JP2012251998A - Measurement device for solvent insoluble matter of coal tar or coal tar pitch type - Google Patents

Measurement device for solvent insoluble matter of coal tar or coal tar pitch type Download PDF

Info

Publication number
JP2012251998A
JP2012251998A JP2012107660A JP2012107660A JP2012251998A JP 2012251998 A JP2012251998 A JP 2012251998A JP 2012107660 A JP2012107660 A JP 2012107660A JP 2012107660 A JP2012107660 A JP 2012107660A JP 2012251998 A JP2012251998 A JP 2012251998A
Authority
JP
Japan
Prior art keywords
coal tar
solvent
turbidity
solution
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107660A
Other languages
Japanese (ja)
Other versions
JP5891936B2 (en
Inventor
Ryo Nokariya
亮 野苅家
Koyo Yamane
幸洋 山根
Hiroshi Tsuda
浩志 津田
Satoshi Hirahara
聡 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012107660A priority Critical patent/JP5891936B2/en
Publication of JP2012251998A publication Critical patent/JP2012251998A/en
Application granted granted Critical
Publication of JP5891936B2 publication Critical patent/JP5891936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device of a solvent insoluble matter of coal tar or coal tar pitch type a having a measurement area for measuring QI measurement with high accuracy in a wide range for measuring a solvent insoluble matter of coal tar or coal tar pitch type a by a simple method without requiring any complicate operation or instrument.SOLUTION: A measurement device mixes a coal tar pitch type a and a solvent b, and supplies its mixed solvent a" to an integrating sphere type turbidimeter 20 (flow cell 16) to measure its turbidity, and calculates a solvent insoluble matter QI of the pitch type a on the basis of the measured turbidity. In this case, the solvent a" is gradually stirred and diluted in first and second stirring tanks 13 and 15 so that diluting accuracy can be increased, and that solvent quantity can be reduced. The integrating sphere type turbidimeter 20 is not influenced by color or diameter of particles configuring the turbidity, and is made excellent in the measurement of turbidity of a material including many insoluble matters having various colors or different particle diameters such as aromatic components, alkyl side chains, heterocycle compounds, sulfur, nitrogen, and oxygen, like the pitch type a. Thus, it is possible to obtain accurate QI across QI=0.1 to 30% on the basis of the measured turbidity.

Description

本発明は、コールタール又はコールタールピッチ類の溶剤不溶分の測定装置に関するものである。   The present invention relates to a measuring apparatus for insoluble components of coal tar or coal tar pitches.

コールタールや、コールタール誘導体であるコールタールピッチ類(ソフトピッチ、中ピッチ、硬ピッチ、各種作業工程中のピッチを含む)などに含まれる溶剤不溶分、例えば、多環芳香族系有機化合物やコークス粉、石炭等の指標は、コールタールやコールタールピッチ類(以下、総称して「コールタールピッチ類」と言うことがある。)を原料として、ニードルコークスやピッチコークスなどのコークスを製造する際に得られる、それらコークスの性状、例えば、熱膨張係数(CTE)、ハードグローブ粉砕性指数(HGI)等に影響する重要なものとされている。
その溶剤不溶分の測定に当たっては、通常、コールタールピッチ類の試料を採取して計量し、それを、キノリン等の溶剤に溶解した後に不溶分を定量することで算出されており、溶剤がキノリンの場合、「QI(Quinoline Insoluble)」として表示され、そのQIの測定手法は種々提案されている。
Solvent insoluble matter contained in coal tar and coal tar pitches that are coal tar derivatives (including soft pitch, medium pitch, hard pitch, pitch in various work processes), such as polycyclic aromatic organic compounds, Coke powder, coal, etc. are used to produce coke such as needle coke and pitch coke from coal tar and coal tar pitches (hereinafter collectively referred to as “coal tar pitches”). It is considered to be important to influence the properties of the coke obtained at that time, for example, the coefficient of thermal expansion (CTE), the hard glove grindability index (HGI) and the like.
In measuring the solvent-insoluble content, it is usually calculated by taking a sample of coal tar pitches, weighing it, and dissolving it in a solvent such as quinoline and then quantifying the insoluble content. In this case, it is displayed as “QI (Quinoline Insoluble)”, and various methods for measuring the QI have been proposed.

例えば、ソフトピッチのQIの測定に液中微粒子計数器(パーティクルカウンター)を適用し、試料中の不溶性粒子数を粒子径ごとに測定し、それらとQIの値との相関関係から特性値を求めておき、その特性値から演算器を利用して自動的にQIを算出する測定装置が提案されている(特許文献1)。
また、ソフトピッチのQI値の測定に吸光光度計を適用し、更に測定対象である高粘度の瀝青物のサンプル試料に第一の溶剤としてタール留出油を混合して低粘度にしてプロセス配管中で混合する装置(スタティックミキサー)に押し出し混合させた後、第二の溶剤としてキノリンを用い、所定量をスタティックミキサーで混合して溶解/希釈した後に、試料の吸光度を測定する測定装置が提案されている(特許文献2)。この装置では、QI測定の所要時間が20分と短縮できるとしている(同文献段落0037)。
For example, a liquid fine particle counter (particle counter) is applied to QI measurement of soft pitch, the number of insoluble particles in the sample is measured for each particle diameter, and the characteristic value is obtained from the correlation between these and the QI value. A measuring apparatus that automatically calculates QI from the characteristic value using an arithmetic unit has been proposed (Patent Document 1).
In addition, an absorptiometer is applied to measure the QI value of the soft pitch, and further, a high-viscosity bituminous sample sample to be measured is mixed with tar distillate oil as the first solvent to lower the viscosity. Proposed a measuring device that measures the absorbance of a sample after mixing with a mixing device (static mixer), mixing with quinoline as a second solvent, dissolving / diluting a predetermined amount with a static mixer (Patent Document 2). In this apparatus, the time required for QI measurement can be shortened to 20 minutes (paragraph 0037 of the same document).

