JP2012255349A - Fuel supply device of internal combustion engine - Google Patents

Fuel supply device of internal combustion engine Download PDF

Info

Publication number
JP2012255349A
JP2012255349A JP2011127537A JP2011127537A JP2012255349A JP 2012255349 A JP2012255349 A JP 2012255349A JP 2011127537 A JP2011127537 A JP 2011127537A JP 2011127537 A JP2011127537 A JP 2011127537A JP 2012255349 A JP2012255349 A JP 2012255349A
Authority
JP
Japan
Prior art keywords
liquefied fuel
cooling water
engine cooling
passage
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011127537A
Other languages
Japanese (ja)
Inventor
Hideaki Kosuge
英明 小菅
Susumu Kojima
進 小島
Rio Shimizu
里欧 清水
Tomojiro Sugimoto
知士郎 杉本
Masayu Akita
正侑 秋田
Shu Nakagawa
周 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Soken Inc
Original Assignee
Aisan Industry Co Ltd
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Nippon Soken Inc, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP2011127537A priority Critical patent/JP2012255349A/en
Publication of JP2012255349A publication Critical patent/JP2012255349A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel supply device of an internal combustion engine which has a heat exchanger of engine cooling water and liquefied fuel, and can supply the liquefied fuel into a cylinder by favorably evaporating the fuel by the heat exchanger even if a temperature of the engine cooling water becomes high.SOLUTION: There can selectively be performed fair current control for making the liquefied fuel pass through a liquefied fuel passage along the heat exchanger, and making the engine cooling water pass through an engine cooling water passage along the heat exchanger in the same direction as that of the liquefied fuel, and adverse current control for making the engine cooling water pass through the engine cooling water passage along the heat exchanger in a direction opposite to the liquefied fuel, the fair current control is selected when a degree of superheat ΔTU at the inlet side of the liquefied fuel passage of a heat exchanging wall is not higher than a set degree of superheat ΔTS in a range in which the liquefied fuel is transient-boiled at the inlet side of the liquefied fuel passage (step 103), and when the degree of superheat at the inlet side of the liquefied fuel passage is higher than the set degree of superheat, the adverse current control is selected. (step 104).

Description

本発明は、液化燃料を気化させて内燃機関へ供給するための内燃機関の燃料供給装置に関する。   The present invention relates to a fuel supply device for an internal combustion engine for vaporizing liquefied fuel and supplying it to an internal combustion engine.

内燃機関の燃料として、LPGのような常温常圧では気体の燃料を使用することが公知である。このような気体燃料は、冷却により液化されて燃料タンク内に貯蔵される。燃料タンク内の液化燃料は、加熱気化させて内燃機関の気筒内へ供給されることとなる。液化燃料の加熱気化には、一般的に、機関冷却水との熱交換器が使用される。   As a fuel for an internal combustion engine, it is known to use a gaseous fuel at room temperature and normal pressure such as LPG. Such gaseous fuel is liquefied by cooling and stored in the fuel tank. The liquefied fuel in the fuel tank is heated and vaporized and supplied into the cylinder of the internal combustion engine. Generally, a heat exchanger with engine cooling water is used for heating and vaporizing the liquefied fuel.

このような熱交換器を備える燃料供給装置において、機関冷却水が高温となると、熱交換器において液化燃料を良好に気化させることができなくなることがある。機関冷却水の熱を利用して液体燃料の気化を促進する気化器において、機関冷却水が高温となると、気化器への機関冷却水の供給を停止して液体燃料の過剰な加熱を防止することが提案されている(特許文献1参照)。   In the fuel supply device including such a heat exchanger, when the engine coolant becomes high temperature, the liquefied fuel may not be vaporized well in the heat exchanger. In the carburetor that promotes the vaporization of liquid fuel using the heat of the engine cooling water, when the engine cooling water reaches a high temperature, the supply of the engine cooling water to the vaporizer is stopped to prevent excessive heating of the liquid fuel. Has been proposed (see Patent Document 1).

実開平01−74347Japanese Utility Model Hei 01-74347 特開平07−293345JP 07-293345 A

液化燃料を気化させるための機関冷却水との熱交換器を備える燃料供給装置において、機関冷却水が高温となって液化燃料を良好に気化させることができなくなった際に、熱交換器への機関冷却水の供給を停止しても、液化燃料を良好に気化させることはできない。   In a fuel supply device equipped with a heat exchanger with engine cooling water for vaporizing liquefied fuel, when the engine cooling water becomes high temperature and the liquefied fuel cannot be vaporized well, the heat supply to the heat exchanger Even if the supply of engine cooling water is stopped, the liquefied fuel cannot be vaporized well.

従って、本発明の目的は、機関冷却水と液化燃料との熱交換器を具備し、機関冷却水が高温となっても、熱交換器により液化燃料を良好に気化させて気筒内へ供給することができる内燃機関の燃料供給装置を提供することである。   Accordingly, an object of the present invention is to provide a heat exchanger for engine cooling water and liquefied fuel, and even if the engine cooling water becomes high temperature, the liquefied fuel is vaporized well by the heat exchanger and supplied into the cylinder. It is an object to provide a fuel supply device for an internal combustion engine.

