JP2012253147A - Resistivity measurement method - Google Patents

Resistivity measurement method Download PDF

Info

Publication number
JP2012253147A
JP2012253147A JP2011123613A JP2011123613A JP2012253147A JP 2012253147 A JP2012253147 A JP 2012253147A JP 2011123613 A JP2011123613 A JP 2011123613A JP 2011123613 A JP2011123613 A JP 2011123613A JP 2012253147 A JP2012253147 A JP 2012253147A
Authority
JP
Japan
Prior art keywords
current
measurement
voltage
value
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123613A
Other languages
Japanese (ja)
Other versions
JP5848892B2 (en
Inventor
Kazuhiko Morita
和彦 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2011123613A priority Critical patent/JP5848892B2/en
Publication of JP2012253147A publication Critical patent/JP2012253147A/en
Application granted granted Critical
Publication of JP5848892B2 publication Critical patent/JP5848892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To implement resistivity measurement under an appropriate measuring condition, depending upon a measuring object.SOLUTION: The resistivity measurement method, measuring the electric resistance of a sample with a four-probe resistivity measurement device, supplies an application current for each of a plurality of measuring points of the sample and measures a voltage value and, when the measured voltage value is determined to be beyond a predetermined range of a voltage value at the last measurement point, reconfigure a current value of the application current.

Description

この発明は、4探針抵抗率測定により試料の抵抗率を測定する抵抗率測定方法に関する。   The present invention relates to a resistivity measuring method for measuring the resistivity of a sample by four-probe resistivity measurement.

半導体ウェーハの抵抗率測定装置は、ウェーハの抵抗率、ウェーハ表面に形成したエピタキシャル成長膜の抵抗率、及び表面から不純物を拡散又は注入した場合の拡散層又は注入層のシート抵抗及び表面に生成した金属膜のシート抵抗などを測定するものである。抵抗率測定装置により測定された結果は、各半導体製造装置のプロセス条件へフィードバックされ、半導体デバイスの品質を均一に保つための重要な指標として用いられる。   Semiconductor wafer resistivity measuring device is based on the resistivity of the wafer, the resistivity of the epitaxially grown film formed on the wafer surface, the sheet resistance of the diffusion layer or the implanted layer when impurities are diffused or implanted from the surface, and the metal produced on the surface. The sheet resistance of the film is measured. The result measured by the resistivity measuring apparatus is fed back to the process conditions of each semiconductor manufacturing apparatus and used as an important index for keeping the quality of the semiconductor device uniform.

特許文献1には、4探針抵抗率測定装置において試料の測定に使用する電流値の決定方法についての技術が開示されている。   Patent Document 1 discloses a technique regarding a method for determining a current value used for measurement of a sample in a four-probe resistivity measuring apparatus.

特開2010−38699号公報JP 2010-38699 A

ところが、抵抗率測定装置の測定対象にしている半導体ウェーハには、各種の表面材質のものがある。例えば、半導体ウェーハの面内抵抗分布が不均一で急激に抵抗値が変化するような場合には、測定中に電圧レンジエラーと判定され抵抗値が表示されないという問題がある。   However, there are various types of surface materials for semiconductor wafers to be measured by the resistivity measuring apparatus. For example, when the in-plane resistance distribution of the semiconductor wafer is non-uniform and the resistance value suddenly changes, there is a problem that the resistance value is not displayed because it is determined as a voltage range error during measurement.

この発明は上記事情に着目してなされたもので、その目的とするところは、測定対象に応じて適切な測定条件で抵抗率測定を行う抵抗率測定方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a resistivity measurement method for performing resistivity measurement under appropriate measurement conditions according to a measurement object.

上記目的を達成するためにこの発明の一態様は、4探針抵抗率測定装置により試料の電気抵抗を測定する抵抗率測定方法であって、前記試料における複数の測定ポイント毎に印加電流を供給して電圧値を測定し、前記測定した電圧値が前回の測定ポイントの電圧値の所定範囲を超えると判定した場合に、前記印加電流の電流値を再設定するものである。   In order to achieve the above object, one aspect of the present invention is a resistivity measurement method for measuring an electrical resistance of a sample using a four-probe resistivity measuring device, and supplying an applied current for each of a plurality of measurement points in the sample. Then, the voltage value is measured, and when it is determined that the measured voltage value exceeds the predetermined range of the voltage value at the previous measurement point, the current value of the applied current is reset.

すなわちこの発明によれば、測定対象に応じて適切な測定条件で抵抗率を測定できる抵抗率測定方法を提供することができる。   That is, according to the present invention, it is possible to provide a resistivity measurement method capable of measuring resistivity under an appropriate measurement condition depending on a measurement object.

