JP2012253896A - Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same - Google Patents

Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same Download PDF

Info

Publication number
JP2012253896A
JP2012253896A JP2011124323A JP2011124323A JP2012253896A JP 2012253896 A JP2012253896 A JP 2012253896A JP 2011124323 A JP2011124323 A JP 2011124323A JP 2011124323 A JP2011124323 A JP 2011124323A JP 2012253896 A JP2012253896 A JP 2012253896A
Authority
JP
Japan
Prior art keywords
gas
insulating
differential pressure
insulation
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011124323A
Other languages
Japanese (ja)
Inventor
Shuya Majima
周也 真島
Tadashi Mori
正 森
Akira Shimamura
旭 島村
Takamichi Yasuoka
孝倫 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011124323A priority Critical patent/JP2012253896A/en
Publication of JP2012253896A publication Critical patent/JP2012253896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact electric power gas insulation apparatus in which differential pressure does not become too large during filling or exhaustion of insulation gas when performing maintenance of the electric power gas insulation apparatus.SOLUTION: An electric power gas insulation apparatus 1 houses a high voltage part and packs insulation gas 7 in a closed vessel 2. When the closed vessel 2 is separated into a plurality of gas compartments by insulation spacers 14, gas piping 18and 18branched from a shared supply/discharge passage 18 is connected with the adjacent gas compartments 30and 30respectively. A differential pressure detector 21 is disposed in which it is activated if differential pressure between the branched gas piping 18and 18is more than a predetermined reference value. A selector valve 20 is disposed in which the selector valve opens or closes circuit of the gas piping according to a command of the differential pressure detector 21.

Description

本発明の実施形態は、電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法に関する。   Embodiments described herein relate generally to a gas insulating device for electric power and a method for filling or exhausting an insulating gas of the gas insulating device for electric power.

電力系統の送配電・変電システムにおいては、高電圧の絶縁媒体として六弗化硫黄ガス(以下、SFガスという)を利用したガス絶縁開閉装置(GIS)、ガス遮断器、ガス断路器、ガス絶縁変圧器、ガス絶縁送電管などの様々な機器が使用されている。これらの機器においては、SFガスを高電圧絶縁媒体として機能させるだけではなく、通電時の発熱を対流により冷却する冷却媒体として機能させる他、ガス遮断器、ガス断路器など電流開閉を伴う機器においては、開閉動作時に発生するアーク放電を消滅させる消弧媒体としても機能させている。 In power transmission / distribution / transformation systems of power systems, gas insulated switchgear (GIS), gas circuit breaker, gas disconnector, gas using sulfur hexafluoride gas (hereinafter referred to as SF 6 gas) as high voltage insulation medium Various devices such as insulation transformers and gas insulated transmission pipes are used. In these devices, not only the SF 6 gas functions as a high-voltage insulating medium, but also functions as a cooling medium that cools the heat generated by energization by convection, as well as devices with current switching such as gas circuit breakers and gas disconnectors. Is functioning as an arc extinguishing medium that extinguishes arc discharge generated during opening and closing operations.

SFガスは非常に安定した不活性なガスであり、無毒、不燃性であると同時に、電気絶縁性能、および放電を消滅させる性能(以下、消弧性能)に極めて優れたガスであり、送配電・変電機器の高性能化、コンパクト化に大きく寄与している。 SF 6 gas is a very stable and inert gas. It is non-toxic and non-flammable, and at the same time has excellent electrical insulation performance and performance to extinguish discharge (hereinafter referred to as arc extinguishing performance). It contributes greatly to the high performance and compactness of power distribution and transformation equipment.

図8に電力用ガス絶縁機器の一例として、主に高電圧系統において事故電流を遮断するために使用されている従来のパッファ形ガス遮断器の断面構造図を示す。なお、図8は電流遮断動作中の状態を示す。   FIG. 8 shows a cross-sectional structure diagram of a conventional puffer-type gas circuit breaker used as an example of a power gas insulation device mainly for interrupting an accident current in a high voltage system. FIG. 8 shows a state during the current interruption operation.

図8において、1はパッファ形ガス遮断器であり、接地された円筒形状の金属性密閉容器2の内部にそれぞれ碍子製の絶縁支持物3、4によって支持されるガス遮断器の固定部5および可動部6を対向配置して収納するとともに、電気絶縁媒体およびアーク消弧媒体として機能する例えばSFガス7を充填している。なお、ガス遮断器の固定部5および可動部6の対をガス遮断器の消弧部という。 In FIG. 8, reference numeral 1 denotes a puffer type gas circuit breaker, which is fixed to a gas circuit breaker fixed portion 5 supported by insulator supports 3 and 4 made of insulator, respectively, inside a grounded cylindrical metal airtight container 2. For example, SF 6 gas 7 that functions as an electrically insulating medium and an arc extinguishing medium is filled while the movable part 6 is disposed facing each other. The pair of the fixed part 5 and the movable part 6 of the gas circuit breaker is referred to as an arc extinguishing part of the gas circuit breaker.

固定部5は、固定通電部5a、固定アーク接触子5b等で構成され、一方、可動部6は絶縁ノズル6a、可動アーク接触子6b、通電接触子6c、パッファシリンダ6dが、駆動ロッド6eに取り付けられて構成され、固定部5に対して移動可能になっている。
可動部6は、駆動ロッド6eが図示されていない絶縁操作棒を介して駆動装置8内の可動部に連結されることによって移動可能になっている。
The fixed portion 5 includes a fixed energizing portion 5a, a fixed arc contact 5b, and the like, while the movable portion 6 includes an insulating nozzle 6a, a movable arc contact 6b, an energizing contact 6c, and a puffer cylinder 6d on the drive rod 6e. It is configured to be attached and movable with respect to the fixed portion 5.
The movable portion 6 is movable by connecting the drive rod 6e to the movable portion in the drive device 8 via an insulating operation rod (not shown).

固定アーク接触子5bおよび可動アーク接触子6bは、ガス遮断器の投入時では接触導通状態にあり、遮断動作時においては相対移動により開離するとともに、両接触子5b、6b間に遮断アーク放電11が発生するよう構成されている。したがって、絶縁ノズル6aは耐アーク性の高い絶縁物であるポリテトラフルオロエチレンを主体に構成されることが多い。   The stationary arc contact 5b and the movable arc contact 6b are in a contact conduction state when the gas circuit breaker is turned on, and are separated by relative movement during the breaking operation, and a breaking arc discharge is generated between the contacts 5b and 6b. 11 is generated. Therefore, the insulating nozzle 6a is often composed mainly of polytetrafluoroethylene, which is an insulator having high arc resistance.

さらに、上記の動作とともに、固定されているピストン10がパッファシリンダ6dの内部空間を圧縮して同部の圧力を上昇させる。そして、パッファシリンダ6d内に存在するSFガス7が高圧力のガス流となり、ノズル6aによって整流されアーク接触子5b、6b間に発生したアーク放電11に対して強力に吹付けられる。 Further, along with the above operation, the fixed piston 10 compresses the internal space of the puffer cylinder 6d to increase the pressure in the same portion. Then, the SF 6 gas 7 existing in the puffer cylinder 6d becomes a high-pressure gas flow, and is rectified by the nozzle 6a and strongly blown against the arc discharge 11 generated between the arc contacts 5b and 6b.

これにより、アーク接触子5b、6b間に発生した導電性のアーク放電11は消滅し電流は遮断される。アーク放電11に吹付けられたガスはガス流12となり固定部5内部を通過し、密閉容器2内に放散される。   As a result, the conductive arc discharge 11 generated between the arc contacts 5b and 6b disappears and the current is interrupted. The gas blown to the arc discharge 11 becomes a gas flow 12, passes through the inside of the fixed portion 5, and is diffused into the sealed container 2.

そして、固定部5および可動部6には、母線等の外部機器と接続するために導体13がそれぞれ接続されている。14は、導体13を絶縁支持すると同時に、ガス遮断器1の密閉容器2と絶縁母線15の密閉容器2とを気密に区分する絶縁スペーサである。なお、9は可動部6および密閉容器2間に流れる事故放電を表す。   A conductor 13 is connected to the fixed portion 5 and the movable portion 6 in order to connect to an external device such as a bus. Reference numeral 14 denotes an insulating spacer that insulates and supports the airtight container 2 of the gas circuit breaker 1 and the airtight container 2 of the insulating bus 15 at the same time as supporting and insulating the conductor 13. Reference numeral 9 represents an accidental discharge that flows between the movable part 6 and the sealed container 2.

