JP2012250893A - Fertilizer for laver culture - Google Patents

Fertilizer for laver culture Download PDF

Info

Publication number
JP2012250893A
JP2012250893A JP2011126579A JP2011126579A JP2012250893A JP 2012250893 A JP2012250893 A JP 2012250893A JP 2011126579 A JP2011126579 A JP 2011126579A JP 2011126579 A JP2011126579 A JP 2011126579A JP 2012250893 A JP2012250893 A JP 2012250893A
Authority
JP
Japan
Prior art keywords
fertilizer
calcium
nitrate
container
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011126579A
Other languages
Japanese (ja)
Inventor
Hironobu Fukuzaki
裕延 福崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP2011126579A priority Critical patent/JP2012250893A/en
Publication of JP2012250893A publication Critical patent/JP2012250893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a time lag from installation of a fertilizer container until an elution start of a fertilizer, when the fertilizer container is installed so that its major axis is placed in the horizontal direction (in the laterally suspended state) in a laver cultivation area.SOLUTION: This fertilizer for laver culture includes in terms of anhydrides, 0.5-25 pts.mass one or more kinds selected from a group comprising calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate and hygroscopic urea to a 100 pts.mass fertilizer as it is containing nitrogen and/or phosphoric acid (excluding calcium nitrate and magnesium nitrate).

Description

本発明は、海苔養殖用肥料に関し、とりわけ吸湿性化合物を含有する海苔養殖用肥料に関する。
The present invention relates to a nori culture fertilizer, and more particularly to a nori culture fertilizer containing a hygroscopic compound.

養殖海苔の色落ち対策として、海苔養殖場へ窒素及び/又はリン酸を含有する肥料が施用されているが、肥料を長期に安定して効かせるために、肥料を容器に収容する海苔養殖用施肥容器に関する技術が種々開発されてきた。本願出願人は、施肥容器の溶出孔を制御することによって樹脂等で被覆されていない通常肥料が適用でき、しかも所望期間安定的に肥料成分を溶出させることができる海苔養殖用施肥容器に関する技術を開示した(特許文献1、2)。
As a countermeasure against discoloration of cultured seaweed, fertilizers containing nitrogen and / or phosphoric acid are applied to the seaweed farms. Various techniques relating to fertilizer containers have been developed. The applicant of the present application is able to apply a normal fertilizer that is not coated with a resin or the like by controlling the elution hole of the fertilization container, and further, a technique relating to a fertilization container for nori cultivation that can stably elute fertilizer components for a desired period Disclosed (Patent Documents 1 and 2).

特開2009−273424号公報JP 2009-273424 A 特開2009−273425号公報JP 2009-273425 A

しかしながら、海苔養殖現場において、特許文献1、2に記載の筒状又は管状の海苔養殖用施肥容器を該容器の長軸が水平方向となるように設置(横吊り)した場合、施肥容器内に海水が流入し難いために肥料成分の溶出開始が遅れるという問題があった。そこで、施肥容器の設置後から肥料成分の溶出開始までのタイムラグを少なくする方法が望まれていた。更に、溶出孔の孔径・孔数の制御以外の方法で溶出速度を制御する方法の確立が望まれていた。
However, in the laver culture site, when the cylindrical or tubular fertilizer for laver culture described in Patent Documents 1 and 2 is installed (side-hanging) so that the major axis of the container is in the horizontal direction, There was a problem that the start of elution of fertilizer components was delayed because the seawater hardly flowed in. Therefore, a method for reducing the time lag from the installation of the fertilizer container to the start of elution of fertilizer components has been desired. Furthermore, establishment of a method for controlling the elution rate by a method other than the control of the diameter and number of elution holes has been desired.

本発明者らは上記課題を解決するため鋭意検討を行った結果、海苔養殖用肥料に吸湿性及び/又は潮解性を有する化合物(以下、「吸湿性化合物」と云う)を含有させると、施肥容器内への海水の流入(導入)が顕著に促進されることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that a noriculture fertilizer contains a hygroscopic and / or deliquescent compound (hereinafter referred to as “hygroscopic compound”). It has been found that the inflow (introduction) of seawater into the container is significantly promoted.

