr、MgBr、CaBr、LiI、NaI、KI、NHI、MgI、CaI、LiCl、NaCl、KCl、NHCl、MgCl、CaCl、LiNO、NaNO、KNO、NHNO、Mg(NO及びCa(NOの内の1種又は複数種の物質の混合物であることが好ましい。 In the heat pump cycle system, the absorbing solution is composed of a working medium and an absorbent, and the working medium is a mixture of one or more substances of water, ammonia, methyl alcohol and ethyl alcohol, and the absorbent is LiBr, NaBr, KBr, NH 4 Br, MgBr 2, CaBr 2, LiI, NaI, KI, NH 4 I, MgI 2, CaI 2, LiCl, NaCl, KCl, NH 4 Cl, MgCl 2, CaCl 2, LiNO 3 , NaNO 3 , KNO 3 , NH 4 NO 3 , Mg (NO 3 ) 2 and Ca (NO 3 ) 2 are preferably a mixture of one or more substances.

前記ヒートポンプサイクルシステムは、前記吸収溶液が飽和溶液又は過飽和溶液であることが好ましい。   In the heat pump cycle system, the absorbing solution is preferably a saturated solution or a supersaturated solution.

前記ヒートポンプサイクルシステムは、作動媒体タンク内の第1の熱交換器に熱量を提供するように、太陽熱吸収装置、地熱装置、再生水供給装置及び空気熱交換器の内の少なくとも1種をさらに含むことが好ましい。   The heat pump cycle system further includes at least one of a solar heat absorption device, a geothermal device, a reclaimed water supply device, and an air heat exchanger so as to provide heat to the first heat exchanger in the working medium tank. Is preferred.

本発明の目的及びその技術問題の解決方法は以下の技術方案により実現される。本発明により提出される冷熱供給方法は、前記ヒートポンプサイクルシステムを用い、該方法は、第1の圧力下で、第1の熱交換器内に冷媒が流動しており、第2の熱交換器内に熱媒が流動しており、作動媒体タンク内の作動媒体が冷媒の熱量を吸収して蒸発して気体作動媒体になり、該気体作動媒体が吸収溶液タンクに入り、且つ吸収溶液に吸収されるとともに、吸収熱を放出し、前記冷媒が冷却を供給し、前記熱媒が熱供給する動作工程と、第2の圧力で、前記圧縮式ヒートポンプが始動し、蒸発器により熱量を吸収し、凝縮器により熱量を放出して吸収溶液を加熱して蒸発させて作動媒体蒸気を出し、該作動媒体蒸気が作動媒体タンクに入り、凝縮して液体作動媒体になる再生工程とを含み、前記動作工程と再生工程が交互に行われる。   The object of the present invention and the solution of the technical problem are realized by the following technical solution. The cold supply method submitted by the present invention uses the heat pump cycle system, and the method is such that the refrigerant flows in the first heat exchanger under the first pressure, and the second heat exchanger. The working medium in the working medium tank absorbs the amount of heat of the refrigerant and evaporates to become a gaseous working medium. The gaseous working medium enters the absorbing solution tank and is absorbed by the absorbing solution. At the same time, the compression heat pump is started and the evaporator absorbs the amount of heat by the operation of releasing the absorbed heat, supplying the cooling by the refrigerant, and supplying the heat by the heating medium, and the second pressure. And a regeneration step of releasing heat by the condenser to heat and evaporate the absorbing solution to give working medium vapor, the working medium vapor enters the working medium tank, and condenses into a liquid working medium, Operation process and regeneration process are performed alternately

前記冷熱供給方法は、前記第2の圧力が前記第1の圧力より小さいことが好ましい。   In the cold supply method, it is preferable that the second pressure is smaller than the first pressure.

前記冷熱供給方法は、前記再生工程が圧縮式ヒートポンプの動力としてオフピーク電気を用いることが好ましい。   In the cold supply method, the regeneration step preferably uses off-peak electricity as power for the compression heat pump.

前記冷熱供給方法は、前記第1の圧力が1kPa以上、前記第2の圧力が0.6〜1kPaであることが好ましい。   In the cold supply method, the first pressure is preferably 1 kPa or more and the second pressure is 0.6 to 1 kPa.

前記冷熱供給方法は、前記第1の熱交換器における冷媒が太陽熱吸収装置、地熱装置、再生水供給装置及び空気熱交換器の内の1つ又はそれらの組合から来ることが好ましい。   In the cold heat supply method, it is preferable that the refrigerant in the first heat exchanger comes from one or a combination of a solar heat absorption device, a geothermal device, a reclaimed water supply device, and an air heat exchanger.

