WO2019187894A1 - Liquefied natural gas vaporization system - Google Patents

Liquefied natural gas vaporization system Download PDF

Info

Publication number
WO2019187894A1
WO2019187894A1 PCT/JP2019/007243 JP2019007243W WO2019187894A1 WO 2019187894 A1 WO2019187894 A1 WO 2019187894A1 JP 2019007243 W JP2019007243 W JP 2019007243W WO 2019187894 A1 WO2019187894 A1 WO 2019187894A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
liquefied natural
vaporizer
water
unit
Prior art date
Application number
PCT/JP2019/007243
Other languages
French (fr)
Japanese (ja)
Inventor
正英 岩崎
浅田 和彦
江頭 慎二
朝寛 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2019187894A1 publication Critical patent/WO2019187894A1/en
Priority to PH12020551569A priority Critical patent/PH12020551569A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation

Definitions

  • the present invention relates to a liquefied natural gas vaporization system.
  • a liquefied natural gas vaporization system that recovers cold heat from liquefied natural gas by vaporizing liquefied natural gas (LNG) in a vaporizer and supplies the collected cold heat to a destination of the cold heat is known.
  • LNG liquefied natural gas
  • Patent Document 1 discloses an LNG-fired combined cycle power generation including an LNG vaporizer, a gas turbine intake air cooler, a gas turbine intake cooling water circulation system, a gas turbine intake cooling water circulation pump, and a gas turbine power generation device.
  • Equipment is disclosed.
  • the LNG vaporizer includes a heat transfer tube for flowing LNG.
  • LNG is vaporized by heat exchange between the LNG flowing in the heat transfer tube and the water contacting the surface of the heat transfer tube.
  • the gas turbine intake air cooler water (cooling water) flowing out of the LNG vaporizer and air exchange heat. Thereby, air is cooled.
  • the gas turbine intake air cooler corresponds to the use destination of the cold energy recovered from the liquefied natural gas.
  • the gas turbine intake cooling water circulation system path connects the LNG vaporizer and the gas turbine intake cooler to each other. Water circulates in the gas turbine intake cooling water circulation system. Thereby, water flows through the LNG vaporizer and the gas turbine intake air cooler in this order.
  • the gas turbine intake cooling water circulation pump is disposed in the gas turbine intake cooling water circulation system.
  • the gas turbine power generator is driven by a gas turbine compressor that compresses air flowing out from the gas turbine intake air cooler, and a mixed gas of air discharged from the gas turbine compressor and combustion gas of natural gas (NG).
  • NG natural gas
  • icing may occur on the surface of the heat transfer tube through which LNG flows.
  • Patent Document 2 discloses a liquefied gas vaporization system capable of suppressing the occurrence of icing in the vaporizer. Specifically, in the system described in Patent Document 2, a so-called alternative chlorofluorocarbon having a freezing point lower than the freezing point of water is used as a medium for heat exchange with LNG in the heat exchanger. For this reason, generation
  • An object of the present invention is to provide a liquefied natural gas vaporization system that can suppress the occurrence of icing in a vaporizer and can suppress an increase in cost.
  • a liquefied natural gas vaporization system uses a vaporizer that vaporizes at least a part of the liquefied natural gas by heating the liquefied natural gas with water, and cold heat of water flowing out of the vaporizer.
  • the vaporizer is an intermediate medium that evaporates at least a part of the intermediate medium in a liquid phase by exchanging heat between the intermediate medium having a freezing point lower than the freezing point of water and the water flowing out from the cold heat utilization unit.
  • At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section.
  • a liquefied natural gas vaporizing section At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section.
  • the liquefied natural gas vaporization system 1 of 1st Embodiment is demonstrated referring FIG.
  • the liquefied natural gas vaporization system 1 is a system that vaporizes liquefied natural gas (LNG) with water and supplies the cold energy recovered from the liquefied natural gas at that time to the use destination of the cold heat.
  • a so-called intermediate medium vaporizer (IFV) is employed as the vaporizer 10.
  • the liquefied natural gas vaporization system 1 includes a vaporizer 10, a cold energy utilization unit 20, a circulation channel 30, a circulation pump 32, a bypass channel 40, an adjustment unit 42, a controller 50, and a heating unit E3. It is equipped with.
  • the circulation channel 30 connects the vaporizer 10 and the cold energy utilization unit 20 to each other.
  • the vaporizer 10 is configured by an intermediate medium vaporizer (IFV). That is, in the vaporizer 10, the water and the liquefied natural gas exchange heat through an intermediate medium (for example, propane, alternative CFCs such as HFC-32 and R410A) M having a freezing point lower than the freezing point of water. Thereby, at least a part of the liquefied natural gas is vaporized. In the vaporizer 10, the intermediate medium M is heated by water, and the liquefied natural gas is heated by the intermediate medium M.
  • IOV intermediate medium vaporizer
  • the vaporizer 10 includes an intermediate medium evaporation unit E1, a liquefied natural gas vaporization unit E2, and a shell 11 that houses the intermediate medium evaporation unit E1, the liquefied natural gas vaporization unit E2, and the intermediate medium M.
  • the intermediate medium evaporating section E1 is configured by a heat transfer tube disposed in a lower portion of the shell 11 (a position in the shell 11 where the liquid phase intermediate medium M is immersed). That is, the intermediate medium M in contact with the surface of the intermediate medium evaporator E1 is heated by the water flowing in the intermediate medium evaporator E1.
  • the liquefied natural gas and the gas phase intermediate medium M exchange heat. Thereby, at least a part of the liquefied natural gas is vaporized.
  • the liquefied natural gas vaporization part E2 is comprised with the heat exchanger tube formed in the U-shape.
  • the liquefied natural gas vaporization section E2 is disposed in an upper portion of the shell 11 (a region above the surface of the liquid phase intermediate medium M in the shell 11). That is, the liquefied natural gas flowing in the liquefied natural gas vaporization section E2 is heated by the gas phase intermediate medium M in contact with the surface of the liquefied natural gas vaporization section E2.
  • the liquefied natural gas flowing in the liquefied natural gas vaporization section E2 is vaporized by taking away the latent heat of vaporization of the vapor phase intermediate medium M, while the vapor phase intermediate medium M is released by releasing the latent heat of vaporization. Condensate.
  • the shell 11 is connected to an inlet chamber 12 and an outlet chamber 13 which are partitioned by a partition plate 14.
  • the inlet chamber 12 is connected to one end of the liquefied natural gas vaporizer E2 so that the inlet chamber 12 and the liquefied natural gas vaporizer E2 communicate with each other.
  • the outlet chamber 13 is connected to the other end of the liquefied natural gas vaporization unit E2 so that the inside of the outlet chamber 13 and the liquefied natural gas vaporization unit E2 communicate with each other. That is, at least a part of the liquefied natural gas flowing into the liquefied natural gas vaporization section E2 from the inlet chamber 12 is heated by the gas phase intermediate medium M while passing through the liquefied natural gas vaporization section E2. Vaporizes and flows into the outlet chamber 13.
  • a water inlet chamber 15 and a water outlet chamber 16 are connected to the shell 11.
  • the water inlet chamber 15 is connected to a portion on one side of the shell 11 so that the water inlet chamber 15 and the intermediate medium evaporation portion E1 communicate with each other.
  • the water outlet chamber 16 is connected to a portion on the other side of the shell 11 so that the inside of the water outlet chamber 16 and the inside of the intermediate medium evaporation part E1 communicate with each other.
  • the water (warm water) that has flowed into the intermediate medium evaporator E1 from the water inlet chamber 15 is cooled to the liquid-phase intermediate medium M in the process of passing through the intermediate medium evaporator E1. That is, water recovers cold energy from the intermediate medium M.
  • the water cooled in the intermediate medium evaporation part E1 flows out to the circulation flow path 30 via the water outlet chamber 16.
  • the intermediate medium evaporation part E1 is comprised by the straight tubular heat exchanger tube, you may be comprised by the U-shaped heat exchanger tube.
  • a partition plate is provided in the water inlet chamber 15, and the water that has flowed into the intermediate medium evaporation section E ⁇ b> 1 flows so as to be turned toward the water outlet 16.
  • the cold energy utilization unit 20 utilizes the cold heat of the water that has flowed out of the vaporizer 10.
  • Examples of the cold heat utilization unit 20 include a heat exchanger used for cooling air supplied to the gas turbine combined cycle power generation device, a heat exchanger used for cooling various facilities, and the like.
  • the circulation pump (cold water pump) 32 is provided in a portion of the circulation channel 30 on the downstream side of the vaporizer 10.
  • the circulation pump 32 sends the water (cold water) flowing out from the vaporizer 10 to the cold energy utilization unit 20.
  • the liquefied natural gas vaporization system 1 of the present embodiment includes a cold water tank 34 disposed in a portion of the circulation channel 30 between the vaporizer 10 and the circulation pump 32.
  • the cold water tank 34 temporarily stores water (cold water) flowing out from the vaporizer 10.
  • the liquefied natural gas vaporization system 1 of the present embodiment includes a hot water pump 36 disposed in a portion of the circulation flow path 30 on the downstream side of the cold heat utilization section 20, and a cold heat utilization section 20 and a hot water pump 36 in the circulation flow path 30. And a hot water tank 38 disposed at a position between the two.
  • the hot water pump 36 sends water (hot water) that has flowed out of the cold energy utilization unit 20 to the vaporizer 10.
  • the hot water tank 38 temporarily stores water (hot water) that has flowed out of the cold energy utilization unit 20.
  • a backup heater 39 that heats water by a heat source medium (seawater or the like) may be provided in a portion of the circulation flow path 30 between the cold heat utilization unit 20 and the hot water tank 38.
  • the bypass channel 40 is connected to the circulation channel 30 so as to bypass the cold energy utilization unit 20.
  • the upstream end of the bypass flow path 40 is connected to a portion of the circulation flow path 30 between the vaporizer 10 and the cold water tank 34.
  • the downstream end of the bypass channel 40 is connected to a portion of the circulation channel 30 between the hot water pump 36 and the vaporizer 10. For this reason, the water (cold water) passing through the bypass channel 40 is returned to the vaporizer 10 again without receiving heat in the cold heat utilization unit 20.
  • the adjustment unit 42 adjusts the ratio of the flow rate of water flowing into the cold heat utilization unit 20 and the flow rate of water flowing into the bypass passage 40 out of the flow rate of water flowing out of the vaporizer 10.
  • the adjustment unit 42 includes a bypass pump disposed in the bypass flow path 40. By adjusting the rotation speed (frequency) of the bypass pump, the ratio of the flow rate of water flowing into the cold heat utilization unit 20 and the flow rate of water flowing into the bypass flow path 40 out of the water flowing out from the vaporizer 10 is adjusted.
  • the adjustment unit 42 may be configured by a valve whose opening degree can be adjusted.
  • the adjustment unit 42 may be configured by a three-way valve disposed at a connection portion between the circulation channel 30 and the upstream end of the bypass channel 40.
  • the controller 50 has a configuration including a storage unit (memory device) and a calculation unit (CPU or the like), and exhibits a predetermined function by executing a computer program recorded in the storage unit.
  • Functions of the controller 50 include an adjustment unit control unit 51 and a circulation pump control unit 52.
  • the adjustment unit control unit 51 controls the rotation speed of the adjustment unit (bypass pump in the present embodiment) 42. Specifically, the adjustment unit control unit 51 controls the rotation speed of the bypass pump so that the temperature of the water flowing out of the vaporizer 10 becomes a set temperature (for example, 4 ° C.). Note that the temperature of the water flowing out of the vaporizer 10 is detected by a temperature sensor 61 disposed in a portion of the circulation flow path 30 on the downstream side of the vaporizer 10. The adjustment unit control unit 51 controls the adjustment unit 42 according to the detection value of the temperature sensor 61.
  • the circulation pump control unit 52 controls the rotation speeds of the circulation pump 32 and the hot water pump 36. Specifically, the circulation pump control unit 52 controls the rotation speeds of the circulation pump 32 and the hot water pump 36 in accordance with the load of the cold energy utilization unit 20 indicated by the load signal output from the cold energy utilization unit 20. For example, the circulation pump control unit 52 increases the rotation speeds of the circulation pump 32 and the hot water pump 36 as the load indicated by the load signal increases. Therefore, when the load on the cold energy utilization unit 20 increases, the flow rate of water supplied to the cold energy utilization unit 20 increases.