本発明による請求項1に記載の内燃機関の燃料供給装置は、液化燃料通路と機関冷却水通路との間の熱交換壁を有する熱交換器を具備し、液化燃料が前記液化燃料通路を前記熱交換壁に沿って通過するようにすると共に、機関冷却水が前記機関冷却水通路を前記熱交換壁に沿って前記液化燃料と同一方向に通過するようにする順流制御と、液化燃料が前記液化燃料通路を前記熱交換壁に沿って通過するようにすると共に、機関冷却水が前記機関冷却水通路を前記熱交換壁に沿って前記液化燃料と反対方向に通過するようにする逆流制御とが選択的に実施可能であり、前記熱交換壁の前記液化燃料通路の入口側の過熱度が、前記液化燃料通路の前記入口側において液化燃料が遷移沸騰する範囲内の設定過熱度以下のときには前記順流制御が選択され、前記設定過熱度より高いときには前記逆流制御が選択されることを特徴とする。   According to a first aspect of the present invention, there is provided a fuel supply device for an internal combustion engine comprising a heat exchanger having a heat exchange wall between a liquefied fuel passage and an engine coolant passage, wherein the liquefied fuel passes through the liquefied fuel passage. A forward flow control for allowing the engine cooling water to pass along the heat exchange wall and the engine cooling water passage through the engine cooling water passage along the heat exchange wall in the same direction as the liquefied fuel; Backflow control for causing the liquefied fuel passage to pass along the heat exchange wall and for allowing engine cooling water to pass through the engine cooling water passage along the heat exchange wall in a direction opposite to the liquefied fuel; Can be selectively implemented, and the degree of superheat on the inlet side of the liquefied fuel passage of the heat exchange wall is equal to or lower than a set superheat degree within a range where the liquefied fuel transitions to boiling on the inlet side of the liquefied fuel passage. Select forward flow control It is, when higher than the set degree of superheat is characterized in that the back flow control is selected.

本発明による請求項2に記載の内燃機関の燃料供給装置は、請求項1に記載の内燃機関の燃料供給装置において、前記熱交換壁の前記液化燃料通路の前記入口側の過熱度は、前記機関冷却水通路へ流入する機関冷却水の温度に基づき推定されることを特徴とする。   The fuel supply device for an internal combustion engine according to claim 2 according to the present invention is the fuel supply device for internal combustion engine according to claim 1, wherein the degree of superheat on the inlet side of the liquefied fuel passage of the heat exchange wall is It is estimated based on the temperature of the engine cooling water flowing into the engine cooling water passage.

本発明による請求項1に記載の内燃機関の燃料供給装置によれば、液化燃料通路と機関冷却水通路との間の熱交換壁を有する熱交換器を具備し、液化燃料が液化燃料通路を熱交換壁に沿って通過するようにすると共に、機関冷却水が機関冷却水通路を熱交換壁に沿って液化燃料と同一方向に通過するようにする順流制御と、液化燃料が液化燃料通路を熱交換壁に沿って通過するようにすると共に、機関冷却水が機関冷却水通路を熱交換壁に沿って液化燃料と反対方向に通過するようにする逆流制御とが選択的に実施可能であり、熱交換壁の液化燃料通路の入口側の過熱度が、液化燃料通路の入口側において液化燃料が遷移沸騰する範囲内の設定過熱度以下のときには順流制御が選択されるようになっている。それにより、このときには、順流制御の機関冷却水により熱交換壁の液化燃料通路の入口側を出口側より高い過熱度とすることにより、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることができ、液化燃料通路の入口側の液化燃料を核沸騰又は核沸騰との境界近傍の遷移沸騰により良好に気化させることができる。   According to the fuel supply device for an internal combustion engine according to claim 1 of the present invention, the heat supply apparatus includes a heat exchanger having a heat exchange wall between the liquefied fuel passage and the engine coolant passage, and the liquefied fuel passes through the liquefied fuel passage. The forward flow control allows the engine cooling water to pass along the heat exchange wall and the engine cooling water passage along the heat exchange wall in the same direction as the liquefied fuel, and the liquefied fuel passes through the liquefied fuel passage. It is possible to selectively implement reverse flow control that allows the engine cooling water to pass along the heat exchange wall and the engine cooling water passage along the heat exchange wall in the opposite direction to the liquefied fuel. The forward flow control is selected when the superheat degree on the inlet side of the liquefied fuel passage of the heat exchange wall is equal to or lower than the set superheat degree within the range where the liquefied fuel transitions and boiles on the inlet side of the liquefied fuel passage. Accordingly, at this time, the heat flux on the inlet side of the liquefied fuel passage on the heat exchange wall is set to the outlet side by setting the inlet side of the liquefied fuel passage on the heat exchange wall higher than the outlet side by the engine coolant of the forward flow control. The liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by nucleate boiling or transition boiling near the boundary with nucleate boiling.

また、熱交換器の熱交換壁の液化燃料通路の入口側の過熱度が設定過熱度より高いときには、順流制御を実施して熱交換壁の液化燃料通路の入口側が出口側より高い過熱度とすると、遷移沸騰では、過熱度が高いほど熱流束が小さくなって気化が不十分となるために、液化燃料通路の入口側の液化燃料を良好に気化させることができなくなる。しかしながら、熱交換器の熱交換壁の液化燃料通路の入口側の過熱度が設定過熱度より高いときには、逆流制御の機関冷却水により熱交換壁の液化燃料通路の出口側を入口側より高い過熱度とすることにより、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることができ、液化燃料通路の入口側の液化燃料を遷移沸騰により良好に気化させることができる。   In addition, when the superheat degree on the inlet side of the liquefied fuel passage of the heat exchanger wall is higher than the set superheat degree, forward flow control is performed so that the inlet side of the liquefied fuel passage of the heat exchanger wall is higher than the outlet side. Then, in transition boiling, the higher the degree of superheat, the smaller the heat flux and the insufficient vaporization, so that the liquefied fuel on the inlet side of the liquefied fuel passage cannot be vaporized well. However, when the degree of superheat on the inlet side of the liquefied fuel passage on the heat exchange wall of the heat exchanger is higher than the set superheat degree, the outlet side of the liquefied fuel passage on the heat exchange wall is superheated higher than the inlet side by the engine cooling water for backflow control. Therefore, the heat flux on the inlet side of the liquefied fuel passage on the heat exchange wall can be made larger than the heat flux on the outlet side, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by transition boiling. Can do.

こうして、特に、機関冷却水が高温となって過熱度が高くなると、順流制御では、熱交換器の液化燃料通路の入口側の液化燃料が遷移沸騰するために、熱流束が小さくなることがあるが、逆流制御によって、熱交換器の液化燃料通路の入口側の過熱度を低くすることにより、液化燃料の遷移沸騰における熱流束を大きくすることができ、熱交換器において液化燃料を良好に気化させることができる。   Thus, in particular, when the engine coolant becomes high temperature and the degree of superheat increases, in the forward flow control, the liquefied fuel on the inlet side of the liquefied fuel passage of the heat exchanger may undergo transition boiling, and thus the heat flux may be reduced. However, by reducing the degree of superheat on the inlet side of the liquefied fuel passage of the heat exchanger by backflow control, the heat flux in the transition boiling of the liquefied fuel can be increased, and the liquefied fuel is vaporized well in the heat exchanger. Can be made.

