JP2012255640A - Cooling method and implement, and device for the same - Google Patents

Cooling method and implement, and device for the same Download PDF

Info

Publication number
JP2012255640A
JP2012255640A JP2011201122A JP2011201122A JP2012255640A JP 2012255640 A JP2012255640 A JP 2012255640A JP 2011201122 A JP2011201122 A JP 2011201122A JP 2011201122 A JP2011201122 A JP 2011201122A JP 2012255640 A JP2012255640 A JP 2012255640A
Authority
JP
Japan
Prior art keywords
heat
contact
freezer
freezing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011201122A
Other languages
Japanese (ja)
Inventor
Masato Kino
正人 木野
Akio Shimizu
昭夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUYA Corp KK
Original Assignee
MITSUYA Corp KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUYA Corp KK filed Critical MITSUYA Corp KK
Priority to JP2011201122A priority Critical patent/JP2012255640A/en
Publication of JP2012255640A publication Critical patent/JP2012255640A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact freezer capable of freezing a filet or lump of fish meat in a roller or a tray to be of favorable quality although a conventional contact freezer has been mainly used for freezing a processed food formed into a regular hexahedron or a rectangular parallelpiped providing a high contact rate.SOLUTION: A high contact rate can be obtained even by an infinite fish meat by forming a water layer on the surface to drive out the air in the gap formed with a heat absorbing plate. A structure is employed in which an alcohol water solution which keeps direct contact with the rear surface of the heat absorbing plate, a heat radiation fin extended in the thickness direction, and a balloon which includes air to contact with the lower end of the fin are provided, thereby allowing the utilization of the latent heat of the fusion of ice at a freezing point because of an alcohol concentration. Consequently, a heat capacity can be sufficiently increased even by a small metal plate, and furthermore, the ice can be melted down to the lower part of a cold storage material because of the heat radiation fin. In addition, since the air in the balloon absorbs the amount of an increase in volume when freezing a water solution, the cold storage material can be sealed up in a container. An object can be freezed in favorable quality by a large cold heat amount and low thermal resistance in a stable and a uniform manner.

Description

冷却に関する技術分野。  Technical fields related to cooling.

現在、接触凍結器は立方体や直方体に成形された加工食品の冷凍に用いられている。しかし肉や魚など不規則な形状の食品の冷凍には、吸熱板に接触する面積を表面積で除した接触率が低いため接触凍結器はほとんど用いられていない。従来接触凍結法では、接触させる薄い吸熱板に接触させた管内に冷媒を循環させて吸熱板を−50℃付近にして被凍結物を包装なしで直接接触させて凍結させている。また同様に家庭用で、冷凍室の凍結用プレート裏面に蓄冷材を設けて接触凍結の効果を利用するものもある。また、特許文献1では、冷蔵室用蒸発器の除霜時の融解潜熱を用いて冷凍室の蒸発器からの冷媒の凝縮を行うことが記されている。また、特許文献2には蓄冷剤を冷凍室内に保持する手段が開示されている。  At present, contact freezers are used for freezing processed foods that have been formed into cubes or cuboids. However, the contact freezer is rarely used for freezing irregularly shaped foods such as meat and fish because the contact ratio obtained by dividing the area contacting the endothermic plate by the surface area is low. In the conventional contact freezing method, a refrigerant is circulated in a tube brought into contact with a thin heat absorption plate to be brought into contact with the heat absorption plate at around -50 ° C., and the object to be frozen is directly brought into contact without packaging and frozen. Similarly, some households use a contact freezing effect by providing a cold storage material on the back surface of the freezing plate in the freezer compartment. Patent Document 1 describes that the refrigerant is condensed from the evaporator in the freezer compartment using the latent heat of fusion at the time of defrosting the evaporator for the refrigerator compartment. Patent Document 2 discloses means for holding a regenerator in a freezer compartment.

特開2008−45847号 公報  JP 2008-45847 A 特開2010−43830号 公報  JP 2010-43830 A

従来の家庭や飲食店用の冷凍庫で品質の良い冷凍を少ない電気使用量で安価に実現できる手段が求められている。  There is a demand for means that can realize freezing with high quality at low cost with a small amount of electricity used in a conventional freezer for homes and restaurants.

第一の手段では、金属製の吸熱板を設けた接触凍結器であって、被凍結物またはその包装手段表面が乾燥しているものには表層に薄い液層を形成させ、表面に薄い液層を有した被凍結物またはその包装手段表面を被凍結物水分量の凝固熱量以上の冷熱容量を有した吸熱板に接触させて凍結させることを特徴とする。  The first means is a contact freezer provided with a metal endothermic plate, in which a thin liquid layer is formed on the surface of the object to be frozen or the surface of the packaging means is dry, and a thin liquid is formed on the surface. The object to be frozen having a layer or the surface of the packaging means is brought into contact with an endothermic plate having a cooling capacity equal to or greater than the heat of solidification of the amount of water to be frozen to be frozen.

接触凍結器の汎用性が低い最大の理由は、食品の形状が不定形で吸熱板への接触率が低いためと、食品を包装して冷凍する場合が多く、その際、食品の包装手段である樹脂フィルムの熱抵抗が大きいため充分な速度で冷却することができないためである。しかし、本来金属製の吸熱板は氷に比較して充分に熱抵抗が低いため、吸熱側の冷熱容量が被凍結物の凍結に必要な熱量よりも充分大きい場合、接触率を考慮しなければ他の冷却方法に比べて最も速い速度で冷却することができる。肉や魚肉等の食品は弾力性があり、平坦な吸熱板上に置くと吸熱板に沿って変形する。しかし、食品の表面が乾燥している場合は、吸熱板と食品の間隙に空気層ができて実質の接触率を極端に低下させる。そこで、凍結時には包装手段なしで凍結するか、非常に薄い樹脂フィルムで包装するか、或いは金属箔で包装して食品や包装の表面に厚みの薄い水や食塩水や油などの液層を形成させることで食品・吸熱板間隙の空気を追い出して高い接触率を確保できる。また、食品を直接吸熱板に接触させる時に表層の水層が薄すぎると吸熱板に食品がくっついて、剥がす時に食品を損傷する可能性がある。しかし水層を適度に厚くすることで食品表面を保護することができる。  The main reason for the low versatility of contact freezers is that the shape of the food is indeterminate and the contact rate with the endothermic plate is low, and often the food is packaged and frozen. This is because a certain resin film has a large thermal resistance and cannot be cooled at a sufficient speed. However, since the heat absorption plate made of metal is sufficiently low in heat resistance compared to ice, if the heat capacity on the heat absorption side is sufficiently larger than the amount of heat necessary for freezing the object to be frozen, the contact rate must be considered. Cooling can be performed at the fastest speed compared to other cooling methods. Foods such as meat and fish are elastic, and when placed on a flat endothermic plate, they deform along the endothermic plate. However, when the surface of the food is dry, an air layer is formed in the gap between the heat absorbing plate and the food, and the actual contact rate is extremely lowered. Therefore, when freezing, it is frozen without packaging means, wrapped with a very thin resin film, or wrapped with metal foil to form a thin layer of water, saline solution, oil, etc. on the surface of food or packaging As a result, the air in the gap between the food and the heat absorbing plate can be expelled to ensure a high contact rate. In addition, if the surface water layer is too thin when food is brought into direct contact with the endothermic plate, the food may stick to the endothermic plate and damage the food when peeled off. However, the food surface can be protected by appropriately thickening the water layer.