本発明の一実施形態に係る4探針抵抗率測定装置の構成例を示す図。The figure which shows the structural example of the 4 probe resistivity measuring apparatus which concerns on one Embodiment of this invention. 抵抗率測定回路の概略図。Schematic of a resistivity measurement circuit. 不均一な面内抵抗の試料を想定した場合の測定例を示す図。The figure which shows the example of a measurement at the time of assuming the sample of non-uniform in-plane resistance. 本実施形態に係る電流決定処理を示すフローチャート。The flowchart which shows the electric current determination process which concerns on this embodiment. 測定開始時の電流決定処理を示すフローチャート。The flowchart which shows the electric current determination process at the time of a measurement start. 条件設定画面の例を示す図。The figure which shows the example of a condition setting screen. 電流再設定時の電流決定処理を示すフローチャート。The flowchart which shows the electric current determination process at the time of electric current reset.

以下、図面を参照してこの発明に係る実施形態について説明する。
(構成)
図1は、本発明の一実施形態に係る4探針抵抗率測定装置の構成例を示す図である。4探針抵抗率測定装置10は、各部に接続され全体の動作を制御する制御部11と、半導体ウェーハ等の試料Wを載置するステージ15と、試料Wを測定するために試料に測定電流を供給して試料の電圧を測定する4探針プローブ14を有している。さらに4探針抵抗率測定装置10は、制御部11に接続され4探針プローブ14に定電流を供給する定電流印加回路12と、制御部11に接続され4探針プローブ14から測定電圧を受ける電圧測定回路13と、ユーザの操作に応じて操作信号を制御部11に供給する操作部17と、制御部11が測定した測定結果や操作情報を画面に表示する表示部16を有している。
Embodiments according to the present invention will be described below with reference to the drawings.
(Constitution)
FIG. 1 is a diagram illustrating a configuration example of a 4-probe resistivity measuring apparatus according to an embodiment of the present invention. The four-probe resistivity measuring device 10 is connected to each unit to control the entire operation, a stage 15 on which a sample W such as a semiconductor wafer is placed, and a measurement current to the sample to measure the sample W. And a four-probe probe 14 for measuring the voltage of the sample. Further, the 4-probe resistivity measuring device 10 is connected to the control unit 11 to supply a constant current to the 4-probe probe 14 and a constant-current applying circuit 12 connected to the control unit 11 to receive a measurement voltage from the 4-probe probe 14. A voltage measurement circuit 13 to be received, an operation unit 17 that supplies an operation signal to the control unit 11 according to a user operation, and a display unit 16 that displays measurement results and operation information measured by the control unit 11 on a screen. Yes.

このような構成をもつ4探針抵抗率測定装置10の測定対象にしている半導体ウェーハには各種の表面材質のものがある。これらの半導体ウェーハの抵抗率を測定するには、JIS H 0602「シリコン単結晶及びシリコンウェーハの4探針法による抵抗率測定方法」の規格において、「0.075Ω・cm以下の低抵抗率試料の場合は、発熱を避けるため印加電流の上限を100mAとし、また2000Ω・cm以上の高抵抗率の場合は、中探針の電位差が10mV以下になるような電流を使用することが望ましい。」と推奨されている。つまり、第1に10mV以下になる電流を使用すること、第2に印加電流は最大100mAを上限とすることの2点の条件で抵抗率を測定する必要がある。   There are various surface materials for the semiconductor wafers to be measured by the four-probe resistivity measuring apparatus 10 having such a configuration. In order to measure the resistivity of these semiconductor wafers, a low resistivity sample of 0.075 Ω · cm or less in the standard of JIS H 0602 “Resistance measurement method of silicon single crystal and silicon wafer by four-probe method” In this case, in order to avoid heat generation, the upper limit of the applied current is set to 100 mA, and in the case of a high resistivity of 2000 Ω · cm or more, it is desirable to use a current that makes the potential difference of the middle probe 10 mV or less. It is recommended. In other words, it is necessary to measure the resistivity under two conditions: firstly, a current that is 10 mV or less, and secondly, the applied current has an upper limit of 100 mA.