特開平04−9664号公報Japanese Patent Laid-Open No. 04-9664 特開平08−101100号公報Japanese Patent Laid-Open No. 08-101100

特許文献1の技術は、粒子の数をカウントするという点で、測定出来る粒子の数に限りがあるため、溶剤不溶分が1重量%以下のものに限ってしか適用されておらず、QIの測定領域が高くなって粒子の数が多くなった場合に高い精度が確保できない問題がある。
また、特許文献2の技術は、スタティックミキサーで混合する際の瀝青物中固形分によるスタティックミキサー内における閉塞、例えば、第一の溶剤であるタール留出油を送液するポンプ内でのタール留出油中固形分によるポンプ内での閉塞の問題があり、安定して測定することが困難である。さらに、吸光光度計においては、測定し得る被測定物の濃度に範囲があり、測定するQIの範囲に依って希釈倍率、すなわち、試料の量(サンプリング量)を変えたり、希釈溶媒量を変えたりしなければならないという問題もある。
The technique of Patent Document 1 is limited to the number of particles that can be measured in terms of counting the number of particles, and is therefore only applied to those having a solvent insoluble content of 1% by weight or less. There is a problem that high accuracy cannot be ensured when the measurement area becomes high and the number of particles increases.
Moreover, the technique of patent document 2 is the clogging in the static mixer by the solid content in the bitumen at the time of mixing with a static mixer, for example, the tar distillation in the pump which sends the tar distillate oil which is the 1st solvent. There is a problem of clogging in the pump due to solid content in the oil output, and it is difficult to measure stably. Furthermore, in an absorptiometer, there is a range in the concentration of an object that can be measured. Depending on the QI range to be measured, the dilution factor, that is, the amount of sample (sampling amount) can be changed, or the amount of diluted solvent can be changed. There is also the problem of having to do.

本発明は、上記実状に鑑み、コールタールピッチ類のQI等の不溶分測定がその分量分布の広範囲で行え、かつ高い精度の測定領域を有し、さらに煩雑な操作や機器を必要とせずに簡便な方法でその不溶分測定をし得るようにすることを課題とする。   In view of the above situation, the present invention can perform insoluble content measurement such as QI of coal tar pitches over a wide range of the quantity distribution, has a high accuracy measurement area, and does not require complicated operations and equipment. It is an object to be able to measure the insoluble matter by a simple method.

上記課題を解決すべく鋭意検討した結果、本発明者は、コールタールピッチ類を溶剤に溶解させた溶液の溶剤不溶分と、その溶液の濁度に相関があり、幅広いQI値等の不溶分に対して、その相関関係が存在すること、及び、濁度から不溶分を算出する際、算出しようとする不溶分に対して試料の量が変動しないことを見出し、本発明を完成するに至ったのである。
すなわち、本発明は、コールタールピッチ類と溶剤とを混合した溶液を得る手段と、その溶液を積分球式濁度計に供給してその濁度を測定する手段と、その測定濁度に基づき前記コールタールピッチ類の溶剤不溶分濃度を算出する手段を有する構成を採用したのである。
As a result of intensive studies to solve the above problems, the present inventor found that there is a correlation between the solvent insoluble content of a solution in which coal tar pitches are dissolved in a solvent and the turbidity of the solution, and the insoluble content such as a wide QI value. On the other hand, when the insoluble content is calculated from the turbidity, it is found that the amount of the sample does not vary with respect to the insoluble content to be calculated, and the present invention has been completed. It was.
That is, the present invention is based on means for obtaining a solution in which coal tar pitches and a solvent are mixed, means for supplying the solution to an integrating sphere turbidimeter and measuring the turbidity, and the measured turbidity. A configuration having means for calculating the solvent-insoluble concentration of the coal tar pitch is employed.

本発明は、以上のように、積分球式濁度計でもって濁度を測定し、その測定に基づき、コールタールピッチ類の不溶分量を得るようにしたので、試料の量(サンプリング量)を変えたり、希釈溶媒量を変えたりすることなく、その不溶分をその量に関係なく正確に測定することができる。このため、本発明は、QI=0.1〜30%という広範囲に高い精度で測定できる測定領域を有し、且つ煩雑な操作や機器を必要とせずに簡便な方法でコールタールピッチ類の溶剤不溶分の測定をすることができる。   In the present invention, as described above, the turbidity is measured with an integrating sphere turbidimeter, and based on the measurement, the insoluble content of coal tar pitches is obtained. The insoluble matter can be accurately measured regardless of the amount without changing or changing the amount of diluted solvent. For this reason, the present invention has a measurement region that can be measured with high accuracy over a wide range of QI = 0.1 to 30%, and is a solvent for coal tar pitches by a simple method without requiring complicated operations and equipment. Insoluble matter can be measured.

本発明の一実施形態のQI分析装置の概略構成図1 is a schematic configuration diagram of a QI analyzer according to an embodiment of the present invention. 同実施形態の濁度計の構成図Configuration diagram of the turbidimeter of the same embodiment 同実施形態における濁度とQIの関係図Relationship diagram between turbidity and QI in the same embodiment

以下に、本発明をその実施形態により更に具体的に説明するが、本発明はその要旨を超えない限り、これらの実施形態によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments. However, the present invention is not limited to these embodiments as long as the gist thereof is not exceeded.

本発明における積分球式濁度計は、濁度を構成する粒子の色や径に影響されず、コールタールピッチ類のように、芳香族成分、アルキル側鎖やヘテロ環化合物、硫黄や窒素や酸素などの各種の色や異なる粒径の不溶分が多く含まれるものの濁度の測定には優れたものである。   The integrating sphere turbidimeter in the present invention is not affected by the color and diameter of the particles constituting the turbidity, and, like coal tar pitches, aromatic components, alkyl side chains, heterocyclic compounds, sulfur, nitrogen, It is excellent for measuring turbidity, although it contains a lot of insolubles of various colors such as oxygen and different particle sizes.