本発明は、吸収式ヒートポンプサイクルと圧縮式ヒートポンプサイクルを結合することを特徴とするヒートポンプサイクルシステム及び冷熱供給方法に関する。該ヒートポンプサイクルシステムは、作動媒体タンクと、吸収溶液タンクと、圧縮機と、スロットルバルブとを含み、前記作動媒体タンク内に作動媒体を填充し、且つ第1の熱交換器と蒸発器が設けられ、前記吸収溶液タンク内に吸収溶液を填充し、且つ第2の熱交換器と凝縮器が設けられ、前記作動媒体タンクと吸収溶液タンクの上部が気体通路により接続され、吸収式ヒートポンプサイクル回路を構成し、その作用は、作動媒体が作動媒体タンクでの蒸発吸熱と吸収溶液タンクでの吸収放熱により、前記第1の熱交換器により外部へ冷却量を供給するとともに、前記第2の熱交換器により外部へ熱量を供給する動作工程を完成させることであり、前記圧縮機、凝縮器、スロットルバルブ及び蒸発器が圧縮式ヒートポンプサイクル回路を構成し、その作用は、冷却剤が作動媒体タンクにおける蒸発器で蒸発されて熱量を吸収し、圧縮昇温した後、吸収溶液タンクにおける凝縮器で凝縮されて熱量を放出して吸収溶液タンクにおける吸収溶液を加熱して作動媒体蒸気を生じて、前記作動媒体蒸気がパイプラインを通じて作動媒体タンクに流入して凝縮放熱し、これで溶液を吸収する再生工程を完成させることである。再生工程が動作工程の蒸気圧力より低い条件下で行われることができるため、作動媒体と吸収溶液の飽和蒸気圧と温度の関係(図3)により、再生工程のヒートポンプ温度上昇が動作工程のヒートポンプ温度上昇より小さく、このため、圧縮式ヒートポンプがより小さいヒートポンプ温度上昇下で吸収溶液の濃縮を実現でき、これでより高いエネルギー効率比(COP)を有する。   The present invention relates to a heat pump cycle system and a cold supply method characterized by combining an absorption heat pump cycle and a compression heat pump cycle. The heat pump cycle system includes a working medium tank, an absorbing solution tank, a compressor, and a throttle valve. The working medium tank is filled with the working medium, and a first heat exchanger and an evaporator are provided. An absorption solution is filled in the absorption solution tank, a second heat exchanger and a condenser are provided, and an upper part of the working medium tank and the absorption solution tank is connected by a gas passage, and an absorption heat pump cycle circuit The working medium is configured such that the working medium supplies the cooling amount to the outside by the first heat exchanger due to evaporation heat absorption in the working medium tank and absorption heat radiation in the absorption solution tank, and the second heat. The operation step of supplying heat to the outside by the exchanger is completed, and the compressor, the condenser, the throttle valve and the evaporator constitute a compression heat pump cycle circuit. The effect is that the coolant is evaporated by the evaporator in the working medium tank to absorb the amount of heat, and after the compression temperature rises, it is condensed by the condenser in the absorbing solution tank to release the amount of heat and absorbed in the absorbing solution tank. The solution is heated to generate working medium vapor, and the working medium vapor flows into the working medium tank through the pipeline to condense and dissipate heat, thereby completing the regeneration step of absorbing the solution. Since the regeneration process can be performed under conditions lower than the vapor pressure of the operation process, the heat pump temperature increase of the regeneration process is caused by the relationship between the saturated vapor pressure and the temperature of the working medium and the absorbing solution (FIG. 3). Less than the temperature rise, so the compression heat pump can achieve the concentration of the absorbing solution under a smaller heat pump temperature rise, thus having a higher energy efficiency ratio (COP).

本発明は従来技術に比べて、顕著な利点と有益な効果を有する。以上の技術方案により、本発明のヒートポンプサイクルシステムが従来の吸収式ヒートポンプサイクルシステムに比べて、さらに簡単な構造を有し、これで製造コストを低減できる。また、本発明の再生工程が高いエネルギー効率比(COP)を有し、さらにオフピーク電気で完成できるため、極めて高いエネルギー利用効率と経済性を実現できる。本発明の冷熱供給方法において、再生工程が電気オフピーク時に行われ、電気ピーク時に動作工程のみを行って熱供給及び/又は冷却供給効果を実現でき、これでオフピーク電気を効率に用い、最大ピークを移して最小ロードを補充する作用を果たす。このため、発明が実質にオフピーク電力の高効率エネルギー貯蔵システム及び方法を提供する。   The present invention has significant advantages and beneficial effects over the prior art. According to the above technical scheme, the heat pump cycle system of the present invention has a simpler structure than the conventional absorption heat pump cycle system, which can reduce the manufacturing cost. Moreover, since the regeneration process of the present invention has a high energy efficiency ratio (COP) and can be completed with off-peak electricity, extremely high energy utilization efficiency and economy can be realized. In the cold heat supply method of the present invention, the regeneration process is performed at the time of electrical off-peak, and only the operation process is performed at the time of the electrical peak to realize a heat supply and / or cooling supply effect. It works to replenish the minimum load. Thus, the invention provides a highly efficient energy storage system and method with substantially off-peak power.

前記説明は本発明技術方案の概述のみであり、本発明の技術手段がさらに明らかになり、明細書の内容により実施できるように、以下、本発明の好適な実施例により、図面をあわせて、詳しく説明する。   The above description is only an outline of the technical solution of the present invention, and the technical means of the present invention will become clearer and can be implemented according to the contents of the specification. explain in detail.

図1は、本発明の実施例1のヒートポンプサイクルシステムのフローチャートである。FIG. 1 is a flowchart of the heat pump cycle system according to the first embodiment of the present invention. 図2は、本発明の実施例2のヒートポンプサイクルシステムのフローチャートである。FIG. 2 is a flowchart of the heat pump cycle system according to the second embodiment of the present invention. 図3は、臭化リチウム飽和溶液における水の飽和蒸気圧と温度との関係を示す。FIG. 3 shows the relationship between the saturated vapor pressure of water and the temperature in a saturated lithium bromide solution.

本発明は予定発明目的を達成するために、用いる技術手段と効果を、以下、図面と好適な実施例に合わせて、本発明が提出する吸収溶液再生システム及び熱供給システムの具体的な実施形態、構造、特徴とその効果により、詳細に説明する。   In order to achieve the object of the present invention, the technical means and effects to be used will be described below with reference to the drawings and preferred embodiments. Specific embodiments of the absorbent solution regeneration system and heat supply system submitted by the present invention This will be described in detail with reference to the structure, features, and effects thereof.