図2に、4探針抵抗率測定装置10の抵抗率測定回路の概略図を示す。定電流印加回路12は、4探針プローブ14を介して試料Wに与える定電流の電流レンジを1μA,10μA,100μA,1mA,10mA,100mAに切り替え可能な電流レンジ切替部121を有する。電圧測定回路13は、4探針プローブ14を介して試料Wに与える電圧の電圧レンジを2mV,20mV,200mV,2Vに切り替え可能な電圧レンジ切替部131を有する。4探針抵抗率測定装置10は、制御部11により定電流印加回路12及び電圧測定回路13を制御し、例えば、Auto3mV,Auto10mV,Auto30mVの電圧レンジを使用して抵抗率を測定する。Auto3mV,Auto10mV,Auto30mVによる測定の場合は、測定を始める前に定電流印加回路12の電流決定処理が必要である。   FIG. 2 shows a schematic diagram of a resistivity measuring circuit of the four-probe resistivity measuring device 10. The constant current application circuit 12 includes a current range switching unit 121 that can switch the current range of the constant current applied to the sample W via the four-probe probe 14 to 1 μA, 10 μA, 100 μA, 1 mA, 10 mA, and 100 mA. The voltage measurement circuit 13 includes a voltage range switching unit 131 that can switch the voltage range of the voltage applied to the sample W via the four-probe probe 14 to 2 mV, 20 mV, 200 mV, and 2 V. The 4-probe resistivity measuring apparatus 10 controls the constant current applying circuit 12 and the voltage measuring circuit 13 by the control unit 11, and measures the resistivity using, for example, voltage ranges of Auto3 mV, Auto10 mV, and Auto30 mV. In the case of measurement using Auto 3 mV, Auto 10 mV, or Auto 30 mV, the current determination process of the constant current application circuit 12 is required before starting the measurement.

この電流決定処理は、最適電流を決めるために電流値を何回か変更して印加する。例えば、Auto10mVの電流追従モードでは、測定電圧が10mVになるように、1μAの電流から印加していき、10mVに達するように電流を調整して、オームの法則から適切な電流値を決定する。そして、測定実行前に決定した電流を印加しオームの法則V=I*R及び各種補正係数から抵抗率を求める。   In this current determination process, the current value is changed several times and applied in order to determine the optimum current. For example, in the current tracking mode of Auto 10 mV, a current of 1 μA is applied so that the measurement voltage becomes 10 mV, the current is adjusted to reach 10 mV, and an appropriate current value is determined from Ohm's law. Then, the current determined before the measurement is applied and the resistivity is obtained from Ohm's law V = I * R and various correction factors.

ここで、測定対象の試料Wは、図3(a)に示すように面内抵抗分布が不均一なものを想定する。そして、面1(400Ω/sqを想定)、面2(1000Ω/sqを想定)、面3(400Ω/sqを想定)にわたる複数の測定ポイントについて抵抗率を測定するものとする。   Here, it is assumed that the sample W to be measured has a nonuniform in-plane resistance distribution as shown in FIG. Then, the resistivity is measured at a plurality of measurement points over the surface 1 (assuming 400Ω / sq), the surface 2 (assuming 1000Ω / sq), and the surface 3 (assuming 400Ω / sq).

このような試料Wを測定する場合に、例えば、測定中に電圧レンジをシフトする方法が考えられる。電圧レンジ判定処理では、選択した電圧測定回路の電圧レンジで測定可能領域を予め設定し、測定した電圧値がその範囲内であることを判定基準とする。電圧レンジ20mVを選択するときは、アンダーレンジ領域1.3mV以下、オーバーレンジ領域23mV以上であり、電圧レンジ200mVを選択するときは、アンダーレンジ領域23mV以下、オーバーレンジ領域230mV以上であるものとする。印加電流は、0.000113Aとする。   When measuring such a sample W, for example, a method of shifting the voltage range during measurement is conceivable. In the voltage range determination process, a measurable area is set in advance in the voltage range of the selected voltage measurement circuit, and the determination criterion is that the measured voltage value is within that range. When the voltage range 20 mV is selected, the underrange region is 1.3 mV or less and the overrange region is 23 mV or more. When the voltage range is 200 mV, the underrange region is 23 mV or less and the overrange region is 230 mV or more. . The applied current is 0.000113A.

例えば、電圧レンジ20mVを選択して測定した場合において、面1の測定値が0.01V、面2の測定値が0.025Vとなった場合、オーバーレンジと判定され、電圧レンジを200mVに変更して再測定する。再測定結果が0.025Vとなり、電圧レンジ範囲内であり、面2の測定は可能である。面3の測定値は、0.01Vになり、電圧レンジ200mVのアンダーレンジと判定し、電圧レンジエラーと判定される。つまり、測定中に電圧レンジをシフトする方法では、面内抵抗が均一な状態であれば電圧レンジエラーになることはないが、面内抵抗が不均一で急激に抵抗値が変化するような場合は、電圧レンジエラーと判定され抵抗値が表示されない。   For example, when measuring with the voltage range of 20 mV selected, if the measured value of surface 1 is 0.01 V and the measured value of surface 2 is 0.025 V, it is determined to be overrange and the voltage range is changed to 200 mV. And re-measure. The remeasurement result is 0.025 V, which is within the voltage range, and measurement of surface 2 is possible. The measured value of the surface 3 is 0.01 V, and it is determined that the voltage range is 200 mV, and the voltage range error is determined. In other words, the method of shifting the voltage range during measurement does not cause a voltage range error if the in-plane resistance is uniform, but the in-plane resistance is uneven and the resistance value changes suddenly. Is judged as a voltage range error and the resistance value is not displayed.