第二の手段では、金属製吸熱板裏面に直接接する氷点降下作用のある溶液からなる蓄冷材を設け、吸熱板裏面に厚み方向に伸びる放熱フィンを設けたことを特徴とする。  The second means is characterized in that a cold storage material made of a solution having a freezing point depressing action is provided in direct contact with the metal heat-absorbing plate back surface, and heat-radiating fins extending in the thickness direction are provided on the heat-absorbing plate back surface.

従来の凍結用プレートに蓄冷材(蓄冷剤が入った容器)を貼付けたものは、蓄冷剤を隔離するために金属プレートと蓄冷剤の間に樹脂容器を使用しており、熱抵抗が大きく充分な効果を得ることができない。その理由として食品の凍結は、通常は表面から凍結して氷が内部へ進行する。該プレートの場合、食品・金属プレート・樹脂容器・蓄冷剤で構成され、食品の中心部は凍結開始後常に既凍結の表層の氷を通じて熱の移動を行うため、食品・蓄冷剤間の熱伝達媒体の熱伝達率が食品表層氷の熱伝達率未満であると、熱の移動は高次遅れの熱時定数をもつこととなり、金属プレートの熱容量が小さい場合は、食品を吸熱する速度は樹脂容器壁の熱伝達率で律速される。但し、ここで述べる熱容量または冷熱容量とは、比重と比熱と温度差の積である。また、熱時定数は、熱容量と熱抵抗(熱伝達率と表面積の積の逆数)の積である。そこで、充分大きな熱容量をもった熱抵抗の小さい凍結プレートが望まれている。この課題を解決するためには、金属プレート部の熱容量を十分大きくするという方法もあるが、食品に含まれる水分の潜熱は大きく、家庭用冷蔵庫の冷凍室温度では凍結温度との温度差が小さいために、金属板の重量が非常に大きいものになってしまう。そこで、氷点降下作用がある溶液を凍結させて蓄冷剤とし、その融解潜熱を利用することで全体の重量を大幅に低減できる。さらに、該溶液は0℃未満でできるだけ低い温度で凍結するように濃度調製されているため、純水とは異なり溶液温度による比重変化の特異性がなく、上面から吸熱させて氷を融解させる場合は、氷が壁面に付着している場合が多く、下部壁面に付着した氷を対流による熱伝達で融解させることができない。純水を用いると融解時に対流が発生するが、融解温度は0℃であり、食品の平均的な凍結温度の−2℃以下にはできないため凍結のための吸熱剤として使用できない。この課題は、厚み方向に放熱フィンを配置することで解決できた。  A conventional freezing plate with a cold storage material (container containing a cold storage agent) uses a resin container between the metal plate and the cold storage agent to isolate the cold storage agent and has a large thermal resistance. Can not get a good effect. The reason for this is that food is usually frozen from the surface, and ice progresses to the inside. In the case of the plate, it is composed of food, metal plate, resin container, and cold storage agent, and the center of the food always transfers heat through the frozen surface ice after the start of freezing, so heat transfer between the food and cold storage agent If the heat transfer coefficient of the medium is less than the heat transfer coefficient of the surface ice of the food, the heat transfer will have a high-order lag thermal time constant, and if the heat capacity of the metal plate is small, the rate of heat absorption of the food will be resin. Limited by the heat transfer coefficient of the container wall. However, the heat capacity or cold heat capacity described here is the product of specific gravity, specific heat, and temperature difference. The thermal time constant is a product of heat capacity and thermal resistance (reciprocal of product of heat transfer coefficient and surface area). Therefore, a freezing plate having a sufficiently large heat capacity and a low thermal resistance is desired. In order to solve this problem, there is a method of sufficiently increasing the heat capacity of the metal plate part, but the latent heat of moisture contained in the food is large, and the temperature difference from the freezing temperature is small at the freezer temperature of the domestic refrigerator. For this reason, the weight of the metal plate becomes very large. Therefore, the total weight can be greatly reduced by freezing a solution having a freezing point depressing action as a cold storage agent and using the latent heat of fusion. Furthermore, the concentration of the solution is adjusted so that it is frozen at a temperature as low as possible below 0 ° C. Therefore, unlike pure water, there is no specific gravity change due to the solution temperature, and the ice is melted by absorbing heat from the top surface. In many cases, ice is attached to the wall surface, and the ice attached to the lower wall surface cannot be melted by heat transfer by convection. When pure water is used, convection is generated at the time of melting, but the melting temperature is 0 ° C., and it cannot be below −2 ° C., which is the average freezing temperature of food, and cannot be used as an endothermic agent for freezing. This problem could be solved by disposing heat radiating fins in the thickness direction.

第三の手段では、蓄冷材容器内に空気を気密に収納する容器を容器下部に設けたことを特徴とする。  The third means is characterized in that a container for storing air in an airtight manner is provided in the lower part of the container.

また、溶液が水溶液の場合、凍結時の氷生成時に体積膨張するため密閉容器にすることは困難であった。体積膨張を吸収するために単に空気を入れると、空気が容器上部に溜まってしまうため最も温度の高い容器上面からの放熱効果を大きく妨げてしまう。そこで、放熱フィンの下部に容積可変の気密容器内に空気を入れて配置することで解決した。  In addition, when the solution is an aqueous solution, it is difficult to make a sealed container because the volume of the solution expands when ice is generated during freezing. If air is simply introduced to absorb the volume expansion, the air accumulates in the upper part of the container, so that the heat dissipation effect from the upper surface of the container having the highest temperature is greatly hindered. In view of this, the problem was solved by placing air in an airtight container having a variable volume below the heat dissipating fins.

第四の手段では、金属製の落し蓋を凍結器の吸熱板に接触させて予冷して、吸熱板と対向する方向から被凍結物に接触させる接触凍結器であって、該落し蓋と吸熱板の間に、被凍結物の厚みよりも若干薄いスペーサを設けたことを特徴とする。  In a fourth means, a metal freezing lid is brought into contact with the heat sink of the freezer and pre-cooled, and is brought into contact with the object to be frozen from the direction opposite to the heat sink, and between the drop lid and the heat sink. In addition, a spacer slightly thinner than the thickness of the object to be frozen is provided.