さらに、硫酸カルシウム及び/又はリン酸カルシウムの微粒子(以下、「カルシウム塩微粒子」と云う)が施肥容器内に存在すると、肥料成分の急激な溶出が抑制され長期に安定して溶出する傾向があることを見出した。カルシウム塩微粒子を施肥容器内に存在させる方法は、(1)海水流入後の施肥容器内において、溶解した化合物同士による化学反応によってカルシウム塩微粒子を生成させる方法、(2) カルシウム塩微粒子を予め海苔養殖用肥料に含有させる方法、である。上記(1)の方法は、吸湿性化合物としてカルシウム化合物を選定し、前記カルシウム化合物との反応によってカルシウム塩微粒子を生成することができる硫酸根及び/又はリン酸根を含有する化合物を用いるものである。前記硫酸根及び/又はリン酸根を含有する化合物として、窒素及び/又はリン酸を含有する肥料、例えば硫酸アンモニウム、リン酸アンモニウム、リン酸ナトリウム、リン酸カリウム等、及び、前記肥料以外の化合物である硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムが挙げられる。   Furthermore, if calcium sulfate and / or calcium phosphate fine particles (hereinafter referred to as “calcium salt fine particles”) are present in the fertilizer application container, the rapid elution of fertilizer components is suppressed, and there is a tendency for stable elution over a long period of time. I found it. The method of allowing the calcium salt fine particles to exist in the fertilizer container is as follows: (1) a method of generating calcium salt fine particles by chemical reaction between dissolved compounds in the fertilizer container after inflow of seawater; (2) It is the method of making it contain in the fertilizer for culture. In the method (1), a calcium compound is selected as the hygroscopic compound, and a compound containing a sulfate group and / or a phosphate group that can generate calcium salt fine particles by reaction with the calcium compound is used. . As a compound containing the sulfate group and / or phosphate group, a fertilizer containing nitrogen and / or phosphoric acid, such as ammonium sulfate, ammonium phosphate, sodium phosphate, potassium phosphate, and the like, and compounds other than the fertilizer Examples thereof include sodium sulfate, potassium sulfate, and magnesium sulfate.

本発明は、上記知見に基づき完成させたものであり、以下の通りである。
(1)窒素及び/又はリン酸を含有する肥料(但し、硝酸カルシウム及び硝酸マグネシウムを除く)の有姿100質量部に対して、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウム及び吸湿性尿素からなる群より選ばれた1種以上の吸湿性化合物を無水換算で0.5〜25質量部の割合で含有することを特徴とする海苔養殖用肥料。
(2)吸湿性化合物が塩化カルシウム及び硝酸カルシウムのうちいずれか一方又は双方である上記(1)記載の海苔養殖用肥料であって、さらに、該吸湿性化合物1モルに対して、硫酸ナトリウム、硫酸カリウム及び硫酸マグネシウムからなる群より選ばれた1種以上の化合物を1〜3モルの割合で含有する海苔養殖用肥料。
(3)上記(1)又は(2)記載の海苔養殖用肥料であって、さらに、窒素及び/又はリン酸を含有する肥料(但し、リン酸カルシウムを除く)の有姿100質量部に対して、硫酸カルシウム(粉末)及びリン酸カルシウム(粉末)のうちいずれか一方又は双方を無水換算で0.5〜25質量部の割合で含有する海苔養殖用肥料。
(4)窒素及び/又はリン酸を含有する肥料が、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、尿素、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸二水素マグネシウム、過リン酸石灰及び重過リン酸石灰からなる群より選ばれた1種以上である上記(1)〜(3)のいずれか1項記載の海苔養殖用肥料。
(5)上記(1)〜(4)のいずれか1項記載の海苔養殖用肥料を、孔径0.1〜1mmの多孔性容器に収容した海苔養殖用施肥容器。
The present invention has been completed based on the above findings and is as follows.
(1) For 100 parts by mass of fertilizer containing nitrogen and / or phosphoric acid (excluding calcium nitrate and magnesium nitrate), from calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate and hygroscopic urea A fertilizer for nori cultivation, comprising one or more hygroscopic compounds selected from the group consisting of 0.5 to 25 parts by mass in anhydrous conversion.
(2) The nori culture fertilizer according to the above (1), wherein the hygroscopic compound is one or both of calcium chloride and calcium nitrate, and further, sodium sulfate with respect to 1 mol of the hygroscopic compound, A fertilizer for laver culture containing one or more compounds selected from the group consisting of potassium sulfate and magnesium sulfate in a proportion of 1 to 3 mol.
(3) The laver-cultivating fertilizer according to (1) or (2) above, and further for 100 parts by mass of fertilizer containing nitrogen and / or phosphoric acid (excluding calcium phosphate), A fertilizer for nori cultivation containing either one or both of calcium sulfate (powder) and calcium phosphate (powder) in a ratio of 0.5 to 25 parts by mass in terms of anhydrous.
(4) Fertilizers containing nitrogen and / or phosphoric acid are ammonium sulfate, ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, urea, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, disodium hydrogen phosphate, diphosphoric acid phosphate The above (1) to (3) which are at least one selected from the group consisting of sodium hydrogen, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium dihydrogen phosphate, lime superphosphate and lime heavy superphosphate. The fertilizer for seaweed culture according to any one of (1).
(5) A fertilizer container for laver culture in which the fertilizer for laver culture according to any one of (1) to (4) is housed in a porous container having a pore diameter of 0.1 to 1 mm.