図1は本発明の実施例1のヒートポンプサイクルシステムのフローチャートである。該実施例のヒートポンプサイクルシステムは、作動媒体タンク40、吸収溶液タンク10及び圧縮式ヒートポンプを含む。前記圧縮式ヒートポンプが従来技術における方案を用いてもよい。本実施例において、該圧縮式ヒートポンプは圧縮機30、凝縮器11、スロットルバルブ20及び蒸発器41がパイプラインを通じて順次に接続されてなり、該圧縮式ヒートポンプサイクル回路に冷却冷媒が充填されており、好ましくは、用いた冷却冷媒がR134aである。前記作動媒体タンク40は、その内に作動媒体が充填されており、且つ第1の熱交換器42が設けられ、前記蒸発器41も該作動媒体タンク40内に設けられる。該作動媒体タンク40における第1の熱交換器42内の流動冷媒は、作動媒体を蒸発する場合に、作動媒体に熱量を提供し、該冷媒が熱量を放出した後、温度を低減し、これでユーザーに冷却を供給する。前記吸収溶液タンク10は、その内に吸収溶液が充填されており、且つ第2の熱交換器12が設けられ、前記凝縮器11も該吸収溶液タンク内に設けられる。該吸収溶液タンク10における吸収溶液が加熱されて、作動媒体を蒸発する場合に、吸収溶液が濃縮され、吸収溶液が作動媒体蒸気を吸収する際に、吸収溶液が希釈されるとともに吸収熱を放出し、第2の熱交換器12内に熱媒が流動しており、吸収溶液が作動媒体を吸収する際に放出する吸収熱が熱媒に吸収され、熱媒温度が上がった後、吸収溶液タンクから流出し、これでユーザーに熱量を提供する。作動媒体蒸気が作動媒体タンク40と吸収溶液タンク10との間に流動するように、前記作動媒体タンク40と吸収溶液タンク10の上部が気体通路50を通じて接続される。作動媒体タンク40内に充填される作動媒体が水、アンモニア、メチルアルコール及びエチルアルコールの内の1種又は複数種の物質の混合物である。吸収溶液タンク10内の吸収溶液が作動媒体と吸収剤からなり、前記作動媒体が作動媒体タンク内の作動媒体と同一であり、前記吸収剤がLiBr、NaBr、KBr、NHBr、MgBr、CaBr、LiI、NaI、KI、NHI、MgI、CaI、LiCl、NaCl、KCl、NHCl、MgCl、CaCl、LiNO、NaNO、KNO、NHNO、Mg(NO及びCa(NOの内の1種又は複数種の物質の混合物である。本分野の技術者が動作状態の需要により適当な作動媒体と吸収剤を選んでよい。 FIG. 1 is a flowchart of the heat pump cycle system according to the first embodiment of the present invention. The heat pump cycle system of the embodiment includes a working medium tank 40, an absorbing solution tank 10, and a compression heat pump. The compression heat pump may use a method in the prior art. In this embodiment, the compression heat pump is composed of a compressor 30, a condenser 11, a throttle valve 20 and an evaporator 41 sequentially connected through a pipeline, and the compression heat pump cycle circuit is filled with cooling refrigerant. Preferably, the cooling refrigerant used is R134a. The working medium tank 40 is filled with a working medium, a first heat exchanger 42 is provided, and the evaporator 41 is also provided in the working medium tank 40. The flowing refrigerant in the first heat exchanger 42 in the working medium tank 40 provides heat to the working medium when the working medium evaporates, and reduces the temperature after the refrigerant releases heat. To provide cooling to the user. The absorption solution tank 10 is filled with an absorption solution, and a second heat exchanger 12 is provided, and the condenser 11 is also provided in the absorption solution tank. When the absorbing solution in the absorbing solution tank 10 is heated to evaporate the working medium, the absorbing solution is concentrated, and when the absorbing solution absorbs the working medium vapor, the absorbing solution is diluted and releases the heat of absorption. Then, the heat medium is flowing in the second heat exchanger 12, the absorption heat released when the absorption solution absorbs the working medium is absorbed by the heat medium, and the temperature of the heat medium rises. It flows out of the tank, which provides the user with heat. The working medium tank 40 and the upper part of the absorbing solution tank 10 are connected through the gas passage 50 so that the working medium vapor flows between the working medium tank 40 and the absorbing solution tank 10. The working medium filled in the working medium tank 40 is a mixture of one or more substances among water, ammonia, methyl alcohol and ethyl alcohol. The absorbent solution in the absorbent solution tank 10 is composed of a working medium and an absorbent, and the working medium is the same as the working medium in the working medium tank, and the absorbent is LiBr, NaBr, KBr, NH 4 Br, MgBr 2 , CaBr 2, LiI, NaI, KI , NH 4 I, MgI 2, CaI 2, LiCl, NaCl, KCl, NH 4 Cl, MgCl 2, CaCl 2, LiNO 3, NaNO 3, KNO 3, NH 4 NO 3, Mg It is a mixture of one or more substances among (NO 3 ) 2 and Ca (NO 3 ) 2 . Engineers in this field may select the appropriate working medium and absorbent according to the demands of the operating conditions.

吸収溶液の濃度が高いほど吸収が強くなるため、吸収溶液タンク10内の吸収溶液が飽和溶液又は過飽和溶液であることが好ましく、動作工程が終了する場合に吸収溶液タンク10内に依然として吸収剤結晶が存在する。   Since the absorption becomes stronger as the concentration of the absorption solution becomes higher, the absorption solution in the absorption solution tank 10 is preferably a saturated solution or a supersaturated solution, and the absorbent crystals are still present in the absorption solution tank 10 when the operation process is completed. Exists.