ところで前述したとおり、SFガスは特に高電圧用の送配電・変電用機器において非常に適したガスといえるが、高い地球温暖化作用を有することが知られており、近年その使用量の削減が望まれている。因みに、地球温暖化作用の大きさは一般に地球温暖化係数(WGP)、すなわち炭酸ガス(以下、COガスという)を1とした場合の相対値により表され、SFガスの地球温暖化係数(WGP)は23,900に及ぶことが知られている。 By the way, as mentioned above, SF 6 gas is a particularly suitable gas in high voltage transmission / distribution / transformation equipment, but it is known to have a high global warming effect, and in recent years its use has been reduced. Is desired. Incidentally, the magnitude of the global warming effect is generally expressed by the global warming potential (WGP), that is, the relative value when carbon dioxide (hereinafter referred to as CO 2 gas) is 1, and the global warming potential of SF 6 gas. (WGP) is known to extend to 23,900.

このようなことから、近年では送配電・変電用機器に使用される絶縁ガスとしてSFの代わりに地球温暖化係数(WGP)の小さなガス、例えばCOガスの適用を提案している先行技術文献がある。先行技術文献によれば、COガスは地球温暖化作用がSFガスに比べて23,900分の1と非常に小さいため、COガスをSFガスの代わりに送配電・変電用機器に適用することで、地球温暖化への影響を大幅に抑制することが可能であること、そして、COガスだけでなく、空気や窒素などのガスをSF代替ガスとして、それぞれ単体あるいは複数の混合ガスとして適用することも提案されている。 Therefore, in recent years, prior art has proposed the application of a gas having a low global warming potential (WGP), for example, CO 2 gas, instead of SF 6 as an insulating gas used in power transmission / distribution / transformation equipment. There is literature. According to the prior art documents, CO 2 gas has a very small global warming effect of 1 / 23,900 compared to SF 6 gas, so CO 2 gas is used for power transmission / distribution / transformation instead of SF 6 gas. It is possible to drastically suppress the impact on global warming by applying to the above, and not only CO 2 gas but also gas such as air and nitrogen can be used alone or in plural as SF 6 alternative gas It has also been proposed to be applied as a mixed gas.

しかしながら、高電圧送変電機器の絶縁および消弧媒体として、SFガスの代替ガスを用いた場合、SFに比べて絶縁破壊電圧が低いために、機器の大形化が余儀なくされる。もし、代替ガス絶縁機器の小形化を計る場合には、機器全体あるいは高電圧印加部などを部分的にSFガスの場合よりも高いガス圧にし、絶縁破壊電界を大きくすることが必要となる。例えば、ガス絶縁機器に0.8MPa程度の高いガス圧力を封入することも提案されている。 However, when an alternative gas of SF 6 gas is used as an insulation and arc-extinguishing medium for high-voltage transmission and transformation equipment, the dielectric breakdown voltage is lower than that of SF 6 and thus the equipment must be enlarged. If it is desired to reduce the size of the alternative gas insulation device, it is necessary to increase the dielectric breakdown electric field by partially setting the entire device or the high voltage application part to a gas pressure higher than that of SF 6 gas. . For example, it has also been proposed to enclose a gas pressure as high as about 0.8 MPa in a gas insulating device.

また、電気絶縁の厳しい部分の絶縁および消弧性能を高めるために、その部分のガス圧やガス種類を他の部分と区分することも提案されている。例えば、図9のように、密閉容器2の内部にガス遮断器1の消弧部(固定部5および可動部6)を収容する絶縁容器16をさらに設置し、この絶縁容器16の内部に密封した絶縁ガス7aのガス圧をその周囲の絶縁ガス7のガス圧よりも高くした提案もなされている。   In addition, in order to improve the insulation and arc extinguishing performance of a portion where electrical insulation is severe, it has been proposed to distinguish the gas pressure and gas type of the portion from other portions. For example, as shown in FIG. 9, an insulating container 16 that accommodates the arc extinguishing part (the fixed part 5 and the movable part 6) of the gas circuit breaker 1 is further installed inside the sealed container 2, and the insulating container 16 is hermetically sealed. There has also been proposed that the gas pressure of the insulating gas 7a is higher than the gas pressure of the surrounding insulating gas 7.

特開2000−67716公報JP 2000-67716 A

内井、河野、中本、溝口、「消弧媒体としてのCO2ガスの基礎特性と実規模モデル遮断器による熱的遮断性能の検証」、電気学会論文B、124巻、3号、pp.469〜475、2004年Uchii, Kono, Nakamoto, Mizoguchi, “Verification of basic characteristics of CO2 gas as an arc extinguishing medium and thermal interruption performance by a real-scale model circuit breaker”, IEEJ Paper B, Vol. 469-475, 2004 五島、新開、河本、藤波、「SF6代替ガスによるハイブリッド絶縁方式を用いた機器断面の所要寸法評価」、電気学会 電力・エネルギー部門大会(分冊B)、pp.167〜168、2003年Goto, Shinkai, Kawamoto, Fujinami, “Evaluation of required dimensions of equipment cross section using hybrid insulation method with SF6 alternative gas”, IEEJ Power and Energy Division Conference (Volume B), pp. 167-168, 2003

しかしながら、図8におけるガス絶縁遮断器1とガス絶縁母線15とを区分する絶縁スペーサ14は、通常エポキシ樹脂等の絶縁物で製作されているため、送変電機器で使用されている他の金属部品と比べて耐圧力強度を高めることが難しい。例えば、メンテナンス時に絶縁スペーサ14を境にして一方のガス区画を真空状態にし、他方のガス区画に高圧ガスを充填するような場合、両側のガス区画の差圧に対して絶縁スペーサ14が耐え得るように設計する必要があるが、その分ガス絶縁機器の大型化およびコスト高を招く可能性がある。   However, since the insulating spacer 14 that separates the gas-insulated circuit breaker 1 and the gas-insulated bus 15 in FIG. 8 is usually made of an insulator such as epoxy resin, other metal parts used in power transmission and transformation equipment It is difficult to increase the pressure resistance strength. For example, when one gas compartment is evacuated and the other gas compartment is filled with high-pressure gas at the insulating spacer 14 as a boundary during maintenance, the insulating spacer 14 can withstand the pressure difference between the gas compartments on both sides. However, there is a possibility of increasing the size and cost of the gas insulation device.

また、図9のようにガス遮断器の消弧部(固定部5および可動部6)のみを更に絶縁容器16で囲繞して周りのガス区画とは別区画とし、絶縁容器16内に窒素ガスや炭酸ガスあるいはそれらの混合ガス等のSF代替ガスを用いた場合には絶縁容器16内部を高圧力にせざるを得ない上に、ガス遮断器のメンテナンス時に絶縁容器16の周りの密閉容器2内のガス圧力が排気等で低くなった場合には上述した絶縁スペーサ14の例と同様に絶縁容器16にも高い耐圧力構造が要求さる。これによりガス絶縁機器の大型化およびコスト高を招く可能性がある。 Further, as shown in FIG. 9, only the arc extinguishing part (the fixed part 5 and the movable part 6) of the gas circuit breaker is further surrounded by the insulating container 16 to be a separate compartment from the surrounding gas compartment, and nitrogen gas is contained in the insulating container 16. When SF 6 substitute gas such as carbon dioxide gas or a mixed gas thereof is used, the inside of the insulating container 16 must be at a high pressure, and the sealed container 2 around the insulating container 16 is maintained during maintenance of the gas circuit breaker. When the gas pressure inside becomes low due to exhaust or the like, the insulating container 16 is also required to have a high pressure resistance structure as in the case of the insulating spacer 14 described above. This may lead to an increase in size and cost of the gas insulation device.

そこで本発明の実施形態は、上記の課題に鑑みて、電力用ガス絶縁機器をメンテナンスする際の絶縁ガスの充填時または排気時に過大な差圧が生じないようにしてコンパクトな電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法を提供することを目的とする。   Therefore, in view of the above-described problems, the embodiment of the present invention is a compact power gas insulation device that does not cause an excessive differential pressure when filling or exhausting an insulation gas when maintaining the power gas insulation device. It is another object of the present invention to provide a method for filling or exhausting an insulating gas in a gas insulating device for electric power.

上記の目的を達成するため、電力用ガス絶縁機器の実施形態は、密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器において、前記密閉容器内を絶縁スペーサによって複数個に区分されたガス区画のうち、隣接するガス区画に対して共通のガス給排路から分岐された各ガス配管をそれぞれ接続し、前記分岐されたガス配管相互間の差圧が予め定めた基準値を超えると動作する差圧検知手段を設けるとともに、当該差圧検出手段の指令によって前記各ガス配管を開路または閉路する弁を設けたことを特徴とする。   In order to achieve the above object, an embodiment of a power gas insulation apparatus includes a sealed container containing a high-voltage part and filled with an insulating gas, thereby insulating the electrical insulation between the high-voltage part and the sealed container. In the gas insulation device for electric power that is made of gas, each of the gas compartments divided into a plurality of gas compartments divided by an insulating spacer in the sealed container is branched from a common gas supply / exhaust passage to adjacent gas compartments. Each of the gas pipes is connected, and provided with a differential pressure detecting means that operates when a differential pressure between the branched gas pipes exceeds a predetermined reference value, and each gas pipe is connected according to a command from the differential pressure detecting means. A valve for opening or closing is provided.