本発明による請求項2に記載の内燃機関の燃料供給装置は、請求項1に記載の内燃機関の燃料供給装置において、熱交換壁の液化燃料通路の入口側の過熱度は、機関冷却水通路へ流入する機関冷却水の温度に基づき推定されるようになっており、順流制御と逆流制御とを容易に切り換えることができる。   According to a second aspect of the present invention, there is provided the internal combustion engine fuel supply apparatus according to the first aspect, wherein the degree of superheat on the inlet side of the liquefied fuel passage of the heat exchange wall is determined by the engine coolant passage. It is estimated based on the temperature of the engine cooling water flowing into the engine, and the forward flow control and the reverse flow control can be easily switched.

本発明による内燃機関の燃料供給装置を示す概略図である。It is the schematic which shows the fuel supply apparatus of the internal combustion engine by this invention. 液化燃料の沸騰時の過熱度と熱流束との関係を示すグラフである。It is a graph which shows the relationship between the superheat degree at the time of boiling of a liquefied fuel, and a heat flux. 熱交換器の順流制御と逆流制御とを切り換えるためのフローチャートである。It is a flowchart for switching between forward flow control and reverse flow control of a heat exchanger.

図1は本発明による内燃機関の燃料供給装置を示す概略図である。以下に説明する燃料供給装置の各部材の制御は電子制御装置(図示せず)により実施される。同図において、10は燃料タンクであり、プロパン(沸点−42.09°C)及びブタン(沸点−0.5°C)を主成分とするLPGを貯蔵している。もちろん、本発明による燃料供給装置が対象とする液化燃料は、LPGに限定されることなく、常温常圧では気体の任意の可燃性物質とすることができる。例えば、プロパンと同程度の沸点を有する可燃性物質、ブタンと同程度の沸点を有する可燃性物質、プロパンの沸点とブタンの沸点との間の沸点を有する可燃性物質とすることができる。   FIG. 1 is a schematic view showing a fuel supply device for an internal combustion engine according to the present invention. The control of each member of the fuel supply device described below is performed by an electronic control device (not shown). In the figure, reference numeral 10 denotes a fuel tank, which stores LPG mainly composed of propane (boiling point −42.09 ° C.) and butane (boiling point −0.5 ° C.). Of course, the liquefied fuel targeted by the fuel supply apparatus according to the present invention is not limited to LPG, and can be any combustible substance that is gaseous at normal temperature and pressure. For example, a flammable substance having a boiling point similar to that of propane, a flammable substance having a boiling point comparable to that of butane, and a flammable substance having a boiling point between that of propane and that of butane can be used.

20は、燃料タンク10内の液化燃料を気化させるための熱交換器であり、液化燃料通路として機能する内管20aと、機関冷却水通路として機能する外管20bとを有している。こうして、内管20aの管壁は、液化燃料と機関冷却水との間の熱交換壁として機能する。内管20aの入口部20cには、燃料タンク10内の液化燃料を供給するための燃料流入通路30が接続され、内管20aの出口部20dには各気筒の燃料噴射弁へ直接的に又は各気筒共通の蓄圧室を介して気化燃料を供給するための燃料流出通路40が接続されている。   Reference numeral 20 denotes a heat exchanger for vaporizing the liquefied fuel in the fuel tank 10, and includes an inner tube 20a that functions as a liquefied fuel passage and an outer tube 20b that functions as an engine cooling water passage. Thus, the tube wall of the inner tube 20a functions as a heat exchange wall between the liquefied fuel and the engine cooling water. A fuel inflow passage 30 for supplying the liquefied fuel in the fuel tank 10 is connected to the inlet 20c of the inner pipe 20a, and the outlet 20d of the inner pipe 20a is directly connected to the fuel injection valve of each cylinder or A fuel outflow passage 40 for supplying vaporized fuel is connected through a pressure accumulation chamber common to each cylinder.

また、外管20bの一方側20eは、切換弁CV及び第一接続管70を介して、シリンダブロック(図示せず)内の冷却水通路において加熱されてラジエタ(図示せず)により冷却される前の機関冷却水を供給するための冷却水流入通路50に接続されている。また、外管20bの他方側20fは、切換弁CV及び第二接続管80を介して、外管20bから流出する機関冷却水をラジエタ(又はシリンダブロックの冷却水通路)へ戻すための冷却水流出通路60に接続されている。冷却水流入通路50には必要に応じて冷却水ポンプが設けられる。   Further, one side 20e of the outer pipe 20b is heated in a cooling water passage in a cylinder block (not shown) via the switching valve CV and the first connection pipe 70 and cooled by a radiator (not shown). It is connected to a cooling water inflow passage 50 for supplying the previous engine cooling water. The other side 20f of the outer pipe 20b is a cooling water for returning the engine cooling water flowing out from the outer pipe 20b to the radiator (or the cooling water passage of the cylinder block) via the switching valve CV and the second connection pipe 80. It is connected to the outflow passage 60. A cooling water pump is provided in the cooling water inflow passage 50 as necessary.

燃料タンク10内には、燃料流入通路30へ液化燃料を圧送するための燃料ポンプPが設けられている。燃料流入通路30には、燃料ポンプPにより圧送された液化燃料の流量を調量して熱交換器20の内管20aへ供給するための燃料調量弁FVが設けられている。また、冷却水流入通路50には、冷却水の温度を測定するための温度センサ90が設けられている。   A fuel pump P for pumping liquefied fuel to the fuel inflow passage 30 is provided in the fuel tank 10. The fuel inflow passage 30 is provided with a fuel metering valve FV for metering the flow rate of the liquefied fuel pumped by the fuel pump P and supplying it to the inner pipe 20a of the heat exchanger 20. The cooling water inflow passage 50 is provided with a temperature sensor 90 for measuring the temperature of the cooling water.