図2は本発明の実施例2のヒートポンプサイクルシステムのフローチャートである。本実施例が実施例1に比べて、吸収溶液サイクルポンプ61と噴出器62、及び作動媒体サイクルポンプ71と噴出器72を増設する。前記吸収溶液サイクルポンプ61が吸収溶液タンク10における吸収溶液を噴出器62に輸送する。前記作動媒体サイクルポンプ71が作動媒体タンク40における液体作動媒体を噴出器72に輸送する。本実施例の圧縮式ヒートポンプ凝縮器が吸収溶液サイクルポンプ61と噴出器62との間の連接管路に設けられ、圧縮式ヒートポンプ蒸発器が作動媒体サイクルポンプ71と噴出器72との間の連接管路に設けられる。本実施例の他の形態として、前記圧縮式ヒートポンプの蒸発器41が前記作動媒体タンク40内又は第1の熱交換器42のサイクル回路に設けられてもよく、前記圧縮式ヒートポンプの凝縮器11が前記吸収溶液タンク10内又は第2の熱交換器12のサイクル回路に設けられてもよい。本実施例が作動媒体に熱量を提供する熱源をさらに含み、例えば、太陽熱吸収装置81、地熱装置82、再生水供給装置83及び空気熱交換器が挙げられる。本実施例が前記熱源の内の1つ又は複数の熱源の組合を用いてもよく、これで作動媒体の蒸発に多種の熱源を提供する。   FIG. 2 is a flowchart of the heat pump cycle system according to the second embodiment of the present invention. Compared with the first embodiment, the present embodiment increases the absorption solution cycle pump 61 and the ejector 62, and the working medium cycle pump 71 and the ejector 72. The absorption solution cycle pump 61 transports the absorption solution in the absorption solution tank 10 to the ejector 62. The working medium cycle pump 71 transports the liquid working medium in the working medium tank 40 to the ejector 72. The compression heat pump condenser of the present embodiment is provided in the connection pipe line between the absorbing solution cycle pump 61 and the ejector 62, and the compression heat pump evaporator is connected to the working medium cycle pump 71 and the ejector 72. It is provided in the pipeline. As another form of the present embodiment, the evaporator 41 of the compression heat pump may be provided in the working medium tank 40 or in the cycle circuit of the first heat exchanger 42, and the condenser 11 of the compression heat pump. May be provided in the absorption solution tank 10 or in the cycle circuit of the second heat exchanger 12. The present embodiment further includes a heat source that provides heat to the working medium, and examples include a solar heat absorption device 81, a geothermal device 82, a reclaimed water supply device 83, and an air heat exchanger. This embodiment may use a combination of one or more of the heat sources, thus providing a variety of heat sources for the evaporation of the working medium.

実施例3が実施例2のヒートポンプサイクルシステムを用いる冷熱供給方法であり、主として、動作工程と再生工程を含む。動作工程においてユーザーに冷却量と熱量を提供し、再生工程において吸収溶液を濃縮して次の動作工程に高濃度の吸収溶液と液体作動媒体を提供する。   Example 3 is a cooling / heating supply method using the heat pump cycle system of Example 2, and mainly includes an operation process and a regeneration process. A cooling amount and a heat amount are provided to the user in the operation process, and the absorption solution is concentrated in the regeneration process to provide a high concentration absorption solution and a liquid working medium in the next operation process.

前記動作工程は、システムの作動媒体タンク40と吸収溶液タンク10が第1の圧力下で保持され、第1の熱交換器42内に冷媒が流動しており、第2の熱交換器12内に熱媒が流動する。第1の圧力下で、作動媒体タンク40内の作動媒体が第1の熱交換器内の冷媒の熱量を吸収して蒸発し気体作動媒体になり、冷媒の熱量が吸収され、その温度を低減してからユーザーに輸送され、これでユーザーに冷却を供給する効果を達成する。該気体作動媒体が気体通路50を通じて吸収溶液タンク10に入り、高濃度の吸収溶液に吸収されるとともに、吸収熱を放出する。該吸収熱が第2の熱交換器内の熱媒所に吸収され、熱媒温度が上がった後、ユーザーに輸送され、これでユーザーに熱供給する効果を達成する。作動媒体タンク40内の作動媒体が絶えず蒸発することにより、吸収溶液タンク10内の吸収溶液濃度が絶えず低減し、作動媒体タンク40内の作動媒体がすぐ使い尽くし、又は、吸収溶液の濃度が一定値に低減する場合に、動作工程が停止する。   In the operation step, the working medium tank 40 and the absorbing solution tank 10 of the system are held under the first pressure, the refrigerant flows in the first heat exchanger 42, and the second heat exchanger 12 The heat medium flows in Under the first pressure, the working medium in the working medium tank 40 absorbs the heat quantity of the refrigerant in the first heat exchanger and evaporates to become a gas working medium, and the heat quantity of the refrigerant is absorbed and its temperature is reduced. It is then transported to the user, thereby achieving the effect of supplying cooling to the user. The gas working medium enters the absorption solution tank 10 through the gas passage 50 and is absorbed by the high concentration absorption solution and releases the absorption heat. The absorbed heat is absorbed by the heat medium station in the second heat exchanger, and after the heat medium temperature rises, it is transported to the user, thereby achieving the effect of supplying heat to the user. As the working medium in the working medium tank 40 is constantly evaporated, the concentration of the absorbing solution in the absorbing solution tank 10 is constantly reduced, the working medium in the working medium tank 40 is used up quickly, or the concentration of the absorbing solution is constant. When the value is reduced, the operation process stops.