予冷した大冷熱量の金属製落し蓋を食品上面に接触させ、下面からの吸熱板と該落し蓋で挟み込んで吸熱することでより速い速度で凍結させることができる。しかし、落し蓋の熱量を増大させるためには重量を大きくしなければならない。しかし、凍結時に食品が変形するほど圧力を掛けると解凍後のドリップ量が増加することが分った。そこで、凍結物の厚みよりも若干薄いスペーサを設けることで食品の変形を最小にして良質の冷凍を実現できた。  A pre-cooled metal cooling lid with a large amount of cold heat is brought into contact with the upper surface of the food, and is sandwiched between the heat-absorbing plate from the lower surface and the dropping lid to absorb heat, thereby freezing at a higher speed. However, in order to increase the heat amount of the drop lid, the weight must be increased. However, it was found that the amount of drip after thawing increases when pressure is applied to deform the food when frozen. Therefore, by providing a spacer slightly thinner than the thickness of the frozen material, it was possible to minimize the deformation of the food and realize high quality freezing.

第五の手段では、吸熱板上または側面に階段状のスペーサを設け、落とし蓋の側面に階段状スペーサの軸受部に支持されて落し蓋を支える支持具を設けたことを特徴とする。  The fifth means is characterized in that a stepped spacer is provided on or on the side surface of the heat absorbing plate, and a support member is provided on the side surface of the drop lid that is supported by the bearing portion of the stepped spacer and supports the drop lid.

吸熱板上または側面に階段状のスペーサを設け、落とし蓋の側面に階段状スペーサの軸受部に支持されて落し蓋を支える支持具を設けることで落し蓋を前後に移動させるだけで高さの調節ができる。更に多種の厚みのスペーサの保管場所を節約することができる。  A step-like spacer is provided on the heat absorption plate or on the side, and the height can be adjusted simply by moving the drop lid back and forth by providing a support to support the drop lid on the side of the drop lid. it can. Furthermore, the storage space for spacers of various thicknesses can be saved.

第六の手段では、スペーサの材質を遠赤外線吸収素材で構成するか、またはスペーサ内壁面に遠赤外線吸収素材を設けたことを特徴とする。  The sixth means is characterized in that the spacer is made of a far-infrared absorbing material, or a far-infrared absorbing material is provided on the inner wall surface of the spacer.

多くの冷凍庫内の壁面材質は樹脂製であり、食品表層部の凍結時に放射される遠赤外線を容易に吸収するが、接触凍結器は吸熱板に金属を用いるため遠赤外線を反射して食品表面に戻して凍結速度を落としてしまう。そこで、遠赤外線は金属以外の材質には吸収されてしまうため、スペーサ内壁面に金属以外の材質の層を設けることで解決した。  Many freezer walls are made of resin and easily absorb far-infrared rays that are emitted when the food surface layer is frozen. However, the contact freezer uses metal for the heat-absorbing plate and reflects the far-infrared rays so that the food surface The freezing speed is reduced by returning to. Therefore, since far infrared rays are absorbed by materials other than metal, the problem was solved by providing a layer of a material other than metal on the inner wall surface of the spacer.

第七の手段では、冷蔵庫や冷凍庫内に設けた冷却手段を有した接触凍結器において、冷却時の吸熱にともなう熱を冷凍庫内の氷または氷と液体の混合物を蓄冷材とし、放熱手段を該蓄冷材に接触させて放熱させることを特徴とする。  In a seventh means, in a contact freezer having a cooling means provided in a refrigerator or a freezer, the heat associated with the heat absorption during cooling is ice or a mixture of ice and liquid as a cold storage material, and It is characterized in that it is dissipated by contacting the cold storage material.

冷却手段を設けた接触凍結器の冷却時の熱を庫内の氷または氷と液体の混合物に放熱することで、氷の潜熱を利用して大きな吸熱を実現できる。また、氷の潜熱放出時の温度は純水では0℃であり、冷蔵庫の凝縮器が利用する庫外の空気の温度よりも遙かに低いことと、氷や水の比熱が空気よりも大きいため接触凍結器の吸熱板温度を庫内温度よりも大幅に下げることができ、良質の冷凍を実現できる。  By dissipating the heat at the time of cooling of the contact freezer provided with the cooling means to the ice in the warehouse or the mixture of ice and liquid, a large heat absorption can be realized by utilizing the latent heat of ice. Moreover, the temperature at the time of releasing the latent heat of ice is 0 ° C. in pure water, which is much lower than the temperature of the air outside the refrigerator used by the refrigerator condenser, and the specific heat of ice and water is larger than that of air. Therefore, the endothermic plate temperature of the contact freezer can be significantly lowered than the inside temperature, and high-quality freezing can be realized.

第八の手段では、蒸発器の除霜時に冷凍サイクルを反転させて除霜する庫内に接触凍結器を設けた冷蔵庫または冷凍庫において、除霜運転時、蒸発器に着霜した霜を蓄冷材とし、冷媒の流れを庫外の凝縮器から庫内に設けた接触凍結器の蒸発器に弁で切り替えて庫内の吸熱板の冷却を行うことを特徴とする。  In the eighth means, in the refrigerator or freezer provided with the contact freezer in the refrigerator that reverses the refrigeration cycle at the time of defrosting the evaporator, the frost that has formed on the evaporator during the defrosting operation is stored in the cold storage material. And the flow of the refrigerant is switched from the condenser outside the warehouse to the evaporator of the contact freezer provided in the warehouse with a valve to cool the endothermic plate in the warehouse.

庫内に設けた蒸発器付きの接触凍結器の冷媒の放熱を冷蔵庫や冷凍庫内の蒸発器に着霜した氷の融解潜熱を用いて行うことで、余分な電力を消費せずに良質な冷凍を行うことができる。  Dissipation of refrigerant from the contact freezer with an evaporator provided in the refrigerator is performed using the latent heat of melting of the ice that has formed on the evaporator in the refrigerator or freezer. It can be performed.

第九の手段では、着霜量を推測する手段を設け、接触凍結に必要な冷熱容量になると除霜運転を開始することを特徴とする。  The ninth means is characterized in that means for estimating the amount of frost formation is provided, and the defrosting operation is started when the cooling capacity necessary for contact freezing is reached.

蒸発器の着霜量の予測は現在、一定の除霜間隔をあけて除霜するか、あるいはドアの開閉を積算して除霜を制御している。更に蒸発器に設けた温度センサで一定時間内の温度変化量を比較して予測している。これらの予測手段を用いて接触凍結に必要な着霜量に達したかどうかを予測して、除霜すると同時に接触凍結器に設けた冷却手段の放熱を行うことができる。  Prediction of the amount of frost formation on the evaporator is currently controlled by defrosting at regular defrost intervals or by integrating the opening and closing of doors. Further, a temperature sensor provided in the evaporator is used to predict the amount of temperature change within a certain time. It is possible to predict whether or not the amount of frost formation necessary for contact freezing has been reached using these prediction means, and at the same time to release heat from the cooling means provided in the contact freezer.