本発明によれば、特に筒状又は管状の施肥容器を横吊りした場合において、吸湿性化合物によって施肥容器内への海水導入が促進されるため、施肥容器の設置後から肥料成分の溶出までのタイムラグが少ないという利点を有する。さらに、カルシウム塩微粒子が施肥容器内に存在する場合は、肥料成分の急激な溶出が抑制され長期に安定した溶出が得られるという利点を有する。   According to the present invention, in particular, when a cylindrical or tubular fertilizer container is suspended horizontally, the introduction of seawater into the fertilizer container is promoted by the hygroscopic compound, so that from the installation of the fertilizer container to the elution of fertilizer components It has the advantage that the time lag is small. Furthermore, when calcium salt fine particles are present in the fertilizer container, there is an advantage that rapid elution of fertilizer components is suppressed and stable elution can be obtained for a long period of time.

実施例1〜9における海苔養殖用肥料の溶出経過を示した図である。It is the figure which showed the elution progress of the fertilizer for nori culture in Examples 1-9. 実施例1における試験開始6日目の海苔養殖用肥料の溶解状態(形状)を示した図である。It is the figure which showed the dissolved state (shape) of the nori culture fertilizer of the test start day 6 in Example 1. FIG. 比較例1における試験開始6日目の海苔養殖用肥料の溶解状態(形状)を示した図である。It is the figure which showed the dissolution state (shape) of the nori culture fertilizer of the test start 6th in the comparative example 1. FIG.

以下、本発明の海苔養殖用肥料ついて詳細に説明する。
本発明で用いる吸湿性化合物としては、吸湿性及び/又は潮解性を有するものであり、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウム及び吸湿性尿素である。前記化合物は粒状であっても粉状であってもよい。塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウムとしては、例えば市販の試薬、工業用グレードのものあるいは副生物等を用いることができる。ここで、吸湿性尿素とは、吸湿防止等の目的で吸湿防止剤等の表面処理剤で尿素表面が全面的に被覆されている市販の尿素等とは異なり、尿素表面に表面処理剤で被覆されていない部分、即ち尿素自体が露出した部分を一部でも有するものを云う。吸湿性尿素の具体例として、表面処理剤で被覆されていない尿素、あるいは、表面処理剤で被覆された尿素を粉砕して非被覆部分を露出させた尿素が挙げられる。
Hereinafter, the fertilizer for laver culture of the present invention will be described in detail.
The hygroscopic compound used in the present invention has hygroscopicity and / or deliquescence, and is calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate and hygroscopic urea. The compound may be granular or powdery. Examples of calcium chloride, calcium nitrate, magnesium chloride, and magnesium nitrate that can be used include commercially available reagents, industrial grade products, and by-products. Here, hygroscopic urea is different from commercially available urea whose surface is entirely covered with a surface treatment agent such as a moisture absorption inhibitor for the purpose of preventing moisture absorption, etc., and the urea surface is coated with a surface treatment agent. It has a part which is not formed, that is, a part where urea itself is exposed. Specific examples of the hygroscopic urea include urea not coated with a surface treatment agent, or urea obtained by pulverizing urea coated with a surface treatment agent to expose an uncoated portion.