切換弁CVは、冷却水流入通路50と冷却水流出通路60との接続を切り換えることを可能とするものであり、すなわち、図1においては第一接続管70に連通している冷却水流入通路50を第二接続管80へ連通させると共に、図1においては第二接続管80に連通している冷却水流出通路60を第一接続管70へ連通させるようにすることができる。それにより、図1に示す切換弁CVの第一位置では、内管20a内を熱交換壁(内管の管壁)に沿って矢印の方向に通過する液化燃料に対して、機関冷却水は、外管20b内を熱交換壁に沿って液化燃料と同一方向に矢印で示すように通過する。また、切換弁CVにより冷却水流入通路50と冷却水流出通路60との接続を前述のように切り換えて切換弁CVを第二位置にすると、内管20a内を熱交換壁(内管の管壁)に沿って矢印の方向に通過する液化燃料に対して、機関冷却水は、外管20b内を熱交換壁に沿って液化燃料と反対方向に通過するようになる。こうして、切換弁CVを第一位置とする順流制御と、切換弁CVを第二位置とする逆流制御とが選択的に実施可能となっている。   The switching valve CV is capable of switching the connection between the cooling water inflow passage 50 and the cooling water outflow passage 60, that is, the cooling water inflow passage communicating with the first connection pipe 70 in FIG. 50 can be communicated with the second connection pipe 80, and in FIG. 1, the cooling water outflow passage 60 communicated with the second connection pipe 80 can be communicated with the first connection pipe 70. As a result, at the first position of the switching valve CV shown in FIG. 1, the engine coolant is not supplied to the liquefied fuel passing through the inner pipe 20a in the direction of the arrow along the heat exchange wall (the pipe wall of the inner pipe). It passes through the outer tube 20b along the heat exchange wall as indicated by the arrow in the same direction as the liquefied fuel. Further, when the connection between the cooling water inflow passage 50 and the cooling water outflow passage 60 is switched by the switching valve CV as described above and the switching valve CV is set to the second position, the inside of the inner pipe 20a is heat exchange wall (the pipe of the inner pipe). The engine cooling water passes through the outer pipe 20b in the opposite direction to the liquefied fuel along the heat exchange wall with respect to the liquefied fuel passing in the direction of the arrow along the wall. Thus, forward flow control with the switching valve CV as the first position and reverse flow control with the switching valve CV as the second position can be selectively performed.

本実施例の熱交換器20において、液化燃料通路として機能する内管20aは、車両が坂道を走行する際にも常に入口側が出口側に比較して高く位置するようになっている。それにより、内管20aの入口部20cへ供給された液化燃料は、重力により出口部20dへ移動しようとする。その際に、液化燃料は、熱交換壁を介しての機関冷却水との熱交換により内管20aの入口側において沸騰して気化し、内管20aの出口側では完全に気化することが意図されている。   In the heat exchanger 20 of the present embodiment, the inner pipe 20a functioning as a liquefied fuel passage is always positioned higher on the inlet side than the outlet side even when the vehicle travels on a slope. Thereby, the liquefied fuel supplied to the inlet 20c of the inner pipe 20a tends to move to the outlet 20d by gravity. At this time, the liquefied fuel is boiled and vaporized on the inlet side of the inner pipe 20a by heat exchange with the engine cooling water through the heat exchange wall, and is completely vaporized on the outlet side of the inner pipe 20a. Has been.

図2は、特定の液化燃料を熱交換器の内管20a内で沸騰させるときの過熱度と熱流束との関係を示すグラフである。ここで、過熱度とは、内管20aの管壁(熱交換壁)内面である伝熱面の温度と液化燃料の沸点との差であり、熱流束とは、単位面積の伝熱面から液化燃料へ単位時間に伝えられる熱量である。過熱度が境界過熱度ΔTB以下のときには、液化燃料は伝熱面の特定点から蒸気泡を発生させる核沸騰により沸騰する。一方、過熱度が境界過熱度ΔTBより高いときには、液化燃料は伝熱面の特定点からの蒸気泡がつながって伝熱面に部分的に蒸気膜が形成される遷移沸騰により沸騰する。   FIG. 2 is a graph showing the relationship between the degree of superheat and heat flux when a specific liquefied fuel is boiled in the inner tube 20a of the heat exchanger. Here, the degree of superheat is the difference between the temperature of the heat transfer surface which is the inner surface of the tube wall (heat exchange wall) of the inner tube 20a and the boiling point of the liquefied fuel, and the heat flux is from the heat transfer surface of the unit area. This is the amount of heat transferred to the liquefied fuel per unit time. When the superheat degree is equal to or less than the boundary superheat degree ΔTB, the liquefied fuel boils by nucleate boiling that generates vapor bubbles from a specific point on the heat transfer surface. On the other hand, when the superheat degree is higher than the boundary superheat degree ΔTB, the liquefied fuel boils by transition boiling in which vapor bubbles from a specific point on the heat transfer surface are connected and a vapor film is partially formed on the heat transfer surface.

特定の液化燃料に対して、図2に示すような過熱度と熱流束との関係を示すグラフは、内管20aの外側を通過する機関冷却水の温度と流量と内管20aの内側を通過する液化燃料の流量との三つの因子の二つを固定し、残り一つの因子を変化させることにより定まる。固定される二つの因子のうちの一つが機関冷却水の温度である場合には、機関冷却水の温度が高いほど、過熱度に対する全体的な熱流束は大きくなる。固定される二つの因子のうちの一つが機関冷却水の流量である場合には、機関冷却水の流量が多いほど、過熱度に対する全体的な熱流束は大きくなる。固定される二つの因子のうちの一つが液化燃料の流量である場合には、液化燃料の流量が多いほど、過熱度に対する全体的な熱流束は小さくなる。   For a specific liquefied fuel, a graph showing the relationship between the degree of superheat and heat flux as shown in FIG. 2 shows the temperature and flow rate of engine cooling water passing outside the inner pipe 20a and the inside of the inner pipe 20a. It is determined by fixing two of the three factors with the flow rate of the liquefied fuel and changing the remaining one factor. If one of the two fixed factors is the temperature of the engine cooling water, the higher the temperature of the engine cooling water, the larger the overall heat flux with respect to the degree of superheat. If one of the two fixed factors is the flow rate of the engine cooling water, the higher the flow rate of the engine cooling water, the larger the overall heat flux with respect to the degree of superheat. If one of the two fixed factors is the flow rate of the liquefied fuel, the higher the flow rate of the liquefied fuel, the smaller the overall heat flux for the degree of superheat.