被凍結物やその包装表面に薄い液層を形成することで、接触凍結器の吸熱板との間隙にある空気層を追い出して接触率を大幅に向上させることができる。また、接触凍結器に冷却手段を設けて冷蔵庫や冷凍庫内の氷に放熱することで、吸熱板を大幅に低温にすることができる。除霜時の潜熱を利用すれば消費電力の削減が可能となる。  By forming a thin liquid layer on the object to be frozen and its packaging surface, it is possible to expel the air layer in the gap with the heat absorbing plate of the contact freezer and greatly improve the contact rate. Moreover, a heat absorption board can be made low temperature significantly by providing a cooling means in a contact freezer and radiating heat to the ice in a refrigerator or a freezer. If latent heat at the time of defrosting is used, power consumption can be reduced.

凍結器具を説明する断面説明図Cross-sectional explanatory drawing explaining a freezing instrument 凍結装置を説明する説明図Explanatory drawing explaining a freezing device 凍結装置を説明する説明図Explanatory drawing explaining a freezing device 凍結装置を説明する断面説明図Cross-sectional explanatory drawing explaining a freezing device 凍結装置を設けた冷蔵庫の説明図Explanatory drawing of a refrigerator with a freezing device 凍結装置を説明する断面説明図Cross-sectional explanatory drawing explaining a freezing device スペーサを設けた凍結装置を説明する説明図Explanatory drawing explaining the freezing apparatus provided with the spacer 図7の上面平面図7 is a top plan view of FIG. スペーサを設けた接触凍結器の断面説明図Cross-sectional illustration of a contact freezer with spacers スペーサの上面説明図Top view of spacer ペルティエユニットと蓄冷材の断面説明図Cross-sectional explanatory drawing of Peltier unit and cold storage material 接触冷媒の違いによるドリップ率のグラフGraph of drip rate due to difference in contact refrigerant 表面水層の有無によるドリップ率のグラフGraph of drip rate with and without surface water layer 加圧変形の有無によるドリップ率のグラフGraph of drip rate with and without pressure deformation エタノール水溶液の濃度と凝固点を示したグラフGraph showing concentration and freezing point of ethanol aqueous solution

本発明の第一の形態を図で説明する。図1は本発明の肉及び魚介類用の接触凍結器具を説明する断面説明図である。101は上面鏡面仕上げの金属製吸熱板、102は蓄冷剤、103は蓄冷材壁面、104は放熱フィン、105はバルン、106は空気である。図12、図13及び図14は1.5重量%の寒天水溶液に水重量に対して7重量%の粉末にした高野豆腐を混合し、冷却固化後直径約1cm、高さ約1cmの円柱形に抜き型で成形したものをドリップ測定用サンプルとし、重量を計測し、各実験条件で袋などの包装手段を用いずに裸で凍結後、凍結状態のままスイングローター式の遠心器で220G・40分間遠心して解凍し、再び重量計測して、初期重量と遠心解凍後の重量の差を初期重量で除した値をドリップ率として比較した。図13は30分間室内で放置して表面を乾燥させた測定用サンプルに一方は綿棒で表層部に水を濡らして−60℃の冷凍庫内に予冷した400gのアルミ板に接触凍結、他方はそのまま該アルミ板に接触凍結させた。図15はエタノール水溶液の濃度と凝固点を示したグラフである。  A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional explanatory view illustrating a contact freezing apparatus for meat and seafood according to the present invention. 101 is a metal heat-absorbing plate with a mirror finish on the upper surface, 102 is a cool storage agent, 103 is a wall surface of a cool storage material, 104 is a heat radiation fin, 105 is a balun, and 106 is air. 12, FIG. 13 and FIG. 14 are a cylindrical shape having a diameter of about 1 cm and a height of about 1 cm after mixing Takano tofu in a powder of 7% by weight with respect to the weight of water in a 1.5% by weight agar aqueous solution. The sample molded with a die is used as a drip measurement sample, and the weight is measured. After freezing naked without using a packaging means such as a bag under each experimental condition, it is 220G · The mixture was centrifuged for 40 minutes, thawed, weighed again, and the difference between the initial weight and the weight after centrifugal thawing divided by the initial weight was compared as the drip rate. FIG. 13 shows a sample for measurement which was left indoors for 30 minutes to dry the surface. One was wetted with a cotton swab and the surface layer was pre-cooled in a -60 ° C. freezer. The aluminum plate was frozen by contact. FIG. 15 is a graph showing the concentration and freezing point of an aqueous ethanol solution.

本形態の凍結器具は、家庭用冷蔵庫の冷凍室や飲食店用の冷凍庫等−20℃付近の比較的高い温度で使用する接触凍結器具である。蓄冷剤(102)に22重量%のエタノール水溶液を用いることで凝固点が−15℃付近の蓄冷剤となる。本水溶液は、4℃最密充填の純水とは異なり、より低温の液体密度が大きいため、上部より吸熱した場合に対流による熱の拡散が充分に望めない。しかし、放熱フィン(104)を設けることで下部まで熱を伝えるため生成された下部に付着した氷を融解させることができ、融かし残りが少なくなるため実質利用可能な吸熱容量を大きくすることができる。また、空気(106)を入れたアルミ蒸着バルン(105)を放熱フィン(104)の下部に設けることで、水溶液中に氷が生成することによる体積膨張を吸収するため、吸熱板を変形させずに水溶液を容器内に密封することができる。また、空気を気密性の高いアルミ蒸着バルンに入れることで長期間空気を下部に留めることができる。使用法は、本凍結器具を−20℃付近の家庭用冷蔵庫の冷凍室に入れて蓄冷剤(102)を凍結させる。三枚におろした魚肉を水洗いして軽く水を切り、表層に水の膜ができた状態で皮側を上にして肉側を鏡面仕上げした金属製吸熱板(101)に接触させて凍結させる。凍結完了後、木製のヘラで吸熱板から冷凍品を剥がす。その後、真空包装してから冷凍保管庫に収納する。この折、魚肉を包装用樹脂フィルムで包装し、吸熱板(101)上にコーン油、椿油やクルミ油などの低融点食用油を数滴落としてから吸熱板に接触させて凍結しても良い。表面に液体の薄い層を作ることで接触率が上がり、図13に示す如く水の層を形成させた方がドリップ率が低下した。また、より低温で使用する場合は、図15により使用温度よりも約5℃〜10℃高い凝固点温度になるような蓄冷剤濃度とする。  The freezing apparatus of this embodiment is a contact freezing apparatus that is used at a relatively high temperature around −20 ° C., such as a freezer for a household refrigerator or a freezer for a restaurant. By using a 22% by weight aqueous ethanol solution as the cold storage agent (102), a freezing agent having a freezing point near -15 ° C is obtained. Unlike the pure water of 4 ° C. close-packed filling, this aqueous solution has a higher density of liquid at a lower temperature. Therefore, when heat is absorbed from the upper part, sufficient diffusion of heat due to convection cannot be expected. However, by providing the heat dissipating fins (104), the ice adhering to the generated lower part can be melted to transfer the heat to the lower part, and the remaining unmelted is reduced, so that the heat absorption capacity that can be practically used is increased. Can do. In addition, by providing an aluminum vapor deposition balun (105) containing air (106) below the heat dissipating fin (104), it absorbs the volume expansion caused by the formation of ice in the aqueous solution, so that the endothermic plate is not deformed. The aqueous solution can be sealed in the container. Moreover, air can be kept in the lower part for a long period of time by putting air in the aluminum vapor deposition balun with high airtightness. As a method of use, the freezing agent (102) is frozen by putting the freezing instrument into a freezer compartment of a domestic refrigerator near -20 ° C. Wash the fish that has been put down into three sheets, drain lightly, and in a state where a water film is formed on the surface layer, freeze it by making contact with a metal heat absorption plate (101) with the skin side facing up and the meat side mirror-finished . After freezing, remove the frozen product from the heat sink with a wooden spatula. Then, after vacuum packaging, it is stored in a freezer. In this case, the fish meat may be wrapped with a packaging resin film, and a few drops of low melting point edible oil such as corn oil, coconut oil or walnut oil may be dropped on the heat absorbing plate (101) and then frozen by contacting with the heat absorbing plate. . The contact rate was increased by forming a thin layer of liquid on the surface, and the drip rate decreased when a water layer was formed as shown in FIG. Moreover, when using at lower temperature, it is set as the cool storage agent density | concentration which becomes a freezing point temperature about 5 to 10 degreeC higher than use temperature by FIG.