  • the temperature of the downstream portion of the cold energy utilization unit 20 (for example, the detection value of the temperature sensor 63 provided in the hot water tank 38) ) And the temperature of the portion upstream of the cold energy utilization unit 20 (for example, the detection value of the temperature sensor 62 provided in the cold water tank 34) is maintained at a generally specified value (within a predetermined range).
  • the circulation pump control unit 52 increases the rotation speed of the circulation pump 32 and the hot water pump 36 while the temperature is increased.
  • the rotational speeds of the circulation pump 32 and the hot water pump 36 are lowered. Thereby, the temperature difference between the temperature on the upstream side and the temperature on the downstream side of the cold energy utilization unit 20 is maintained within a predetermined range. For this reason, when the temperature difference is substantially maintained at a specified value, it is possible to determine that the amount of water supplied to the cold energy utilization unit 20 corresponds to the magnitude of the load.
  • the control of the circulation pump 32 and the hot water pump 36 by the circulation pump control unit 52 is performed independently from the control of the adjustment unit 42 by the adjustment unit control unit 51.
  • the controller 50 outputs an alarm when the temperature of the intermediate medium evaporator E1 becomes equal to or lower than a first preset temperature (eg, ⁇ 1 ° C.), and the temperature of the intermediate medium evaporator E1 (the wall of the heat transfer tube)
  • a first preset temperature eg, ⁇ 1 ° C.
  • the supply of the liquefied natural gas to the vaporizer 10 may be stopped when the temperature becomes equal to or lower than a preset second temperature (for example, ⁇ 3 ° C.) lower than the first temperature.
  • a preset second temperature for example, ⁇ 3 ° C.
  • the heating unit E3 is disposed in a portion of the circulation channel 30 between the cold heat utilization unit 20 and the vaporizer 10, more specifically, a portion between the hot water pump 36 and the vaporizer 10.
  • the heating unit E3 heats the gas flowing out from the vaporizer 10 with water (hot water) flowing out from the cold heat utilization unit 20.
  • a so-called shell-and-tube heat exchanger or a so-called plate heat exchanger is preferably used as the heating unit E3.
  • the medium circulating in the circulation channel 30 is water.
  • the cold energy recovered in the vaporizer 10 can be effectively used in the cold energy utilization unit 20 while suppressing an increase in cost.
  • heat is transferred from the water to the liquefied natural gas through the intermediate medium M having a freezing point lower than the freezing point of water, so that the occurrence of icing in the intermediate medium evaporation unit E1 is suppressed.
  • the liquefied natural gas vaporization system 1 since the liquefied natural gas vaporization system 1 includes the bypass flow path 40 and the adjustment unit 42, icing occurs in the intermediate medium evaporation unit E1 even when the load of the cold heat utilization unit 20 is relatively low. It is possible to circulate water at a flow rate corresponding to the load of the cold energy utilization unit 20 while supplying the vaporizer 10 with a flow rate sufficient to suppress the above. For example, when the load of the cold energy utilization unit 20 is relatively low, the flow rate of water supplied to the cold energy utilization unit 20 decreases. In that case, water having a flow rate higher than that supplied to the cold energy utilization unit 20 flows into the intermediate medium evaporation unit E1 of the vaporizer 10 and flows out from the intermediate medium evaporation unit E1.
  • the adjustment part 42 is adjusted so that the surplus part which is not supplied to the cold energy utilization part 20 flows out into the bypass flow path 40 among the water which flowed out from the intermediate
  • the water of the flow volume according to the load of the cold energy utilization part 20 is supplied to the cold energy utilization part 20, and it is enough to prevent the vaporizer 10 from excessively decreasing the temperature of the water flowing out from the intermediate medium evaporation part E1. Water with a proper flow rate is supplied. Therefore, even when the load on the cold energy utilization unit 20 is small, it is possible to suppress the occurrence of icing in the intermediate medium evaporation unit E1.
  • the liquefied natural gas vaporization system 1 includes the heating unit E3, the gas flowing out from the vaporizer 10 is effectively heated in the heating unit E3.
  • the liquefied natural gas vaporization system 1 includes the adjustment unit control unit 51, the temperature of the water supplied to the cold heat utilization unit 20 is automatically maintained at a set temperature.
  • the liquefied natural gas vaporization system 1 is provided with the circulation pump control part 52, the rotation speed of the circulation pump 32 and the hot water pump 36 according to the load of the cold energy utilization part 20, ie, the cold energy utilization part 20 and the vaporizer. The amount of water supply to 10 is adjusted.
  • the liquefied natural gas vaporization system 1 since the liquefied natural gas vaporization system 1 includes the cold water tank 34, it is possible to effectively adjust the feed water flow rate to the cold energy utilization unit 20 according to the fluctuation of the load of the cold energy utilization unit 20. Similarly, since the liquefied natural gas vaporization system 1 includes the hot water tank 38, it is possible to effectively adjust the feed water flow rate to the vaporizer 10 according to the load fluctuation of the vaporizer 10.
  • the downstream end of the bypass flow path 40 is connected to a portion of the circulation flow path 30 between the heating unit E3 and the vaporizer 10. That is, the bypass flow path 40 bypasses the heating part E3.
  • inflow of water (cold water) that has passed through the bypass flow path 40 into the heating unit E3 (input of cold heat recovered from the liquefied natural gas in the vaporizer 10 to the heating unit E3) is avoided.
  • gas is effectively heated in the heating part E3.
  • a liquefied natural gas vaporization system 1 according to a third embodiment will be described with reference to FIG.
  • the third embodiment only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.
  • the liquefied natural gas vaporization system 1 further includes a branch flow path 31 connected to the circulation flow path 30 so as to bypass the heating unit E3.
  • the upstream end of the branch flow path 31 is connected to a portion of the circulation flow path 30 between the hot water pump 36 and the heater E3.
  • the downstream end of the branch flow path 31 is connected to a portion of the circulation flow path 30 between the heater E3 and the vaporizer 10.
  • the downstream end of the bypass channel 40 is connected to a portion of the circulation channel 30 between the heating unit E3 and the vaporizer 10. Note that the downstream end of the bypass channel 40 may be connected to the branch channel 31.
  • the heating unit E3 since the inflow of water (cold water) that has passed through the bypass channel 40 into the heating unit E3 is avoided, the gas is effectively heated in the heating unit E3. Furthermore, since only a part of the water flowing out from the cold energy utilization unit 20 flows into the heating unit E3, the total amount of water flowing out from the cold heat utilization unit 20 flows into the heating unit E3 as in the first embodiment. Compared to the above, the heating unit E3 can be downsized.
  • controller 50 may be omitted, and the rotation speed of the circulation pump 32 and the rotation speed of the bypass pump may be manually controlled by an operator.
  • another cold heat utilization part may be connected to the circulation channel 30 so as to be in parallel with the cold heat utilization part 20.
  • the liquefied natural gas vaporization system uses a vaporizer that evaporates at least a part of the liquefied natural gas by heating the liquefied natural gas with water, and a cold heat of water flowing out of the vaporizer.
  • the vaporizer is an intermediate medium that evaporates at least a part of the intermediate medium in a liquid phase by exchanging heat between the intermediate medium having a freezing point lower than the freezing point of water and the water flowing out from the cold heat utilization unit.
  • At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section.
  • a liquefied natural gas vaporizing section At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section.
  • the medium circulating in the circulation channel is water.
  • the cold collected in the vaporizer can be effectively utilized in the cold utilization unit while suppressing an increase in cost.
  • heat is transferred from water to liquefied natural gas via an intermediate medium (such as propane) having a freezing point lower than that of water, so that the occurrence of icing in the intermediate medium evaporation unit is suppressed. .
  • the liquefied natural gas vaporization system includes a bypass channel connected to the circulation channel so as to bypass the cold energy utilization unit, a flow rate of the water flowing into the cold energy utilization unit, and the bypass channel.
  • An adjustment unit capable of adjusting the flow rate of the water flowing in.
  • the cold energy utilization unit supplies water to the vaporizer with a flow rate sufficient to suppress the occurrence of icing in the intermediate medium evaporation unit. It becomes possible to circulate water at a flow rate corresponding to the load. For example, when the load of the cold energy utilization unit is relatively low, the flow rate of water supplied to the cold energy utilization unit is reduced. In that case, water having a flow rate higher than the flow rate supplied to the cold energy utilization unit flows into the intermediate medium evaporation unit of the vaporizer and flows out from the intermediate medium evaporation unit.
  • an adjustment part is adjusted so that the surplus part which is not supplied to a cold-heat utilization part among the water which flowed out from the intermediate-medium evaporation part flows in into a bypass flow path.
  • water having a flow rate according to the load of the cold energy utilization unit is supplied to the cold energy utilization unit, and the water flow rate sufficient to prevent an excessive decrease in the temperature of the water flowing out from the intermediate medium evaporation unit to the vaporizer. Is supplied. Therefore, even when the load on the cold energy utilization unit is small, it is possible to suppress the occurrence of icing in the intermediate medium evaporation unit.
  • the liquefied natural gas vaporization system may further include an adjustment unit control unit that controls the adjustment unit such that the temperature of water flowing out of the vaporizer becomes a set temperature.
  • the temperature of the water supplied to the cold energy utilization part is automatically maintained at a set temperature.
  • the adjustment unit may include a bypass pump disposed in the bypass flow path.
  • the adjustment unit control unit may control the rotation speed of the bypass pump so that the temperature of water flowing out of the vaporizer becomes the set temperature.
  • the liquefied natural gas vaporization system is disposed in a portion of the circulation flow path between the connection portion of the bypass flow path and the vaporizer, and heats the gas flowing out of the vaporizer. You may further provide a warm part.
  • downstream end of the bypass flow path may be connected to a portion of the circulation flow path between the heating unit and the vaporizer.
  • the liquefied natural gas vaporization system may further include a branch channel connected to the circulation channel so as to bypass the heating unit.
  • the downstream end of the bypass channel may be connected to a portion of the branch channel or the circulation channel between the heating unit and the vaporizer.
  • the heating unit can be downsized compared to the case where the entire amount of water that has flowed out of the cold heat utilization unit flows into the heating unit. It becomes possible.
  • the liquefied natural gas vaporization system may further include a circulation pump control unit that controls the number of revolutions of the circulation pump.
  • the circulation pump is disposed at a portion between the upstream side connection portion that is a connection portion between the circulation passage and the upstream end portion of the bypass passage among the circulation passages and the cold heat utilization portion. It may be arranged.
  • the circulation pump control unit may control the number of rotations of the circulation pump in accordance with a load of the cold energy utilization unit indicated by a load signal output from the cold energy utilization unit.
  • the rotation speed of a circulation pump ie, the amount of water supply to a cold energy utilization part, is adjusted according to the load of a cold energy utilization part.
  • the liquefied natural gas vaporization system is disposed in a portion of the circulation channel between the upstream connection portion and the circulation pump, and includes a cold water tank that stores water flowing out of the vaporizer. Further, it may be provided.
  • cold water water that has flowed out of the vaporizer
  • the cold water tank since cold water (water that has flowed out of the vaporizer) is stored in the cold water tank, it is possible to effectively adjust the amount of water supplied to the cold energy utilization unit in accordance with fluctuations in the load of the cold energy utilization unit. .