また、変化させる因子が機関冷却水の温度である場合には、機関冷却水の温度が高くなるほど過熱度は高くなる。変化させる因子が機関冷却水の流量である場合には、機関冷却水の流量が多くなるほど過熱度は高くなる。変化させる因子が液化燃料の流量である場合には、液化燃料の流量が多いほど過熱度は低くなる。このように、特定の液化燃料に対する過熱度と熱流束との関係を示すグラフは無数に存在するが、いずれのグラフにおいても、核沸騰領域と遷移沸騰領域との境界過熱度ΔTBは、ほぼ一定となり、境界過熱度ΔTBのときの熱流束の大きさは、グラフ毎に異なるが、境界過熱度ΔTBのときの熱流束は、いずれのグラフにおいても極大値となる。   Further, when the factor to be changed is the temperature of the engine cooling water, the degree of superheat increases as the temperature of the engine cooling water increases. When the changing factor is the flow rate of engine cooling water, the degree of superheat increases as the flow rate of engine cooling water increases. When the change factor is the flow rate of the liquefied fuel, the degree of superheat decreases as the flow rate of the liquefied fuel increases. As described above, there are innumerable graphs showing the relationship between the degree of superheat and heat flux for a specific liquefied fuel. In any graph, the boundary superheat degree ΔTB between the nucleate boiling region and the transition boiling region is almost constant. Thus, the magnitude of the heat flux when the boundary superheat degree ΔTB is different for each graph, but the heat flux when the boundary superheat degree ΔTB is the maximum value in any graph.

ところで、本実施例の熱交換器20において、切換弁CVを第一位置とする順流制御が実施される場合には、機関冷却水は、内管20aの外側を内管20aの管壁である熱交換壁に沿って内管20aの液化燃料の入口側から出口側へ通過し、機関冷却水の温度は徐々に低下する。それにより、熱交換壁の液化燃料の入口側の過熱度(内管20a熱交換壁内面である伝熱面の温度と液化燃料の沸点との差)の方が出口側の過熱度より高くなる。また、切換弁CVを第二位置とする逆流制御が実施される場合には、機関冷却水は、内管20aの外側を内管20aの管壁である熱交換壁に沿って内管20aの液化燃料の出口側から入口側へ通過し、機関冷却水の温度は徐々に低下する。それにより、熱交換壁の液化燃料の出口側の過熱度の方が入口側の過熱度より高くなる。   By the way, in the heat exchanger 20 of the present embodiment, when the forward flow control with the switching valve CV as the first position is performed, the engine cooling water is the tube wall of the inner tube 20a outside the inner tube 20a. The temperature of the engine cooling water gradually decreases along the heat exchange wall from the liquefied fuel inlet side to the outlet side of the inner pipe 20a. As a result, the degree of superheat on the liquefied fuel inlet side of the heat exchange wall (the difference between the temperature of the heat transfer surface that is the inner surface of the inner tube 20a heat exchange wall and the boiling point of the liquefied fuel) is higher than the degree of superheat on the outlet side. . When reverse flow control is performed with the switching valve CV at the second position, the engine cooling water flows outside the inner tube 20a along the heat exchange wall that is the tube wall of the inner tube 20a. The liquefied fuel passes from the outlet side to the inlet side, and the temperature of the engine cooling water gradually decreases. Thereby, the degree of superheat on the outlet side of the liquefied fuel on the heat exchange wall becomes higher than the degree of superheat on the inlet side.

図2に示すグラフは、熱交換器20へ供給される機関冷却水の流量が特定機関冷却水流量に固定され、熱交換器20へ供給される液化燃料の流量が特定液化燃料流量に固定された場合であり、機関冷却水の温度が高くなるほど過熱度が高くなっている。図2において、ΔTU1は、機関冷却水の温度が第一温度である場合の機関冷却水の流入側での熱交換壁の伝熱面の過熱度であり、ΔTU1より低いΔTD1は、機関冷却水の温度が第一温度である場合の機関冷却水の流出側での熱交換壁の伝熱面の過熱度である。熱交換壁に沿って通過する機関冷却水の温度低下に伴って、このように、機関冷却水の流入側と流出側での過熱度の差が発生する。また、同様に、ΔTU2は、機関冷却水の温度が第二温度である場合の機関冷却水の流入側での熱交換壁の伝熱面の過熱度であり、ΔTU2より低いΔTD2は、機関冷却水の温度が第二温度である場合の機関冷却水の流出側での熱交換壁の伝熱面の過熱度である。また、同様に、ΔTU3は、機関冷却水の温度が第三温度である場合の機関冷却水の流入側での熱交換壁の伝熱面の過熱度であり、ΔTU3より低いΔTD3は、機関冷却水の温度が第三温度である場合の機関冷却水の流出側での熱交換壁の伝熱面の過熱度である。   In the graph shown in FIG. 2, the flow rate of the engine coolant supplied to the heat exchanger 20 is fixed to the specific engine coolant flow rate, and the flow rate of the liquefied fuel supplied to the heat exchanger 20 is fixed to the specific liquefied fuel flow rate. The degree of superheat increases as the temperature of the engine cooling water increases. In FIG. 2, ΔTU1 is the degree of superheat of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water when the temperature of the engine cooling water is the first temperature, and ΔTD1 lower than ΔTU1 is the engine cooling water. Is the degree of superheat of the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water when the temperature of the engine is the first temperature. As the temperature of the engine cooling water passing along the heat exchange wall decreases, a difference in superheat between the inflow side and the outflow side of the engine cooling water occurs in this way. Similarly, ΔTU2 is the degree of superheat of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water when the temperature of the engine cooling water is the second temperature, and ΔTD2 lower than ΔTU2 is the engine cooling. This is the degree of superheat of the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water when the water temperature is the second temperature. Similarly, ΔTU3 is the degree of superheat of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water when the temperature of the engine cooling water is the third temperature, and ΔTD3 lower than ΔTU3 is the engine cooling. This is the degree of superheat of the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water when the water temperature is the third temperature.