本発明の第二の形態を図で説明する。図2は本発明の凍結装置の冷媒サイクルを示した説明図である。201は凝縮器、202は逆止弁、203は切替弁、204はキャピラリー、205は逆止弁、206はキャピラリー、207は主蒸発器、208は補助凝縮器、209は切替弁、210は圧縮機、211は四方弁、212は切替弁、213は冷凍用蒸発器である。図5は凍結装置を設けた冷蔵庫の説明図である。501は冷蔵室、502は冷凍室、503は製氷室、504は前面操作パネル、505は冷凍保管室である。図6は図2及び図5の冷蔵庫用蒸発器及び冷凍用凝縮器の断面説明図である。601は凍結室蓋、602は吸熱金属板、603は冷凍用蒸発器、604は氷、605は補助凝縮器である。図12は被凍結物に接する冷却媒体の違いによるドリップ率を示した。■は予冷した樹脂板に片面を接触させて凍結させたもののドリップ率、□は予冷した400gのアルミ板に片面を接触凍結させたドリップ率、▲はエタノールブライン中に浸漬して凍結させたドリップ率、△はアイススラリー中に浸漬して凍結させたドリップ率である。  A second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is an explanatory view showing a refrigerant cycle of the freezing apparatus of the present invention. 201 is a condenser, 202 is a check valve, 203 is a switching valve, 204 is a capillary, 205 is a check valve, 206 is a capillary, 207 is a main evaporator, 208 is an auxiliary condenser, 209 is a switching valve, and 210 is a compression valve , 211 is a four-way valve, 212 is a switching valve, and 213 is a freezing evaporator. FIG. 5 is an explanatory diagram of a refrigerator provided with a freezing device. Reference numeral 501 denotes a refrigerating room, 502 denotes a freezing room, 503 denotes an ice making room, 504 denotes a front operation panel, and 505 denotes a freezing storage room. FIG. 6 is a cross-sectional explanatory view of the refrigerator evaporator and the freezing condenser of FIGS. 2 and 5. Reference numeral 601 denotes a freezing chamber lid, 602 denotes an endothermic metal plate, 603 denotes a freezing evaporator, 604 denotes ice, and 605 denotes an auxiliary condenser. FIG. 12 shows the drip rate due to the difference in the cooling medium in contact with the object to be frozen. ■ is the drip rate of one side of a pre-cooled resin plate that is frozen by contact, □ is the drip rate of one side of a pre-cooled 400 g aluminum plate that is frozen by contact, and ▲ is a drip that is frozen by immersion in ethanol brine The rate, Δ, is the drip rate immersed in ice slurry and frozen.

本形態では、図5の冷蔵庫中の冷凍室(502)に図6の接触凍結器が設けられている。冷凍室(502)は、冷凍保管室(505)と通風路を共有しており常に冷凍保管庫とほぼ同じ温度に保たれている。冷凍室(502)の蓋(601)は、冷蔵室(501)内右下床に設けられ、蓋(601)内部には上面を鏡面加工した吸熱金属板(602)と図2に示した冷媒サイクルの冷媒を蒸発させる冷凍用蒸発器(603、213)と凍結室下部には氷(604)と補助凝縮器(605、208)が設けられている。冷蔵庫の扉の開閉回数や時間を積算して主蒸発器(207)に着霜したと判断されると四方弁(211)を切り替えると同時に切替弁(212)及び切替弁(203)も切り替えて主蒸発器にホットガスを流して除霜すると同時に冷凍用蒸発器(213、603)で冷媒を蒸発させて吸熱金属板(602)を低温に冷却する。吸熱金属板はできるだけ大きな熱容量を持たせることで初期の吸熱速度を上げることができ、一旦食品表層が凍結すると氷は水の4倍の熱伝導率を持つため凍結時間を短縮することができる。更に、主蒸発器の除霜が終了すると切替弁(209)を切り替えてホットガスを補助凝縮器(208、605)に流すことで冷凍用蒸発器(213,603)を継続して冷却することができる。図12に示した如く、−20℃よりも低い温度帯では金属板接触凍結が樹脂板上での凍結よりもドリップが少なく、包装なしでの凍結のアイススラリーやブラインでの凍結に近い値が得られた。  In this embodiment, the contact freezer of FIG. 6 is provided in the freezer compartment (502) in the refrigerator of FIG. The freezer compartment (502) shares a ventilation path with the freezer storage room (505) and is always kept at substantially the same temperature as the freezer storage. The lid (601) of the freezer compartment (502) is provided on the lower right floor in the refrigerator compartment (501), and the endothermic metal plate (602) whose mirror surface is processed inside the lid (601) and the refrigerant shown in FIG. Refrigeration evaporators (603, 213) for evaporating the refrigerant of the cycle, and ice (604) and auxiliary condensers (605, 208) are provided at the lower part of the freezing chamber. When it is determined that the main evaporator (207) has been frosted by integrating the number of times the door of the refrigerator is opened and closed, the switching valve (212) and the switching valve (203) are also switched at the same time when the four-way valve (211) is switched. The main evaporator is defrosted by flowing hot gas, and at the same time, the refrigerant is evaporated by the freezing evaporators (213, 603) to cool the endothermic metal plate (602) to a low temperature. The endothermic metal plate can increase the initial heat absorption rate by giving the heat capacity as large as possible. Once the food surface layer is frozen, the ice has a thermal conductivity four times that of water, so that the freezing time can be shortened. Further, when the defrosting of the main evaporator is completed, the refrigeration evaporator (213, 603) is continuously cooled by switching the switching valve (209) and flowing hot gas to the auxiliary condenser (208, 605). Can do. As shown in FIG. 12, in the temperature range lower than −20 ° C., the metal plate contact freezing has less drip than the freezing on the resin plate, and the value is close to that of freezing ice slurry or freezing without packaging. Obtained.