本発明の海苔養殖用肥料は、窒素及び/又はリン酸を含有する肥料(但し、硝酸カルシウム及び硝酸マグネシウムを除く。以下に於いては但し書きを省略する。)の有姿100質量部に対して、前記吸湿性化合物からなる群より選ばれた1種以上の吸湿性化合物を、無水換算した吸湿性化合物として0.5〜25質量部の割合で含有させたものである。前記割合が0.5質量部を下廻ると、施肥容器内への海水の導入促進効果が充分に得られない。一方、前記割合が25質量部を上廻ると、施肥容器に収容できる肥料量が相対的に減少し、また吸湿力が大きくなるため海苔養殖用肥料の保管が困難となる。前記割合は、3〜15質量部がより好ましく、さらに好ましくは5〜10質量部である。尚、本発明における前記肥料としては、粒状肥料であることが好ましい。   The fertilizer for seaweed cultivation of the present invention is based on 100 parts by mass of fertilizer containing nitrogen and / or phosphoric acid (excluding calcium nitrate and magnesium nitrate; however, the description is omitted in the following). One or more hygroscopic compounds selected from the group consisting of the hygroscopic compounds are contained in a proportion of 0.5 to 25 parts by mass as hygroscopic compounds converted to anhydrous. If the ratio is less than 0.5 parts by mass, the effect of promoting the introduction of seawater into the fertilizer container cannot be obtained sufficiently. On the other hand, if the ratio exceeds 25 parts by mass, the amount of fertilizer that can be accommodated in the fertilizer container is relatively reduced, and the hygroscopic power is increased, so that it is difficult to store the nori culture fertilizer. As for the said ratio, 3-15 mass parts is more preferable, More preferably, it is 5-10 mass parts. The fertilizer in the present invention is preferably a granular fertilizer.

さらに、本発明の海苔養殖用肥料では、カルシウム塩微粒子を施肥容器内に存在させることも好ましい態様の一つである。カルシウム塩微粒子を施肥容器内に存在させる方法としては前記の通り、(1)海水流入後の施肥容器内において、溶解した化合物同士による化学反応によってカルシウム塩微粒子を生成させる方法、(2)カルシウム塩微粒子を予め海苔養殖用肥料に含有させる方法、の2通りが挙げられる。本発明では、上記(1)と(2)のいずれか一方または両方の方法を用いることができる。   Furthermore, in the nori culture fertilizer of the present invention, it is one of preferred embodiments that the calcium salt fine particles are present in the fertilizer container. As described above, the method for causing the calcium salt fine particles to be present in the fertilizer container is as follows: (1) In the fertilizer container after inflow of seawater, a method of generating calcium salt fine particles by a chemical reaction between dissolved compounds, (2) calcium salt There are two methods, for example, a method in which fine particles are previously contained in a fertilizer for nori cultivation. In the present invention, any one or both of the methods (1) and (2) can be used.

上記(1)または(2)の方法によってカルシウム塩微粒子が施肥容器内に存在すると、肥料成分の急激な溶出が抑制され、長期に渡り安定して溶出するという効果が得られる。このような溶出安定化効果は、施肥容器の溶出孔の孔径が0.1〜1mmにおいて特に顕著に現れる。この理由は定かではないが、溶出安定化効果のメカニズムとして、カルシウム塩微粒子による溶出孔の適度な閉塞に加えて、後述する図2の状態より、カルシウム塩微粒子と吸湿性化合物との物理化学的関与に起因した閉塞も一因となっていることが推察される。   When the calcium salt fine particles are present in the fertilizer container by the method (1) or (2), the rapid elution of the fertilizer component is suppressed, and the effect of being stably eluted over a long period of time can be obtained. Such an elution stabilizing effect is particularly prominent when the elution hole diameter of the fertilizer application container is 0.1 to 1 mm. The reason for this is not clear, but as a mechanism of the elution stabilization effect, in addition to the moderate blockage of the elution pores by the calcium salt fine particles, the physicochemical relationship between the calcium salt fine particles and the hygroscopic compound from the state of FIG. It is surmised that the obstruction caused by the involvement also contributes.