また、電力用ガス絶縁機器の絶縁ガスの充填または排気方法の実施形態は、密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器の絶縁ガスの充填または排気方法おいて、前記密閉容器内を絶縁スペーサによって複数個に区分されたガス区画のうち、隣接するガス区画に対して共通のガス給排路から分岐された各ガス配管をそれぞれ接続し、前記分岐されたガス配管相互間の差圧が予め定めた基準値を超えると動作する差圧検知手段を設けるとともに、当該差圧検出手段の指令によって前記各ガス配管を開路または閉路する弁を設け、絶縁ガスの充填時または排気時に前記ガス配管相互間の差圧が予め定めた基準値を超えるとガス管路を閉路し、前記ガス配管相互間の差圧が予め定めた基準値を下回るとガス管路を開路することを特徴とする。   In addition, the embodiment of the method for filling or exhausting the insulating gas of the power gas insulating device is to store the high voltage portion in the sealed container and to fill the insulating gas, and to electrically insulate the high voltage portion and the sealed container. In the method of filling or exhausting an insulating gas of a power gas insulating device, which is performed with the insulating gas, among the gas compartments divided into a plurality of portions in the sealed container by insulating spacers, adjacent gas compartments Each gas pipe branched from the common gas supply / exhaust path is connected to each other, and provided with a differential pressure detection means that operates when the differential pressure between the branched gas pipes exceeds a predetermined reference value. A valve for opening or closing each of the gas pipes according to a command from the pressure detection means is provided, and when the pressure difference between the gas pipes exceeds a predetermined reference value when filled with insulating gas or exhausted, the gas pipe Was closed, characterized in that the differential pressure between the gas pipe cross to open the the gas conduit falls below the predetermined reference value.

本発明の実施形態1による電力用ガス絶縁機器の断面構成図。1 is a cross-sectional configuration diagram of a power gas insulation apparatus according to Embodiment 1 of the present invention. 本発明の実施形態2による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 2 of this invention. 本発明の実施形態3による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 3 of this invention. 本発明の実施形態4による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 4 of this invention. 本発明の実施形態5による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 5 of this invention. 本発明の実施形態6による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 6 of this invention. 本発明の実施形態7による電力用ガス絶縁機器の断面構成図。Sectional block diagram of the gas insulation apparatus for electric power by Embodiment 7 of this invention. 従来のパッファ形ガス遮断器の一例を示す断面構成図。The cross-sectional block diagram which shows an example of the conventional puffer-type gas circuit breaker. 従来のパッファ形ガス遮断器の他の例を示す断面構成図。Sectional block diagram which shows the other example of the conventional puffer type gas circuit breaker.

以下、図面を参照して本発明の実施形態について説明する。なお、各図を通して、共通する部品・部位には同一符号を付与することにより、重複する説明は適宜省略する。
[実施形態1]
以下、本実施形態1に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図1を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, throughout each figure, the same code | symbol is provided to a common component and site | part, and the overlapping description is abbreviate | omitted suitably.
[Embodiment 1]
Hereinafter, a method for filling or exhausting an insulating gas in the power gas insulation device and the power gas insulation device according to the first embodiment will be described with reference to FIG.

(構成)
図1はガス絶縁機器としてのガス絶縁母線15を示す図である。
図1において、円筒形に形成された複数の金属性の密閉容器2、2、2、2、・・・は、それぞれ中心部に高圧内部導体13、13、13、13、・・・を収納し、さらに開口端に形成したフランジ部の相互間でコーン形絶縁スペーサ14、14、143、・・・の周縁部を気密に挟持するようにして軸方向に連結接続されている。ここで、各密閉容器2、2、2、2、・・・とコーン形絶縁スペーサ14、14、143、・・・とで形成された各空間部をガス区画と呼ぶ。
(Constitution)
FIG. 1 is a view showing a gas insulation bus 15 as a gas insulation device.
In FIG. 1, a plurality of metallic sealed containers 2 1 , 2 2 , 2 3 , 2 4 ,... Formed in a cylindrical shape have high-voltage internal conductors 13 1 , 13 2 , 13 3 , 13 4, housing a., further cone-shaped insulating spacer 14 1 between each other of the flange portion formed on the open end 14 2, 14 3, axes and the periphery of ... so as to sandwich the hermetically Linked in the direction. Here, each space part formed by each sealed container 2 1 , 2 2 , 2 3 , 2 4 ,... And cone-shaped insulating spacers 14 1 , 14 2 , 14 3 ,. Call.

このコーン形絶縁スペーサ14、14、143、・・・の中心部には貫通型接続子14aを固定しており、この貫通型接続子14aの両側に前記各高圧内部導体13、13、13、13、・・・の端部を嵌合することによって電気的に接続し、所定長のガス絶縁母線15を構成している。 A through-type connector 14a is fixed at the center of the cone-shaped insulating spacers 14 1 , 14 2 , 14 3, ..., And the high-voltage internal conductors 13 1 , The ends of 13 2 , 13 3 , 13 4 ,... Are electrically connected to form a gas insulating bus 15 having a predetermined length.

なお、各密閉容器2、2、2、2、・・・と絶縁スペーサ14、14、143、・・・とで形成されたガス区画30、30、30、30には、絶縁ガス7を充填あるいは排気(回収)するためのガス栓17を1個ないし複数個設けている。図1の例では、各密閉容器2、2、2、2、・・・に1個ずつガス栓17、17、173、174、・・・を設けている。18、18、183、184、・・・は、ガス配管であり、各ガス栓17、17、173、174、・・・と共通のガス給排装置19との間のガス路を接続している。なお、図1の例では、2系統のガス配管18、18とガス給排装置19とを接続した状態を示しているが、これ以外のガス区画にも同様に同時に絶縁ガス7を充填することができるが、ガス配管は示していない。この図1の例では、隣接する2つのガス区画30、30に対して同時に絶縁ガス7を充填または排気することができるように1つのガス配管18を途中で18と18とに分岐した例を示している。これらのガス配管18、18、18、183、184、・・・は金属製あるいは絶縁物製のいずれで構成することもできる。なお、ガス給排装置19は、例えば特開平10−285730号公報等に記載されているように、絶縁ガス充填時に所定のガス圧(例えば2〜3気圧)になるまで加圧するための加圧ポンプや圧力計器類を含む制御装置、ガス排気時に真空引きするための真空ポンプ、さらには液化した絶縁ガスを貯留しておくガスタンク等を備えているものとする。 It should be noted that the gas compartments 30 1 , 30 2 , 30 3 formed by the sealed containers 2 1 , 2 2 , 2 3 , 2 4 ,... And the insulating spacers 14 1 , 14 2 , 14 3 ,. , 30 4 is provided with one or a plurality of gas valve 17 for filling or evacuating the insulating gas 7 (recovery). In the example of FIG. 1, one gas stopper 17 1 , 17 2 , 17 3, 17 4, ... Is provided for each sealed container 2 1 , 2 2 , 2 3 , 2 4 ,. 18 1 , 18 2 , 18 3, 18 4, ... Are gas pipes, and each of the gas plugs 17 1 , 17 2 , 17 3, 17 4 ,. The gas path between them is connected. 1 shows a state in which the two gas pipes 18 2 and 18 3 and the gas supply / discharge device 19 are connected, the other gas compartments are simultaneously filled with the insulating gas 7 at the same time. Gas piping is not shown. In the example of FIG. 1, one gas pipe 18 is divided into 18 2 and 18 3 on the way so that two adjacent gas sections 30 2 and 30 3 can be filled or exhausted with the insulating gas 7 at the same time. An example of branching is shown. These gas pipes 18, 18 1 , 18 2 , 18 3, 18 4, ... Can be made of either metal or insulating material. The gas supply / exhaust device 19 is a pressurizing unit for pressurizing until a predetermined gas pressure (for example, 2 to 3 atm) is reached when the insulating gas is filled, as described in, for example, Japanese Patent Application Laid-Open No. 10-285730. It is assumed that a control device including a pump and pressure gauges, a vacuum pump for evacuating when gas is exhausted, a gas tank for storing liquefied insulating gas, and the like are provided.

絶縁スペーサ14を挟んで両側に配置された密閉容器(例えば2と2)の内径がほぼ等しい場合は、両ガス区画30と30に同時に絶縁ガス7で充填していくと両ガス区画30、30内のガス圧は等しい状態を保ちながら圧力上昇するので、絶縁スペーサ14自体に作用する差圧はゼロである。このことはメンテナンスの際の絶縁ガス排気時についても同様である。すなわち、両ガス区画30、30内のガス圧は等しい状態を保ちながら圧力降下するので、絶縁スペーサ14自体に作用する差圧はゼロである。 When the inner diameters of the sealed containers (for example, 2 2 and 2 3 ) disposed on both sides of the insulating spacer 14 are substantially equal, both the gas compartments 30 2 and 30 3 are filled with the insulating gas 7 at the same time. Since the gas pressure in the compartments 30 2 and 30 3 rises while maintaining the same state, the differential pressure acting on the insulating spacer 14 itself is zero. The same applies to the exhaust of insulating gas during maintenance. That is, the gas pressure in both gas sections 30 2 and 30 3 drops while maintaining the same state, so the differential pressure acting on the insulating spacer 14 itself is zero.