図2に示すように、核沸騰領域では過熱度が高いほど熱流束も大きくなるために、順流制御が選択されて実施されることにより、例えば、機関冷却水の流入側での熱交換壁の伝熱面の過熱度ΔTU1が熱交換壁の内管20aの入口側の過熱度とされ、機関冷却水の流出側での熱交換壁の伝熱面の過熱度ΔTD1が熱交換壁の内管20aの出口側の過熱度とされる。液化燃料通路の出口側では液化燃料は全て気化していることが意図されているために熱流束を大きくしても意味は無く、こうして、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることにより、液化燃料通路の入口側の液化燃料を核沸騰により良好に気化させることができる。   As shown in FIG. 2, in the nucleate boiling region, the higher the degree of superheat, the greater the heat flux. Therefore, the forward flow control is selected and implemented, for example, the heat exchange wall on the inflow side of the engine cooling water. The superheat degree ΔTU1 of the heat transfer surface is the superheat degree on the inlet side of the inner tube 20a of the heat exchange wall, and the superheat degree ΔTD1 of the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water is the inner tube of the heat exchange wall. The degree of superheat on the outlet side of 20a. Since it is intended that all of the liquefied fuel is vaporized on the outlet side of the liquefied fuel passage, it is meaningless to increase the heat flux. Thus, the heat flux on the inlet side of the liquefied fuel passage of the heat exchange wall is reduced. By making it larger than the heat flux on the outlet side, the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by nucleate boiling.

一方、遷移沸騰領域では、過熱度が高いほど熱流束が小さくなるために、逆流制御が選択されて実施されることにより、例えば、機関冷却水の流入側での熱交換壁の伝熱面の過熱度ΔTU3が熱交換器20の内管20aの出口側の過熱度とされ、機関冷却水の流出側での熱交換壁の伝熱面の過熱度ΔTD3が熱交換壁の内管20aの入口側の過熱度とされる。それにより、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることができ、液化燃料通路の入口側の液化燃料を遷移沸騰により良好に気化させることができる。   On the other hand, in the transition boiling region, the higher the degree of superheat, the smaller the heat flux. Therefore, the reverse flow control is selected and executed, for example, the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water. The degree of superheat ΔTU3 is the degree of superheat on the outlet side of the inner pipe 20a of the heat exchanger 20, and the degree of superheat ΔTD3 on the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water is the inlet of the inner pipe 20a of the heat exchange wall. The degree of superheat on the side. Thereby, the heat flux on the inlet side of the liquefied fuel passage of the heat exchange wall can be made larger than the heat flux on the outlet side, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by transition boiling.

また、機関冷却水の流入側での熱交換壁の伝熱面の過熱度ΔTU2が、核沸騰との境界近傍の遷移沸騰領域のΔTSであるときには、機関冷却水の流出側での熱交換壁の過熱度ΔTD2は核沸騰領域となり、両者の熱流束は、ほぼ等しくなる。それにより、順流制御が選択されて、機関冷却水の流入側での熱交換壁の伝熱面の過熱度ΔTU2が熱交換器20の内管20aの入口側の過熱度とされ、機関冷却水の流出側での熱交換壁の伝熱面の過熱度ΔTD2が熱交換壁の内管20aの出口側の過熱度とされても、逆流制御が選択されて、機関冷却水の流入側での熱交換壁の伝熱面の過熱度ΔTU2が熱交換器20の内管20aの出口側の過熱度とされ、機関冷却水の流出側での熱交換壁の伝熱面の過熱度ΔTD2が熱交換壁の内管20aの入口側の過熱度とされても、熱交換壁の液化燃料通路の入口側の熱流束と出口側の熱流束とはほぼ等しくなる。   Further, when the superheat degree ΔTU2 of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water is ΔTS in the transition boiling region near the boundary with nucleate boiling, the heat exchange wall on the outflow side of the engine cooling water The degree of superheating ΔTD2 of this becomes the nucleate boiling region, and the heat fluxes of both become substantially equal. Accordingly, the forward flow control is selected, the superheat degree ΔTU2 of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water is set as the superheat degree on the inlet side of the inner pipe 20a of the heat exchanger 20, and the engine cooling water Even if the superheat degree ΔTD2 of the heat transfer surface of the heat exchange wall on the outflow side of the engine is the superheat degree on the outlet side of the inner tube 20a of the heat exchange wall, the reverse flow control is selected and the inflow side of the engine cooling water The degree of superheat ΔTU2 on the heat transfer surface of the heat exchange wall is defined as the degree of superheat on the outlet side of the inner pipe 20a of the heat exchanger 20, and the degree of superheat ΔTD2 on the heat transfer surface of the heat exchange wall on the outflow side of the engine cooling water is heat. Even if the degree of superheat on the inlet side of the inner pipe 20a of the exchange wall is set, the heat flux on the inlet side and the heat flux on the outlet side of the liquefied fuel passage on the heat exchange wall are substantially equal.