Abstract

A liquefied natural gas vaporization system having: a vaporizer for heating liquefied natural gas with water and thereby vaporizing at least a portion of the liquefied natural gas; a cold heat utilization unit for utilizing cold heat of water flowing from the vaporizer; a circulation flow path; and a circulation pump. The vaporizer has: an intermediate medium evaporation unit for evaporating at least a portion of an intermediate medium by carrying out a heat exchange between the intermediate medium, which has a freezing point lower than the freezing point of water, and the water flowing from the cold heat utilization unit; and a liquefied natural gas vaporization unit for vaporizing at least a portion of the liquefied natural gas by carrying out a heat exchange between the liquefied natural gas and the gas-phase intermediate medium generated by the evaporation of liquid-phase intermediate medium in the intermediate medium evaporation unit.

Description

液化天然ガス気化システムLiquefied natural gas vaporization system
 本発明は、液化天然ガス気化システムに関する。 The present invention relates to a liquefied natural gas vaporization system.
 気化器において液化天然ガス(LNG)を気化させることによって液化天然ガスから冷熱を回収し、当該回収された冷熱を、当該冷熱の利用先に供給する液化天然ガス気化システムが従来知られている。 Conventionally, a liquefied natural gas vaporization system that recovers cold heat from liquefied natural gas by vaporizing liquefied natural gas (LNG) in a vaporizer and supplies the collected cold heat to a destination of the cold heat is known.
 例えば、特許文献1には、LNG気化器と、ガスタービン吸気冷却器と、ガスタービン吸気冷却水循環系路と、ガスタービン吸気冷却水循環ポンプと、ガスタービン発電装置と、を備えるLNG焚きコンバインドサイクル発電設備が開示されている。LNG気化器は、LNGを流すための伝熱管を含んでいる。このLNG気化器では、伝熱管内を流れるLNGと伝熱管の表面に接触する水とが熱交換することにより、LNGが気化する。ガスタービン吸気冷却器では、LNG気化器から流出した水(冷却水)と空気とが熱交換する。これにより、空気が冷却される。つまり、ガスタービン吸気冷却器は、液化天然ガスから回収された冷熱の利用先に相当する。ガスタービン吸気冷却水循環系路は、LNG気化器及びガスタービン吸気冷却器を互いに接続している。水は、ガスタービン吸気冷却水循環系路を循環する。これにより、水は、LNG気化器及びガスタービン吸気冷却器をこの順に流れる。ガスタービン吸気冷却水循環ポンプは、ガスタービン吸気冷却水循環系路に配置されている。ガスタービン発電装置は、ガスタービン吸気冷却器から流出した空気を圧縮するガスタービン圧縮機と、ガスタービン圧縮機から吐出された空気と天然ガス(NG)の燃焼ガスとの混合ガスにより駆動されるガスタービンと、ガスタービンに接続された発電機と、を有している。 For example, Patent Document 1 discloses an LNG-fired combined cycle power generation including an LNG vaporizer, a gas turbine intake air cooler, a gas turbine intake cooling water circulation system, a gas turbine intake cooling water circulation pump, and a gas turbine power generation device. Equipment is disclosed. The LNG vaporizer includes a heat transfer tube for flowing LNG. In this LNG vaporizer, LNG is vaporized by heat exchange between the LNG flowing in the heat transfer tube and the water contacting the surface of the heat transfer tube. In the gas turbine intake air cooler, water (cooling water) flowing out of the LNG vaporizer and air exchange heat. Thereby, air is cooled. In other words, the gas turbine intake air cooler corresponds to the use destination of the cold energy recovered from the liquefied natural gas. The gas turbine intake cooling water circulation system path connects the LNG vaporizer and the gas turbine intake cooler to each other. Water circulates in the gas turbine intake cooling water circulation system. Thereby, water flows through the LNG vaporizer and the gas turbine intake air cooler in this order. The gas turbine intake cooling water circulation pump is disposed in the gas turbine intake cooling water circulation system. The gas turbine power generator is driven by a gas turbine compressor that compresses air flowing out from the gas turbine intake air cooler, and a mixed gas of air discharged from the gas turbine compressor and combustion gas of natural gas (NG). A gas turbine; and a generator connected to the gas turbine.
 特許文献1に開示されたLNG焚きコンバインドサイクル発電設備の気化器では、LNGが流れる伝熱管の表面に着氷が生じる場合がある。 In the vaporizer of the LNG-fired combined cycle power generation facility disclosed in Patent Document 1, icing may occur on the surface of the heat transfer tube through which LNG flows.
 一方、特許文献2には、気化器での着氷の発生を抑制可能な液化ガス気化システムが開示されている。具体的に、特許文献2に記載のシステムでは、熱交換器においてLNGと熱交換する媒体として、水の凝固点よりも低い凝固点を有するいわゆる代替フロンが使用されている。このため、熱交換器での着氷の発生が抑制されている。 On the other hand, Patent Document 2 discloses a liquefied gas vaporization system capable of suppressing the occurrence of icing in the vaporizer. Specifically, in the system described in Patent Document 2, a so-called alternative chlorofluorocarbon having a freezing point lower than the freezing point of water is used as a medium for heat exchange with LNG in the heat exchanger. For this reason, generation | occurrence | production of the icing in a heat exchanger is suppressed.
 特許文献2に開示された液化ガスの気化システムでは、媒体(代替フロン)が循環する流路が当該媒体で満たされる必要がある。したがって、コスト(特にイニシャルコスト)が非常に高くなる。 In the liquefied gas vaporization system disclosed in Patent Document 2, the flow path through which the medium (alternative chlorofluorocarbon) circulates needs to be filled with the medium. Therefore, the cost (particularly the initial cost) is very high.
特開平06-213001号公報Japanese Patent Laid-Open No. 06-21001 特許第6092065号公報Japanese Patent No. 6092065
 本発明の目的は、気化器における着氷の発生を抑制することが可能でかつコストの増大を抑制可能な液化天然ガス気化システムを提供することである。 An object of the present invention is to provide a liquefied natural gas vaporization system that can suppress the occurrence of icing in a vaporizer and can suppress an increase in cost.
 本発明の一局面に係る液化天然ガス気化システムは、水で液化天然ガスを加熱することによって当該液化天然ガスの少なくとも一部を気化させる気化器と、前記気化器から流出した水の冷熱を利用する冷熱利用部と、水が前記気化器と前記冷熱利用部との間で循環するように前記気化器及び前記冷熱利用部を接続する循環流路と、前記循環流路に設けられた循環ポンプと、を備える。前記気化器は、水の凝固点よりも低い凝固点を有する中間媒体と、前記冷熱利用部から流出した水と、を熱交換させることによって、液相の前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、前記中間媒体蒸発部において前記液相の中間媒体が蒸発することにより生じた気相の中間媒体と前記液化天然ガスとを熱交換させることにより前記液化天然ガスの少なくとも一部を気化させる液化天然ガス気化部と、を有する。 A liquefied natural gas vaporization system according to an aspect of the present invention uses a vaporizer that vaporizes at least a part of the liquefied natural gas by heating the liquefied natural gas with water, and cold heat of water flowing out of the vaporizer. A cooling heat utilization part, a circulation flow path connecting the vaporizer and the cold heat utilization part so that water circulates between the vaporizer and the cold heat utilization part, and a circulation pump provided in the circulation flow path And comprising. The vaporizer is an intermediate medium that evaporates at least a part of the intermediate medium in a liquid phase by exchanging heat between the intermediate medium having a freezing point lower than the freezing point of water and the water flowing out from the cold heat utilization unit. At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section. A liquefied natural gas vaporizing section.
第1実施形態の液化天然ガス気化システムの構成の概略を示す図である。It is a figure which shows the outline of a structure of the liquefied natural gas vaporization system of 1st Embodiment. 第2実施形態の液化天然ガス気化システムの構成の概略を示す図である。It is a figure which shows the outline of a structure of the liquefied natural gas vaporization system of 2nd Embodiment. 第3実施形態の液化天然ガス気化システムの構成の概略を示す図である。It is a figure which shows the outline of a structure of the liquefied natural gas vaporization system of 3rd Embodiment.
実施形態Embodiment
 以下、添付図面を参照しながら、実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 Hereinafter, embodiments will be described with reference to the accompanying drawings. In addition, the following embodiment is an example which actualized this invention, Comprising: The thing of the character which limits the technical scope of this invention is not.
 (第1実施形態)
 第1実施形態の液化天然ガス気化システム1について、図1を参照しながら説明する。本液化天然ガス気化システム1は、水で液化天然ガス(LNG)を気化させるとともに、そのときに水が液化天然ガスから回収した冷熱を当該冷熱の利用先に供給するシステムである。気化システム1では、気化器10として、いわゆる中間媒体式気化器(IFV)が採用されている。液化天然ガス気化システム1は、気化器10と、冷熱利用部20と、循環流路30と、循環ポンプ32と、バイパス流路40と、調整部42と、コントローラ50と、加温部E3と、を備えている。循環流路30は、気化器10及び冷熱利用部20を互いに接続している。
(First embodiment)
The liquefied natural gas vaporization system 1 of 1st Embodiment is demonstrated referring FIG. The liquefied natural gas vaporization system 1 is a system that vaporizes liquefied natural gas (LNG) with water and supplies the cold energy recovered from the liquefied natural gas at that time to the use destination of the cold heat. In the vaporization system 1, a so-called intermediate medium vaporizer (IFV) is employed as the vaporizer 10. The liquefied natural gas vaporization system 1 includes a vaporizer 10, a cold energy utilization unit 20, a circulation channel 30, a circulation pump 32, a bypass channel 40, an adjustment unit 42, a controller 50, and a heating unit E3. It is equipped with. The circulation channel 30 connects the vaporizer 10 and the cold energy utilization unit 20 to each other.
 気化器10は中間媒体式気化器(IFV)によって構成されている。すなわち、気化器10では、水の凝固点よりも低い凝固点を有する中間媒体(例えば、プロパンや、HFC-32,R410A等の代替フロン)Mを介して水と液化天然ガスとが熱交換する。これにより、液化天然ガスの少なくとも一部が気化する。気化器10では、水によって中間媒体Mが加熱され、その中間媒体Mによって液化天然ガスが加熱される。気化器10は、中間媒体蒸発部E1と、液化天然ガス気化部E2と、中間媒体蒸発部E1、液化天然ガス気化部E2及び中間媒体Mを収容するシェル11と、を有する。 The vaporizer 10 is configured by an intermediate medium vaporizer (IFV). That is, in the vaporizer 10, the water and the liquefied natural gas exchange heat through an intermediate medium (for example, propane, alternative CFCs such as HFC-32 and R410A) M having a freezing point lower than the freezing point of water. Thereby, at least a part of the liquefied natural gas is vaporized. In the vaporizer 10, the intermediate medium M is heated by water, and the liquefied natural gas is heated by the intermediate medium M. The vaporizer 10 includes an intermediate medium evaporation unit E1, a liquefied natural gas vaporization unit E2, and a shell 11 that houses the intermediate medium evaporation unit E1, the liquefied natural gas vaporization unit E2, and the intermediate medium M.
 中間媒体蒸発部E1では、液相の中間媒体Mと、冷熱利用部20から流出した水(温水)とが熱交換する。これにより、中間媒体Mの少なくとも一部が蒸発する。本実施形態では、中間媒体蒸発部E1は、シェル11内の下部(シェル11内のうち液相の中間媒体Mに浸る位置)に配置された伝熱管により構成されている。つまり、中間媒体蒸発部E1内を流れる水によって中間媒体蒸発部E1の表面に接する中間媒体Mが加熱される。 In the intermediate medium evaporation unit E1, the liquid phase intermediate medium M and the water (hot water) flowing out from the cold heat utilization unit 20 exchange heat. Thereby, at least a part of the intermediate medium M evaporates. In the present embodiment, the intermediate medium evaporating section E1 is configured by a heat transfer tube disposed in a lower portion of the shell 11 (a position in the shell 11 where the liquid phase intermediate medium M is immersed). That is, the intermediate medium M in contact with the surface of the intermediate medium evaporator E1 is heated by the water flowing in the intermediate medium evaporator E1.