前記再生工程は、吸収溶液タンク内の吸収溶液濃度を向上させる工程と作動媒体タンク40内の液体作動媒体を増加する工程であり、前記動作工程後の吸収溶液の濃縮と液体作動媒体の貯蔵工程である。該再生工程が吸収溶液タンクにおいて吸収溶液における作動媒体を蒸発し、該作動媒体を作動媒体タンクに転移する工程である。具体的には、圧縮機を始動させ、圧縮式ヒートポンプサイクルを行い、該圧縮式ヒートポンプサイクルが従来技術を用いるため、詳しい説明は省略する。再生工程において、作動媒体タンク40と吸収溶液タンク10が第2の圧力にある。前記圧縮式ヒートポンプサイクルの蒸発器41が作動媒体の熱量を吸収し、作動媒体タンク40内の温度を低減するとともに、圧縮式ヒートポンプサイクルの凝縮器11が吸収溶液に熱量を放出して吸収溶液温度を上げ、これでその中の作動媒体を蒸発して気体になる。気体作動媒体が気体通路50を通じて作動媒体タンク40に入り、温度が低いため、気体作動媒体が液体になる。圧縮式ヒートポンプの動力として電気使用の最初ロード時のオフピーク電気を用いることが好ましい。第2の圧力下で、吸収溶液タンク内の吸収溶液濃度が絶えず高くなり、一定濃度に達するとき、凝縮器が提供した温度が吸収溶液の作動媒体を充分に蒸発できない場合に、作動媒体が転移しなくなり、この時、再生工程が停止する。前記動作工程と再生工程が交互に行われ、電気使用のピーク時に動作工程を行い、電気使用の最初ロード時に再生工程を行うことが好ましく、これでユーザーに冷熱両種エネルギーを提供することと、有効にオフピーク電気を利用することを両立させる。   The regeneration step is a step of increasing the concentration of the absorbing solution in the absorbing solution tank and a step of increasing the liquid working medium in the working medium tank 40, and a step of concentrating the absorbing solution and storing the liquid working medium after the operating step. It is. The regeneration step is a step of evaporating the working medium in the absorbing solution in the absorbing solution tank and transferring the working medium to the working medium tank. Specifically, the compressor is started and a compression heat pump cycle is performed. Since the compression heat pump cycle uses the conventional technology, detailed description is omitted. In the regeneration process, the working medium tank 40 and the absorbing solution tank 10 are at the second pressure. The evaporator 41 of the compression heat pump cycle absorbs the amount of heat of the working medium to reduce the temperature in the working medium tank 40, and the condenser 11 of the compression heat pump cycle releases the amount of heat to the absorbing solution to absorb the temperature of the absorbing solution. And the working medium in it is evaporated into a gas. Since the gas working medium enters the working medium tank 40 through the gas passage 50 and the temperature is low, the gas working medium becomes liquid. It is preferable to use off-peak electricity at the first load of electricity use as power for the compression heat pump. Under the second pressure, when the concentration of the absorbing solution in the absorbing solution tank constantly increases and reaches a certain concentration, the working medium is transferred if the temperature provided by the condenser cannot evaporate the working medium of the absorbing solution sufficiently. At this time, the regeneration process is stopped. It is preferable that the operation process and the regeneration process are alternately performed, the operation process is performed at the peak of electricity use, and the regeneration process is performed at the first load of electricity use, thereby providing the user with both kinds of cold energy, Use both off-peak electricity effectively.

本実施例において、吸収剤として臭化リチウムを用い、作動媒体として水を用いる。好ましくは、前記第2の圧力が前記第1の圧力より小さく、第1の圧力が1kPaより大きく、第2の圧力が0.6〜1kPaである。   In this embodiment, lithium bromide is used as the absorbent and water is used as the working medium. Preferably, the second pressure is lower than the first pressure, the first pressure is higher than 1 kPa, and the second pressure is 0.6 to 1 kPa.

図3は、上部の曲線が臭化リチウム飽和溶液における飽和蒸気圧と温度の関係曲線であり、下部の曲線が水の飽和蒸気圧と温度の関係曲線である。図3に示すように、0.6kPa付近の第2の圧力下で再生工程を行う場合に、吸収溶液に51℃より高い熱量を提供するとともに、作動媒体に0℃に接近する冷却量を提供すれば、吸収溶液タンクにおける吸収溶液が飽和溶液状態下で絶えず作動媒体を蒸発し、気体作動媒体が作動媒体タンクで絶えず凝縮するようになり、前記熱源と冷源が圧縮式ヒートポンプにより循環するとともに提供されることができる。   In FIG. 3, the upper curve is a relationship curve between saturated vapor pressure and temperature in a lithium bromide saturated solution, and the lower curve is a relationship curve between saturated vapor pressure of water and temperature. As shown in FIG. 3, when the regeneration process is performed under a second pressure near 0.6 kPa, the absorbing solution is provided with a heat amount higher than 51 ° C. and the working medium is provided with a cooling amount approaching 0 ° C. Then, the absorbing solution in the absorbing solution tank constantly evaporates the working medium in a saturated solution state, the gas working medium is constantly condensed in the working medium tank, and the heat source and the cold source are circulated by the compression heat pump. Can be offered.