本発明におけるコールタールは、好ましくは、コークス炉で生成する粗鋼コークス炉ガスを段階的に冷却していき、沸点の高いものを凝縮して分離されたコールタールである。このようにして得られるコールタール中には、芳香族成分、アルキル側鎖やヘテロ環化合物、硫黄や窒素や酸素なども多く含まれる。また、本発明のコールタールピッチ類は、上述のコールタール類を蒸留により軽質芳香族成分を除去したものであることが好ましい。
さらに、本発明の溶剤としては、たとえば、キノリン、トルエン、ピリジン、アセトン、ヘキサン、アルコールなどが挙げられるが、コールタールピッチ類に対して高い溶解性を持つという観点から好ましくはキノリンである。
The coal tar in the present invention is preferably coal tar which is obtained by cooling the crude steel coke oven gas produced in the coke oven in a stepwise manner and condensing and separating one having a high boiling point. The coal tar thus obtained contains a large amount of aromatic components, alkyl side chains and heterocyclic compounds, sulfur, nitrogen and oxygen. The coal tar pitches of the present invention are preferably those obtained by removing light aromatic components by distillation of the above coal tars.
Furthermore, examples of the solvent of the present invention include quinoline, toluene, pyridine, acetone, hexane, alcohol and the like, and quinoline is preferable from the viewpoint of high solubility in coal tar pitches.

これらの溶剤とコールタールピッチ類とを混合させる方法は特に限定されないが、コールタールピッチ類は粘性が高いので、撹拌槽を使用することが好ましい。この撹拌槽であると、スタティックミキサーによってプロセスライン中で混合する方法に比べ、そのミキサー内において閉塞が生じることが無くなる。
このとき、その撹拌槽で得られた溶液の一部を抜き出し、その抜き出した溶液をさらに希釈して上記積分球式濁度計に供給するようにすれば、粘性の高いコールタールピッチ類を段階的に希釈するため、溶剤使用量を削減することができる。
A method of mixing these solvents and coal tar pitches is not particularly limited, but it is preferable to use a stirring tank because coal tar pitches have high viscosity. In this stirring tank, blockage does not occur in the mixer as compared with the method of mixing in the process line by a static mixer.
At this time, if a part of the solution obtained in the agitation tank is extracted, and the extracted solution is further diluted and supplied to the integrating sphere turbidimeter, a highly viscous coal tar pitch can be obtained. Therefore, the amount of solvent used can be reduced.

また、コールタールピッチ類の一定量を得る手段は、定量ポンプによる送液等の種々のものが考え得るが、例えば、プロセスライン又はそのプロセスラインから取り出されたサンプルラインの分岐管がサンプリング機構を介して上記撹拌槽に接続され、上記溶剤の送り込み管がサンプリング機構の他のポートに接続された構成からなり、サンプリング機構の内部容量を前記一定量とすれば、ポートの切り替え操作によって、その内部にコールタールピッチ類を充満し、その後、その内部を通って溶剤を撹拌槽に送り込むことによって一定量のコールタールピッチ類を撹拌槽に送り込むことができる。この作用は、その定量管路を溶剤によって自動的に洗浄でき、システム全体の自動化に有益であって、溶剤不溶分濃度を自動的に算出する場合に有効である。   Various means such as liquid feeding by a metering pump can be considered as a means for obtaining a certain amount of coal tar pitch. For example, a branch pipe of a sample line taken out from the process line or the process line has a sampling mechanism. Connected to the agitation tank, and the solvent feeding pipe is connected to another port of the sampling mechanism. It is possible to feed a certain amount of coal tar pitch into the stirring tank by filling the coal tar pitch into the stirring tank and then feeding the solvent through the inside into the stirring tank. This action can automatically wash the metering line with a solvent, is useful for the automation of the entire system, and is effective in automatically calculating the solvent insoluble content concentration.

以下、本発明の測定装置の一実施形態である図1、図2を用いて測定装置の概要や測定方法や測定操作について詳細に説明する。図1はQI分析装置の構成図、図2はその測定部の拡大図である。   Hereinafter, the outline of the measurement apparatus, the measurement method, and the measurement operation will be described in detail with reference to FIGS. 1 and 2 which are an embodiment of the measurement apparatus of the present invention. FIG. 1 is a configuration diagram of the QI analyzer, and FIG. 2 is an enlarged view of the measurement unit.

図1において、コークス製造におけるコールタールピッチaの輸液(プロセス)ライン又はそのラインから取り出されたサンプルラインから開閉バルブV1を介して分岐管11が分岐され、この分岐管11は開閉バルブV2を介してサンプリング機構12に接続されている。このサンプリング機構12は、第1撹拌槽13に接続され、その第1撹拌槽13は、分注機構14を介して第2撹拌槽15に接続され、さらに、この第2撹拌槽15は、ポンプP5を介してフローセル16に接続されている。   In FIG. 1, a branch pipe 11 is branched via an opening / closing valve V1 from an infusion (process) line of coal tar pitch a in coke production or a sample line taken out from the line, and this branch pipe 11 is connected via an opening / closing valve V2. And connected to the sampling mechanism 12. The sampling mechanism 12 is connected to a first stirring tank 13, which is connected to a second stirring tank 15 via a dispensing mechanism 14, and further, the second stirring tank 15 is a pump. It is connected to the flow cell 16 via P5.