 液化天然ガス気化部E2では、液化天然ガスと気相の中間媒体Mとが熱交換する。これにより、液化天然ガスの少なくとも一部が気化する。本実施形態では、液化天然ガス気化部E2は、U字状に形成された伝熱管により構成されている。液化天然ガス気化部E2は、シェル11内の上部(シェル11内のうち液相の中間媒体Mの表面よりも上方の領域)に配置されている。つまり、液化天然ガス気化部E2内を流れる液化天然ガスは、液化天然ガス気化部E2の表面に接する気相の中間媒体Mによって加熱される。具体的に、液化天然ガス気化部E2内を流れる液化天然ガスは、気相の中間媒体Mの蒸発潜熱を奪うことによって気化する一方、気相の中間媒体Mは、蒸発潜熱を放出することによって凝縮する。 In the liquefied natural gas vaporization section E2, the liquefied natural gas and the gas phase intermediate medium M exchange heat. Thereby, at least a part of the liquefied natural gas is vaporized. In this embodiment, the liquefied natural gas vaporization part E2 is comprised with the heat exchanger tube formed in the U-shape. The liquefied natural gas vaporization section E2 is disposed in an upper portion of the shell 11 (a region above the surface of the liquid phase intermediate medium M in the shell 11). That is, the liquefied natural gas flowing in the liquefied natural gas vaporization section E2 is heated by the gas phase intermediate medium M in contact with the surface of the liquefied natural gas vaporization section E2. Specifically, the liquefied natural gas flowing in the liquefied natural gas vaporization section E2 is vaporized by taking away the latent heat of vaporization of the vapor phase intermediate medium M, while the vapor phase intermediate medium M is released by releasing the latent heat of vaporization. Condensate.
 シェル11には、互いに仕切板14で仕切られた入口室12及び出口室13が接続されている。入口室12は、当該入口室12内と液化天然ガス気化部E2内とが連通するように液化天然ガス気化部E2の一端に接続されている。出口室13は、当該出口室13内と液化天然ガス気化部E2内とが連通するように液化天然ガス気化部E2の他端に接続されている。つまり、入口室12から液化天然ガス気化部E2内に流入した液化天然ガスは、液化天然ガス気化部E2内を通過する過程で気相の中間媒体Mに加熱されることによってその少なくとも一部が気化し、出口室13に流入する。 The shell 11 is connected to an inlet chamber 12 and an outlet chamber 13 which are partitioned by a partition plate 14. The inlet chamber 12 is connected to one end of the liquefied natural gas vaporizer E2 so that the inlet chamber 12 and the liquefied natural gas vaporizer E2 communicate with each other. The outlet chamber 13 is connected to the other end of the liquefied natural gas vaporization unit E2 so that the inside of the outlet chamber 13 and the liquefied natural gas vaporization unit E2 communicate with each other. That is, at least a part of the liquefied natural gas flowing into the liquefied natural gas vaporization section E2 from the inlet chamber 12 is heated by the gas phase intermediate medium M while passing through the liquefied natural gas vaporization section E2. Vaporizes and flows into the outlet chamber 13.
 また、シェル11には、水入口室15と、水出口室16と、が接続されている。水入口室15は、当該水入口室15内と中間媒体蒸発部E1内とが連通するようにシェル11の一方側の部位に接続されている。水出口室16は、当該水出口室16内と中間媒体蒸発部E1内とが連通するようにシェル11の他方側の部位に接続されている。水入口室15から中間媒体蒸発部E1内に流入した水(温水)は、中間媒体蒸発部E1内を通過する過程で液相の中間媒体Mに冷却される。つまり、水は中間媒体Mから冷熱を回収する。中間媒体蒸発部E1で冷却された水は、水出口室16を経由して循環流路30に流出する。なお、中間媒体蒸発部E1は直管状の伝熱管によって構成されているが、U字状の伝熱管によって構成されていてもよい。この場合、水入口室15内に仕切板が設けられ、中間媒体蒸発部E1内に流入した水が折返すように流れて水出口16に向かう。 Further, a water inlet chamber 15 and a water outlet chamber 16 are connected to the shell 11. The water inlet chamber 15 is connected to a portion on one side of the shell 11 so that the water inlet chamber 15 and the intermediate medium evaporation portion E1 communicate with each other. The water outlet chamber 16 is connected to a portion on the other side of the shell 11 so that the inside of the water outlet chamber 16 and the inside of the intermediate medium evaporation part E1 communicate with each other. The water (warm water) that has flowed into the intermediate medium evaporator E1 from the water inlet chamber 15 is cooled to the liquid-phase intermediate medium M in the process of passing through the intermediate medium evaporator E1. That is, water recovers cold energy from the intermediate medium M. The water cooled in the intermediate medium evaporation part E1 flows out to the circulation flow path 30 via the water outlet chamber 16. In addition, although the intermediate medium evaporation part E1 is comprised by the straight tubular heat exchanger tube, you may be comprised by the U-shaped heat exchanger tube. In this case, a partition plate is provided in the water inlet chamber 15, and the water that has flowed into the intermediate medium evaporation section E <b> 1 flows so as to be turned toward the water outlet 16.
 冷熱利用部20は、気化器10から流出した水の冷熱を利用する。冷熱利用部20として、ガスタービンコンバインドサイクル発電装置に供給される空気の冷却に用いられる熱交換器や、各種施設の冷房に用いられる熱交換器等が挙げられる。 The cold energy utilization unit 20 utilizes the cold heat of the water that has flowed out of the vaporizer 10. Examples of the cold heat utilization unit 20 include a heat exchanger used for cooling air supplied to the gas turbine combined cycle power generation device, a heat exchanger used for cooling various facilities, and the like.
 循環ポンプ(冷水ポンプ)32は、循環流路30のうち気化器10の下流側の部位に設けられている。循環ポンプ32は、気化器10から流出した水(冷水)を冷熱利用部20に送る。 The circulation pump (cold water pump) 32 is provided in a portion of the circulation channel 30 on the downstream side of the vaporizer 10. The circulation pump 32 sends the water (cold water) flowing out from the vaporizer 10 to the cold energy utilization unit 20.
 本実施形態の液化天然ガス気化システム1は、循環流路30のうち気化器10と循環ポンプ32との間の部位に配置された冷水タンク34を備えている。冷水タンク34は、気化器10から流出した水(冷水)を一時的に貯留する。 The liquefied natural gas vaporization system 1 of the present embodiment includes a cold water tank 34 disposed in a portion of the circulation channel 30 between the vaporizer 10 and the circulation pump 32. The cold water tank 34 temporarily stores water (cold water) flowing out from the vaporizer 10.
 本実施形態の液化天然ガス気化システム1は、循環流路30のうち冷熱利用部20の下流側の部位に配置された温水ポンプ36と、循環流路30のうち冷熱利用部20と温水ポンプ36との間の部位に配置された温水タンク38と、をさらに備えている。温水ポンプ36は、冷熱利用部20から流出した水(温水)を気化器10に送る。温水タンク38は、冷熱利用部20から流出した水(温水)を一時的に貯留する。循環流路30のうち冷熱利用部20と温水タンク38との間の部位には、熱源媒体(海水等)によって水を加熱するバックアップ加温器39が設けられてもよい。 The liquefied natural gas vaporization system 1 of the present embodiment includes a hot water pump 36 disposed in a portion of the circulation flow path 30 on the downstream side of the cold heat utilization section 20, and a cold heat utilization section 20 and a hot water pump 36 in the circulation flow path 30. And a hot water tank 38 disposed at a position between the two. The hot water pump 36 sends water (hot water) that has flowed out of the cold energy utilization unit 20 to the vaporizer 10. The hot water tank 38 temporarily stores water (hot water) that has flowed out of the cold energy utilization unit 20. A backup heater 39 that heats water by a heat source medium (seawater or the like) may be provided in a portion of the circulation flow path 30 between the cold heat utilization unit 20 and the hot water tank 38.
 バイパス流路40は、冷熱利用部20をバイパスするように循環流路30に接続されている。バイパス流路40の上流側の端部は、循環流路30のうち気化器10と冷水タンク34との間の部位に接続されている。バイパス流路40の下流側の端部は、循環流路30のうち温水ポンプ36と気化器10との間の部位に接続されている。このため、バイパス流路40を通る水(冷水)は、冷熱利用部20において受熱することなく再び気化器10に戻される。 The bypass channel 40 is connected to the circulation channel 30 so as to bypass the cold energy utilization unit 20. The upstream end of the bypass flow path 40 is connected to a portion of the circulation flow path 30 between the vaporizer 10 and the cold water tank 34. The downstream end of the bypass channel 40 is connected to a portion of the circulation channel 30 between the hot water pump 36 and the vaporizer 10. For this reason, the water (cold water) passing through the bypass channel 40 is returned to the vaporizer 10 again without receiving heat in the cold heat utilization unit 20.
 調整部42は、気化器10から流出した水の流量のうち冷熱利用部20へ流入する水の流量とバイパス流路40へ流入する水の流量との割合を調整する。本実施形態では、調整部42は、バイパス流路40に配置されたバイパスポンプを有する。バイパスポンプの回転数(周波数)の調整により、気化器10から流出した水のうち冷熱利用部20へ流入する水の流量とバイパス流路40へ流入する水の流量との割合が調整される。なお、バイパスポンプの代わりに、調整部42は開度調整可能な弁によって構成されてもよい。あるいは、前記弁の代わりに、調整部42は、循環流路30とバイパス流路40の上流側の端部との接続部に配置された三方弁によって構成されてもよい。 The adjustment unit 42 adjusts the ratio of the flow rate of water flowing into the cold heat utilization unit 20 and the flow rate of water flowing into the bypass passage 40 out of the flow rate of water flowing out of the vaporizer 10. In the present embodiment, the adjustment unit 42 includes a bypass pump disposed in the bypass flow path 40. By adjusting the rotation speed (frequency) of the bypass pump, the ratio of the flow rate of water flowing into the cold heat utilization unit 20 and the flow rate of water flowing into the bypass flow path 40 out of the water flowing out from the vaporizer 10 is adjusted. Instead of the bypass pump, the adjustment unit 42 may be configured by a valve whose opening degree can be adjusted. Alternatively, instead of the valve, the adjustment unit 42 may be configured by a three-way valve disposed at a connection portion between the circulation channel 30 and the upstream end of the bypass channel 40.
 コントローラ50は、記憶部(メモリーデバイス)、演算部(CPU等)を備えた構成であり、記憶部に記録されたコンピュータプログラムを実行することにより、所定の機能を発揮する。コントローラ50の機能には、調整部制御部51と、循環ポンプ制御部52と、が含まれる。 The controller 50 has a configuration including a storage unit (memory device) and a calculation unit (CPU or the like), and exhibits a predetermined function by executing a computer program recorded in the storage unit. Functions of the controller 50 include an adjustment unit control unit 51 and a circulation pump control unit 52.
 調整部制御部51は、調整部(本実施形態ではバイパスポンプ)42の回転数を制御する。具体的に、調整部制御部51は、気化器10から流出した水の温度が設定温度(例えば4℃)になるようにバイパスポンプの回転数を制御する。なお、気化器10から流出した水の温度は、循環流路30のうち気化器10の下流側の部位に配置された温度センサ61によって検出される。調整部制御部51は、温度センサ61の検出値にしたがって調整部42を制御する。 The adjustment unit control unit 51 controls the rotation speed of the adjustment unit (bypass pump in the present embodiment) 42. Specifically, the adjustment unit control unit 51 controls the rotation speed of the bypass pump so that the temperature of the water flowing out of the vaporizer 10 becomes a set temperature (for example, 4 ° C.). Note that the temperature of the water flowing out of the vaporizer 10 is detected by a temperature sensor 61 disposed in a portion of the circulation flow path 30 on the downstream side of the vaporizer 10. The adjustment unit control unit 51 controls the adjustment unit 42 according to the detection value of the temperature sensor 61.