本発明の第三の形態を図で説明する。図3は他の凍結装置の冷媒サイクルを示した説明図である。301は冷蔵庫用凝縮器、302は冷蔵庫用蒸発器、303はキャピラリー、304は除霜用凝縮器、305は補助凝縮器、306はキャピラリー、307は冷凍用蒸発器、308は冷凍機用圧縮機、309は切替弁、310は熱交換器、311は冷蔵雇用圧縮機である。図4は図3の冷蔵庫用蒸発器と熱交換器と除霜用凝縮器及び冷凍用凝縮器の断面説明図である。401は蒸発器+熱交換器+凝縮器、402は霜受け、403は氷、404は凝縮器、405はドレン管である。図5は凍結装置を設けた冷蔵庫の説明図である。  A third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is an explanatory view showing a refrigerant cycle of another freezing apparatus. 301 is a refrigerator condenser, 302 is a refrigerator evaporator, 303 is a capillary, 304 is a defrosting condenser, 305 is an auxiliary condenser, 306 is a capillary, 307 is a freezing evaporator, and 308 is a compressor for a freezer , 309 is a switching valve, 310 is a heat exchanger, and 311 is a refrigerated employment compressor. FIG. 4 is a cross-sectional explanatory view of the refrigerator evaporator, the heat exchanger, the defrosting condenser, and the refrigeration condenser of FIG. 401 is an evaporator + heat exchanger + condenser, 402 is a frost receiver, 403 is ice, 404 is a condenser, and 405 is a drain pipe. FIG. 5 is an explanatory diagram of a refrigerator provided with a freezing device.

本形態では図5の冷蔵庫に図3の冷媒サイクルを組み込んだもので、除霜用凝縮器(304)と蒸発器(302)は同じ熱交換用フィン(310)上に実装されて図4の蒸発器+熱交換器+凝縮器(401)となっている。通常運転時は圧縮機(311)を運転し、蒸発器(302)で冷蔵庫内を冷却している。401に着霜すると圧縮機(308)が運転され凝縮器部(304)にホットガスが流れて熱交換器(310)を通して加熱され除霜される。同時に冷凍用蒸発器(307)で冷媒が蒸発し、蒸発器(307)に接する吸熱板(図示せず)を冷却する。  In this embodiment, the refrigerant cycle of FIG. 3 is incorporated in the refrigerator of FIG. 5, and the defrosting condenser (304) and the evaporator (302) are mounted on the same heat exchange fin (310), and the refrigerator of FIG. It is an evaporator + heat exchanger + condenser (401). During normal operation, the compressor (311) is operated, and the inside of the refrigerator is cooled by the evaporator (302). When frost is formed on 401, the compressor (308) is operated, hot gas flows into the condenser section (304), is heated through the heat exchanger (310), and is defrosted. At the same time, the refrigerant evaporates in the refrigeration evaporator (307), and a heat absorption plate (not shown) in contact with the evaporator (307) is cooled.

本発明の第四の形態を図で説明する。図5は凍結装置を設けた冷蔵庫の説明図である。図7は図5の冷凍室に設けた凍結器具とスペーサを説明する側面説明図である。701は木製の柄、702は断熱材、703は支持棒、704は金属板、705は被冷却物、706は階段状のスペーサ、707は吸熱金属板である。図8は図7の上面平面図である。801は支持棒、802は階段状のスペーサ、803は木製の柄、804は片面断熱金属板、805は吸熱金属板である。図14は一方に50gの樹脂板を乗せて加圧変形させ、他方は樹脂板を乗せずに接触凍結し、ドリップ率を比較したグラフである。  A fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is an explanatory diagram of a refrigerator provided with a freezing device. FIG. 7 is an explanatory side view for explaining a freezing device and a spacer provided in the freezer compartment of FIG. 701 is a wooden handle, 702 is a heat insulating material, 703 is a support rod, 704 is a metal plate, 705 is an object to be cooled, 706 is a stepped spacer, and 707 is an endothermic metal plate. FIG. 8 is a top plan view of FIG. Reference numeral 801 denotes a support rod, 802 denotes a stepped spacer, 803 denotes a wooden handle, 804 denotes a single-sided heat insulating metal plate, and 805 denotes an endothermic metal plate. FIG. 14 is a graph in which a 50 g resin plate is placed on one side and subjected to pressure deformation, and the other is contact frozen without placing a resin plate and the drip rate is compared.

本形態は接触凍結器に設けるスペーサの一例を示す。図14に示したように変形するまで加圧するとドリップが多くなることから、できるだけ変形しないようにしなければならない。そこで、図7、図8のスペーサを設けることで前後に位置をずらすだけで高さの調整が可能となり大きな熱容量即ち重い重量の金属板(704、804)を落し蓋にして食品(705)上部に接触させても大きな変形を防止し、上下両面からの冷却でより速い凍結速度を実現し、良質な冷凍が可能となる。  This form shows an example of the spacer provided in the contact freezer. As shown in FIG. 14, when the pressure is applied until it is deformed, the drip increases, so that it should be prevented from being deformed as much as possible. Therefore, by providing the spacers in FIGS. 7 and 8, the height can be adjusted by simply shifting the position back and forth, and a large heat capacity, that is, a heavy metal plate (704, 804) is dropped and a lid is placed on the top of the food (705). Even if they are brought into contact with each other, a large deformation is prevented, and a faster freezing rate is realized by cooling from the upper and lower surfaces, and high-quality freezing becomes possible.

本発明の第五の形態を図で説明する。図5は凍結装置を設けた冷蔵庫の説明図である。図9は図11の吸熱板(1101)上に設けたスペーサを説明する側断面説明図である。901は位置決め穴、902はスペーサ、903は位置決め用貫通棒である。図10は図9の上面平面図である。1001は位置決め穴、1002はスペーサ、1003は樹脂フィルムである。図11は図5の冷凍室に設けたペルティエユニットを用いた接触凍結装置の断面説明図である。1101は吸熱板、1102はペルティエユニット、1103は温度センサ、1104は放熱板、1105は蓄冷剤、1106は蓄冷材壁面、1107は放熱フィン、1108はバルン、1109は空気である。  A fifth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is an explanatory diagram of a refrigerator provided with a freezing device. FIG. 9 is an explanatory side sectional view for explaining the spacer provided on the heat absorbing plate (1101) of FIG. Reference numeral 901 denotes a positioning hole, 902 denotes a spacer, and 903 denotes a positioning through bar. FIG. 10 is a top plan view of FIG. Reference numeral 1001 denotes a positioning hole, 1002 denotes a spacer, and 1003 denotes a resin film. FIG. 11 is a cross-sectional explanatory view of a contact freezing apparatus using a Peltier unit provided in the freezer compartment of FIG. 1101 is a heat absorption plate, 1102 is a Peltier unit, 1103 is a temperature sensor, 1104 is a heat dissipation plate, 1105 is a cold storage agent, 1106 is a cold storage material wall surface, 1107 is a heat dissipation fin, 1108 is a balun, and 1109 is air.