先ず、(1)の方法について説明する。前記吸湿性化合物として、少なくとも塩化カルシウム及び硝酸カルシウムのうちいずれか一方又は双方を選択する。前記カルシウム化合物(以下、「化合物A」と云う)は、水への溶解度が高いため好適である。一方、化合物Aと反応してカルシウム塩微粒子を生成することができる化合物(以下、「化合物B」と云う)としては、硫酸根及び/又はリン酸根(以下、「酸根」と云う)を含有するものが挙げられ、特に溶解後に酸根を解離し易いもの、即ち水溶性硫酸塩、水溶性リン酸塩が好ましい。   First, the method (1) will be described. As the hygroscopic compound, at least one or both of calcium chloride and calcium nitrate is selected. The calcium compound (hereinafter referred to as “Compound A”) is preferable because of its high solubility in water. On the other hand, the compound (hereinafter referred to as “compound B”) capable of reacting with compound A to form calcium salt fine particles contains a sulfate group and / or a phosphate group (hereinafter referred to as “acid group”). In particular, those that readily dissociate acid radicals after dissolution, that is, water-soluble sulfates and water-soluble phosphates are preferred.

化合物Aと化合物Bの量比について云えば、施肥容器内で化合物Aと化合物Bを反応させること、及び化合物Aが上記のように含有させられる量に制限があることより、化合物Aのカルシウムに対する化合物Bの酸根のモル比は1以上であることが好ましい。   Regarding the quantitative ratio of Compound A and Compound B, the reaction of Compound A and Compound B in a fertilizer container and the amount of Compound A that can be contained as described above are limited. The acid radical molar ratio of Compound B is preferably 1 or more.

化合物Bとして、肥料的効果に乏しい化合物即ち窒素及び/又はリン酸を含有しないもの(以下、「化合物B1」と云う)、あるいは、窒素及び/又はリン酸を含有する肥料であって且つ硫酸根及び/又はリン酸根を含有するもの、即ち、窒素及び/又はリン酸並びに硫酸根及び/又はリン酸根を含有する肥料(以下、「化合物B2」と云う)が挙げられる。前記の通り、化合物B2を使用するときは、化合物B1と化合物B2は両方が海苔養殖用肥料に含有されていても構わないが、一般的には化合物B2を使用するときは化合物B1を含有させる必要はない。   Compound B is a compound having poor fertilizer effect, that is, one containing no nitrogen and / or phosphoric acid (hereinafter referred to as “compound B1”), or a fertilizer containing nitrogen and / or phosphoric acid, and a sulfate radical And / or fertilizers containing phosphate groups, that is, fertilizers containing nitrogen and / or phosphate and sulfate groups and / or phosphate groups (hereinafter referred to as “compound B2”). As described above, when compound B2 is used, both compound B1 and compound B2 may be contained in the nori culture fertilizer, but generally when compound B2 is used, compound B1 is contained. There is no need.

化合物B1としては、硫酸ナトリウム、硫酸カリウム及び硫酸マグネシウムが好例として挙げられ、これらのうち1種以上の化合物を用いることができる。化合物B1は海苔への肥料的効果に乏しいため、適用量は少ないほうが好ましい。具体的には、海苔養殖用肥料に化合物B1を、化合物Aの1モルに対して1〜3モルの割合で含有させることが好ましい。前記割合は、1〜2モルがより好ましい。化合物B1の適用が特に有効となるのは、窒素及び/又はリン酸を含有する肥料として硫酸根及び/又はリン酸根を含有しないもの、例えば、塩化アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、尿素(表面処理剤で被覆されたもの)を選択したときである。前記具体例のうち、硝酸アンモニウム又は尿素が窒素成分量が高いために好ましい。   Examples of compound B1 include sodium sulfate, potassium sulfate and magnesium sulfate. Among these, one or more compounds can be used. Since the compound B1 is poor in fertilizer effect on laver, it is preferable that the amount applied is small. Specifically, it is preferable to contain the compound B1 in a ratio of 1 to 3 moles relative to 1 mole of the compound A in the nori culture fertilizer. The ratio is more preferably 1 to 2 mol. The application of the compound B1 is particularly effective when the fertilizer containing nitrogen and / or phosphoric acid does not contain sulfate radicals and / or phosphate radicals, such as ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, urea (surface This is when the one coated with the treatment agent is selected. Among the specific examples, ammonium nitrate or urea is preferable because of its high nitrogen content.