 循環ポンプ制御部52は、循環ポンプ32及び温水ポンプ36の回転数を制御する。具体的に、循環ポンプ制御部52は、冷熱利用部20が出力する負荷信号が示す冷熱利用部20の負荷に応じて循環ポンプ32及び温水ポンプ36の回転数を制御する。例えば、循環ポンプ制御部52は、前記負荷信号が示す負荷が大きくなるにしたがって循環ポンプ32及び温水ポンプ36の回転数を上げる。したがって、冷熱利用部20での負荷が大きくなると、冷熱利用部20に供給される水の流量が増大する。冷熱利用部20への水の供給流量が前記負荷の大きさに応じて調整される場合、冷熱利用部20の下流側の部位の温度(例えば温水タンク38に設けられた温度センサ63の検出値)と冷熱利用部20の上流側の部位の温度(例えば冷水タンク34に設けられた温度センサ62の検出値)との温度差が概ね規定値(所定範囲内)に維持される。例えば、循環ポンプ制御部52は、冷熱利用部20の上流側での温度と下流側での温度との温度差が大きくなると、循環ポンプ32及び温水ポンプ36の回転数を上げる一方で、前記温度差が小さくなると、循環ポンプ32及び温水ポンプ36の回転数を下げる。これにより、冷熱利用部20の上流側での温度と下流側での温度との温度差が所定範囲内に維持される。このため、前記温度差が概ね規定値に維持されている場合には、冷熱利用部20への水の供給量が前記負荷の大きさに対応していると判断することが可能である。なお、循環ポンプ制御部52による循環ポンプ32及び温水ポンプ36の制御は、調整部制御部51による調整部42の制御から独立して行われる。 The circulation pump control unit 52 controls the rotation speeds of the circulation pump 32 and the hot water pump 36. Specifically, the circulation pump control unit 52 controls the rotation speeds of the circulation pump 32 and the hot water pump 36 in accordance with the load of the cold energy utilization unit 20 indicated by the load signal output from the cold energy utilization unit 20. For example, the circulation pump control unit 52 increases the rotation speeds of the circulation pump 32 and the hot water pump 36 as the load indicated by the load signal increases. Therefore, when the load on the cold energy utilization unit 20 increases, the flow rate of water supplied to the cold energy utilization unit 20 increases. When the supply flow rate of water to the cold energy utilization unit 20 is adjusted according to the magnitude of the load, the temperature of the downstream portion of the cold energy utilization unit 20 (for example, the detection value of the temperature sensor 63 provided in the hot water tank 38) ) And the temperature of the portion upstream of the cold energy utilization unit 20 (for example, the detection value of the temperature sensor 62 provided in the cold water tank 34) is maintained at a generally specified value (within a predetermined range). For example, when the temperature difference between the temperature on the upstream side and the temperature on the downstream side of the cold energy utilization unit 20 increases, the circulation pump control unit 52 increases the rotation speed of the circulation pump 32 and the hot water pump 36 while the temperature is increased. When the difference becomes smaller, the rotational speeds of the circulation pump 32 and the hot water pump 36 are lowered. Thereby, the temperature difference between the temperature on the upstream side and the temperature on the downstream side of the cold energy utilization unit 20 is maintained within a predetermined range. For this reason, when the temperature difference is substantially maintained at a specified value, it is possible to determine that the amount of water supplied to the cold energy utilization unit 20 corresponds to the magnitude of the load. The control of the circulation pump 32 and the hot water pump 36 by the circulation pump control unit 52 is performed independently from the control of the adjustment unit 42 by the adjustment unit control unit 51.
 コントローラ50は、中間媒体蒸発部E1の温度が予め設定された第1温度(例えば-1℃)以下になったときにアラームを出力し、中間媒体蒸発部E1の温度(伝熱管の管壁の温度)が第1温度よりも低い予め設定された第2温度(例えば-3℃)以下になったときに気化器10への液化天然ガスの供給を停止してもよい。なお、中間媒体蒸発部E1の温度は、中間媒体蒸発部E1の下流側の端部に設けられた温度センサ64によって検出される。 The controller 50 outputs an alarm when the temperature of the intermediate medium evaporator E1 becomes equal to or lower than a first preset temperature (eg, −1 ° C.), and the temperature of the intermediate medium evaporator E1 (the wall of the heat transfer tube) The supply of the liquefied natural gas to the vaporizer 10 may be stopped when the temperature becomes equal to or lower than a preset second temperature (for example, −3 ° C.) lower than the first temperature. Note that the temperature of the intermediate medium evaporation section E1 is detected by a temperature sensor 64 provided at the downstream end of the intermediate medium evaporation section E1.
 加温部E3は、循環流路30のうち冷熱利用部20と気化器10との間の部位、より詳細には、温水ポンプ36と気化器10との間の部位に配置されている。加温部E3は、気化器10から流出したガスを冷熱利用部20から流出した水(温水)によって加熱する。なお、加温部E3として、いわゆるシェルアンドチューブ式の熱交換器やいわゆるプレート式の熱交換器が好ましく用いられる。 The heating unit E3 is disposed in a portion of the circulation channel 30 between the cold heat utilization unit 20 and the vaporizer 10, more specifically, a portion between the hot water pump 36 and the vaporizer 10. The heating unit E3 heats the gas flowing out from the vaporizer 10 with water (hot water) flowing out from the cold heat utilization unit 20. Note that a so-called shell-and-tube heat exchanger or a so-called plate heat exchanger is preferably used as the heating unit E3.
 以上に説明したように、本実施形態の液化天然ガス気化システム1では、循環流路30を循環する媒体が水である。このため、コストの増大を抑えつつ気化器10において回収した冷熱を冷熱利用部20において有効に利用できる。しかも、気化器10では、水の凝固点よりも低い凝固点を有する中間媒体Mを介して水から液化天然ガスへ熱が移動するので、中間媒体蒸発部E1での着氷の発生が抑制される。 As described above, in the liquefied natural gas vaporization system 1 of the present embodiment, the medium circulating in the circulation channel 30 is water. For this reason, the cold energy recovered in the vaporizer 10 can be effectively used in the cold energy utilization unit 20 while suppressing an increase in cost. In addition, in the vaporizer 10, heat is transferred from the water to the liquefied natural gas through the intermediate medium M having a freezing point lower than the freezing point of water, so that the occurrence of icing in the intermediate medium evaporation unit E1 is suppressed.
 また、液化天然ガス気化システム1は、バイパス流路40と調整部42とを備えているので、冷熱利用部20の負荷が比較的低い場合においても、中間媒体蒸発部E1での着氷の発生を抑制するのに十分な流量の水を気化器10へ供給しつつ、冷熱利用部20の負荷に応じた流量の水を循環させることが可能となる。例えば、冷熱利用部20の負荷が比較的低い場合には、冷熱利用部20へ供給される水の流量が少なくなる。その場合、冷熱利用部20へ供給される流量よりも多流量の水が気化器10の中間媒体蒸発部E1に流入されるとともに中間媒体蒸発部E1から流出する。このため、中間媒体蒸発部E1から流出した水のうち冷熱利用部20へ供給されない余剰分がバイパス流路40に流入するように調整部42が調整される。これにより、冷熱利用部20の負荷に応じた流量の水が冷熱利用部20に供給され、しかも、気化器10へは中間媒体蒸発部E1から流出する水の温度の過度の低下を防ぐために十分な流量の水が供給される。したがって、冷熱利用部20での負荷が少ない場合でも、中間媒体蒸発部E1での着氷の発生を抑制することができる。 In addition, since the liquefied natural gas vaporization system 1 includes the bypass flow path 40 and the adjustment unit 42, icing occurs in the intermediate medium evaporation unit E1 even when the load of the cold heat utilization unit 20 is relatively low. It is possible to circulate water at a flow rate corresponding to the load of the cold energy utilization unit 20 while supplying the vaporizer 10 with a flow rate sufficient to suppress the above. For example, when the load of the cold energy utilization unit 20 is relatively low, the flow rate of water supplied to the cold energy utilization unit 20 decreases. In that case, water having a flow rate higher than that supplied to the cold energy utilization unit 20 flows into the intermediate medium evaporation unit E1 of the vaporizer 10 and flows out from the intermediate medium evaporation unit E1. For this reason, the adjustment part 42 is adjusted so that the surplus part which is not supplied to the cold energy utilization part 20 flows out into the bypass flow path 40 among the water which flowed out from the intermediate | middle medium evaporation part E1. Thereby, the water of the flow volume according to the load of the cold energy utilization part 20 is supplied to the cold energy utilization part 20, and it is enough to prevent the vaporizer 10 from excessively decreasing the temperature of the water flowing out from the intermediate medium evaporation part E1. Water with a proper flow rate is supplied. Therefore, even when the load on the cold energy utilization unit 20 is small, it is possible to suppress the occurrence of icing in the intermediate medium evaporation unit E1.
 また、液化天然ガス気化システム1は、加温部E3を備えているので、気化器10から流出したガスが加温部E3において有効に加熱される。 Further, since the liquefied natural gas vaporization system 1 includes the heating unit E3, the gas flowing out from the vaporizer 10 is effectively heated in the heating unit E3.
 さらに、液化天然ガス気化システム1は、調整部制御部51を備えているので、冷熱利用部20へ供給される水の温度が概ね設定温度に自動で維持される。 Furthermore, since the liquefied natural gas vaporization system 1 includes the adjustment unit control unit 51, the temperature of the water supplied to the cold heat utilization unit 20 is automatically maintained at a set temperature.
 また、液化天然ガス気化システム1は、循環ポンプ制御部52を備えているので、冷熱利用部20の負荷に応じて循環ポンプ32及び温水ポンプ36の回転数、すなわち、冷熱利用部20及び気化器10への給水量が調整される。 Moreover, since the liquefied natural gas vaporization system 1 is provided with the circulation pump control part 52, the rotation speed of the circulation pump 32 and the hot water pump 36 according to the load of the cold energy utilization part 20, ie, the cold energy utilization part 20 and the vaporizer. The amount of water supply to 10 is adjusted.
 さらに、液化天然ガス気化システム1は、冷水タンク34を備えているので、冷熱利用部20の負荷の変動に応じて冷熱利用部20への給水流量を有効に調整することが可能となる。同様に、液化天然ガス気化システム1は、温水タンク38を備えているので、気化器10の負荷変動に応じて気化器10への給水流量を有効に調整することが可能となる。 Furthermore, since the liquefied natural gas vaporization system 1 includes the cold water tank 34, it is possible to effectively adjust the feed water flow rate to the cold energy utilization unit 20 according to the fluctuation of the load of the cold energy utilization unit 20. Similarly, since the liquefied natural gas vaporization system 1 includes the hot water tank 38, it is possible to effectively adjust the feed water flow rate to the vaporizer 10 according to the load fluctuation of the vaporizer 10.
 (第2実施形態)
 図2を参照しながら、第2実施形態の液化天然ガス気化システム1について説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
A liquefied natural gas vaporization system 1 according to a second embodiment will be described with reference to FIG. In the second embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.
 第2実施形態による液化天然ガス気化システム1では、バイパス流路40の下流側の端部は、循環流路30のうち加温部E3と気化器10との間の部位に接続されている。つまり、バイパス流路40は加温部E3をバイパスしている。 In the liquefied natural gas vaporization system 1 according to the second embodiment, the downstream end of the bypass flow path 40 is connected to a portion of the circulation flow path 30 between the heating unit E3 and the vaporizer 10. That is, the bypass flow path 40 bypasses the heating part E3.
 第2実施形態では、バイパス流路40を通過した水(冷水)の加温部E3への流入(気化器10において液化天然ガスから回収された冷熱の加温部E3への投入)が回避される。このため、加温部E3においてガスが有効に加熱される。 In the second embodiment, inflow of water (cold water) that has passed through the bypass flow path 40 into the heating unit E3 (input of cold heat recovered from the liquefied natural gas in the vaporizer 10 to the heating unit E3) is avoided. The For this reason, gas is effectively heated in the heating part E3.
 (第3実施形態)
 図3を参照しながら、第3実施形態の液化天然ガス気化システム1について説明する。なお、第3実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Third embodiment)
A liquefied natural gas vaporization system 1 according to a third embodiment will be described with reference to FIG. In the third embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.
 第3実施形態による液化天然ガス気化システム1は、加温部E3をバイパスするように循環流路30に接続された分岐流路31をさらに備えている。分岐流路31の上流側の端部は、循環流路30における温水ポンプ36と加温器E3との間の部位に接続されている。分岐流路31の下流側での端部は、循環流路30における加温器E3と気化器10との間の部位に接続されている。バイパス流路40の下流側の端部は、循環流路30のうち加温部E3と気化器10との間の部位に接続されている。なお、バイパス流路40の下流側の端部は、分岐流路31に接続されてもよい。 The liquefied natural gas vaporization system 1 according to the third embodiment further includes a branch flow path 31 connected to the circulation flow path 30 so as to bypass the heating unit E3. The upstream end of the branch flow path 31 is connected to a portion of the circulation flow path 30 between the hot water pump 36 and the heater E3. The downstream end of the branch flow path 31 is connected to a portion of the circulation flow path 30 between the heater E3 and the vaporizer 10. The downstream end of the bypass channel 40 is connected to a portion of the circulation channel 30 between the heating unit E3 and the vaporizer 10. Note that the downstream end of the bypass channel 40 may be connected to the branch channel 31.
 第3実施形態では、バイパス流路40を通過した水(冷水)の加温部E3への流入が回避されるので、加温部E3においてガスが有効に加熱される。さらに、冷熱利用部20から流出した水の一部のみが加温部E3に流入するので、第1実施形態のように冷熱利用部20から流出した水の全量が加温部E3に流入する場合に比べて、加温部E3の小型化が可能になる。 In the third embodiment, since the inflow of water (cold water) that has passed through the bypass channel 40 into the heating unit E3 is avoided, the gas is effectively heated in the heating unit E3. Furthermore, since only a part of the water flowing out from the cold energy utilization unit 20 flows into the heating unit E3, the total amount of water flowing out from the cold heat utilization unit 20 flows into the heating unit E3 as in the first embodiment. Compared to the above, the heating unit E3 can be downsized.