しかしながら、設計の都合上、絶縁スペーサ14を挟んだ両側の密閉容器(例えば2と2)の内径が大きく異なる場合もある。例えば、密閉容器2の内径が密閉容器2の内径に比べてかなり小さく設計されている場合、小内径の密閉容器2内では高電圧部と零電圧部との絶縁距離が短くなるため、大内径の密閉容器2に比べて絶縁ガスの充填圧力を高くする必要がある。 However, for the convenience of design, the inner diameters of the sealed containers (for example, 2 2 and 2 3 ) on both sides of the insulating spacer 14 may differ greatly. For example, if the sealed container 2 2 internal diameter is considerably smaller design than the inner diameter of the hermetic container 2 3, since the insulation distance between the high-voltage unit and the zero voltage portion is shortened in a small inner diameter of the hermetic container 2 within 2 , it is necessary to increase the filling pressure of the insulating gas in comparison with the closed container 2 3 large inner diameter.

この場合の絶縁ガス充填方法としては、小内径の密閉容器2と大内径の密閉容器2の両方に対して加圧ポンプを用いて2系列のガス配管18から絶縁ガス7を圧送して小内径の密閉容器2と大内径の密閉容器2のガス圧が大内径の密閉容器2に定めた所定値(これを第1の所定のガス圧という)に到達した時点で大内径の密閉容器2のガス充填を止めるが、小内径の密閉容器2は第1の所定値のガス圧よりも高い第2の所定値まで高めなければならないので、小内径の密閉容器2にはガス充填を続ける。その後小内径の密閉容器2が第2の所定値に到達した時点で充填が完了する。絶縁スペーサ14の耐圧は第1の所定値と第2の所定値との差圧よりも余裕をもっているので、絶縁ガスの充填作業が正常に行なわれる場合は、絶縁スペーサ14に無理な差圧が作用することはない。 As the insulating gas filling method in the case, by pumping the insulating gas 7 from the two series of the gas pipe 18 with a pressure pump to both the sealed container 2 3 of the closed container 2 2 large inner diameter of the small inner diameter large internal diameter when it reaches the predetermined value the gas pressure of the closed vessel 2 3 of the closed container 2 2 large inner diameter of the small inner diameter defined in the closed vessel 2 3 large inner diameter (that this first predetermined gas pressure) the While stopping the gas filling the sealed container 2 3, since the sealed container 2 second small inner diameter must be increased to a second predetermined value higher than the gas pressure of the first predetermined value, the small-inner-diameter sealed container 2 2 Continue gas filling. Thereafter the sealed container 2 second small inner diameter is filled when it reaches the second predetermined value is completed. Since the withstand pressure of the insulating spacer 14 has a margin more than the differential pressure between the first predetermined value and the second predetermined value, an excessive differential pressure is applied to the insulating spacer 14 when the insulating gas is normally filled. There is no effect.

しかしながら、ガス充填時に圧力計器類を含む制御装置に故障があり、小内径の密閉容器2のガス圧力が第2の所定値をはるかに超えた場合、絶縁スペーサ14に予め想定した差圧以上の差圧が作用することになる。 However, there is a fault in the control device comprises a pressure instrument during gas filling, when the gas pressure in the sealed container 2 second small inner diameter much more than the second predetermined value, assumed in advance difference on pressure or on the insulating spacer 14 The differential pressure will act.

以上は、絶縁ガス充填時の説明であるが、メンテナンスの際の絶縁ガス排気時に絶縁スペーサ14を挟む両側の密閉容器の差圧が予め想定した値以上になることもあり得る。例えば、絶縁スペーサ14を挟む両側の密閉容器内の絶縁ガスを同量ずつ同時に排気すれば、絶縁スペーサ14に異常な差圧が作用することはないが、何らかの事情で片方の密閉容器だけ絶縁ガスを排気するような場合、絶縁スペーサ14に予め想定した値以上の差圧が作用することもあり得る。   The above is the explanation when the insulating gas is filled, but the pressure difference between the airtight containers on both sides of the insulating spacer 14 when the insulating gas is exhausted at the time of maintenance may be higher than the value assumed in advance. For example, if the same amount of the insulating gas in the sealed containers on both sides of the insulating spacer 14 is exhausted at the same time, an abnormal differential pressure does not act on the insulating spacer 14, but for some reason, only one of the sealed containers is insulated gas. In the case of exhausting air, a differential pressure greater than a value assumed in advance may act on the insulating spacer 14.

そこで本実施形態1では、絶縁ガス充填時や排気時に絶縁スペーサ14に予め想定した値以上の差圧が作用することを避けるため、絶縁スペーサを挟んで隣接する密閉容器(例えば、密閉容器2、2)にそれぞれ接続されるガス配管18、18相互間のガスの差圧を検出し、この差圧が予め定めた基準値を超えると動作する差圧検出器(差圧検出手段)21を設け、さらにガス配管18がガス配管18と18に分岐する分岐部に切替弁20を設置している。ここで、差圧検出器に備えるセンサーの動作基準値は、絶縁スペーサ14の耐圧力強度に応じて設定されるものである。 Therefore, in the first embodiment, in order to avoid a differential pressure greater than a preliminarily assumed value from acting on the insulating spacer 14 when the insulating gas is filled or exhausted, an adjacent sealed container (for example, the sealed container 2 2) with the insulating spacer interposed therebetween. 2 3 ), a differential pressure detector (differential pressure detection means) that operates when the differential pressure of the gas between the gas pipes 18 2 and 18 3 connected to each of the gas pipes 18 2 and 18 3 exceeds a predetermined reference value. ) 21 is provided, and further established a switching valve 20 to the bifurcation gas pipe 18 is branched into the gas pipe 18 2 and 18 3. Here, the operation reference value of the sensor provided in the differential pressure detector is set according to the pressure resistance strength of the insulating spacer 14.

この切替弁20の制御回路については図示していないが、絶縁ガスを充填する場合、差圧検出器21が不動作のときは開弁して両側のガス配管(18、18)にガスが通過できるようにし、差圧が基準値を超えたことにより差圧検出器21が動作したときは圧力の高い方のガス配管を閉じて圧力の低い方のガス配管だけに絶縁ガスが通過できるように構成されている。一方、絶縁スペーサ14を挟む一方の密閉容器(ガス区画)のみから絶縁ガスを排気(回収を含む)する場合、差圧が基準値を超えたことにより差圧検出器21が動作したときは、切替弁20は開弁して両方の密閉容器(ガス区画)から絶縁ガスが排気されるように構成されている。 Although the control circuit of the switching valve 20 is not shown, when the insulating gas is filled, when the differential pressure detector 21 is not operating, the valve is opened and gas is supplied to the gas pipes (18 2 , 18 3 ) on both sides. When the differential pressure detector 21 is activated due to the differential pressure exceeding the reference value, the gas pipe with the higher pressure is closed and the insulating gas can pass only through the gas pipe with the lower pressure. It is configured as follows. On the other hand, when the insulating gas is exhausted (including recovery) only from one sealed container (gas compartment) sandwiching the insulating spacer 14, when the differential pressure detector 21 is operated due to the differential pressure exceeding the reference value, The switching valve 20 is configured to open so that the insulating gas is exhausted from both sealed containers (gas compartments).

(作用)
以下、図1を参照して、絶縁スペーサを挟んで両側に位置する密閉容器(ガス区画)に絶縁ガスを給排気(充填および回収)する場合について説明する。
(Function)
Hereinafter, with reference to FIG. 1, the case where insulating gas is supplied / exhausted (filled and recovered) to a closed container (gas compartment) located on both sides of the insulating spacer will be described.

<A>絶縁ガスを充填する場合
(Ai)両側の密閉容器の内径が等しい母線構成の場合。
なお、初期状態では両側の密閉容器2、2のガス区画30、30は共に真空引きされて同じ負圧値になっているものとする。
<A> When filled with insulating gas (Ai) In the case of a bus structure in which the inner diameters of the airtight containers on both sides are equal.
In the initial state, it is assumed that the gas compartments 30 2 and 30 3 of the closed containers 2 2 and 2 3 on both sides are evacuated and have the same negative pressure value.