従って、このときには、順流制御が選択されて、液化燃料通路の入口側の液化燃料を遷移沸騰により気化させても、逆流制御が選択されて、液化燃料通路の入口側の液化燃料を核沸騰により気化させても良い。しかしながら、機関冷却水の流入側での熱交換壁の伝熱面の過熱度が、核沸騰との境界近傍の遷移沸騰領域のΔTSより低くなるときには、順流制御を選択することにより、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることができ、液化燃料通路の入口側の液化燃料を遷移沸騰により良好に気化させることができる。また、機関冷却水の流入側での熱交換壁の伝熱面の過熱度が、核沸騰との境界近傍の遷移沸騰領域のΔTSより高くなるときには、逆流制御を選択することにより、熱交換壁の液化燃料通路の入口側の熱流束を出口側の熱流束より大きくすることができ、液化燃料通路の入口側の液化燃料を核沸騰又は遷移沸騰により良好に気化させることができる。   Therefore, at this time, even if the forward flow control is selected and the liquefied fuel on the inlet side of the liquefied fuel passage is vaporized by transition boiling, the reverse flow control is selected and the liquefied fuel on the inlet side of the liquefied fuel passage is caused by nucleate boiling. It may be vaporized. However, when the degree of superheat of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water is lower than ΔTS in the transition boiling region near the boundary with nucleate boiling, the heat exchange wall is selected by selecting the forward flow control. The heat flux on the inlet side of the liquefied fuel passage can be made larger than the heat flux on the outlet side, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by transition boiling. In addition, when the superheat degree of the heat transfer surface of the heat exchange wall on the inflow side of the engine cooling water is higher than ΔTS of the transition boiling region near the boundary with nucleate boiling, the heat exchange wall is selected by selecting the reverse flow control. The heat flux on the inlet side of the liquefied fuel passage can be made larger than the heat flux on the outlet side, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by nucleate boiling or transition boiling.

図3は、このような順流制御と逆流制御とを切り換えて実施するためのフローチャートである。電子制御装置により設定時間毎に繰り返して実行される。先ず、ステップ101において、機関負荷及び機関回転数に基づく現在の機関運転状態に対して必要な各気筒の燃料噴射量を実現するために、熱交換器20の液化燃料通路、すなわち、内管20aへ供給される液化燃料の流量を決定し、この液化燃料の流量と、熱交換器20の機関冷却水通路、すなわち、外管20bへ供給される機関冷却水の流量との二つの因子に基づき図2のようなグラフが設定され、このグラフにおいて、温度センサ90により検出される現在の機関冷却水の温度に基づき、順流制御が選択された場合の熱交換壁の液化燃料通路の入口側の過熱度ΔTUが演算される。   FIG. 3 is a flowchart for switching between such forward flow control and reverse flow control. It is repeatedly executed every set time by the electronic control unit. First, in step 101, the liquefied fuel passage of the heat exchanger 20, that is, the inner pipe 20a, is realized in order to realize the fuel injection amount of each cylinder necessary for the current engine operating state based on the engine load and the engine speed. The flow rate of the liquefied fuel supplied to the engine is determined based on two factors: the flow rate of the liquefied fuel and the flow rate of the engine coolant supplied to the engine cooling water passage of the heat exchanger 20, that is, the outer pipe 20b. A graph as shown in FIG. 2 is set. In this graph, on the inlet side of the liquefied fuel passage on the heat exchange wall when the forward flow control is selected based on the current temperature of the engine cooling water detected by the temperature sensor 90. The degree of superheat ΔTU is calculated.

次いで、ステップ102において、過熱度ΔTUが、液化燃料通路の入口側において液化燃料が遷移沸騰する範囲内の設定過熱度ΔTS以下であるか否かが判断される。この判断が肯定されるときには、ステップ103において順流制御が選択され、液化燃料通路の入口側の液化燃料を核沸騰又は遷移沸騰により良好に気化させることができる。また、ステップ102の判断が否定されるときには、ステップ104において逆流制御が選択され、液化燃料通路の入口側の液化燃料を遷移沸騰により良好に気化させることができる。こうして、特に、機関冷却水が高温となって過熱度が高くなると、順流制御では、熱交換器の液化燃料通路の入口側の液化燃料が遷移沸騰するために、このときの液化燃料への熱流束が小さくなることがあるが、逆流制御によって、熱交換器の液化燃料通路の入口側の過熱度を出口側の過熱度より低くすることにより、液化燃料通路の入口側での液化燃料の遷移沸騰における熱流束を大きくすることができ、熱交換器において液化燃料を良好に気化させることができる。   Next, at step 102, it is determined whether or not the superheat degree ΔTU is equal to or less than a set superheat degree ΔTS within a range where the liquefied fuel transitions and boiles on the inlet side of the liquefied fuel passage. When this determination is affirmative, forward flow control is selected in step 103, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by nucleate boiling or transition boiling. When the determination in step 102 is negative, the reverse flow control is selected in step 104, and the liquefied fuel on the inlet side of the liquefied fuel passage can be vaporized well by transition boiling. Thus, in particular, when the engine coolant becomes high temperature and the superheat degree becomes high, in the forward flow control, the liquefied fuel on the inlet side of the liquefied fuel passage of the heat exchanger undergoes transition boiling, so that the heat flow to the liquefied fuel at this time Although the bundle may be smaller, the transition of the liquefied fuel at the inlet side of the liquefied fuel passage is reduced by making the superheat degree at the inlet side of the liquefied fuel passage of the heat exchanger lower than the superheat degree at the outlet side by backflow control. The heat flux in boiling can be increased, and the liquefied fuel can be vaporized well in the heat exchanger.

図1に示す燃料供給装置において、熱交換器20へ流入させる機関冷却水の流量を制御するようにしても良い。例えば、冷却水流入通路50と冷却水流出通路60とを連通する連通路を設けて、この連通路に冷却水調量弁を設ければ、冷却水調量弁により連通路を通過して熱交換器20の外管20bを通過しない機関冷却水の流量を調量することにより、外管20bを通過する機関冷却水の流量を制御することが可能となる。   In the fuel supply device shown in FIG. 1, the flow rate of engine cooling water that flows into the heat exchanger 20 may be controlled. For example, if a communication path that connects the cooling water inflow path 50 and the cooling water outflow path 60 is provided, and a cooling water metering valve is provided in this communication path, the cooling water metering valve passes through the communication path to generate heat. By adjusting the flow rate of the engine coolant that does not pass through the outer pipe 20b of the exchanger 20, the flow rate of the engine coolant that passes through the outer pipe 20b can be controlled.