本形態では図5の冷凍室に設けたペルティエユニットを用いた接触凍結装置とスペーサである。吸熱板(1101)上に厚さ4mm、8mm、16mm、32mmのアルミ製スペーサ(902、1002)を貫通棒(903)と位置決め穴(901、1001)で重ねて使用することで4〜60mmまでの厚み調製ができる。食品をスペーサ(902、1002)の樹脂フィルムを貼っていない面に接触させることで、上から金属の落し蓋(図示せず)と下の吸熱板(1101)の3面に接触させることでより接触率を大きくすることができる。また、樹脂フィルム(1003)を貼ることで食品表面の凍結時に放出する遠赤外線の金属面からの反射を吸収することができ、反射した遠赤外線が食品に戻る量を低減できる。  In this embodiment, a contact freezing apparatus and a spacer using a Peltier unit provided in the freezer compartment of FIG. By using aluminum spacers (902, 1002) with thicknesses of 4 mm, 8 mm, 16 mm, and 32 mm on the heat absorbing plate (1101) in an overlapping manner with the penetrating rod (903) and the positioning holes (901, 1001), up to 4-60 mm The thickness can be adjusted. By contacting food with the surface of the spacer (902, 1002) where the resin film is not applied, contact with the three surfaces of the metal drop lid (not shown) and the lower heat absorption plate (1101) from the top. The rate can be increased. In addition, by sticking the resin film (1003), it is possible to absorb the reflection of the far infrared rays emitted from the metal surface when the food surface is frozen, and the amount of the reflected far infrared rays returning to the food can be reduced.

食品や細胞、臓器の冷凍に応用できる。  Can be used for freezing food, cells and organs.

101、602、707、805、1101、1104 吸熱板
102、1105 蓄冷剤
103、1106 蓄冷材壁面
104、1107 放熱フィン
105、1108 バルン
106、1109 空気
201、208、301、304、305、404、605 凝縮器
202、205 逆止弁
203、209、212、309 切替弁
204、206、303、306 キャピラリー
207、213、302、307、603 蒸発器
210、308、311 圧縮機
211 四方弁
310 熱交換器
401 蒸発器+熱交換器+凝縮器
402 霜受け
403、604 氷
405 ドレン管
501 冷蔵室
502 冷凍室
503 製氷室
504 前面操作パネル
505 冷凍保管室
601 凍結室壁面
701、803 木製の柄
702 断熱材
703、801 支持棒
704、804 片面断熱金属板
705 被冷却物
706、802、902、1002 スペーサ
901、1001 位置決め穴
903 位置決め用貫通棒
1003 樹脂フィルム
1102 ペルティエユニット
1103 温度センサ
Re ドリップ率
■ 予冷した樹脂板に片面を接触させて凍結させたもののドリップ率
□ 予冷した400gのアルミ板に片面を接触凍結させたドリップ率
▲ エタノールブライン中に浸漬して凍結させたドリップ率
△ アイススラリー中に浸漬して凍結させたドリップ率
101, 602, 707, 805, 1101, 1104 Endothermic plate 102, 1105 Cold storage agent 103, 1106 Cold storage wall surface 104, 1107 Radiation fin 105, 1108 Balun 106, 1109 Air 201, 208, 301, 304, 305, 404, 605 Condenser 202, 205 Check valve 203, 209, 212, 309 Switching valve 204, 206, 303, 306 Capillary 207, 213, 302, 307, 603 Evaporator 210, 308, 311 Compressor 211 Four-way valve 310 Heat exchanger 401 Evaporator + Heat exchanger + Condenser 402 Frost receiver 403, 604 Ice 405 Drain pipe 501 Refrigeration room 502 Freezer room 503 Ice making room 504 Front operation panel 505 Freezer storage room 601 Freezing room wall surface 701, 803 Wooden handle 702 Insulation 703, 80 Support rods 704, 804 Single-sided heat insulating metal plate 705 Objects to be cooled 706, 802, 902, 1002 Spacers 901, 1001 Positioning holes 903 Positioning through rods 1003 Resin film 1102 Peltier unit 1103 Temperature sensor Re Drip rate ■ One side on pre-cooled resin plate The drip rate of the one that was frozen by contact □ The drip rate that was frozen by contact with one side of a pre-cooled 400 g aluminum plate ▲ The drip rate that was frozen by immersion in ethanol brine △ Dipped in ice slurry and frozen Drip rate

Claims (9)