この問題を解決するために、本実施形態では、測定した電圧値が1つ前の測定ポイントの電圧値の所定範囲を超えた場合に、印加電流を再設定して測定することで電圧レンジエラーを回避するようにする。以下、本実施形態に係る電流決定処理の詳細について説明する。   In order to solve this problem, in this embodiment, when the measured voltage value exceeds the predetermined range of the voltage value of the previous measurement point, the voltage is measured by resetting the applied current. To avoid. Hereinafter, details of the current determination processing according to the present embodiment will be described.

図4は、本実施形態に係る電流決定処理を示すフローチャートである。
[ステップS1a:測定開始時の電流決定処理]
制御部11は、測定開始時に定電流印加回路12の印加電流の初期電流値を決定する(ステップS1a)。ここでは、Auto10mVの電流決定シーケンスを実施するものとする。図5は、測定開始時の電流決定処理を示すフローチャートである。
FIG. 4 is a flowchart showing a current determination process according to the present embodiment.
[Step S1a: Current Determination Process at Measurement Start]
The control unit 11 determines an initial current value of the applied current of the constant current application circuit 12 at the start of measurement (step S1a). Here, it is assumed that an Auto 10 mV current determination sequence is executed. FIG. 5 is a flowchart showing a current determination process at the start of measurement.

制御部11は、電圧測定回路13の電圧レンジ切替部131において電圧レンジ20mVを選択し(ステップS1b)、定電流印加回路12の1回目の印加電流を1μAに決定する(ステップS2b)。印加電流は、試料Wにダメージを与えないように最小電流1μAから上げていくように調整する。制御部11は、定電流印加回路12の電流レンジ切替部121において電流レンジを選択する(ステップS3b)。印加電流1μAの場合は、電流レンジ10μAが選択される。上記測定条件の下で、制御部11は、定電流印加回路12から4探針プローブ14に印加電流を供給して、試料Wの電圧値の測定を開始する(ステップS4b)。   The control unit 11 selects the voltage range 20 mV in the voltage range switching unit 131 of the voltage measurement circuit 13 (step S1b), and determines the first applied current of the constant current application circuit 12 to 1 μA (step S2b). The applied current is adjusted so as to increase from the minimum current of 1 μA so as not to damage the sample W. The control unit 11 selects a current range in the current range switching unit 121 of the constant current application circuit 12 (step S3b). For an applied current of 1 μA, a current range of 10 μA is selected. Under the above measurement conditions, the control unit 11 supplies an applied current from the constant current applying circuit 12 to the four-probe probe 14, and starts measuring the voltage value of the sample W (step S4b).

制御部11は、電圧測定回路13により4探針プローブ14から受ける電圧値を測定し(ステップS5b)、測定結果が目標電圧値である10mVと判定できない場合は、オームの法則V=I*Rから抵抗Rを算出し、目標電圧値10mVになるように印加電流の電流値I=0.01/Rを算出する。制御部11は、測定結果が目標電圧値10mVと判定できるまでステップS3b〜S5bの処理を繰り返し、電流値を決定する。なお、ステップS5bで所定の回数測定を行っても10mVと判定できない場合は、ステップS9bに移行して電圧レンジ決定エラーと判定する。   The control unit 11 measures the voltage value received from the four-probe probe 14 by the voltage measurement circuit 13 (step S5b), and when the measurement result cannot be determined as the target voltage value of 10 mV, Ohm's law V = I * R Then, the resistance R is calculated, and the current value I = 0.01 / R of the applied current is calculated so that the target voltage value is 10 mV. The control part 11 repeats the process of step S3b-S5b until it can determine with a measurement result being 10 mV of target voltage values, and determines an electric current value. If it is not possible to determine 10 mV even after performing the predetermined number of measurements in step S5b, the process proceeds to step S9b to determine a voltage range determination error.

ステップS5bで電流値が決定すると、制御部11は、決定した電流値で定電流印加回路12から4探針プローブ14に印加電流を供給して、試料Wの電圧値の測定を開始する(ステップS6b)。制御部11は、電圧測定回路13により4探針プローブ14から受ける電圧値を測定し(ステップS7b)、測定結果が10mVと判定した回数がn回連続するまで繰り返す。所定回数、測定結果が10mVと判定できた場合は、Auto10mVの印加電流の初期電流値を決定する(ステップS8b)。ステップS7bにおいて電流決定終了と判断するのは、例えば、測定電圧が7mV〜13mV(70%〜130%)の範囲に入った回数が4回以上続き、かつ、最後は9.8mV〜10.2mV(98%〜102%)の範囲に入った時とする。   When the current value is determined in step S5b, the control unit 11 supplies the applied current from the constant current application circuit 12 to the four-probe probe 14 with the determined current value, and starts measuring the voltage value of the sample W (step). S6b). The control unit 11 measures the voltage value received from the four-probe probe 14 by the voltage measurement circuit 13 (step S7b), and repeats until the number of times that the measurement result is determined to be 10 mV continues n times. When the measurement result can be determined to be 10 mV a predetermined number of times, the initial current value of the applied current of Auto 10 mV is determined (step S8b). In step S7b, it is determined that the current determination has ended, for example, the number of times the measured voltage has entered the range of 7 mV to 13 mV (70% to 130%) lasts 4 times or more, and finally, 9.8 mV to 10.2 mV. It is assumed that it is in the range of (98% to 102%).