再生工程が終了した後、4.5kPa付近の第1の圧力下で動作工程を行う場合に、作動媒体タンクにおける作動媒体が32℃付近に蒸発して冷却量を放出し、吸収溶液タンクにおける飽和吸収溶液が100℃付近に作動媒体を吸収して熱量を放出し、この時、2つのタンク間の温差が68℃である。即ち、本実施例が51℃の温度上昇下で再生工程を行い、68℃の温度上昇下で動作工程を行うことができる。温度上昇が小さいほど、圧縮式ヒートポンプのエネルギー消耗が低くなるため、本発明を用いる方法が、動作温度の上昇が一定である条件下で、圧縮式ヒートポンプがより小さい温度上昇下で動作するようになり、これでシステムのエネルギー利用効率を向上させる。具体的な動作工程と再生工程の圧力について、本分野の技術者が前記実施例と図3において2本の曲線関係を参照し、具体的な冷熱要求に応じて適切に選んでよい。   When the operation process is performed under the first pressure of about 4.5 kPa after the regeneration process is completed, the working medium in the working medium tank evaporates to around 32 ° C. to release the cooling amount, and the absorption solution tank is saturated. The absorbing solution absorbs the working medium in the vicinity of 100 ° C. and releases heat. At this time, the temperature difference between the two tanks is 68 ° C. That is, in this embodiment, the regeneration process can be performed at a temperature increase of 51 ° C., and the operation process can be performed at a temperature increase of 68 ° C. The smaller the temperature rise, the lower the energy consumption of the compression heat pump, so that the method using the present invention allows the compression heat pump to operate under a smaller temperature rise under conditions where the increase in operating temperature is constant. This improves the energy utilization efficiency of the system. A specific operation process and regeneration process pressure may be appropriately selected by an engineer in this field by referring to the relationship between the two curves in the above-described embodiment and FIG.

以上は、本発明の好適な実施例のみであり、本発明に対する任意形式の限定ではなく、本発明では好適な実施形態を前述の通り開示したが、これは本発明を限定するものではなく、当該分野の技術を熟知しているものであれば、本発明の技術方案を離脱しない範囲内で、前記技術内容により多少の変動や修正を加えることが等同変化の等効実施例と見なされ、本発明技術方案の内容を離脱しない限り、本発明の技術により実質に以上実施例に対していずれかの簡単な修正や等同変化や修飾をしても、いずれも本発明技術方案の範囲に属する。   The above are only preferred embodiments of the present invention, and are not limited to any form of the present invention. The present invention discloses preferred embodiments as described above, but this is not intended to limit the present invention. As long as they are familiar with the technology in the field, within the scope not departing from the technical solution of the present invention, it is regarded as an equivalent embodiment of the same change, such as adding some variation or correction depending on the technical content, As long as the contents of the technical scheme of the present invention are not departed, any simple modifications, changes and modifications to the embodiments by the technology of the present invention will substantially fall within the scope of the technical scheme of the present invention. .

本発明のヒートポンプサイクルシステムが従来の吸収式ヒートポンプサイクルシステムに比べて、さらに簡単な構造を有するため、製造コストを低減できる。また、本発明の再生工程がより高いエネルギー効率比(COP)を有し、またオフピーク電気を用いて完成させるため、極めて高いエネルギー利用効率と経済性を実現できる。本発明の冷熱供給方法において、再生工程を電気使用の最初ロード時に行い、電気使用のピーク時に動作工程のみを行って、熱供給及び/又は冷却供給効果を実現できるため、有効にオフピーク電気を利用でき、最大ピークを移して最小ロードを補充する作用を果たす。このため、発明が実質にオフピーク電気の高効果エネルギー貯蔵システム及び方法も提供する。   Since the heat pump cycle system of the present invention has a simpler structure than the conventional absorption heat pump cycle system, the manufacturing cost can be reduced. In addition, since the regeneration process of the present invention has a higher energy efficiency ratio (COP) and is completed using off-peak electricity, extremely high energy utilization efficiency and economy can be realized. In the cold energy supply method of the present invention, the regeneration process can be performed at the initial load of electricity use, and only the operation process can be performed at the peak of electricity use to realize the effect of heat supply and / or cooling supply, so that off-peak electricity is effectively used. It is possible to shift the maximum peak and replenish the minimum load. Thus, the invention also provides a substantially off-peak electricity high effect energy storage system and method.

Claims (9)