一方、溶媒となるキノリンbの貯留タンクD1にポンプP1を介して一時保留タンクD2が接続され、このタンクD2はポンプP3を介して一方はサンプリング機構12を通って上記第1の撹拌槽13に接続され、分岐したもう一方は分注機構14を介して上記第1撹拌槽13に接続されている。また、前記キノリンb貯留タンクD1にはポンプP2を介して一時保留タンクD3が接続され、このタンクD3はポンプP4を介して分注機構14に接続された後、上記第2の撹拌槽15に接続されている。この分注機構14には廃液ポンプP6が接続されており、上記第1の撹拌槽13の溶液を廃液することができる。   On the other hand, a temporary storage tank D2 is connected to a storage tank D1 of quinoline b serving as a solvent through a pump P1, and one tank D2 passes through a sampling mechanism 12 through a pump P3 to the first stirring tank 13. The other branched and connected is connected to the first stirring tank 13 via the dispensing mechanism 14. In addition, a temporary storage tank D3 is connected to the quinoline b storage tank D1 via a pump P2, and this tank D3 is connected to a dispensing mechanism 14 via a pump P4, and then connected to the second stirring tank 15. It is connected. A waste liquid pump P6 is connected to the dispensing mechanism 14, and the solution in the first stirring tank 13 can be discharged.

なお、上記サンプリング機構12は、三方バルブもしくは四方バルブを用いた従来周知の構成を適宜に採用し得るが、例えば、所要長(容量)の配管で接続された2つの三方バルブとからなり、一方の三方バルブの一のポートに分岐管11が、同他のポートに第1撹拌槽13がそれぞれ接続されるとともに、他方の三方バルブの一のポートにポンプP3が接続され、同他のポートが廃液ポートとなった構成として、両三方バルブのポートの切り替え操作によって、前記配管内部にピッチaを充満し(サンプリングし)、その後、その内部を通ってサンプルピッチaと共に溶剤bを第1撹拌槽13に送り込むことによって、サンプルとなる一定量のピッチaを第1撹拌槽13に定期的に送り込むようにし得る。   The sampling mechanism 12 may appropriately adopt a conventionally known configuration using a three-way valve or a four-way valve. For example, the sampling mechanism 12 includes two three-way valves connected by a pipe having a required length (capacity). The branch pipe 11 is connected to one port of the three-way valve, the first stirring tank 13 is connected to the other port, and the pump P3 is connected to one port of the other three-way valve. As a configuration of the waste liquid port, the pipe a is filled (sampled) with the pitch a by switching the ports of the three-way valves, and then the solvent b is mixed with the sample pitch a through the inside of the first stirring tank. By feeding to 13, the fixed amount of pitch a used as a sample can be periodically fed to the first stirring tank 13.

また、分注機構14も、同様に、三方バルブもしくは四方バルブを用いた従来周知の構成を適宜に採用し得るが、例えば、シリンジポンプからなる定量ポンプで構成し、この定量ポンプを第1、第2撹拌槽13、15の間に介在し、この定量ポンプによって第1撹拌槽13から第2撹拌槽15に一定量のサンプルを送り込むようにしたり、上記サンプリング機構12と同様な2つの三方バルブの配管構造による一定量のサンプル送り込み構成としたりし得る。   Similarly, the dispensing mechanism 14 can also adopt a conventionally known configuration using a three-way valve or a four-way valve as appropriate. For example, the dispensing mechanism 14 is configured by a metering pump including a syringe pump. Between the second stirring tanks 13 and 15, a fixed amount of sample is fed from the first stirring tank 13 to the second stirring tank 15 by this metering pump, or two three-way valves similar to the sampling mechanism 12 described above. It is possible to adopt a configuration in which a certain amount of sample is fed by the piping structure.

上記分岐管11は、コールタールピッチの閉塞防止と、温度差に依る密度の差を抑制するため、蒸気トレースによってプロセスラインと同等温に維持され、プロセスラインの圧力に合わせた流路となっている。   The branch pipe 11 is maintained at the same temperature as the process line by the steam trace in order to prevent the coal tar pitch from being blocked and the density difference due to the temperature difference. Yes.

上記タンクD2はJIS−K2425に規定されるピッチ溶解時の温度である75℃に保温されており、上記タンクD3は夏場の外気温度より高くなる様に50℃に保温されている。上記第1撹拌槽(希釈槽)13は、JIS−K2425に規定されるピッチ溶解時の温度である75℃に保温され、モータM1駆動の撹拌翼13aでもってピッチaを溶剤bで完全に溶解させる。また、第2撹拌槽(希釈槽)15は、モータM2駆動の撹拌翼15aでもって分注機構14で分注された溶液を溶剤bで希釈する。   The tank D2 is kept at 75 ° C., which is the temperature at the time of pitch melting specified in JIS-K2425, and the tank D3 is kept at 50 ° C. so as to be higher than the outdoor temperature in summer. The first stirring tank (dilution tank) 13 is kept at 75 ° C., which is the temperature at the time of pitch melting specified in JIS-K2425, and the pitch a is completely dissolved with the solvent b by the stirring blade 13a driven by the motor M1. Let The second stirring tank (dilution tank) 15 dilutes the solution dispensed by the dispensing mechanism 14 with the solvent b with the stirring blade 15a driven by the motor M2.

上記フローセル16は濁度計20の一部を構成し、図2に示すように、レーザ光源21から発せられた光cは、前記フローセル16の中を通過すると、濁りの元となる粒子に当たらずに透過した場合、真っ直ぐな透過光c1となり、一方、粒子によって散乱された光は、積分球22によって一か所に集められた散乱光c2となってそれぞれ受光素子23、23によってその強度が測定される。この透過光c1と散乱光c2の強度比に基づき、演算器24でもって濁度が求められる(濁度∝透過光強度/散乱光強度)。 The flow cell 16 constitutes a part of the turbidimeter 20, and as shown in FIG. 2, when the light c emitted from the laser light source 21 passes through the flow cell 16, The light scattered by the particles becomes scattered light c2 collected in one place by the integrating sphere 22 and is received by the light receiving elements 23 1 and 23 2 , respectively. Intensity is measured. Based on the intensity ratio between the transmitted light c1 and the scattered light c2, the computing unit 24 determines the turbidity (turbidity / transmitted light intensity / scattered light intensity).