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 例えば、コントローラ50が省略され、循環ポンプ32の回転数やバイパスポンプの回転数がオペレータによって手動で制御されてもよい。 For example, the controller 50 may be omitted, and the rotation speed of the circulation pump 32 and the rotation speed of the bypass pump may be manually controlled by an operator.
 また、冷熱利用部20と並列になるように循環流路30に対して別の冷熱利用部が接続されてもよい。 Further, another cold heat utilization part may be connected to the circulation channel 30 so as to be in parallel with the cold heat utilization part 20.
 ここで、前記実施形態について概説する。 Here, the embodiment will be outlined.
 (1)前記実施形態による液化天然ガス気化システムは、水で液化天然ガスを加熱することによって当該液化天然ガスの少なくとも一部を気化させる気化器と、前記気化器から流出した水の冷熱を利用する冷熱利用部と、水が前記気化器及び前記冷熱利用部との間で循環するように前記気化器及び前記冷熱利用部を接続する循環流路と、前記循環流路に設けられた循環ポンプと、を備える。前記気化器は、水の凝固点よりも低い凝固点を有する中間媒体と、前記冷熱利用部から流出した水と、を熱交換させることによって、液相の前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、前記中間媒体蒸発部において前記液相の中間媒体が蒸発することにより生じた気相の中間媒体と前記液化天然ガスとを熱交換させることにより前記液化天然ガスの少なくとも一部を気化させる液化天然ガス気化部と、を有する。 (1) The liquefied natural gas vaporization system according to the embodiment uses a vaporizer that evaporates at least a part of the liquefied natural gas by heating the liquefied natural gas with water, and a cold heat of water flowing out of the vaporizer. A cooling heat utilization unit, a circulation channel connecting the vaporizer and the cold utilization unit so that water circulates between the vaporizer and the cold utilization unit, and a circulation pump provided in the circulation channel And comprising. The vaporizer is an intermediate medium that evaporates at least a part of the intermediate medium in a liquid phase by exchanging heat between the intermediate medium having a freezing point lower than the freezing point of water and the water flowing out from the cold heat utilization unit. At least a part of the liquefied natural gas is vaporized by heat-exchanging the vaporized intermediate medium and the liquefied natural gas with the vapor phase intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporating section. A liquefied natural gas vaporizing section.
 本液化天然ガス気化システムでは、循環流路を循環する媒体が水である。このため、コストの増大を抑えつつ気化器において回収した冷熱を冷熱利用部において有効に利用できる。しかも、気化器では、水の凝固点よりも低い凝固点を有する中間媒体(プロパン等)を介して水から液化天然ガスへ熱が移動するので、中間媒体蒸発部での着氷の発生が抑制される。 In this liquefied natural gas vaporization system, the medium circulating in the circulation channel is water. For this reason, the cold collected in the vaporizer can be effectively utilized in the cold utilization unit while suppressing an increase in cost. In addition, in the vaporizer, heat is transferred from water to liquefied natural gas via an intermediate medium (such as propane) having a freezing point lower than that of water, so that the occurrence of icing in the intermediate medium evaporation unit is suppressed. .
 (2)前記液化天然ガス気化システムは、前記冷熱利用部をバイパスするように前記循環流路に接続されたバイパス流路と、前記冷熱利用部へ流入する前記水の流量と前記バイパス流路へ流入する前記水の流量とを調整することが可能な調整部と、をさらに備えてもよい。 (2) The liquefied natural gas vaporization system includes a bypass channel connected to the circulation channel so as to bypass the cold energy utilization unit, a flow rate of the water flowing into the cold energy utilization unit, and the bypass channel. An adjustment unit capable of adjusting the flow rate of the water flowing in.
 このようにすれば、冷熱利用部の負荷が比較的低い場合においても、中間媒体蒸発部での着氷の発生を抑制するのに十分な流量の水を気化器へ供給しつつ、冷熱利用部の負荷に応じた流量の水を循環させることが可能となる。例えば、冷熱利用部の負荷が比較的低い場合には、冷熱利用部へ供給される水の流量が少なくなる。その場合、冷熱利用部へ供給される流量よりも多流量の水が気化器の中間媒体蒸発部に流入されるとともに中間媒体蒸発部から流出する。このため、中間媒体蒸発部から流出した水のうち冷熱利用部へ供給されない余剰分がバイパス流路に流入するように調整部が調整される。これにより、冷熱利用部の負荷に応じた流量の水が冷熱利用部に供給され、しかも、気化器へは中間媒体蒸発部から流出する水の温度の過度の低下を防ぐために十分な流量の水が供給される。したがって、冷熱利用部での負荷が少ない場合でも、中間媒体蒸発部での着氷の発生を抑制することができる。 In this way, even when the load of the cold energy utilization unit is relatively low, the cold energy utilization unit supplies water to the vaporizer with a flow rate sufficient to suppress the occurrence of icing in the intermediate medium evaporation unit. It becomes possible to circulate water at a flow rate corresponding to the load. For example, when the load of the cold energy utilization unit is relatively low, the flow rate of water supplied to the cold energy utilization unit is reduced. In that case, water having a flow rate higher than the flow rate supplied to the cold energy utilization unit flows into the intermediate medium evaporation unit of the vaporizer and flows out from the intermediate medium evaporation unit. For this reason, an adjustment part is adjusted so that the surplus part which is not supplied to a cold-heat utilization part among the water which flowed out from the intermediate-medium evaporation part flows in into a bypass flow path. As a result, water having a flow rate according to the load of the cold energy utilization unit is supplied to the cold energy utilization unit, and the water flow rate sufficient to prevent an excessive decrease in the temperature of the water flowing out from the intermediate medium evaporation unit to the vaporizer. Is supplied. Therefore, even when the load on the cold energy utilization unit is small, it is possible to suppress the occurrence of icing in the intermediate medium evaporation unit.
 (3)前記液化天然ガス気化システムは、前記気化器から流出した水の温度が設定温度になるように前記調整部を制御する調整部制御部をさらに備えてもよい。 (3) The liquefied natural gas vaporization system may further include an adjustment unit control unit that controls the adjustment unit such that the temperature of water flowing out of the vaporizer becomes a set temperature.
 このようにすれば、冷熱利用部へ供給される水の温度が概ね設定温度に自動で維持される。 In this way, the temperature of the water supplied to the cold energy utilization part is automatically maintained at a set temperature.
 (4)前記調整部は、前記バイパス流路に配置されたバイパスポンプを有してもよい。この場合、前記調整部制御部は、前記気化器から流出した水の温度が前記設定温度になるように前記バイパスポンプの回転数を制御してもよい。 (4) The adjustment unit may include a bypass pump disposed in the bypass flow path. In this case, the adjustment unit control unit may control the rotation speed of the bypass pump so that the temperature of water flowing out of the vaporizer becomes the set temperature.
 このようにすれば、冷熱利用部へ流入する水の流量とバイパスへ流入する水の流量との割合が有効に制御される。 In this way, the ratio of the flow rate of water flowing into the cold energy utilization part and the flow rate of water flowing into the bypass is effectively controlled.
 (5)前記液化天然ガス気化システムは、前記循環流路のうち前記バイパス流路の接続部と前記気化器との間の部位に配置されており、前記気化器から流出したガスを加熱する加温部をさらに備えてもよい。 (5) The liquefied natural gas vaporization system is disposed in a portion of the circulation flow path between the connection portion of the bypass flow path and the vaporizer, and heats the gas flowing out of the vaporizer. You may further provide a warm part.
 このようにすれば、気化器から流出したガスが加温部において有効に加熱される。 In this way, the gas flowing out of the vaporizer is effectively heated in the heating section.
 (6)前記液化天然ガス気化システムにおいて、前記バイパス流路の下流側の端部は、前記循環流路のうち前記加温部と前記気化器との間の部位に接続されていてもよい。 (6) In the liquefied natural gas vaporization system, the downstream end of the bypass flow path may be connected to a portion of the circulation flow path between the heating unit and the vaporizer.
 この態様では、バイパス流路を通過した水の加温部への流入(気化器において液化天然ガスから回収された冷熱の加温部への投入)が回避されるので、加温部においてガスが有効に加熱される。 In this aspect, since the inflow of water that has passed through the bypass channel to the warming part (injection of cold heat recovered from liquefied natural gas in the vaporizer into the warming part) is avoided, the gas in the warming part Heated effectively.
 (7)前記液化天然ガス気化システムは、前記加温部をバイパスするように前記循環流路に接続された分岐流路をさらに備えてもよい。この場合、前記バイパス流路の下流側の端部は、前記分岐流路又は前記循環流路のうち前記加温部と前記気化器との間の部位に接続されていてもよい。 (7) The liquefied natural gas vaporization system may further include a branch channel connected to the circulation channel so as to bypass the heating unit. In this case, the downstream end of the bypass channel may be connected to a portion of the branch channel or the circulation channel between the heating unit and the vaporizer.
 この態様においても、バイパス流路を通過した水が加温部に流入しないので、加温部においてガスが有効に加熱される。さらに、冷熱利用部から流出した水の一部のみが加温部に流入するので、冷熱利用部から流出した水の全量が加温部に流入する場合に比べて、加温部の小型化が可能になる。 Also in this aspect, since the water that has passed through the bypass channel does not flow into the heating section, the gas is effectively heated in the heating section. Furthermore, since only a part of the water that has flowed out of the cold energy utilization unit flows into the heating unit, the heating unit can be downsized compared to the case where the entire amount of water that has flowed out of the cold heat utilization unit flows into the heating unit. It becomes possible.
 (8)前記液化天然ガス気化システムは、前記循環ポンプの回転数を制御する循環ポンプ制御部をさらに備えてもよい。この場合、前記循環ポンプは、前記循環流路のうち当該循環流路と前記バイパス流路の上流側の端部との接続部である上流側接続部と前記冷熱利用部との間の部位に配置されてもよい。前記循環ポンプ制御部は、前記冷熱利用部が出力する負荷信号が示す当該冷熱利用部の負荷に応じて前記循環ポンプの回転数を制御してもよい。 (8) The liquefied natural gas vaporization system may further include a circulation pump control unit that controls the number of revolutions of the circulation pump. In this case, the circulation pump is disposed at a portion between the upstream side connection portion that is a connection portion between the circulation passage and the upstream end portion of the bypass passage among the circulation passages and the cold heat utilization portion. It may be arranged. The circulation pump control unit may control the number of rotations of the circulation pump in accordance with a load of the cold energy utilization unit indicated by a load signal output from the cold energy utilization unit.
 このようにすれば、冷熱利用部の負荷に応じて循環ポンプの回転数、すなわち、冷熱利用部への給水量が調整される。 If it does in this way, the rotation speed of a circulation pump, ie, the amount of water supply to a cold energy utilization part, is adjusted according to the load of a cold energy utilization part.
 (9)前記液化天然ガス気化システムは、前記循環流路のうち前記上流側接続部と前記循環ポンプとの間の部位に配置されており、前記気化器から流出した水を貯留する冷水タンクをさらに備えてもよい。 (9) The liquefied natural gas vaporization system is disposed in a portion of the circulation channel between the upstream connection portion and the circulation pump, and includes a cold water tank that stores water flowing out of the vaporizer. Further, it may be provided.
 この態様では、冷水タンクに冷水(気化器から流出した水)が貯留されているので、冷熱利用部の負荷の変動に応じて有効に冷熱利用部への給水量を調整することが可能となる。 In this aspect, since cold water (water that has flowed out of the vaporizer) is stored in the cold water tank, it is possible to effectively adjust the amount of water supplied to the cold energy utilization unit in accordance with fluctuations in the load of the cold energy utilization unit. .
 以上のように、気化器における着氷の発生を抑制することが可能でかつコストの著しい増大を抑制可能である。 As described above, it is possible to suppress the occurrence of icing in the vaporizer and to suppress a significant increase in cost.