[ステップS2a:電圧値を測定]
制御部11は、試料Wの各測定ポイントについて、上記ステップS1aで決定した初期電流値の印加電流を定電流印加回路12から4探針プローブ14に供給して、電圧測定回路13により試料Wの電圧値を測定する(ステップS2a)。
[Step S2a: Measure Voltage Value]
For each measurement point of the sample W, the control unit 11 supplies the application current of the initial current value determined in step S1a from the constant current application circuit 12 to the four-probe probe 14, and the voltage measurement circuit 13 The voltage value is measured (step S2a).

[ステップS3a:電流再設定判定]
制御部11は、ステップS2aで測定した電圧値が前回の測定ポイントの測定値の所定範囲(±XX%)内であるか否かを判定する(ステップS3a)。測定した電圧値が所定範囲内である場合には、ステップS4aに移行し、測定した電圧値が所定範囲を超える場合には、ステップS5aに移行し、測定中の電流再決定処理を行う。電流再設定判定処理により、測定した電圧値が1つ前の測定ポイントの電圧値の一定範囲を超えた時に印加電流を再決定し、再決定後の印加電流で測定を継続するか、第1点目の測定ポイントに戻って再測定するかを選択できるようにすれば測定中の電圧レンジエラーは回避することができる。
[Step S3a: Current Reset Determination]
The controller 11 determines whether or not the voltage value measured in step S2a is within a predetermined range (± XX%) of the measurement value at the previous measurement point (step S3a). If the measured voltage value is within the predetermined range, the process proceeds to step S4a. If the measured voltage value exceeds the predetermined range, the process proceeds to step S5a, and the current redetermination process during measurement is performed. In the current resetting determination process, the applied current is determined again when the measured voltage value exceeds a certain range of the voltage value of the previous measurement point, and the measurement is continued with the applied current after the determination, or the first If it is possible to select whether to return to the measurement point and perform measurement again, a voltage range error during measurement can be avoided.

図6に条件設定画面の例を示す。電流再設定判定基準及び再決定後の印加電流で測定を継続するか、第1点目の測定ポイントに戻って測定するかを、予め測定パラメータとして登録しておき自由に変更できるようにしておく。「電流自動変更」で“有り”が選択された場合に、「電流再決定変動幅」及び「再測定動作」を設定することが可能となる。「電流再決定変動幅」は、測定結果の電圧値の変動幅が±XX%を超えたら、その測定ポイントで再度電流決定シーケンス処理を行い、印加電流を決定する。「再測定動作」では、新たに決定された電流で測定を継続するか(継続測定)、第1点目の測定ポイントに戻り測定を継続するか(第1点目から測定)を設定する。測定結果ファイルには、各測定ポイントの印加電流と測定した電圧値が出力される。   FIG. 6 shows an example of the condition setting screen. Whether to continue the measurement with the current resetting determination criterion and the applied current after the re-determination or to return to the first measurement point and measure it as a measurement parameter is registered in advance so that it can be freely changed. . When “Yes” is selected in “Automatic current change”, it is possible to set “Current redetermination fluctuation range” and “Remeasurement operation”. “Current redetermination fluctuation range” determines the applied current by performing the current determination sequence process again at the measurement point when the fluctuation range of the voltage value of the measurement result exceeds ± XX%. In the “re-measurement operation”, it is set whether to continue the measurement with the newly determined current (continuous measurement) or to return to the first measurement point and continue the measurement (measurement from the first point). The measurement result file outputs the applied current at each measurement point and the measured voltage value.

[ステップS4a:抵抗率算出、測定値表示]
上記ステップS3aで測定した電圧値が前回の測定ポイントの測定値の所定範囲内と判定された場合には、制御部11は、測定結果からオームの法則V=I*R及び各種補正係数に基づいて抵抗率Rを算出し、抵抗率を表示部16に測定値を表示する(ステップS4a)。
[Step S4a: Resistivity calculation, measurement value display]
When it is determined that the voltage value measured in step S3a is within the predetermined range of the measurement value at the previous measurement point, the control unit 11 determines from the measurement result based on Ohm's law V = I * R and various correction coefficients. The resistivity R is calculated and the measured value is displayed on the display unit 16 (step S4a).