化合物B2としては、硫酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム及びリン酸二水素マグネシウムが好例として挙げられ、これらのうち1種以上の化合物を用いることができる。化合物B2は、海苔に対する肥効を有するので、その適用量は任意に設定できるが、海苔養殖用肥料に占める割合をできるだけ高くすることが好ましい。上記化合物のうち、硫酸アンモニウムが窒素成分を含有するために特に好ましい化合物として挙げられる。   Preferred examples of the compound B2 include ammonium sulfate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, and magnesium dihydrogen phosphate. Among these, one or more compounds can be used. Since the compound B2 has a fertilizing effect on nori, its application amount can be arbitrarily set, but it is preferable to make the ratio of the nori culture fertilizer as high as possible. Among the above compounds, ammonium sulfate is particularly preferable because it contains a nitrogen component.

次に、(2)の方法、即ち、カルシウム塩微粒子を予め海苔養殖用肥料に含有させる方法について説明する。この方法では、硫酸カルシウム及び/又はリン酸カルシウムの粉末(以下、「化合物B3」と云う)を用いることが好ましい。硫酸カルシウムは半水のものであっても2水のものであっても構わないが、保管中の安定性の観点から2水のものが好ましい。リン酸カルシウムとしては、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウムが挙げられるが、ハイドロキシアパタイトであっても構わない。化合物B3の添加量は、(1)の方法と併用する場合は少なくし、(1)の方法と併用しない場合は多くすればよく、本発明の効果を発現させるためには、窒素及び/又はリン酸を含有する肥料の有姿100質量部に対して、化合物B3が無水換算で0.5〜25質量部の割合であることが好ましい。   Next, the method (2), that is, a method of previously containing calcium salt fine particles in a nori culture fertilizer will be described. In this method, it is preferable to use calcium sulfate and / or calcium phosphate powder (hereinafter referred to as “compound B3”). Calcium sulfate may be half water or two water, but two water is preferable from the viewpoint of stability during storage. Examples of calcium phosphate include calcium dihydrogen phosphate, calcium hydrogen phosphate, and tricalcium phosphate, but hydroxyapatite may also be used. The amount of compound B3 added may be reduced when used in combination with the method (1) and increased when not used in combination with the method (1). In order to exhibit the effects of the present invention, nitrogen and / or It is preferable that compound B3 is a ratio of 0.5-25 mass parts in anhydrous conversion with respect to 100 mass parts of fertilizer containing phosphoric acid.

本発明で用いる窒素及び/又はリン酸を含有する肥料としては、窒素及び/又はリン酸を含有する化合物であって、一般に肥料として用いることができるものであれば特に制限はない。しかし、海水中で溶解する必要があるため、水溶性成分の割合が高いものが好ましい。尚、海水中にはカリウム及びマグネシウム成分は比較的多量に含まれるため、カリウム及びマグネシウム成分を含有しない肥料を用いる方が効率的である。窒素及び/又はリン酸を含有する肥料の具体例として、上記で列挙したものも含めて、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、尿素(表面処理剤で被覆されたもの)、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸二水素マグネシウム、過リン酸石灰及び重過リン酸石灰を挙げることができ、これらのうち1種以上を適宜選択することができる。前記列挙した肥料のうち、硫酸アンモニウムと尿素が好ましい。また、肥料の形状は、粒状であっても粉状であってもよいが粒状に於いて本発明の効果が最もよく発揮される。   The fertilizer containing nitrogen and / or phosphoric acid used in the present invention is not particularly limited as long as it is a compound containing nitrogen and / or phosphoric acid and can generally be used as a fertilizer. However, since it is necessary to dissolve in seawater, those having a high proportion of water-soluble components are preferred. Since seawater contains a relatively large amount of potassium and magnesium components, it is more efficient to use a fertilizer that does not contain potassium and magnesium components. Specific examples of fertilizers containing nitrogen and / or phosphoric acid, including those listed above, ammonium sulfate, ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, urea (coated with a surface treatment agent), phosphoric acid Diammonium hydrogen, ammonium dihydrogen phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium dihydrogen phosphate, lime superphosphate and lime heavy superphosphate One or more of these can be selected as appropriate. Of the fertilizers listed above, ammonium sulfate and urea are preferred. Further, the shape of the fertilizer may be granular or powdery, but the effect of the present invention is best exhibited in the granular form.