この状態でガス栓17、17を開けてガス給排装置19内の加圧ポンプを運転し、ガス配管18、18を通して当該ガス区画30、30内に絶縁ガス7を圧送する。
そして、両ガス区画30、30が所定のガス圧(例えば2〜3気圧)に到達したら加圧ポンプの運転を止め、ガス栓17、17を閉じて絶縁ガスの充填作業は完了する。
In this state, the gas stoppers 17 2 and 17 3 are opened, the pressure pump in the gas supply / exhaust device 19 is operated, and the insulating gas 7 is pumped into the gas compartments 30 2 and 30 3 through the gas pipes 18 2 and 18 3. To do.
When both gas sections 30 2 and 30 3 reach a predetermined gas pressure (for example, 2 to 3 atm), the operation of the pressurizing pump is stopped, and the gas plugs 17 2 and 17 3 are closed to complete the filling operation of the insulating gas. To do.

(Aii)両側の密閉容器が小内径の密閉容器2と大内径の密閉容器2の母線構成の場合。
初期状態では(Ai)同様に小内径の密閉容器2と大内径の密閉容器2とは共に真空引きされて同じ負圧値になっているものとする。
(Aii) when the sealed container on both sides of the sealed container 2 3 busbars structure of the sealed container 2 2 large inner diameter of the small inner diameter.
In the initial state to be put into the same negative pressure are both evacuated and sealed container 2 3 of the closed container 2 2 large inner diameter of the small inner diameter in the same manner (Ai).

この状態でガス栓17、17を開けてガス給排装置19内の加圧ポンプを運転し、小内径の密閉容器2のガス区画30と大内径の密閉容器2ガス区画30とにガス配管を通して絶縁ガス7を圧送する。 Gas valve 17 2 in this state, 17 3 Open the operating the pressurizing pump in the gas supply and discharge device 19, the small inner diameter of the hermetic container 2 2 the gas compartment 30 2 large inner diameter closed vessel 2 3 gas compartment 30 Insulating gas 7 is pumped to 3 through gas piping.

小内径のガス区画30および大内径のガス区画30のガス圧は共に徐々に高まり、小容積ガス区画30および大容積ガス区画30のガス圧が第1の設定値に達すると大容積ガス区画30の充填が完了するが、小容積ガス区画30のガス圧を第2の設定値まで高める必要があるので小容積ガス区画30に対する絶縁ガスの供給を続ける。小容積ガス区画30のガス圧が第2の設定値に達すると小容積ガス区画30の充填が完了する。 Gas pressure of the small inner diameter of the gas compartment 30 2 and the large inner diameter of the gas compartment 30 3 increases gradually both large when the gas pressure in the small volume gas compartment 30 2 and the large volume gas compartment 30 3 reaches the first set value filling volume gas compartment 30 3 is completed, but continue to supply the insulating gas to the small-volume gas compartment 30 2 because it is necessary to increase the gas pressure in the small volume gas compartment 30 2 to the second set value. Gas pressure small volume gas compartment 30 2 a second set value is reached and the filling of small volume gas compartment 30 2 is completed.

このように、絶縁ガスの充填作業が正常に行なわれる場合には、差圧検出器21が動作しないので切替弁20は動作することはないが、何らかの事情例えば、圧力計器類を含む制御装置に故障があり、小内径の密閉容器2のガス圧力が第2の所定値を僅かに超えた場合、差圧検出器21が動作して切替弁20を閉弁させ、ガス配管18から小内径の密閉容器2内への絶縁ガスの供給を止める。この結果、絶縁スペーサ14に予め想定した差圧以上の差圧が作用することなない。 Thus, when the insulating gas filling operation is normally performed, the differential pressure detector 21 does not operate and the switching valve 20 does not operate. However, for some reason, for example, in a control device including pressure gauges. There is a failure, when the gas pressure in the sealed container 2 second small inner diameter slightly greater than the second predetermined value, the pressure difference detector 21 is operated by closing the switching valve 20, the small from the gas pipe 18 2 stopping the supply of insulating gas to the inner diameter of the hermetic container 2 in 2. As a result, a differential pressure higher than the differential pressure assumed in advance does not act on the insulating spacer 14.

<B>絶縁ガスを回収(ガス区画からの排気)する場合
(Bi)両側のガス区画から同時に絶縁ガスを回収する場合。
この場合、ガス栓17、17を開けた状態で真空ポンプを駆動して両方のガス区画から等量の絶縁ガスを引き抜く。この作業中、両方のガス区画の差圧はほとんどないので差圧検出器21、切替弁20が動作することなくガス回収作業が完了する。
<B> When collecting insulating gas (exhaust from gas compartment)
(Bi) When collecting insulating gas from the gas compartments on both sides simultaneously.
In this case, the vacuum pump is driven in a state where the gas stoppers 17 2 and 17 3 are opened, and an equal amount of insulating gas is drawn out from both gas compartments. During this operation, there is almost no differential pressure in both gas compartments, so that the gas recovery operation is completed without the differential pressure detector 21 and the switching valve 20 operating.

(Bii)何らかの事情で片方のガス区画のみ絶縁ガスを回収される場合。
この場合、ガス栓17、17は開いた状態である。一方、切替弁20はガス配管は18のみ開らき、18は閉じた状態である。
(Bii) When the insulating gas is recovered only in one of the gas compartments for some reason.
In this case, the gas stoppers 17 2 and 17 3 are in an open state. On the other hand, the switching valve 20 is gas piping only 18 2 Hirakiraki, 18 3 is closed.

この状態で真空ポンプを駆動すると、小内径密閉容器2のガス区画30からのみ絶縁ガス7が引き抜かれていくので、暫くすると小内径ガス区画30と大内径ガス区画30の差圧が差圧検出器21に設定した設定値に達する。すると、差圧検出器21が動作し切替弁20に指令を出力し、それまで閉じていたガス配管18側を開かせる。この結果、小内径ガス区画30は勿論、大内径密閉容器2のガス区画30からも絶縁ガス7が引き抜かれるようになるので、絶縁スペーサ14に予め想定した値以上の差圧が作用することなない。 Driving the vacuum pump in this condition, since the gradually withdrawn insulating gas 7 only from the gas compartment 30 and second small-inner-diameter sealed container 2 2, while for the small-inner-diameter gas compartment 30 2 differential pressure large inner diameter gas compartment 30 3 Reaches the set value set in the differential pressure detector 21. Then, pressure difference detector 21 operates to output a command to the switching valve 20, to open the gas pipe 18 3 side that has been closed until then. As a result, a small inner diameter gas compartment 30 2, of course, also becomes as insulating gas 7 is withdrawn from the gas compartment 30 3 large inner diameter closed vessel 2 3, previously assumed value or more differential pressure acts on the insulating spacer 14 Not to do.

(効果)
以上述べたように本実施形態1に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法によれば、絶縁スペーサ14で区分した隣接するガス区画に絶縁ガス7の充填を行なう場合、両ガス区画の差圧が設定値を超えた場合、切替弁20を動作させることによって絶縁ガスの充填停止を行なうようにし、また、片側のガス区画の排気時に両ガス区画の差圧が設定値を超えた場合、切替弁20を動作させることによって両ガス区画から絶縁ガスを排気するようにしたので、絶縁ガス充填時あるいはメンテナンス時に差圧検出器21で設定した値以上の差圧が絶縁スペーサ14に作用することはない。この結果、絶縁スペーサ14の両側にかかる差圧を最小限に抑えることが可能となり、絶縁スペーサ14に必要な耐圧力性能を低減することができ、小形で低コストの電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法を提供することが可能となる。
(effect)
As described above, according to the gas insulating device for electric power and the method for filling or exhausting the insulating gas of the gas insulating device for electric power according to the first embodiment, the insulating gas 7 is filled in the adjacent gas compartment divided by the insulating spacer 14. When the differential pressure between the two gas compartments exceeds the set value, the switching valve 20 is operated to stop the filling of the insulating gas, and the difference between the two gas compartments when the gas compartment on one side is exhausted. When the pressure exceeds the set value, the switching valve 20 is operated so that the insulating gas is exhausted from both gas compartments. Therefore, a difference greater than the value set by the differential pressure detector 21 at the time of filling the insulating gas or during maintenance. The pressure does not act on the insulating spacer 14. As a result, the differential pressure applied to both sides of the insulating spacer 14 can be minimized, the pressure resistance required for the insulating spacer 14 can be reduced, and a small and low-cost power gas insulating device and power can be provided. It is possible to provide a method for filling or exhausting an insulating gas of a gas insulating device for use.

[実施形態2]
以下、本実施形態2に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図2を参照して説明する。
[Embodiment 2]
Hereinafter, the method for filling or exhausting the insulating gas of the power gas insulating device and the power gas insulating device according to the second embodiment will be described with reference to FIG.