[ステップS5a:測定中の電流再決定処理]
一方、上記ステップS3aで測定した電圧値が前回の測定ポイントの測定値の所定範囲を超えると判定された場合には、制御部11は、測定中の電流再決定処理のシーケンスを実施する。図7は、電流再設定時の電流決定処理を示すフローチャートである。ここでは図6(b)の条件設定画面において、「電流自動変更」で“有り”が選択され、「電流再決定変動幅」として“90%”、「再測定動作」として“継続測定”が予め設定されているものとする。
[Step S5a: Current redetermination process during measurement]
On the other hand, when it is determined that the voltage value measured in step S3a exceeds the predetermined range of the measurement value of the previous measurement point, the control unit 11 performs a sequence of current redetermination processing during measurement. FIG. 7 is a flowchart showing current determination processing at the time of current resetting. Here, “Yes” is selected for “Automatic current change” on the condition setting screen of FIG. 6B, “90%” is set as “current redetermination fluctuation range”, and “continuous measurement” is set as “remeasurement operation”. It is assumed that it is set in advance.

制御部11は、電圧測定回路13の電圧レンジ切替部131において電圧レンジ20mVを選択し(ステップS1c)、電流再設定と判断した時の電圧値から抵抗値を推測し、1回目の印加電流の電流値を決定する(ステップS2c)。測定した電圧値をV1、測定開始時の電流決定値をI1とすると、抵抗値R1は、R1=V1/I1から求められる。1回目の印加電流の電流値Iは、I=0.01/R1から算出することができる。   The control unit 11 selects the voltage range 20 mV in the voltage range switching unit 131 of the voltage measurement circuit 13 (step S1c), estimates the resistance value from the voltage value when it is determined that the current is reset, and determines the first applied current. A current value is determined (step S2c). When the measured voltage value is V1, and the current determination value at the start of measurement is I1, the resistance value R1 can be obtained from R1 = V1 / I1. The current value I of the first applied current can be calculated from I = 0.01 / R1.

制御部11は、定電流印加回路12の電流レンジ切替部121において電流レンジを選択する(ステップS3c)。上記測定条件の下で、制御部11は、定電流印加回路12から4探針プローブ14に印加電流を供給して、試料Wの電圧値の測定を開始する(ステップS4c)。   The control unit 11 selects a current range in the current range switching unit 121 of the constant current application circuit 12 (step S3c). Under the above measurement conditions, the control unit 11 supplies an application current from the constant current application circuit 12 to the four-probe probe 14 and starts measuring the voltage value of the sample W (step S4c).

制御部11は、電圧測定回路13により4探針プローブ14から受ける電圧値を測定し(ステップS5c)、測定結果が目標電圧値である10mVと判定できない場合は、オームの法則V=I*Rから抵抗Rを算出し、目標電圧値10mVになるように印加電流の電流値I=0.01/Rを算出する。制御部11は、測定結果が目標電圧値10mVと判定できるまでステップS3c〜S5cの処理を繰り返し、電流値を決定する。なお、ステップS5cで所定の回数測定を行っても10mVと判定できない場合は、ステップS9cに移行して電圧レンジエラーと判定する。   The control unit 11 measures the voltage value received from the four-probe probe 14 by the voltage measurement circuit 13 (step S5c), and when the measurement result cannot be determined as the target voltage value of 10 mV, Ohm's law V = I * R Then, the resistance R is calculated, and the current value I = 0.01 / R of the applied current is calculated so that the target voltage value is 10 mV. The control part 11 repeats the process of step S3c-S5c until it can determine with a measurement result being 10 mV of target voltage values, and determines an electric current value. Note that if it is not possible to determine 10 mV even after performing the predetermined number of measurements in step S5c, the process proceeds to step S9c to determine a voltage range error.

ステップS5cで電流値が決定すると、制御部11は、決定した電流値で定電流印加回路12から4探針プローブ14に印加電流を供給して、試料Wの電圧値の測定を開始する(ステップS6c)。制御部11は、電圧測定回路13により4探針プローブ14から受ける電圧値を測定し(ステップS7c)、測定結果が10mVと判定した回数がn回連続するまで繰り返す。所定回数、測定結果が10mVと判定できた場合は、Auto10mVの印加電流の初期電流値を決定する(ステップS8c)。ステップS7cにおいて電流決定終了と判断するのは、例えば、測定電圧が7mV〜13mV(70%〜130%)の範囲に入った回数が4回以上続き、かつ、最後は9.8mV〜10.2mV(98%〜102%)の範囲に入った時とする。   When the current value is determined in step S5c, the controller 11 supplies an applied current from the constant current application circuit 12 to the four-probe probe 14 with the determined current value, and starts measuring the voltage value of the sample W (step S5c). S6c). The control unit 11 measures the voltage value received from the four-probe probe 14 by the voltage measurement circuit 13 (step S7c), and repeats until the number of times that the measurement result is determined to be 10 mV continues n times. When the measurement result can be determined to be 10 mV a predetermined number of times, the initial current value of the applied current of Auto 10 mV is determined (step S8c). In step S7c, it is determined that the current determination has ended, for example, the number of times the measured voltage has entered the range of 7 mV to 13 mV (70% to 130%) lasts 4 times or more, and finally 9.8 mV to 10.2 mV. It is assumed that it is in the range of (98% to 102%).