この分析装置は以上の構成であって、バルブ、ポンプ等の各機器は全て自動制御されて、つぎに、その測定作用を説明すると、タンクD1からポンプP1を介してタンクD2に溶剤bが貯められ、撹拌槽13でコールタールピッチaを溶解する温度である75℃に保温される。このタンクD2からポンプP3を介し分注機構14を通って第1撹拌槽13に下から一定量の溶剤(キノリン)bが送り込まれる。このとき、サンプリング機構12内には三方バルブの切替え等によって溶剤bが入り込まないようになっている。一定量が送り込まれれば、ポンプP3が停止し、V1が開くと、高温のピッチaが、流量調整バルブV2を通り、さらにサンプリング機構12を通って廃液される状態となる。   This analyzer is configured as described above, and all devices such as valves and pumps are automatically controlled. Next, the measurement operation will be described. The solvent b is stored in the tank D2 from the tank D1 through the pump P1. And kept at 75 ° C., which is the temperature at which the coal tar pitch a is dissolved in the stirring tank 13. A fixed amount of solvent (quinoline) b is sent from the bottom to the first stirring tank 13 from the tank D2 through the dispensing mechanism 14 via the pump P3. At this time, the solvent b is prevented from entering the sampling mechanism 12 by switching the three-way valve. If a certain amount is sent, the pump P3 is stopped and V1 is opened, so that the high temperature pitch a passes through the flow rate adjusting valve V2 and further passes through the sampling mechanism 12 to be in a state of being drained.

この状態となれば、サンプリング機構12にピッチaが充満し、バルブV1が閉じるとともに、サンプリング機構12の流路が切替えられて、サンプリング機構12の内部に一定量のピッチaが貯留された状態となる。
つづいて、ポンプP3が起動すると、溶剤bがタンクD2からポンプP3を介しサンプリング機構12を通って、サンプリング機構12内のピッチaとポンプP3の回転量による一定量の溶剤bが第1の撹拌槽13に送り込まれる。このとき、分注機構14内には三方バルブの切替え等によって溶剤bが入り込まないようになっている。ピッチaに対する溶剤bの割合は125倍程度とされる。
In this state, the sampling mechanism 12 is filled with the pitch a, the valve V1 is closed, the flow path of the sampling mechanism 12 is switched, and a constant amount of pitch a is stored in the sampling mechanism 12. Become.
Subsequently, when the pump P3 is activated, the solvent b passes from the tank D2 through the sampling mechanism 12 via the pump P3, and a certain amount of the solvent b is generated by the pitch a in the sampling mechanism 12 and the rotation amount of the pump P3. It is fed into the tank 13. At this time, the solvent b is prevented from entering the dispensing mechanism 14 by switching the three-way valve or the like. The ratio of the solvent b to the pitch a is about 125 times.

そのピッチa及び溶剤bが送り込まれた第1撹拌槽13において、ピッチaを溶剤bで完全に溶解させるために十分な時間と撹拌動力で撹拌が行われる。このとき、撹拌糟13は、上記75℃に保温されて溶剤bを一定温度に保つ。この撹拌が終われば、ポンプP6でもって、分注機構14を通って廃液される状態となる。その状態で、分注機構14の流路を切り替え、上記サンプリング機構12と同様に、分注機構14の内部に一定量のピッチaと溶剤bの混合サンプルa’が貯留された状態となる。   In the 1st stirring tank 13 into which the pitch a and the solvent b were sent, stirring is performed with sufficient time and stirring power in order to dissolve the pitch a completely with the solvent b. At this time, the stirring bowl 13 is kept at the above 75 ° C. to keep the solvent b at a constant temperature. When this stirring is completed, the liquid is passed through the dispensing mechanism 14 with the pump P6. In this state, the flow path of the dispensing mechanism 14 is switched, and similarly to the sampling mechanism 12, a mixed sample a ′ of a certain amount of pitch a and solvent b is stored in the dispensing mechanism 14.

つづいて、ポンプP4が起動すると、溶剤bがタンクD3からポンプP4を介し分注機構14を通って、分注機構14内のサンプルa’とポンプP4の回転量による一定量の溶剤bが第2の撹拌槽15に送り込まれる。このとき、サンプルa’に対する溶剤bの割合を、撹拌槽13に於ける希釈と合わせて濁度計20の測定レンジ(希釈度)にするため、例えば20倍とする。この両撹拌槽13、15によるサンプルa’に対する溶剤bの合計希釈倍率は2000〜3000倍程度が最も好ましい。   Subsequently, when the pump P4 is started, the solvent b passes from the tank D3 through the dispensing mechanism 14 via the pump P4, and the sample a ′ in the dispensing mechanism 14 and a certain amount of the solvent b depending on the rotation amount of the pump P4 are changed. 2 is fed into the second stirring tank 15. At this time, the ratio of the solvent b to the sample a ′ is set to, for example, 20 times in order to make the measurement range (dilution degree) of the turbidimeter 20 together with the dilution in the stirring tank 13. The total dilution ratio of the solvent b with respect to the sample a 'in both the stirring tanks 13 and 15 is most preferably about 2000 to 3000 times.

この第2の撹拌槽15中で撹拌を行った後、ポンプP5によって、溶液a’’がフローセル16に送り込まれ、上記濁度計20でもってその溶液a’’の濁度測定が行われ、演算器24でもってその濁度はQIに変換される。   After stirring in the second stirring tank 15, the solution a ″ is sent to the flow cell 16 by the pump P 5, and the turbidity measurement of the solution a ″ is performed with the turbidimeter 20. The arithmetic unit 24 converts the turbidity into QI.