本発明において、窒素及び/又はリン酸を含有する肥料と吸湿性化合物の特に好ましい組合せは、硫酸アンモニウムと塩化カルシウムである。前記組合せにおいて、海苔養殖用肥料中の肥効成分の含有量を高くしながら、海水の流入促進効果が良く発揮される。さらに、上記溶出安定化効果のメカニズムによるものと推察されるが、施肥容器からの肥料成分の溶出が安定化される。そして、硫酸アンモニウム有姿100質量部に対して塩化カルシウムが無水換算で5〜10質量部の割合で含有される海苔養殖用肥料が特に好適であり、さらに好適なのは前記海苔養殖用肥料が硫酸アンモニウムと塩化カルシウムとのみからなるものである。   In the present invention, a particularly preferred combination of a fertilizer containing nitrogen and / or phosphoric acid and a hygroscopic compound is ammonium sulfate and calcium chloride. In the above combination, the effect of promoting the inflow of seawater is well exhibited while increasing the content of the fertilizer component in the nori culture fertilizer. Further, it is presumed to be due to the mechanism of the elution stabilization effect, but the elution of the fertilizer components from the fertilizer container is stabilized. A laver culture fertilizer containing calcium chloride in an amount of 5 to 10 parts by mass in terms of anhydrous with respect to 100 parts by mass of ammonium sulfate is particularly preferable, and more preferably, the laver culture fertilizer is ammonium chloride and chloride. It consists only of calcium.

本発明の海苔養殖用肥料において上記の各種化合物の含有のさせ方としては、上記の各種化合物を原料とし、これを造粒してもよいが、製造コストの観点から上記の各種化合物を混合する、即ち、窒素及び/又はリン酸を含有する粒状肥料と他の各種化合物を混合することが好ましい。混合する場合は混合方法を適宜選択して、できるだけ均一になるように混合することが望ましい。
また、本発明の海苔養殖用肥料は、上記の各種化合物を適宜選択したものを含有したものであるが、施肥容器内における肥料成分の割合を高くするために、上記の各種化合物以外のものはできるだけ含有させないことが望ましい。海苔養殖用肥料中の窒素及び/又はリン酸を含有する肥料の含有量の目安を示すと、窒素及び/又はリン酸を含有する肥料が海苔養殖用肥料中に70〜99.5質量%の割合で含有されることが好ましく、前記割合のさらに好ましい範囲は80〜99.5質量%である。
As a method for containing the above-mentioned various compounds in the nori culture fertilizer of the present invention, the above-mentioned various compounds may be used as a raw material, and this may be granulated. That is, it is preferable to mix the granular fertilizer containing nitrogen and / or phosphoric acid and other various compounds. In the case of mixing, it is desirable to select a mixing method as appropriate and to mix as uniformly as possible.
In addition, the nori culture fertilizer of the present invention contains those appropriately selected from the above-mentioned various compounds, but in order to increase the proportion of the fertilizer components in the fertilizer container, other than the above-mentioned various compounds It is desirable not to contain as much as possible. When the standard of the content of fertilizer containing nitrogen and / or phosphoric acid in the nori culture fertilizer is shown, the fertilizer containing nitrogen and / or phosphoric acid is 70 to 99.5 mass% in the nori culture fertilizer It is preferable to contain, The more preferable range of the said ratio is 80-99.5 mass%.