図2は、ガス絶縁機器としての第2のガス絶縁母線15を示す図である。
本実施形態2によるガス絶縁母線15は、ガス給排装置およびガス配管からなるガス給排系統を独立して2系統設け、それぞれを絶縁スペーサ14を挟んで隣り合うガス区画30、30に接続するようにし、さらに双方のガス給排系統間の差圧を検出する差圧検出器21を設け、この差圧検出器21によって2系統のガス給排系統にそれぞれ設けた切替弁20の開閉を制御するように構成したものである。22はガス給排系統19A、19Bに設けた開閉弁である。
FIG. 2 is a view showing a second gas insulation bus 15 as a gas insulation device.
Gas insulated bus 15 according to the present embodiment 2 is independently a gas supply and exhaust system comprising a gas supply and exhaust device and a gas pipe provided two systems, gas compartment 30 2 adjacent to each other across the insulating spacer 14 2, 30 3 And a differential pressure detector 21 for detecting a differential pressure between the two gas supply / exhaust systems. The differential pressure detector 21 provides a switching valve 20 for each of the two gas supply / exhaust systems. It is configured to control opening and closing. An open / close valve 22 is provided in the gas supply / discharge systems 19A and 19B.

本実施形態2は以上のような構成を採用したことによって、絶縁ガス7を充填する際、絶縁スペーサ14を挟んだ両側のガス区画のガス差圧が差圧検出器21の基準値を超えると高圧側のガス区画の接続される切替弁20を閉鎖する。また、1区画のみ絶縁ガスを排気する場合で、絶縁スペーサ14の両側の差圧が差圧検出器21の基準値を超えると切替弁20は開放して、隣接する区画の絶縁ガスも排気されるので、絶縁スペーサ14に作用する差圧は差圧検出器の規定値以下となる。   In the second embodiment, by adopting the above-described configuration, when the insulating gas 7 is filled, the gas differential pressure in the gas sections on both sides of the insulating spacer 14 exceeds the reference value of the differential pressure detector 21. The switching valve 20 connected to the high pressure side gas compartment is closed. In addition, when the insulating gas is exhausted in only one section, when the differential pressure on both sides of the insulating spacer 14 exceeds the reference value of the differential pressure detector 21, the switching valve 20 is opened and the insulating gas in the adjacent section is also exhausted. Therefore, the differential pressure acting on the insulating spacer 14 is not more than the specified value of the differential pressure detector.

なお、ガス給排系統を独立して2系統設けたため、ガス給排系統19A、19Bで扱う絶縁ガスの種類を選択することによって隣接するガス区画内に同一種類の絶縁ガスを給排することもできるし、異なる絶縁ガスを給排することもできる。因みに、図示の例では、ガス区画30、30、30、30にそれぞれ封入した絶縁ガス7A、7B、7C、7Dは種類の異なる絶縁ガスを用いている。
以上述べたように、本実施形態2は、実施形態1と同様の作用、効果を得ることができる。
Since two gas supply / discharge systems are provided independently, the same type of insulating gas may be supplied / exhausted in the adjacent gas compartment by selecting the type of insulating gas handled by the gas supply / discharge systems 19A and 19B. It is possible to supply and discharge different insulating gases. Incidentally, in the illustrated example, different types of insulating gases are used for the insulating gases 7A, 7B, 7C, and 7D enclosed in the gas compartments 30 1 , 30 2 , 30 3 , and 30 4 , respectively.
As described above, the second embodiment can obtain the same operations and effects as the first embodiment.

[実施形態3]
以下、本実施形態3に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図3を参照して説明する。
[Embodiment 3]
Hereinafter, the method for filling or exhausting the insulating gas of the power gas insulating device and the power gas insulating device according to the third embodiment will be described with reference to FIG.

図3はガス絶縁機器としてのガス遮断器1を示す図である。
本実施形態3は、従来例の図8のガス遮断器1とガス絶縁母線15とを区分する絶縁スペーサ14の両側に、図1のように共用のガス給排装置19に接続されるガス配管18、18をそれぞれ接続するようにしたものである。なお、ガス遮断器1に隣接するガス区画は、図3の場合ガス絶縁母線15であるが、このほか、ブッシングや断路器などの他の電力用ガス絶縁機器の場合もある。
本実施形態3においても実施形態1と同様な作用、効果を得ることができる。
FIG. 3 is a view showing a gas circuit breaker 1 as a gas insulating device.
In the third embodiment, the gas pipe connected to the common gas supply / discharge device 19 as shown in FIG. 1 is provided on both sides of the insulating spacer 14 that separates the gas circuit breaker 1 and the gas insulating bus 15 of FIG. 18 1 and 18 2 are connected to each other. The gas compartment adjacent to the gas circuit breaker 1 is the gas insulation bus 15 in the case of FIG. 3, but there may be other power gas insulation devices such as bushings and disconnectors.
Also in the third embodiment, the same actions and effects as in the first embodiment can be obtained.

[実施形態4]
以下、本実施形態4に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図4を参照して説明する。
[Embodiment 4]
Hereinafter, a method for filling or exhausting an insulating gas in the power gas insulating device and the power gas insulating device according to the fourth embodiment will be described with reference to FIG.

図4はガス絶縁機器としての他のガス遮断器1を示す図である。
図4で示す実施形態4は、従来例の図9と同様に、密閉容器2の内部に絶縁容器16を収容し、さらにこの絶縁容器16の内部にガス遮断器の消弧部(固定部5、可動部6)およびそれに順ずる高圧ガス充填が必要な部位を収容した構成において、密閉容器2内部と絶縁容器16内部とに、共用のガス給排装置19に接続されるガス配管18、18を接続するようにしたものである。
FIG. 4 is a view showing another gas circuit breaker 1 as a gas insulating device.
In the fourth embodiment shown in FIG. 4, the insulating container 16 is housed inside the sealed container 2, and the arc extinguishing part (fixing part 5) of the gas circuit breaker is housed inside the insulating container 16, as in FIG. , The movable part 6) and a portion that requires high-pressure gas filling corresponding to the movable part 6), the gas pipe 18 1 connected to the common gas supply / discharge device 19 in the closed container 2 and the insulating container 16; 18 is obtained so as to connect 2.

すなわち、密閉容器2内と、ガス遮断器1内の消弧部およびそれに順ずる高圧ガス充填が必要な部位を収容した絶縁容器16内に対して、実施形態1と同様に同時に同一種類のガスを充填、排気できる構造としたものである。   That is, the same kind of gas is simultaneously applied to the inside of the sealed container 2 and the insulating container 16 containing the arc extinguishing portion in the gas circuit breaker 1 and the portion that requires high-pressure gas filling corresponding thereto. It can be filled and exhausted.

なお、この場合、絶縁容器16の耐圧力性能を損なわない範囲で差圧検出器21の基準値を変更することによって絶縁容器16内のガス圧を密閉容器2内のガス圧よりも高圧にすることができる。   In this case, the gas pressure in the insulating container 16 is made higher than the gas pressure in the sealed container 2 by changing the reference value of the differential pressure detector 21 within a range that does not impair the pressure resistance performance of the insulating container 16. be able to.

以上述べたように、本実施形態4は、密閉容器2とその内部に絶縁容器16により区分された部分とを同時に充填または排気することが可能となり、メンテナンス時に絶縁容器16の表面および内面間にかかる差圧を最小限に抑えることが可能である。この結果、ガス遮断器の消弧部を他の部材から遮蔽する絶縁容器16に必要な耐圧力性能を低減することができ、小形で低コストの電力用ガス絶縁機器を提供することが可能である。   As described above, the fourth embodiment can simultaneously fill or exhaust the sealed container 2 and the portion partitioned by the insulating container 16 between the inside and the inner surface of the insulating container 16 during maintenance. Such differential pressure can be minimized. As a result, it is possible to reduce the pressure resistance performance required for the insulating container 16 that shields the arc extinguishing portion of the gas circuit breaker from other members, and it is possible to provide a small and low-cost power gas insulating device. is there.

[実施形態5]
以下、本実施形態5に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図5を参照して説明する。
[Embodiment 5]
Hereinafter, a method for filling or exhausting an insulating gas in the power gas insulating device and the power gas insulating device according to the fifth embodiment will be described with reference to FIG.

図5はガス絶縁機器としての他のガス遮断器1を示す図である。
本実施形態5は、実施形態2の主旨を実施形態4のガス遮断器1に適用したものであり、ガス遮断器1内の消弧部およびそれに順ずる高圧ガス充填が必要な部位を絶縁容器16により他の部分から分離し、密閉容器2内に絶縁ガス7Aを封入し、絶縁容器16内に別の種類の絶縁ガス7Bを封入したガス遮断器である。この場合、絶縁ガス7Aには絶縁ガス7Bよりも絶縁性能冷却性能のよい絶縁ガスを使用する。なお、差圧検知器21の取り付け位置をガス配管から絶縁容器16に変更することも可能である。
このように、本実施形態5においても実施形態4と同様の作用、効果を得ることができる。
FIG. 5 is a view showing another gas circuit breaker 1 as a gas insulating device.
In the fifth embodiment, the gist of the second embodiment is applied to the gas circuit breaker 1 of the fourth embodiment, and an arc extinguishing portion in the gas circuit breaker 1 and a portion requiring high-pressure gas filling corresponding thereto are insulated containers. 16 is a gas circuit breaker that is separated from other parts by 16, in which an insulating gas 7 </ b> A is sealed in the sealed container 2, and another type of insulating gas 7 </ b> B is sealed in the insulating container 16. In this case, as the insulating gas 7A, an insulating gas having better insulating performance and cooling performance than the insulating gas 7B is used. In addition, it is also possible to change the attachment position of the differential pressure detector 21 from the gas pipe to the insulating container 16.
Thus, also in the fifth embodiment, the same operation and effect as in the fourth embodiment can be obtained.