金属製の吸熱板を設けた接触凍結器であって、被凍結物またはその包装手段表面が乾燥しているものには表層に薄い液層を形成させ、表面に薄い液層を有した被凍結物またはその包装手段表面を被凍結物水分量の凝固熱量以上の冷熱容量を有した吸熱板に接触させて凍結させることを特徴とする冷却方法とその器具。  A contact freezer provided with a metal heat-absorbing plate that has a thin liquid layer on the surface and a thin liquid layer on the surface when the object to be frozen or the surface of the packaging means is dry A cooling method and an apparatus therefor, wherein the object or the packaging means surface is frozen by bringing it into contact with a heat absorbing plate having a heat capacity equal to or greater than the heat of solidification of the amount of water to be frozen. 金属製吸熱板裏面に直接接する氷点降下作用のある溶液からなる蓄冷材を設け、吸熱板裏面に厚み方向に伸びる放熱フィンを設けたことを特徴とする請求項1に記載の冷却方法とその器具。  2. The cooling method and apparatus according to claim 1, wherein a cold storage material made of a solution having a freezing point depressing action is provided in direct contact with the rear surface of the metal heat absorbing plate, and a heat dissipating fin extending in the thickness direction is provided on the rear surface of the heat absorbing plate. . 蓄冷材容器内に空気を気密に収納する容器を容器下部に設けたことを特徴とする請求項2に記載の冷却方法とその器具。  The cooling method and apparatus according to claim 2, wherein a container for storing air in an airtight manner is provided in a lower part of the container. 金属製の落し蓋を凍結器の吸熱板に接触させて予冷して、吸熱板と対向する方向から被凍結物に接触させる接触凍結器であって、該落し蓋と吸熱板の間に、被凍結物の厚みよりも若干薄いスペーサを設けたことを特徴とする請求項1、2または3に記載の冷却方法とその器具。  A contact freezer in which a metal drop lid is brought into contact with the endothermic plate of the freezer and pre-cooled to contact the object to be frozen from the direction facing the endothermic plate, and the thickness of the object to be frozen is between the drop lid and the endothermic plate. 4. The cooling method and apparatus according to claim 1, 2 or 3, wherein a spacer that is slightly thinner is provided. 吸熱板上または側面に階段状のスペーサを設け、落とし蓋の側面に階段状スペーサの軸受部に支持されて落し蓋を支える支持具を設けたことを特徴とする請求項4に記載の冷却方法とその器具。  The cooling method according to claim 4, wherein a stepped spacer is provided on the heat absorbing plate or on a side surface, and a support member is provided on the side surface of the drop lid that is supported by the bearing portion of the stepped spacer and supports the drop lid. That instrument. スペーサの材質を遠赤外線吸収素材で構成するか、またはスペーサ内壁面に遠赤外線吸収素材を設けたことを特徴とする請求項4または5に記載の冷却方法とその器具。  6. The cooling method and apparatus according to claim 4 or 5, wherein the spacer is made of a far-infrared absorbing material, or a far-infrared absorbing material is provided on the inner wall surface of the spacer. 冷蔵庫や冷凍庫内に設けた冷却手段を有した接触凍結器において、冷却時の吸熱にともなう熱を冷凍庫内の氷または氷と液体の混合物を蓄冷材とし、放熱手段を該蓄冷材に接触させて放熱させることを特徴とする請求項1、2、3、4、5または6に記載の冷却方法とその装置。  In a contact freezer having a cooling means provided in a refrigerator or freezer, the heat associated with the absorption of heat during cooling is ice or a mixture of ice and liquid in the freezer as a cold storage material, and the heat dissipation means is brought into contact with the cold storage material. The cooling method and apparatus according to claim 1, 2, 3, 4, 5 or 6, wherein heat is radiated. 蒸発器の除霜時に冷凍サイクルを反転させて除霜する庫内に接触凍結器を設けた冷蔵庫または冷凍庫において、除霜運転時、蒸発器に着霜した霜を蓄冷材とし、冷媒の流れを庫外の凝縮器から庫内に設けた接触凍結器の蒸発器に弁で切り替えて庫内の吸熱板の冷却を行うことを特徴とする請求項1、2、3、4、5、6または7に記載の冷却方法とその装置。  In a refrigerator or freezer provided with a contact freezer in a refrigerator that reverses the refrigeration cycle during defrosting of the evaporator, during the defrosting operation, the frost formed on the evaporator is used as a regenerator and the flow of refrigerant is reduced. The heat absorption plate in the warehouse is cooled by switching from a condenser outside the warehouse to an evaporator of a contact freezer provided in the warehouse by a valve. 8. The cooling method and apparatus according to 7. 着霜量を推測する手段を設け、接触凍結に必要な冷熱容量になると除霜運転を開始することを特徴とする請求項8に記載の冷却方法とその装置。  9. The cooling method and apparatus according to claim 8, wherein means for estimating the amount of frost formation is provided, and the defrosting operation is started when the cooling capacity required for contact freezing is reached.
JP2011201122A 2011-05-16 2011-08-30 Cooling method and implement, and device for the same Withdrawn JP2012255640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201122A JP2012255640A (en) 2011-05-16 2011-08-30 Cooling method and implement, and device for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011122690 2011-05-16
JP2011122690 2011-05-16
JP2011201122A JP2012255640A (en) 2011-05-16 2011-08-30 Cooling method and implement, and device for the same

Publications (1)

Publication Number Publication Date
JP2012255640A true JP2012255640A (en) 2012-12-27

Family

ID=47553704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201122A Withdrawn JP2012255640A (en) 2011-05-16 2011-08-30 Cooling method and implement, and device for the same

Country Status (1)

Country Link
JP (1) JP2012255640A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795454A (en) * 2020-06-24 2020-10-20 北京英沣特能源技术有限公司 Ice thickness monitoring system of ice storage coil pipe
CN113686064A (en) * 2021-08-30 2021-11-23 浙江铭鑫冷链设备有限公司 Air cooler waste heat defrosting system
JP2022027634A (en) * 2020-07-31 2022-02-10 ダイキン工業株式会社 Use of composition as refrigerant in device, device, and refrigeration cycle device
JP2022027633A (en) * 2020-07-31 2022-02-10 ダイキン工業株式会社 Use of composition in device, device, and refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795454A (en) * 2020-06-24 2020-10-20 北京英沣特能源技术有限公司 Ice thickness monitoring system of ice storage coil pipe
JP2022027634A (en) * 2020-07-31 2022-02-10 ダイキン工業株式会社 Use of composition as refrigerant in device, device, and refrigeration cycle device
JP2022027633A (en) * 2020-07-31 2022-02-10 ダイキン工業株式会社 Use of composition in device, device, and refrigeration cycle device
JP7177368B2 (en) 2020-07-31 2022-11-24 ダイキン工業株式会社 Use of compositions as refrigerants in equipment, equipment and refrigeration cycle equipment
CN113686064A (en) * 2021-08-30 2021-11-23 浙江铭鑫冷链设备有限公司 Air cooler waste heat defrosting system
CN113686064B (en) * 2021-08-30 2022-09-27 浙江铭鑫冷链设备有限公司 Air cooler waste heat defrosting system

Similar Documents

Publication Publication Date Title
US8596084B2 (en) Icemaker with reversible thermosiphon
EP3074704B1 (en) Temperature-controlled container systems for use within a refrigeration device
TWI314984B (en)
US10184708B2 (en) Use of thermoelectric elements for clear ice making, ice harvesting, and creating a temperature condition for clear ice making
WO2015025675A1 (en) Cooler
JP2012255640A (en) Cooling method and implement, and device for the same
JP2012007760A (en) Refrigerator
US20200191451A1 (en) Thermally Insulated Receptacle
CN103597300B (en) There is the refrigerating appliance of hot memory
CN110131953A (en) A kind of super ice temperature refrigerator
JPWO2013088462A1 (en) refrigerator
CN110214806A (en) Quick-frozen and thawing apparatus, refrigeration equipment
WO2010123405A1 (en) Method for cooling an object and a device for carrying out said method
RU2505756C2 (en) Refrigerating unit
CN201149408Y (en) Combined shelf for refrigerated display case
RU2010144018A (en) REFRIGERATING UNIT, ESPECIALLY HOUSEHOLD REFRIGERATING UNIT, WITH A CAPACITOR EQUIPPED WITH HEAT BATTERIES
CN212362589U (en) Refrigerator with unfreezing function
EP3757484B1 (en) Refrigerator appliance
JP2006189209A (en) Cooling storage
KR20140015590A (en) Cooling element for refrigerator
CN202470576U (en) Refrigerator
JP2005172306A (en) Refrigerator
WO2012125069A1 (en) Evaporator
WO2014076006A1 (en) A refrigerator comprising a separator
JP2009300053A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104