Claims (9)

  1.  水で液化天然ガスを加熱することによって当該液化天然ガスの少なくとも一部を気化させる気化器と、
     前記気化器から流出した水の冷熱を利用する冷熱利用部と、
     水が前記気化器と前記冷熱利用部との間で循環するように前記気化器及び前記冷熱利用部を接続する循環流路と、
     前記循環流路に設けられた循環ポンプと、を備え、
     前記気化器は、
     水の凝固点よりも低い凝固点を有する中間媒体と、前記冷熱利用部から流出した水と、
    を熱交換させることによって、液相の前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、
     前記中間媒体蒸発部において前記液相の中間媒体が蒸発することにより生じた気相の中間媒体と前記液化天然ガスとを熱交換させることにより前記液化天然ガスの少なくとも一部を気化させる液化天然ガス気化部と、を有する、液化天然ガス気化システム。
    A vaporizer that vaporizes at least a portion of the liquefied natural gas by heating the liquefied natural gas with water;
    A cold energy utilization unit that utilizes the cold heat of water flowing out of the vaporizer;
    A circulation flow path connecting the vaporizer and the cold energy utilization unit so that water circulates between the vaporizer and the cold energy utilization unit;
    A circulation pump provided in the circulation flow path,
    The vaporizer is
    An intermediate medium having a freezing point lower than the freezing point of water, and water that has flowed out of the cold energy utilization unit,
    An intermediate medium evaporating section that evaporates at least a part of the intermediate medium in the liquid phase by heat exchange
    A liquefied natural gas that vaporizes at least a portion of the liquefied natural gas by heat-exchanging the liquefied natural gas with a gas phase intermediate medium generated by evaporating the liquid phase intermediate medium in the intermediate medium evaporation section. A liquefied natural gas vaporization system having a vaporization section.
  2.  請求項1に記載の液化天然ガス気化システムにおいて、
     前記冷熱利用部をバイパスするように前記循環流路に接続されたバイパス流路と、
     前記冷熱利用部へ流入する前記水の流量と前記バイパス流路へ流入する前記水の流量とを調整することが可能な調整部と、をさらに備える、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 1,
    A bypass flow path connected to the circulation flow path so as to bypass the cold energy utilization section;
    A liquefied natural gas vaporization system, further comprising: an adjustment unit capable of adjusting a flow rate of the water flowing into the cold heat utilization unit and a flow rate of the water flowing into the bypass passage.
  3.  請求項2に記載の液化天然ガス気化システムにおいて、
     前記気化器から流出した水の温度が設定温度になるように前記調整部を制御する調整部制御部をさらに備える、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 2,
    The liquefied natural gas vaporization system further comprising an adjustment unit control unit that controls the adjustment unit such that the temperature of water flowing out of the vaporizer becomes a set temperature.
  4.  請求項3に記載の液化天然ガス気化システムにおいて、
     前記調整部は、前記バイパス流路に配置されたバイパスポンプを有し、
     前記調整部制御部は、前記気化器から流出した水の温度が前記設定温度になるように前記バイパスポンプの回転数を制御する、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 3,
    The adjustment unit has a bypass pump disposed in the bypass flow path,
    The said adjustment part control part is a liquefied natural gas vaporization system which controls the rotation speed of the said bypass pump so that the temperature of the water which flowed out from the said vaporizer may become the said setting temperature.
  5.  請求項2に記載の液化天然ガス気化システムにおいて、
     前記循環流路のうち前記バイパス流路の接続部と前記気化器との間の部位に配置されており、前記気化器から流出したガスを加熱する加温部をさらに備える、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 2,
    A liquefied natural gas vaporization system, further comprising a heating unit that is disposed in a portion of the circulation channel between a connection portion of the bypass channel and the vaporizer and that heats the gas flowing out of the vaporizer. .
  6.  請求項5に記載の液化天然ガス気化システムにおいて、
     前記バイパス流路の下流側の端部は、前記循環流路のうち前記加温部と前記気化器との間の部位に接続されている、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 5,
    The liquefied natural gas vaporization system, wherein the downstream end of the bypass channel is connected to a portion of the circulation channel between the heating unit and the vaporizer.
  7.  請求項5に記載の液化天然ガス気化システムにおいて、
     前記加温部をバイパスするように前記循環流路に接続された分岐流路をさらに備え、
     前記バイパス流路の下流側の端部は、前記分岐流路又は前記循環流路のうちの前記加温部と前記気化器との間の部位に接続されている、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 5,
    Further comprising a branch channel connected to the circulation channel so as to bypass the heating unit;
    The liquefied natural gas vaporization system, wherein the downstream end of the bypass flow path is connected to a portion of the branch flow path or the circulation flow path between the heating unit and the vaporizer.
  8.  請求項2ないし7のいずれか1項に記載の液化天然ガス気化システムにおいて、
     前記循環ポンプの回転数を制御する循環ポンプ制御部をさらに備え、
     前記循環ポンプは、前記循環流路のうち当該循環流路と前記バイパス流路の上流側の端部との接続部である上流側接続部と前記冷熱利用部との間の部位に配置されており、
     前記循環ポンプ制御部は、前記冷熱利用部が出力する負荷信号が示す当該冷熱利用部の負荷に応じて前記循環ポンプの回転数を制御する、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to any one of claims 2 to 7,
    A circulation pump control unit for controlling the number of rotations of the circulation pump;
    The circulation pump is disposed at a portion between the upstream side connection portion that is a connection portion between the circulation flow channel and the upstream end portion of the bypass flow channel in the circulation flow channel, and the cold energy utilization unit. And
    The circulatory pump control unit is a liquefied natural gas vaporization system that controls the number of revolutions of the circulation pump according to a load of the cold heat utilization unit indicated by a load signal output from the cold heat utilization unit.
  9.  請求項8に記載の液化天然ガス気化システムにおいて、
     前記循環流路のうち前記上流側接続部と前記循環ポンプとの間の部位に配置されており、前記気化器から流出した水を貯留する冷水タンクをさらに備える、液化天然ガス気化システム。
    The liquefied natural gas vaporization system according to claim 8,
    A liquefied natural gas vaporization system, further comprising a cold water tank that is disposed in a portion of the circulation channel between the upstream connection portion and the circulation pump and stores water flowing out of the vaporizer.
PCT/JP2019/007243 2018-03-30 2019-02-26 Liquefied natural gas vaporization system WO2019187894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12020551569A PH12020551569A1 (en) 2018-03-30 2020-09-28 Liquefied natural gas vaporization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066984 2018-03-30
JP2018066984A JP7011516B2 (en) 2018-03-30 2018-03-30 Liquefied natural gas vaporization system