このステップS5aの測定中の電流再決定処理は、ステップS1aの測定開始時の電流決定処理に示す第1点目に最小電流1μAを流す方式と比較して、再設定と判断した時の1回目に印加する電流値は、電圧測定回路13の能力的に測定可能領域の電流再設定と判断した電圧から抵抗値を推測するため、推測した抵抗値は概ね真値に近い値であり、測定開始時の電流決定処理より早く電流値を決定することができる。   The current re-determination process during the measurement in step S5a is the first time when it is determined that the resetting is performed, compared to the method in which the minimum current of 1 μA is supplied to the first point shown in the current determination process at the start of measurement in step S1a Since the resistance value is estimated from the voltage determined to be the current resetting of the measurable region of the voltage measurement circuit 13 in terms of the capability of the voltage measurement circuit 13, the estimated resistance value is approximately close to the true value, and measurement starts The current value can be determined earlier than the current determination process.

図3(b)に、測定中に印加電流を再設定する方法を適用した例を示す。電流再決定変動幅は、測定した電圧値が1つ前の測定ポイントの電圧値に対して90%以上変化した時に印加電流を再設定する。測定開始時の印加電流を0.000113Aとし、電圧レンジは20mVを選択する。   FIG. 3B shows an example in which a method for resetting the applied current during measurement is applied. The current redetermination fluctuation range resets the applied current when the measured voltage value changes by 90% or more with respect to the voltage value at the previous measurement point. The applied current at the start of measurement is 0.000113 A, and the voltage range is 20 mV.

面1の測定値は0.01Vになり、面2の測定値は0.025Vになると、前回の測定ポイントの電圧値(0.01V)から250%変化しており電流再決定処理を行う。再設定後の印加電流を0.000045Aに変更することにより面2の測定値は0.01Vとなり、面2の測定は可能になる。さらに面3を測定すると0.004Vになり前回の測定ポイントの電圧値(0.01V)から250%変化しており電流再決定処理を行う。再設定後の印加電流は、0.000113Aに変更することにより面3の測定値は0.01Vとなり、面3内の測定は可能になる。   When the measured value of the surface 1 becomes 0.01V and the measured value of the surface 2 becomes 0.025V, the current value is changed by 250% from the voltage value (0.01V) at the previous measurement point, and the current redetermination process is performed. By changing the applied current after resetting to 0.000045 A, the measured value of the surface 2 becomes 0.01 V, and the measurement of the surface 2 becomes possible. Further, when the surface 3 is measured, it becomes 0.004 V, which is 250% different from the voltage value (0.01 V) at the previous measurement point, and the current redetermination process is performed. By changing the applied current after resetting to 0.000113A, the measured value of the surface 3 becomes 0.01 V, and measurement within the surface 3 becomes possible.

したがって、本実施形態によれば、半導体ウェーハの不均一な膜の抵抗率の測定、今後ウェーハの大口径化(450mm)が進むことに伴うまだら模様の膜の抵抗率の測定、及び1枚のウェーハに各種の条件で成膜した抵抗率の測定等を一度で測定可能になり、ウェーハの有効利用とスループットの向上を実現することができる。   Therefore, according to the present embodiment, measurement of the resistivity of the non-uniform film of the semiconductor wafer, measurement of the resistivity of the mottled pattern film as the wafer diameter increases (450 mm) in the future, It is possible to measure the resistivity formed on the wafer under various conditions at once, and to realize effective use of the wafer and improvement of throughput.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

10…4探針抵抗率測定装置、11…制御部、12…定電流印加回路、13…電圧測定回路、14…4探針プローブ、15…ステージ、16…表示部、17…操作部、W…ウェーハ、121…電流レンジ切替部、131…電圧レンジ切替部。   DESCRIPTION OF SYMBOLS 10 ... 4 probe resistivity measuring apparatus, 11 ... Control part, 12 ... Constant current application circuit, 13 ... Voltage measurement circuit, 14 ... 4 probe probe, 15 ... Stage, 16 ... Display part, 17 ... Operation part, W ... wafer, 121 ... current range switching unit, 131 ... voltage range switching unit.