この分析装置によって、特許文献2による二波長法による吸光度分析からのQI推定値:4.5%、10.0%、23.2%のコールタールピッチ類aを溶剤bによって溶解させて濁度を測定するとともに、サンプルa’’中のピッチ濃度を変化させてピッチ濃度と濁度の関係を得た。その測定値において、例えば、ピッチ濃度(g/L):0.4(2500倍希釈)の場合、図3に示す相関係数の2乗が0.9969となる濁度とQIの関係を得た。この図3から、この濁度計20による濁度とピッチサンプルa’’のQIとの間に、直線に近い比例関係、例えば、濁度:y、QI:xとすると、y≒12.401x−7.8415があることが認められる。このため、この濁度を測定することによって、特許文献2の技術のように、試料の量(サンプリング量)を変えたり、希釈溶媒量を変えたりすることなく、ピッチ類aのQIを得ることができる。濁度はカオリンの標準試料に換算した値で出力した。   By this analyzer, QI estimated values from the absorbance analysis by the two-wavelength method according to Patent Document 2: 4.5%, 10.0%, and 23.2% coal tar pitches a are dissolved in the solvent b, and turbidity is obtained. And the pitch concentration in the sample a ″ was changed to obtain the relationship between the pitch concentration and turbidity. In the measured value, for example, when the pitch concentration (g / L) is 0.4 (2500 times dilution), the relationship between the turbidity and the QI at which the square of the correlation coefficient shown in FIG. It was. From FIG. 3, if the turbidity measured by the turbidimeter 20 and the QI of the pitch sample a ″ are close to a straight line, for example, turbidity: y, QI: x, y≈12.401x. It is observed that there is -7.8415. Therefore, by measuring this turbidity, QI of pitches a can be obtained without changing the amount of sample (sampling amount) or changing the amount of diluted solvent as in the technique of Patent Document 2. Can do. Turbidity was output as a value converted to a standard sample of kaolin.

この濁度計20による測定作用は、必要に応じ、測定精度を高めるため溶液a’’のフローセル16への送り込み・排出を交互に行って繰り返され、その測定が終了すれば、洗浄作用に移行する。その洗浄作用は、まず、第1撹拌槽13内の溶液はポンプP6によって分注機構14を介して廃棄され、第2撹拌槽15内の溶液はポンプP5によってフローセル16を介して廃棄されるとともに、バルブV3が開いて、蒸気又はキノリンからなる洗浄液が、バルブV2、サンプリング機構12を通って廃液されることによってその管路が洗浄される。   The measurement operation by the turbidimeter 20 is repeated by alternately feeding and discharging the solution a ″ to the flow cell 16 in order to increase the measurement accuracy as necessary. To do. The cleaning action is as follows. First, the solution in the first stirring tank 13 is discarded by the pump P6 via the dispensing mechanism 14, and the solution in the second stirring tank 15 is discarded by the pump P5 via the flow cell 16. The valve V3 is opened, and the cleaning liquid made of steam or quinoline is drained through the valve V2 and the sampling mechanism 12, whereby the pipe line is cleaned.

つぎに、サンプリング機構12が切り替わって、タンクD2からポンプP3を介し、サンプリング機構12を通って、第1撹拌槽13に測定実施時に用いた上記一定量と同等量以上の溶剤bが張り込まれて、洗浄用溶剤bをピッチaが達した液面以上に満たしてその液面までの洗浄が行なわれる。また、この溶解力(洗浄力)を高めるために75℃に保温された撹拌槽13の中で撹拌が行なわれ、この撹拌後、ポンプP6によって撹拌槽13内の溶液が廃液される。   Next, the sampling mechanism 12 is switched, and the solvent b equal to or larger than the above-mentioned fixed amount used at the time of measurement is put into the first stirring tank 13 from the tank D2 through the pump P3 through the sampling mechanism 12. Then, the cleaning solvent b is filled above the liquid level reached by the pitch a, and the liquid level is cleaned. Further, in order to increase the dissolving power (detergency), stirring is performed in the stirring tank 13 kept at 75 ° C. After this stirring, the solution in the stirring tank 13 is drained by the pump P6.

この第1撹拌槽13の洗浄後、分注機構14の流路が切り替わって、タンクD3からポンプP4を介し分注機構14を通って第2撹拌槽15に測定実施時に用いた量と同等量以上の溶剤bが張り込まれた後、撹拌槽15の中で撹拌が行われる。この後、撹拌槽15からポンプP5を介しフローセル16の中に溶剤bが通液され、廃棄される。   After washing the first agitation tank 13, the flow path of the dispensing mechanism 14 is switched, and the same amount as that used for the measurement in the second agitation tank 15 from the tank D3 through the dispensing mechanism 14 via the pump P4. After the above solvent b is put, stirring is performed in the stirring tank 15. Thereafter, the solvent b is passed from the stirring tank 15 into the flow cell 16 via the pump P5 and discarded.

以上のQI測定及び洗浄作用は、コークス製造において、例えば、20分〜1時間毎に行われ、そのリアルタイムのQI測定値に基づいてその製造プロセスが制御される。   The above QI measurement and cleaning actions are performed, for example, every 20 minutes to 1 hour in coke production, and the production process is controlled based on the real-time QI measurement values.

なお、上記実施形態では、第2撹拌槽15への溶剤bの送り込みを、ポンプP2、P4及びタンクD3の管路で行なったが、ポンプP3の後段において、サンプリング機構12と分注機構14への分岐前の管路に三方バルブを介設し、この三方バルブでもって前記分岐部又は第2撹拌槽15に溶剤bを選択的に送り込むようにすることができる。
また、撹拌槽13、15にはその上部から窒素ガスを送り込んでその中の溶剤b等を確実に下方の廃ラインに廃液するようにもし得る。
In the above-described embodiment, the solvent b is fed into the second stirring tank 15 through the pipes of the pumps P2, P4 and the tank D3. However, the sampling mechanism 12 and the dispensing mechanism 14 are provided at the subsequent stage of the pump P3. A three-way valve is provided in the pipe line before branching, and the solvent b can be selectively fed into the branching section or the second stirring tank 15 with the three-way valve.
Further, nitrogen gas can be fed into the stirring tanks 13 and 15 from the upper part thereof, and the solvent b and the like therein can be surely discharged into the lower waste line.