Publications (1)

Publication Number Publication Date
WO2019187894A1 true WO2019187894A1 (en) 2019-10-03

Family

ID=68061262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007243 WO2019187894A1 (en) 2018-03-30 2019-02-26 Liquefied natural gas vaporization system

Country Status (4)

Country Link
JP (1) JP7011516B2 (en)
PH (1) PH12020551569A1 (en)
TW (1) TWI695139B (en)
WO (1) WO2019187894A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324761A (en) * 2003-04-24 2004-11-18 Kobe Steel Ltd Method for operating low-temperature liquefied gas vaporizer
JP2008089164A (en) * 2006-10-05 2008-04-17 Ishikawajima Plant Construction Co Ltd Lng gasifying apparatus
JP2010267707A (en) * 2009-05-13 2010-11-25 Kobe Steel Ltd Data center system, and cooling power generation using data center system
JP2015010683A (en) * 2013-07-01 2015-01-19 株式会社神戸製鋼所 Gas vaporizer with cold heat recovery function and cold heat recovery device
JP2016191424A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Gas vaporizer for cold heat recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146091A (en) * 1998-11-17 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd Cold utilizing method of oceanic plant and equipment
FI125981B (en) * 2007-11-30 2016-05-13 Waertsilae Finland Oy Liquid unit for storage and re-evaporation of liquefied gas and procedure for re-evaporation of liquefied gas at said unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324761A (en) * 2003-04-24 2004-11-18 Kobe Steel Ltd Method for operating low-temperature liquefied gas vaporizer
JP2008089164A (en) * 2006-10-05 2008-04-17 Ishikawajima Plant Construction Co Ltd Lng gasifying apparatus
JP2010267707A (en) * 2009-05-13 2010-11-25 Kobe Steel Ltd Data center system, and cooling power generation using data center system
JP2015010683A (en) * 2013-07-01 2015-01-19 株式会社神戸製鋼所 Gas vaporizer with cold heat recovery function and cold heat recovery device
JP2016191424A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Gas vaporizer for cold heat recovery

Also Published As

Publication number Publication date
PH12020551569A1 (en) 2021-09-06
TWI695139B (en) 2020-06-01
JP7011516B2 (en) 2022-01-26
TW201942514A (en) 2019-11-01
JP2019178699A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6111157B2 (en) Gas vaporizer with cold energy recovery function and cold energy recovery device
JP5921777B1 (en) Refrigeration cycle equipment
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
WO2018139131A1 (en) Natural gas fired combined-cycle power generation system and natural gas fired combined-cycle power generation method
JP4996192B2 (en) LNG gasifier
JP2013032836A (en) Apparatus and method for gasifying low-temperature liquefied gas
JP3354750B2 (en) LNG vaporizer for fuel of natural gas-fired gas turbine combined cycle power plant
US6666037B2 (en) Absorption refrigerator control method
JP2008025915A (en) Absorption refrigerator system
WO2019187894A1 (en) Liquefied natural gas vaporization system
JP6092065B2 (en) Liquefied gas vaporization system and liquefied gas vaporization method
WO2021002231A1 (en) Liquefied natural gas vaporizer and cold water supply method
JP2021021433A (en) Liquefied gas vaporizer
EP4305336A1 (en) System and method for cryogenic vaporization using circulating cooling loop
JP3746471B2 (en) Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof
JP6913808B2 (en) Natural gas-fired combined cycle power generation method
JPS588210A (en) Heat medium flow control system for ranking cycle to flow variations liquefied natural gas
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
JP6913565B2 (en) Hot water heating system
JP2531507Y2 (en) Super cooling water production equipment
JPH05280825A (en) Absorption heat pump
JP6913555B2 (en) Hot water heating system
JP2009097750A (en) Precise temperature adjustment device
JPS5936084B2 (en) Shutdown system for liquefied natural gas cold power generation equipment
JPH08296797A (en) Temperature control of lng carbureter outlet cooling water in gas turbine intake cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776572

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776572

Country of ref document: EP

Kind code of ref document: A1