[実施形態6]
以下、本実施形態6に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図6を参照して説明する。
[Embodiment 6]
Hereinafter, the method for filling or exhausting the insulating gas of the power gas insulating device and the power gas insulating device according to the sixth embodiment will be described with reference to FIG.

図6はガス絶縁機器としての他のガス絶縁母線15を示す図である。
図6において、本実施形態6は絶縁スペーサ14で区分された隣接するガス区画30、30に対して、独立した2系統のガス給排系統19A、19Bをそれぞれ接続し、かつ、当該隣接するガス区画30および30間をガス給排装置19A、19Bに接続されたガス配管18A,18Bとは別の連通ガス配管23で接続したものである。絶縁ガスの給排は2つのガス給排装置19A、19Bから同時に行うことのほか、一方のガス給排装置を運転停止した場合、もう一方のガス給排装置から給排することもできる。
FIG. 6 is a view showing another gas insulation bus 15 as a gas insulation device.
6, the present embodiment 6 is connected to gas compartment 30 2, 30 3 adjacent that is partitioned by the insulating spacers 14 2, independent dual gas supply and exhaust lines 19A, 19B and, and, the Adjacent gas sections 30 2 and 30 3 are connected by a communication gas pipe 23 different from the gas pipes 18A and 18B connected to the gas supply / discharge devices 19A and 19B. Insulating gas can be supplied / discharged simultaneously from the two gas supply / discharge devices 19A and 19B, and when one gas supply / discharge device is shut down, it can be supplied / discharged from the other gas supply / discharge device.

なお、連通ガス配管23には差圧検出器21と切替弁20を設けており、ガス充填時は、切替弁20を開放し、全ての区画が空間的に連通とする。これにより、1つ以上のガス区画に対してガス供給を行えば、全てのガス区画に同時に同じ圧力のガスを充填すること、排気することが可能となる。なお、図6では切替弁20のシンボルしか図示していないが、差圧検出器21も併せて設けている。   The communication gas pipe 23 is provided with a differential pressure detector 21 and a switching valve 20, and when gas is filled, the switching valve 20 is opened so that all the sections are in spatial communication. Thereby, if gas supply is performed with respect to one or more gas divisions, it will become possible to fill and exhaust all the gas divisions simultaneously with the gas of the same pressure. In FIG. 6, only the symbol of the switching valve 20 is shown, but a differential pressure detector 21 is also provided.

また、ガス充填時の隣接するガス区画の配管の間に差圧検出器21と切替弁20を設けることで、万が一絶縁スペーサ14の両側の差圧が基準値を超えた場合でも、切替弁20が開放され、隣接するガス区画の高圧がかかっている側のガスが排気される構造としている。差圧検出器21は絶縁スペーサ14に取り付けることも可能である。
本実施形態においても実施形態1、2と同様な作用、効果を得ることができる。
Further, by providing the differential pressure detector 21 and the switching valve 20 between the pipes of the adjacent gas compartments at the time of gas filling, even if the differential pressure on both sides of the insulating spacer 14 exceeds the reference value, the switching valve 20 Is opened, and the gas on the high pressure side of the adjacent gas compartment is exhausted. The differential pressure detector 21 can be attached to the insulating spacer 14.
Also in this embodiment, the same operations and effects as those in Embodiments 1 and 2 can be obtained.

[実施形態7]
以下、本実施形態7に係る電力用ガス絶縁機器および電力用ガス絶縁機器の絶縁ガスの充填または排気方法について、図7を参照して説明する。
[Embodiment 7]
Hereinafter, the method for filling or exhausting the insulating gas of the power gas insulating device and the power gas insulating device according to the seventh embodiment will be described with reference to FIG.

図7は、ガス絶縁機器としての第4のガス遮断器15を示す図である。
本実施形態7が図5の実施形態5と異なる点は、実施形態5が絶縁容器16内の絶縁ガス7Bと絶縁容器16の周囲の密閉容器2内の絶縁ガス7Aとを異なるガス種類にしたが、本実施形態7は絶縁容器16内の絶縁ガスの充填圧力を高圧ガス7Hとし、その周囲の密閉容器内の絶縁ガスの充填圧力を低圧のガス7Lを充填したものである。
FIG. 7 is a diagram showing a fourth gas circuit breaker 15 as a gas insulating device.
The seventh embodiment is different from the fifth embodiment of FIG. 5 in that the fifth embodiment uses different gas types for the insulating gas 7B in the insulating container 16 and the insulating gas 7A in the sealed container 2 around the insulating container 16. However, in Embodiment 7, the filling pressure of the insulating gas in the insulating container 16 is set to the high pressure gas 7H, and the filling pressure of the insulating gas in the surrounding sealed container is filled with the low pressure gas 7L.

このような構成を採用すると、絶縁容器16の回りの絶縁ガス7Lの圧力を抑制することが可能となり、実質、絶縁スペーサ14にかかる差圧が低減する。
以上説明した作用により、絶縁スペーサの両側にかかる差圧を低減することができ、小形で低コストの電力用ガス絶縁機器を提供することが可能となる。
By adopting such a configuration, it is possible to suppress the pressure of the insulating gas 7L around the insulating container 16, and the differential pressure applied to the insulating spacer 14 is substantially reduced.
With the operation described above, the differential pressure applied to both sides of the insulating spacer can be reduced, and a small and low-cost power gas insulating device can be provided.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…ガス遮断器、2…密閉容器、3、4…支持絶縁物、5…固定部、5a…固定通電部、5b…固定アーク接触子、6…可動部、6a…絶縁ノズル、6b…可動アーク接触子、6c…通電接触子、6d…パッファシリンダ、6e…操作ロッド、7…絶縁ガス、7H…高圧の絶縁ガス、7L…7Hよりも低圧な絶縁ガス、7A…絶縁ガスA、7B…絶縁ガスB、7e…絶縁ガス3、7f…絶縁ガス、8…操作機構、9…事故放電、10…ピストン、11…遮断アーク放電、12…動作時ガス流、13…高圧内部導体、14…絶縁スペーサ、14a…貫通型接続子、15…ガス絶縁母線、16…絶縁容器、17、17、17、17…ガス栓、18…ガス配管、19…ガス給排装置、20…自動差圧制御弁、21…差圧検知器、22…弁、23…連通ガス配管、30、30、30、30…ガス区画。 DESCRIPTION OF SYMBOLS 1 ... Gas circuit breaker, 2 ... Sealed container, 3, 4 ... Support insulator, 5 ... Fixed part, 5a ... Fixed electricity supply part, 5b ... Fixed arc contactor, 6 ... Movable part, 6a ... Insulated nozzle, 6b ... Movable Arc contact, 6c ... energizing contact, 6d ... puffer cylinder, 6e ... operating rod, 7 ... insulating gas, 7H ... high pressure insulating gas, 7L ... insulating gas lower in pressure than 7H, 7A ... insulating gas A, 7B ... Insulating gas B, 7e ... Insulating gas 3, 7f ... Insulating gas, 8 ... Operating mechanism, 9 ... Accident discharge, 10 ... Piston, 11 ... Breaking arc discharge, 12 ... Gas flow during operation, 13 ... High pressure internal conductor, 14 ... Insulating spacer, 14a ... through connector, 15 ... gas insulating bus, 16 ... insulating container, 17 1 , 17 2 , 17 3 , 17 4 ... gas plug, 18 ... gas piping, 19 ... gas supply / exhaust device, 20 ... Automatic differential pressure control valve, 21 ... differential pressure detector, 22 ... valve 23 ... communication gas pipe, 30 1, 30 2, 30 3, 30 4 ... gas compartment.