作動媒体タンク、吸収溶液タンク及び圧縮式ヒートポンプを含み、前記作動媒体タンクと吸収溶液タンクの上部が気体通路により接続され、
前記圧縮式ヒートポンプが圧縮機、凝縮器、スロットルバルブ及び蒸発器によりパイプラインを通じて接続してなり、
前記作動媒体タンクは、その内に作動媒体が充填され、第1の熱交換器が設けられ、前記蒸発器も前記作動媒体タンク内に設けられ、
前記吸収溶液タンクは、その内に吸収溶液が充填され、且つ第2の熱交換器が設けられ、前記凝縮器も前記吸収溶液タンク内に設けられていることを特徴とするヒートポンプサイクルシステム。
A working medium tank, an absorbing solution tank, and a compression heat pump, wherein the working medium tank and the upper part of the absorbing solution tank are connected by a gas passage;
The compression heat pump is connected through a pipeline by a compressor, a condenser, a throttle valve and an evaporator,
The working medium tank is filled with a working medium, a first heat exchanger is provided, and the evaporator is also provided in the working medium tank,
A heat pump cycle system, wherein the absorption solution tank is filled with an absorption solution, a second heat exchanger is provided, and the condenser is also provided in the absorption solution tank.
吸収溶液サイクルポンプと吸収溶液噴出装置、及び作動媒体サイクルポンプと作動媒体噴出装置をさらに含み、前記吸収溶液サイクルポンプが吸収溶液タンクと吸収溶液噴出装置との間に接続され、前記サイクルポンプにより前記吸収溶液タンクと吸収溶液噴出装置との間に吸収溶液を循環し、前記作動媒体サイクルポンプが作動媒体タンクと作動媒体噴出装置との間に接続され、前記サイクルポンプにより前記作動媒体タンクと作動媒体噴出装置との間に作動媒体を循環し、
前記圧縮式ヒートポンプの蒸発器が前記作動媒体タンク内又は作動媒体サイクル回路又は第1の熱交換器のサイクル回路に設けられ、前記圧縮式ヒートポンプの凝縮器が前記吸収溶液タンク内又は吸収溶液サイクル回路又は第2の熱交換器のサイクル回路に設けられることを特徴とする請求項1に記載のヒートポンプサイクルシステム。
An absorbent solution cycle pump and an absorbent solution jetting device; and a working medium cycle pump and a working media jet device, wherein the absorbent solution cycle pump is connected between the absorbent solution tank and the absorbent solution jetting device, and the cycle pump An absorbing solution is circulated between the absorbing solution tank and the absorbing solution ejection device, and the working medium cycle pump is connected between the working medium tank and the working medium ejection device, and the working medium tank and the working medium are connected by the cycle pump. Circulate the working medium between the jetting device and
The evaporator of the compression heat pump is provided in the working medium tank or the working medium cycle circuit or the cycle circuit of the first heat exchanger, and the condenser of the compression heat pump is provided in the absorbing solution tank or the absorbing solution cycle circuit. Or it is provided in the cycle circuit of a 2nd heat exchanger, The heat pump cycle system of Claim 1 characterized by the above-mentioned.
前記吸収溶液が作動媒体と吸収剤からなり、前記作動媒体が水、アンモニア、メチルアルコール及びエチルアルコールの内の1種又は複数種の物質の混合物であり、前記吸収剤がLiBr、NaBr、KBr、NHBr、MgBr、CaBr、LiI、NaI、KI、NHI、MgI、CaI、LiCl、NaCl、KCl、NHCl、MgCl、CaCl、LiNO、NaNO、KNO、NHNO、Mg(NO及びCa(NOの内の1種又は複数種の物質の混合物であることを特徴とする請求項1又は2に記載のヒートポンプサイクルシステム。 The absorbent solution is composed of a working medium and an absorbent, and the working medium is a mixture of one or more of water, ammonia, methyl alcohol and ethyl alcohol, and the absorbent is LiBr, NaBr, KBr, NH 4 Br, MgBr 2 , CaBr 2 , LiI, NaI, KI, NH 4 I, MgI 2 , CaI 2 , LiCl, NaCl, KCl, NH 4 Cl, MgCl 2 , CaCl 2 , LiNO 3 , NaNO 3 , KNO 3 3. The heat pump cycle system according to claim 1, wherein the heat pump cycle system is a mixture of one or a plurality of substances among NH 4 NO 3 , Mg (NO 3 ) 2 and Ca (NO 3 ) 2 . 前記吸収溶液が飽和溶液又は過飽和溶液であることを特徴とする請求項1又は2に記載のヒートポンプサイクルシステム。 The heat pump cycle system according to claim 1 or 2, wherein the absorption solution is a saturated solution or a supersaturated solution. 作動媒体タンク内の第1の熱交換器に熱量を提供するように、太陽熱吸収装置、地熱装置、再生水供給装置及び空気熱交換器の内の少なくとも1種をさらに含むことを特徴とする請求項1〜4のいずれかに記載のヒートポンプサイクルシステム。 The apparatus further comprises at least one of a solar heat absorption device, a geothermal device, a reclaimed water supply device, and an air heat exchanger so as to provide heat to the first heat exchanger in the working medium tank. The heat pump cycle system in any one of 1-4. 冷熱供給方法であって、請求項1〜5のいずれかに記載のヒートポンプサイクルシステムを用い、前記方法が、
第1の圧力下で、第1の熱交換器内に冷媒が流動しており、第2の熱交換器内に熱媒が流動しており、作動媒体タンク内の作動媒体が冷媒の熱量を吸収し蒸発して気体作動媒体になり、前記気体作動媒体が吸収溶液タンクに入り、吸収溶液に吸収されるとともに、吸収熱を放出し、前記冷媒が冷却を供給し、前記熱媒が熱供給する動作工程と、
第2の圧力下で、前記圧縮式ヒートポンプを始動させ、蒸発器により熱量を吸収し、凝縮器により熱量を放出して吸収溶液を加熱して作動媒体蒸気を蒸発するようになり、前記作動媒体蒸気が作動媒体タンクに入り、凝縮して液体作動媒体になる再生工程とを含み、
前記動作工程と再生工程が交互に行われることを特徴とする冷熱供給方法。
A cold heat supply method using the heat pump cycle system according to any one of claims 1 to 5, wherein the method is:
Under the first pressure, the refrigerant flows in the first heat exchanger, the heat medium flows in the second heat exchanger, and the working medium in the working medium tank reduces the amount of heat of the refrigerant. Absorbs and evaporates to become a gas working medium, the gas working medium enters the absorbing solution tank and is absorbed by the absorbing solution, releases absorbed heat, the refrigerant supplies cooling, and the heating medium supplies heat An operation process to
Under the second pressure, the compression heat pump is started, the amount of heat is absorbed by the evaporator, the amount of heat is discharged by the condenser, and the absorbing solution is heated to evaporate the working medium vapor. A regeneration process wherein the vapor enters the working medium tank and condenses into a liquid working medium,
The method for supplying cold heat, wherein the operation step and the regeneration step are performed alternately.
前記第2の圧力が前記第1の圧力より小さいことを特徴とする請求項6に記載の冷熱供給方法。 The method according to claim 6, wherein the second pressure is smaller than the first pressure. 再生工程は圧縮式ヒートポンプの動力としてオフピーク電気を用いることを特徴とする請求項6に記載の冷熱供給方法。 The method according to claim 6, wherein off-peak electricity is used as power for the compression heat pump in the regeneration step. 前記第1の圧力が1kPaより大きくて、前記第2の圧力が0.6〜1kPaであることを特徴とする請求項6に記載の冷熱供給方法。 The method according to claim 6, wherein the first pressure is greater than 1 kPa, and the second pressure is 0.6 to 1 kPa.
JP2011535857A 2008-11-17 2009-11-17 Heat pump cycle system and cold supply method Pending JP2012508860A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810226806.7 2008-11-17
CN2008102268067A CN101737996B (en) 2008-11-17 2008-11-17 Heat pump circulating system and cooling/heating united supply method
PCT/CN2009/001276 WO2010054537A1 (en) 2008-11-17 2009-11-17 Heat pump cycle system and combined supplying method of cold and heat