Claims (1)

4探針抵抗率測定装置により試料の電気抵抗を測定する抵抗率測定方法であって、
前記試料における複数の測定ポイント毎に印加電流を供給して電圧値を測定し、
前記測定した電圧値が前回の測定ポイントの電圧値の所定範囲を超えると判定した場合に、前記印加電流の電流値を再設定することを特徴とする抵抗率測定方法。
A resistivity measuring method for measuring the electrical resistance of a sample with a four-probe resistivity measuring device,
Supply an applied current for each of a plurality of measurement points in the sample to measure a voltage value,
A resistivity measurement method, comprising: resetting a current value of the applied current when it is determined that the measured voltage value exceeds a predetermined range of the voltage value at the previous measurement point.
JP2011123613A 2011-06-01 2011-06-01 Resistivity measuring method and 4-probe resistivity measuring device Active JP5848892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123613A JP5848892B2 (en) 2011-06-01 2011-06-01 Resistivity measuring method and 4-probe resistivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123613A JP5848892B2 (en) 2011-06-01 2011-06-01 Resistivity measuring method and 4-probe resistivity measuring device

Publications (2)

Publication Number Publication Date
JP2012253147A true JP2012253147A (en) 2012-12-20
JP5848892B2 JP5848892B2 (en) 2016-01-27

Family

ID=47525703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123613A Active JP5848892B2 (en) 2011-06-01 2011-06-01 Resistivity measuring method and 4-probe resistivity measuring device

Country Status (1)

Country Link
JP (1) JP5848892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090745A (en) * 2013-11-05 2015-05-11 エスペック株式会社 External short circuit test device and external short circuit test
CN104280616B (en) * 2013-07-12 2017-03-22 苏州博昇科技有限公司 Silicon wafer resistivity measurement device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188939A (en) * 1987-02-02 1988-08-04 Sumitomo Electric Ind Ltd Measurement of electrical characteristics of epitaxial layer
JP2010038699A (en) * 2008-08-04 2010-02-18 Hitachi Kokusai Denki Engineering:Kk Measurement current value determining method and four-probe resistivity measuring apparatus
JP2010147436A (en) * 2008-12-22 2010-07-01 Hitachi Kokusai Denki Engineering:Kk Four-probe resistivity measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188939A (en) * 1987-02-02 1988-08-04 Sumitomo Electric Ind Ltd Measurement of electrical characteristics of epitaxial layer
JP2010038699A (en) * 2008-08-04 2010-02-18 Hitachi Kokusai Denki Engineering:Kk Measurement current value determining method and four-probe resistivity measuring apparatus
JP2010147436A (en) * 2008-12-22 2010-07-01 Hitachi Kokusai Denki Engineering:Kk Four-probe resistivity measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280616B (en) * 2013-07-12 2017-03-22 苏州博昇科技有限公司 Silicon wafer resistivity measurement device and method
JP2015090745A (en) * 2013-11-05 2015-05-11 エスペック株式会社 External short circuit test device and external short circuit test

Also Published As

Publication number Publication date
JP5848892B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
KR102281073B1 (en) Plating analysis method, plating analysis system, and computer-readable storage medium for plating analysis
EP1726690A2 (en) In-situ profile measurement in an electroplating process
CN103828031B (en) For monitoring the temperature of multiplexing heater arrays and controlling the system and method for this array
TWI570836B (en) Electrostatic chuck and its plasma processing chamber
JP5848892B2 (en) Resistivity measuring method and 4-probe resistivity measuring device
WO2012165174A1 (en) Device and method for detecting degradation of resistance heating heater
CN105373285A (en) Method and device for changing application icons of terminal
CN113066438B (en) Brightness compensation device and method and display device
JP2001152397A (en) Plating analysis method
JP5041016B2 (en) Heat treatment apparatus, heat treatment method and storage medium
KR20140147044A (en) Automatic in-situ control of an electro-plating processor
TWI774857B (en) Method for determining location of power feeding point in electroplating apparatus and electroplating apparatus for plating rectangular substrate
JP6045842B2 (en) Resistivity measuring apparatus and method
CN111141784B (en) Oxide semiconductor thin film detection device and oxide semiconductor thin film detection method
JP2010038699A (en) Measurement current value determining method and four-probe resistivity measuring apparatus
JP5350063B2 (en) Sheet resistance measuring device and sheet resistance measuring method
CN107910280B (en) Method for establishing global regulation model for optimizing rapid thermal annealing
JP6451881B1 (en) Silicon layer evaluation method and silicon epitaxial wafer manufacturing method
RU2007117508A (en) METHOD FOR ELECTRIC HEATING ELEMENT FORMING BY METHOD AND / OR METAL-OXIDE MATERIAL FLAME SPRAYING METHOD
US10113917B2 (en) System and method for in situ temperature measurement
KR102126836B1 (en) Insulation inspection method and insulation inspection apparatus
CN106292814B (en) Automatic voltage correction method
JP5463540B2 (en) 4 probe resistivity measuring device and 4 probe resistivity measuring method
TW201526155A (en) Electrostatic chuck heating temperature-detection circuit and plasma reacting device
JP5997904B2 (en) Resistivity measuring apparatus and method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5848892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250