Claims (5)

密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器において、
前記密閉容器内を絶縁スペーサによって複数個に区分されたガス区画のうち、隣接するガス区画に対して共通のガス給排路から分岐された各ガス配管をそれぞれ接続し、前記分岐されたガス配管相互間の差圧が予め定めた基準値を超えると動作する差圧検出手段を設けるとともに、当該差圧検出手段の指令によって前記各ガス配管を開路または閉路する弁を設けたことを特徴とする電力用ガス絶縁機器。
In the gas insulation device for electric power that stores the high voltage portion in the sealed container and is filled with an insulating gas, and performs electrical insulation between the high voltage portion and the sealed container with the insulating gas,
The gas pipes branched from a common gas supply / exhaust path are connected to adjacent gas compartments among the gas compartments divided into a plurality of parts by insulating spacers in the sealed container, and the branched gas pipes are connected. A differential pressure detecting means that operates when a differential pressure between the two exceeds a predetermined reference value is provided, and a valve that opens or closes each gas pipe according to a command from the differential pressure detecting means is provided. Gas insulation equipment for electric power.
密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器において、
前記密閉容器の内部を絶縁容器によって別のガス区画として区分し、前記絶縁容器内部および前記密閉容器内部に対して共通のガス給排路から分岐された各ガス配管をそれぞれ接続し、前記分岐されたガス配管相互間の差圧が予め定めた基準値を超えると動作する差圧検知手段を設けるとともに、当該差圧検出手段の指令によって前記各ガス配管を開路または閉路する弁を設けたことを特徴とする電力用ガス絶縁機器。
In the gas insulation device for electric power that stores the high voltage portion in the sealed container and is filled with an insulating gas, and performs electrical insulation between the high voltage portion and the sealed container with the insulating gas,
The inside of the sealed container is divided into separate gas compartments by an insulating container, and the gas pipes branched from a common gas supply / exhaust path are connected to the inside of the insulating container and the inside of the sealed container, respectively. Provided with a differential pressure detecting means that operates when the differential pressure between the gas pipes exceeds a predetermined reference value, and provided with a valve that opens or closes each gas pipe according to a command from the differential pressure detecting means. Features gas insulation equipment for power.
前記絶縁スペーサにより複数個に区分されたガス区画に対して、隣接するガス区画がガス供給路あるいはガス排気路以外の連通ガス配管によって接続されたことを特徴とする請求項1あるいは請求項2記載の電力用ガス絶縁機器。   3. The gas compartments divided into a plurality by the insulating spacers and adjacent gas compartments are connected by a communication gas pipe other than a gas supply path or a gas exhaust path. Gas insulation equipment for power. 密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器の絶縁ガスの充填または排気方法おいて、
前記密閉容器内を絶縁スペーサによって複数個に区分されたガス区画のうち、隣接するガス区画に対して共通のガス給排路から分岐された各ガス配管をそれぞれ接続し、前記分岐されたガス配管相互間の差圧が予め定めた基準値を超えると動作する差圧検知手段を設けるとともに、当該差圧検出手段の指令によって前記各ガス配管を開路または閉路する弁を設け、絶縁ガスの充填時または排気時に前記ガス配管相互間の差圧が予め定めた基準値を超えるとガス管路を閉路し、前記ガス配管相互間の差圧が予め定めた基準値を下回るとガス管路を開路することを特徴とする電力用ガス絶縁機器の絶縁ガスの充填または排気方法。
Filling or exhausting an insulating gas of a power gas insulation device in which a high voltage portion is stored in an airtight container and filled with an insulating gas, and electrical insulation between the high voltage portion and the airtight container is performed with the insulating gas. In the way
The gas pipes branched from a common gas supply / exhaust path are connected to adjacent gas compartments among the gas compartments divided into a plurality of parts by insulating spacers in the sealed container, and the branched gas pipes are connected. When the differential pressure between the two exceeds a predetermined reference value, a differential pressure detecting means is provided, and a valve for opening or closing each gas pipe according to a command from the differential pressure detecting means is provided. Alternatively, when the differential pressure between the gas pipes exceeds a predetermined reference value during exhaust, the gas pipe is closed, and when the differential pressure between the gas pipes falls below a predetermined reference value, the gas pipe is opened. An insulating gas filling or exhausting method for a power gas insulating device.
密閉容器内に高電圧部位を格納するとともに絶縁ガスを充填し、前記高電圧部位と前記密閉容器間の電気絶縁を前記絶縁ガスで行うようにした電力用ガス絶縁機器の絶縁ガスの充填または排気方法おいて、
前記密閉容器の内部を絶縁容器によって別のガス区画として区分し、前記絶縁容器内部と前記密閉容器内部に接続されるガス配管を共通のガス供給路あるいはガス排気路から分岐するように構成し、前記分岐されたガス配管相互間の差圧を検出する差圧検知手段を設けるとともに当該差圧検出手段の出力によって開路または閉路する弁を設け、絶縁ガスの充填時または排気時に前記ガス配管相互間の差圧が予め定めた基準値を超えるとガス管路を閉路し、前記ガス配管相互間の差圧が予め定めた基準値を下回るとガス管路を開路することを特徴とする電力用ガス絶縁機器の絶縁ガスの充填または排気方法。
Filling or exhausting an insulating gas of a power gas insulation device in which a high voltage portion is stored in an airtight container and filled with an insulating gas, and electrical insulation between the high voltage portion and the airtight container is performed with the insulating gas. In the way
The inside of the sealed container is divided as another gas compartment by an insulating container, and the gas pipe connected to the inside of the insulating container and the inside of the sealed container is configured to branch from a common gas supply path or gas exhaust path, A differential pressure detecting means for detecting a differential pressure between the branched gas pipes is provided, and a valve that opens or closes according to an output of the differential pressure detecting means is provided. When the differential pressure of the gas exceeds a predetermined reference value, the gas pipe is closed, and when the differential pressure between the gas pipes is lower than the predetermined reference value, the gas pipe is opened. Filling or exhausting insulation gas for insulation equipment.
JP2011124323A 2011-06-02 2011-06-02 Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same Pending JP2012253896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124323A JP2012253896A (en) 2011-06-02 2011-06-02 Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124323A JP2012253896A (en) 2011-06-02 2011-06-02 Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same

Publications (1)

Publication Number Publication Date
JP2012253896A true JP2012253896A (en) 2012-12-20

Family

ID=47526156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124323A Pending JP2012253896A (en) 2011-06-02 2011-06-02 Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same

Country Status (1)

Country Link
JP (1) JP2012253896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370063A (en) * 2017-08-02 2017-11-21 中国南方电网有限责任公司超高压输电公司检修试验中心 Cable extends the functional module that do not have a power failure in GIS
CN113130150A (en) * 2019-12-30 2021-07-16 西安西电高压开关有限责任公司 GIS and insulator thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234875A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Gas-insulated electric device and insulating gas supply/ discharge method
JP2000166034A (en) * 1998-11-30 2000-06-16 Hitachi Ltd Gas insulated switchgear
JP2004040963A (en) * 2002-07-05 2004-02-05 Toshiba Corp Gas insulated switchgear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234875A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Gas-insulated electric device and insulating gas supply/ discharge method
JP2000166034A (en) * 1998-11-30 2000-06-16 Hitachi Ltd Gas insulated switchgear
JP2004040963A (en) * 2002-07-05 2004-02-05 Toshiba Corp Gas insulated switchgear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370063A (en) * 2017-08-02 2017-11-21 中国南方电网有限责任公司超高压输电公司检修试验中心 Cable extends the functional module that do not have a power failure in GIS
WO2019024273A1 (en) * 2017-08-02 2019-02-07 中国南方电网有限责任公司超高压输电公司检修试验中心 Functional module for constantly supplying power during cable expansion in gis
CN107370063B (en) * 2017-08-02 2019-11-12 中国南方电网有限责任公司超高压输电公司检修试验中心 Cable extends the functional module that do not have a power failure in GIS
CN113130150A (en) * 2019-12-30 2021-07-16 西安西电高压开关有限责任公司 GIS and insulator thereof
CN113130150B (en) * 2019-12-30 2022-07-12 西安西电高压开关有限责任公司 GIS and insulator thereof

Similar Documents

Publication Publication Date Title
JP6382069B2 (en) Switchgear
US9147543B2 (en) Gas circuit breaker
JP4879936B2 (en) Gas filling inspection apparatus and gas leakage inspection method
US6444937B1 (en) Gas-insulated switching device
KR20020039244A (en) Gas-Insulated Switching Apparatus
JP2012253896A (en) Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same
KR101291789B1 (en) Gas insulated switchgear
KR101231764B1 (en) Gas insulated switchgear
US9053883B2 (en) Gas circuit breaker
JP4212595B2 (en) Gas insulated switchgear
JP4712609B2 (en) Switchgear
JP2015056249A (en) Circuit breaker
US3379849A (en) Dual-pressure gas-blast circuit breaker with piston means and interrupting unit in closed tank
US4024365A (en) Compressed-gas multiphase circuit-breaker installation
JP2014146515A (en) Gas insulation apparatus for electric power
EP3843117B1 (en) Load-break switch without sf6 gas having a vacuum circuit interrupter for medium-voltage switching systems
WO2018066119A1 (en) Gas circuit breaker
JP4119441B2 (en) Gas insulated switchgear
JP6471253B2 (en) Tank type vacuum circuit breaker
JP4011050B2 (en) Vacuum switchgear
JP2012033363A (en) Insulator type switchgear
JP5161608B2 (en) Gas circuit breaker
JP6374147B2 (en) Tank type vacuum circuit breaker
JP2000092635A (en) Composite switchgear
JPH11126544A (en) Gas-blast circuit-breaker for electric power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707