V1、V2、V3 開閉バルブ
P1、P2、P3、P4、P5、P6 ポンプ
D1、D2、D3 タンク
11 分岐管
12 サンプリング機構
13 第1の撹拌槽
14 分注機構
15 第2の撹拌槽
16 フローセル
20 濁度計
21 濁度計の光源
22 濁度計の積分球
24 濁度計の演算器
V1, V2, V3 Open / close valves P1, P2, P3, P4, P5, P6 Pumps D1, D2, D3 Tank 11 Branch pipe 12 Sampling mechanism 13 First stirring tank 14 Dispensing mechanism 15 Second stirring tank 16 Flow cell 20 Turbidimeter 21 Turbidimeter light source 22 Turbidimeter integrating sphere 24 Turbidimeter calculator

Claims (4)

コールタール又はコールタールピッチ類(a)と溶剤(b)とを混合した溶液(a’’)を得る手段と、その溶液(a’’)を積分球式濁度計に供給してその濁度を測定する手段と、その測定濁度に基づき前記コールタール又はコールタールピッチ類(a)の溶剤不溶分濃度を算出する手段を有するコールタール又はコールタールピッチ類の溶剤不溶分の測定装置。   Means for obtaining a solution (a ″) obtained by mixing coal tar or coal tar pitches (a) and a solvent (b), and supplying the solution (a ″) to an integrating sphere turbidimeter An apparatus for measuring the solvent insoluble content of coal tar or coal tar pitch, comprising means for measuring the degree, and means for calculating the solvent insoluble concentration of the coal tar or coal tar pitch (a) based on the measured turbidity. 上記混合した溶液(a’’)を得る手段を撹拌槽としたことを特徴とする請求項1に記載のコールタール又はコールタールピッチ類の溶剤不溶分の測定装置。   The apparatus for measuring the solvent insoluble content of coal tar or coal tar pitch according to claim 1, wherein the means for obtaining the mixed solution (a '') is a stirring tank. 上記撹拌槽で得られた溶液(a’)の一部を抜き出し、その抜き出した溶液(a’)をさらに撹拌槽に送り込んで撹拌希釈してその希釈溶液(a’’)を上記積分球式濁度計に供給することを特徴とする請求項2に記載のコールタール又はコールタールピッチ類の溶剤不溶分の測定装置。   A part of the solution (a ′) obtained in the agitation tank is extracted, and the extracted solution (a ′) is further fed into the agitation tank and diluted with stirring, and the diluted solution (a ″) is added to the integrating sphere type. It supplies to a turbidimeter, The measuring apparatus of the solvent insoluble content of coal tar or coal tar pitch of Claim 2 characterized by the above-mentioned. 上記コールタール又はコールタールピッチ類(a)と溶剤(b)とを混合した溶液(a’’)を得る手段における、前記コールタール又はコールタールピッチ類(a)の一定量を得る手段が、プロセスライン又はそのプロセスラインから取り出されたサンプルラインの分岐管がサンプリング機構を介して上記撹拌槽に接続され、上記溶剤の送り込み管がサンプリング機構の他のポートに接続された構成からなり、そのサンプリング機構の内部容量を前記一定量としたことを特徴とする請求項2又は3に記載のコールタール又はコールタールピッチ類の溶剤不溶分の測定装置。   Means for obtaining a certain amount of the coal tar or coal tar pitch (a) in the means for obtaining the solution (a '') in which the coal tar or coal tar pitch (a) and the solvent (b) are mixed, The process line or a branch pipe of the sample line taken out from the process line is connected to the stirring tank via a sampling mechanism, and the solvent feeding pipe is connected to another port of the sampling mechanism, and the sampling 4. The apparatus for measuring a solvent-insoluble content of coal tar or coal tar pitch according to claim 2, wherein the internal volume of the mechanism is set to the predetermined amount.
JP2012107660A 2011-05-10 2012-05-09 Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches Active JP5891936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107660A JP5891936B2 (en) 2011-05-10 2012-05-09 Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011104888 2011-05-10
JP2011104888 2011-05-10
JP2012107660A JP5891936B2 (en) 2011-05-10 2012-05-09 Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches

Publications (2)

Publication Number Publication Date
JP2012251998A true JP2012251998A (en) 2012-12-20
JP5891936B2 JP5891936B2 (en) 2016-03-23

Family

ID=47524919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107660A Active JP5891936B2 (en) 2011-05-10 2012-05-09 Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches

Country Status (1)