Publications (1)

Publication Number Publication Date
JP2012508860A true JP2012508860A (en) 2012-04-12

Family

ID=42169607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011535857A Pending JP2012508860A (en) 2008-11-17 2009-11-17 Heat pump cycle system and cold supply method

Country Status (4)

Country Link
US (1) US20110214435A1 (en)
JP (1) JP2012508860A (en)
CN (2) CN101737996B (en)
WO (1) WO2010054537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067299A (en) * 2015-09-14 2017-04-06 クラフトワーク株式会社 Cold/hot heat generation device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160123632A1 (en) * 2008-04-30 2016-05-05 Honeywell International Inc. Absorption refrigeration cycles using a lgwp refrigerant
DE102011105742A1 (en) * 2011-06-24 2012-12-27 Viessmann Werke Gmbh & Co Kg Periodic sorption device
CN102778070B (en) * 2012-05-31 2015-04-01 苟仲武 Absorption-type refrigerating system and method
CN102755760A (en) * 2012-07-16 2012-10-31 清华大学 Freezing-based solution regeneration method and device
CN103090582B (en) * 2013-02-04 2015-10-28 清华大学 The absorption energy storage equipment of a kind of boosting type three-phase
CN103322655B (en) * 2013-07-10 2015-09-09 李志东 New and effective energy ladder uses closed cycle central air conditioner system
JP5935232B2 (en) 2013-07-17 2016-06-15 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN106524578B (en) * 2016-12-16 2022-09-09 北京联力源科技有限公司 Absorption type energy storage system, energy supply system and method
CN108815867A (en) * 2018-08-01 2018-11-16 相城区黄桥宜智机电技术服务部 A kind of honey thickener with compression heat pump
CN115077129A (en) * 2021-03-11 2022-09-20 香港城市大学 Enhanced multi-mode multi-effect absorption type energy storage and release device and operation method thereof
CN114592930B (en) * 2022-03-07 2023-07-21 天津中德应用技术大学 Small ORC power generation and heat pump integrated modular experimental device and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129172A (en) * 1982-01-29 1983-08-02 株式会社日立製作所 Cooling facility
FR2548340B1 (en) * 1983-07-01 1986-03-21 Elf Aquitaine THREE-PHASE HEAT PUMP
FR2670570B1 (en) * 1990-12-14 1994-03-18 Commissariat A Energie Atomique WORKING FLUID FOR ABSORPTION HEAT PUMPS OPERATING AT VERY HIGH TEMPERATURES.
JPH06201216A (en) * 1992-12-28 1994-07-19 Mitsui Eng & Shipbuild Co Ltd Absorption/compression hybrid refrigerating machine
CN2274321Y (en) * 1996-01-18 1998-02-11 常州能源设备总厂 Absorption-booster-pump type refrigerator
JPH11264625A (en) * 1999-01-18 1999-09-28 Hitachi Ltd Cold water making device and refrigeration capacity control method thereof
JP2004138316A (en) * 2002-10-17 2004-05-13 Tokyo Gas Co Ltd Combined refrigeration device
CN100575822C (en) * 2003-06-12 2009-12-30 上海交通大学 Composite solar refrigerating equipment
EP1621827A1 (en) * 2004-07-30 2006-02-01 SFT Services SA Absorption cooling system of a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067299A (en) * 2015-09-14 2017-04-06 クラフトワーク株式会社 Cold/hot heat generation device

Also Published As

Publication number Publication date
CN101737996A (en) 2010-06-16
US20110214435A1 (en) 2011-09-08
CN102216702B (en) 2012-11-21
WO2010054537A1 (en) 2010-05-20
CN101737996B (en) 2012-02-01
CN102216702A (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP2012508860A (en) Heat pump cycle system and cold supply method
KR101280519B1 (en) Rankine cycle system for ship
WO2009094897A1 (en) Absorptive heat pump system and heating method
Gao et al. An air-source hybrid absorption-compression heat pump with large temperature lift
US20180172320A1 (en) Multi-stage plate-type evaporation absorption cooling device and method
JP2004044848A (en) Cooling system
JPH09512332A (en) Absorption cooling device and method
CN102305494A (en) Absorption-type chemical energy storage device containing crystals
JP2011089722A (en) Method and device for refrigeration/air conditioning
JPH0252962A (en) Method and device for generating cold heat
CN103090593A (en) Heat pump cycle system, heat pump cycle method and vaporization system
WO1997040327A1 (en) Compression absorption heat pump
KR200445537Y1 (en) Hybrid Absoption Cooling System
JP6232251B2 (en) Absorption type hot and cold water system
JP5384072B2 (en) Absorption type water heater
KR20120103100A (en) Hybrid absorption type air conditioning system
KR102165443B1 (en) Absoption chiller
US20160209090A1 (en) Microemulsion-enabled heat transfer
CN202361696U (en) Heat pump circulating system and evaporation system
JP2007322028A (en) Absorption type refrigerating system
KR101949679B1 (en) Refrigeration system of recycling wasted heat type
CN102734979A (en) Solar absorption refrigeration system
US11466189B2 (en) Absorption cycle apparatus and related method
KR101342378B1 (en) Absorption type chiller-heater
CN101832678B (en) Absorbent solution circulating system and method