熱交換器20は、図1に示すような二重管形状に限定されることなく任意の形状としても良い。もちろん、過熱度と熱流束との関係を示すグラフは、大きさ、形状、及び材質の異なる熱交換器毎に異なるものとなり、また、沸点及び気化熱の異なる燃料毎に異なるものとなる。例えば、LPGを燃料とする場合において、プロパンとブタンとの混合比率を検出する等して混合比率毎に適した過熱度と熱流束との関係を示すグラフを使用することが好ましい。   The heat exchanger 20 may have an arbitrary shape without being limited to the double tube shape as shown in FIG. Of course, the graph showing the relationship between the degree of superheat and the heat flux is different for each heat exchanger having a different size, shape, and material, and is different for each fuel having a different boiling point and heat of vaporization. For example, when LPG is used as the fuel, it is preferable to use a graph showing the relationship between the degree of superheat and the heat flux suitable for each mixing ratio by detecting the mixing ratio of propane and butane.

10 燃料タンク
20 熱交換器
20a 内管
20b 外管
30 燃料流入通路
40 燃料流出通路
50 冷却水流入通路
60 冷却水流出通路
FV 燃料調量弁
CV 切換弁
DESCRIPTION OF SYMBOLS 10 Fuel tank 20 Heat exchanger 20a Inner pipe 20b Outer pipe 30 Fuel inflow path 40 Fuel outflow path 50 Cooling water inflow path 60 Cooling water outflow path FV Fuel metering valve CV switching valve

Claims (2)

液化燃料通路と機関冷却水通路との間の熱交換壁を有する熱交換器を具備し、液化燃料が前記液化燃料通路を前記熱交換壁に沿って通過するようにすると共に、機関冷却水が前記機関冷却水通路を前記熱交換壁に沿って前記液化燃料と同一方向に通過するようにする順流制御と、液化燃料が前記液化燃料通路を前記熱交換壁に沿って通過するようにすると共に、機関冷却水が前記機関冷却水通路を前記熱交換壁に沿って前記液化燃料と反対方向に通過するようにする逆流制御とが選択的に実施可能であり、前記熱交換壁の前記液化燃料通路の入口側の過熱度が、前記液化燃料通路の前記入口側において液化燃料が遷移沸騰する範囲内の設定過熱度以下のときには前記順流制御が選択され、前記設定過熱度より高いときには前記逆流制御が選択されることを特徴とする内燃機関の燃料供給装置。   A heat exchanger having a heat exchange wall between the liquefied fuel passage and the engine cooling water passage to allow the liquefied fuel to pass through the liquefied fuel passage along the heat exchange wall; Forward flow control for allowing the engine coolant passage to pass in the same direction as the liquefied fuel along the heat exchange wall, and for allowing the liquefied fuel to pass through the liquefied fuel passage along the heat exchange wall. Reverse flow control for allowing engine cooling water to pass through the engine cooling water passage along the heat exchange wall in a direction opposite to the liquefied fuel can be selectively performed, and the liquefied fuel on the heat exchange wall can be The forward flow control is selected when the superheat degree on the inlet side of the passage is equal to or lower than the set superheat degree within the range where the liquefied fuel transitions to boiling on the inlet side of the liquefied fuel passage, and the reverse flow control is selected when the superheat degree is higher than the set superheat degree. Is selected The fuel supply apparatus for an internal combustion engine, characterized in that it is. 前記熱交換壁の前記液化燃料通路の前記入口側の過熱度は、前記機関冷却水通路へ流入する機関冷却水の温度に基づき推定されることを特徴とする請求項1に記載の内燃機関の燃料供給装置。   2. The internal combustion engine according to claim 1, wherein the degree of superheat on the inlet side of the liquefied fuel passage of the heat exchange wall is estimated based on a temperature of engine cooling water flowing into the engine cooling water passage. Fuel supply device.
JP2011127537A 2011-06-07 2011-06-07 Fuel supply device of internal combustion engine Withdrawn JP2012255349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127537A JP2012255349A (en) 2011-06-07 2011-06-07 Fuel supply device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127537A JP2012255349A (en) 2011-06-07 2011-06-07 Fuel supply device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012255349A true JP2012255349A (en) 2012-12-27

Family

ID=47527141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127537A Withdrawn JP2012255349A (en) 2011-06-07 2011-06-07 Fuel supply device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012255349A (en)

Similar Documents

Publication Publication Date Title
JP5917836B2 (en) Fuel supply device for internal combustion engine
JP4137018B2 (en) Heating device for liquefied gas fuel supply system
JP2007333293A (en) Loop type heat pipe
CA3059962C (en) Pressure building cryogenic fluid delivery system
KR101476965B1 (en) Vessel, liquefied gas vaporization device, and control method therefor as well as improvement method therefor
JP5560131B2 (en) Fuel supply device
JP2011515647A (en) Boiler that can supply heating water and hot water at the same time
JP2009127888A (en) Heat exchanger and engine
EA020099B1 (en) Cooling water circuit for stationary engine
KR101686912B1 (en) Devivce for liquefied gas supply
JP2012255349A (en) Fuel supply device of internal combustion engine
JP5501682B2 (en) DME fuel supply system and DME fuel cooling method
JP6058930B2 (en) Fuel supply device for internal combustion engine
JP4284591B2 (en) LPG heat exchanger
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP2004301186A (en) Liquefied gas vaporization system
JPWO2017037810A1 (en) LNG vaporization system for ships, ship equipped with the same, and LNG vaporization method for ships
CA2862664C (en) Vaporizer system and control strategy
IT201800010216A1 (en) SPILL CONTROL SYSTEM FOR A FUEL TANK
JP2004309039A (en) Integral liquefied gas vaporizer
JP2014029122A (en) Fuel evaporator and fuel supply device
JP2010222989A (en) Engine speed control device
JP6722072B2 (en) Ship
WO2019187894A1 (en) Liquefied natural gas vaporization system
JP2018021516A (en) Lng automobile

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902