Country Link
JP (1) JP5891936B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130027A (en) * 2012-12-28 2014-07-10 Mitsubishi Chemicals Corp Measuring device of content of solvent insoluble part of coulter or coulter pitch group
JP2014174011A (en) * 2013-03-08 2014-09-22 Jfe Chemical Corp Method for measuring solvent insoluble matter in coal tar
JP2014178312A (en) * 2013-02-18 2014-09-25 Mitsubishi Chemicals Corp Method and apparatus for measuring solvent-insoluble content in coal tar, coal tar pitch group, or petroleum-based pitch group
JP2016045078A (en) * 2014-08-22 2016-04-04 三菱化学株式会社 Sampling device of heavy oil
JP2016150952A (en) * 2015-02-16 2016-08-22 三菱化学株式会社 Method of cooling heavy oil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173741A (en) * 1981-04-17 1982-10-26 Sumitomo Light Metal Ind Ltd Measuring method and device for alumina concentration in aluminium electrolytic bath
WO1985000426A1 (en) * 1983-06-30 1985-01-31 Commonwealth Scientific And Industrial Research Or Optically based measurement of fluid parameters
JPS6035261A (en) * 1983-08-04 1985-02-23 Kawasaki Steel Corp Apparatus for measuring undissolved component of solvent of tar pitch
JPS6230961A (en) * 1985-08-01 1987-02-09 Kawasaki Steel Corp Solvent insoluble component measuring apparatus for coal tar and melting pitch
JPH049664A (en) * 1989-11-22 1992-01-14 Nippon Steel Chem Co Ltd Method for measuring solvent-insoluble matter of coal tar and pitches
JPH055693A (en) * 1991-06-10 1993-01-14 Mitsubishi Kasei Corp Quantitative method of solvent insoluble component in bituminous material
JPH08101100A (en) * 1994-09-30 1996-04-16 Cosmo Toreede & Service:Kk Method and equipment for conditioning bituminous sample on-line
JPH10232203A (en) * 1997-02-20 1998-09-02 Kinousui Kenkyusho:Kk Method and device for measuring particulate in piping
JPH11108822A (en) * 1997-10-04 1999-04-23 Horiba Ltd Method and device for measuring concentration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173741A (en) * 1981-04-17 1982-10-26 Sumitomo Light Metal Ind Ltd Measuring method and device for alumina concentration in aluminium electrolytic bath
WO1985000426A1 (en) * 1983-06-30 1985-01-31 Commonwealth Scientific And Industrial Research Or Optically based measurement of fluid parameters
JPS6035261A (en) * 1983-08-04 1985-02-23 Kawasaki Steel Corp Apparatus for measuring undissolved component of solvent of tar pitch
JPS6230961A (en) * 1985-08-01 1987-02-09 Kawasaki Steel Corp Solvent insoluble component measuring apparatus for coal tar and melting pitch
JPH049664A (en) * 1989-11-22 1992-01-14 Nippon Steel Chem Co Ltd Method for measuring solvent-insoluble matter of coal tar and pitches
JPH055693A (en) * 1991-06-10 1993-01-14 Mitsubishi Kasei Corp Quantitative method of solvent insoluble component in bituminous material
JPH08101100A (en) * 1994-09-30 1996-04-16 Cosmo Toreede & Service:Kk Method and equipment for conditioning bituminous sample on-line
JPH10232203A (en) * 1997-02-20 1998-09-02 Kinousui Kenkyusho:Kk Method and device for measuring particulate in piping
JPH11108822A (en) * 1997-10-04 1999-04-23 Horiba Ltd Method and device for measuring concentration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130027A (en) * 2012-12-28 2014-07-10 Mitsubishi Chemicals Corp Measuring device of content of solvent insoluble part of coulter or coulter pitch group
JP2014178312A (en) * 2013-02-18 2014-09-25 Mitsubishi Chemicals Corp Method and apparatus for measuring solvent-insoluble content in coal tar, coal tar pitch group, or petroleum-based pitch group
JP2014174011A (en) * 2013-03-08 2014-09-22 Jfe Chemical Corp Method for measuring solvent insoluble matter in coal tar
JP2016045078A (en) * 2014-08-22 2016-04-04 三菱化学株式会社 Sampling device of heavy oil
JP2016150952A (en) * 2015-02-16 2016-08-22 三菱化学株式会社 Method of cooling heavy oil

Also Published As

Publication number Publication date
JP5891936B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5891936B2 (en) Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches
Hu et al. Measurement and corresponding states modeling of asphaltene precipitation in Jilin reservoir oils
US20110265558A1 (en) Method and System For Determining Particle Size Distribution and Filterable Solids In A Bitumen-Containing Fluid
CN104379705B (en) Predict the method for crude cracking and be used to this method transport and/or refine crude oil
CN104807981B (en) Crude oil emulsion dynamic breaking emulsion and dewatering apparatus for evaluating characteristics and evaluation method
WO2019126181A1 (en) Testing the effect of solvating agents on the stability of asphaltene dispersions
CN105842108A (en) Method for determination of solid content of catalytic cracking oil slurry
CN103630459A (en) Method used for detecting asphalt content of asphalt mixtures
CN108020443A (en) A kind of sampling apparatus for water quality online analyzer measure equal proportion mixed sample
CN101869812A (en) Chemical composition preparation device using continuous mixing device
CN102262150B (en) Method for detecting solid content of oil slurry
Moncada et al. Determining the flocculation point of asphaltenes combining ultrasound and electrochemical impedance spectroscopy
KR100832058B1 (en) Manufacturing method of resist liquid and resist film using the Same
Mahmoudi et al. EXPERIMENTAL STUDY OF TEMPERATURE EFFECT ON ONSET PRESSURE OF ASPHALTENE IN LIVE OIL.
Romero Yanes et al. Phase behavior investigation of a live presalt crude oil from short-wave infrared observation, acoustic wave sensing, and equation of state modeling
JP6405642B2 (en) Method and apparatus for measuring the solvent-insoluble content in coal tar, coal tar pitches or petroleum pitches
CN107703020A (en) A kind of method for determining wax tailings solid content
CN202305305U (en) Timely chlorine ion concentration dilution preprocessing device
CN208700988U (en) A kind of infundibulate is used for the quick oil water separator of crude oil
JP6405789B2 (en) Heavy oil sampling equipment
CN110567852A (en) Rapid detection method for quinoline insoluble substances in asphalt
CN207203866U (en) One kind dissolving mixer
US20180328769A1 (en) Guided wave radar for consumable particle monitoring
JP2016109492A (en) Measuring method of solvent-insoluble content in heavy oil
CN103628146B (en) The balanced type note color method that a kind of chemical fibre look spins and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350