上記によって得られた本発明の海苔養殖用肥料の最適使用方法は、細孔からなる溶出孔を有する施肥容器に海苔養殖用肥料を収容して使用する方法である。収容する容器としては、溶出孔の孔径が0.1〜1mmの多孔性容器が推奨される。前記孔径の範囲は、肥料の溶出速度を制御するための好適な範囲である。例えば、孔径が0.1mm未満となると、吸湿性化合物が施肥容器内に存在しても、初期の海水流入に時間を要するため肥料成分の溶出開始時期が遅れたり、その対策として溶出孔の数を多数作製しようとすると、作製の手間と労力がより多くなるため好ましくない。一方、孔径が1mmを超えると、溶出孔の孔数調整による溶出速度の調整が著しく困難となり、また、カルシウム塩微粒子が施肥容器内に存在しても溶出孔を適度に閉塞し難くなることが原因と推察されるが、溶出の安定化が困難となる。尚、多孔性容器の溶出孔の総面積は、肥料の種類、容器の形状等によって異なるが、容器の全表面積に対して0.000001〜0.001であることが好ましい。また、藻類や異物などによって一部の溶出孔で閉塞が起きても支障の無いように、溶出孔の孔数は少なくとも5個以上であることが好ましい。また、施肥容器の形状は、海苔養殖現場への設置効率の観点から筒状又は管状のものが好ましい。   The optimum method for using the nori culture fertilizer of the present invention obtained as described above is a method in which the nori culture fertilizer is housed and used in a fertilizer container having elution holes composed of pores. As the container to be accommodated, a porous container having an elution hole diameter of 0.1 to 1 mm is recommended. The range of the pore diameter is a suitable range for controlling the elution rate of the fertilizer. For example, if the pore diameter is less than 0.1 mm, even if a hygroscopic compound is present in the fertilizer container, it takes time for the initial seawater inflow, so the elution start time of the fertilizer component may be delayed. It is not preferable to produce a large number because the labor and labor of production increase. On the other hand, if the pore diameter exceeds 1 mm, it is extremely difficult to adjust the elution rate by adjusting the number of elution holes, and it is difficult to properly block the elution holes even if calcium salt fine particles are present in the fertilizer container. Presumed to be the cause, it is difficult to stabilize elution. In addition, although the total area of the elution hole of a porous container changes with kinds of fertilizer, the shape of a container, etc., it is preferable that it is 0.000001-0.001 with respect to the total surface area of a container. Moreover, it is preferable that the number of elution holes is at least 5 or more so that there is no problem even if some elution holes are blocked by algae or foreign substances. Moreover, the shape of a fertilizer container has a preferable cylindrical shape or a tubular thing from a viewpoint of the installation efficiency to a laver culture site.

施肥容器の材質としてはポリエチレン樹脂、ポリエステル樹脂等の可撓性材料、ポリ塩化ビニル樹脂、ポリプロピレン樹脂等の剛直性樹脂等が使用できる。また、施肥容器の保護のため、あるいは肥料の溶出制御をさらに行うために、必要に応じて、上記施肥容器を外装容器内に収容しても良い。外装容器についてはその使用目的に応じて、孔を有するものやネット状のもの等を適宜選択すればよい。外装容器としては、特許文献2(特開2009−273425号公報)記載のものを例示することができる。   As a material for the fertilizer container, a flexible material such as polyethylene resin or polyester resin, or a rigid resin such as polyvinyl chloride resin or polypropylene resin can be used. Moreover, you may accommodate the said fertilization container in an exterior container as needed, in order to perform the elution control of a fertilizer for protection of a fertilizer container. What is necessary is just to select suitably a thing with a hole, a net-shaped thing, etc. about an exterior container according to the use purpose. As an exterior container, the thing of patent document 2 (Unexamined-Japanese-Patent No. 2009-273425) can be illustrated.

本発明の海苔養殖用肥料は、浮き流し式海苔養殖場又は支柱式海苔養殖場において、本発明の海苔養殖用肥料を収容した上記筒状又は管状の施肥容器を、海苔養殖網の近傍に設置している水平方向のロープ又は棒に横吊りで係止した場合に、その効果が最もよく発揮される。
The fertilizer for laver culture of the present invention is installed in the vicinity of a laver culture net in the floating or laver farm or the column type laver farm with the cylindrical or tubular fertilizer container containing the fertilizer for laver culture of the present invention. The effect is best exhibited when locked to a horizontal rope or rod in a horizontal position.

以下、本発明の詳細を実施例を挙げて説明するが、本発明はそれらの実施例によって限定されるものではない。
[1] 窒素及び/又はリン酸を含有する肥料を、以下、「肥料」と略す。
・肥料として、硫酸アンモニウム(住友化学株式会社製 肥料の名称「住友21.0硫酸アンモニア」、粒状)、硝酸アンモニウム(住友化学株式会社製 肥料の名称「住友34.4防結性粒状硝酸アンモニア」、粒状)を用いた。
[2] 肥料以外の化合物としては、
・吸湿性化合物として、塩化カルシウム・2水和物、塩化マグネシウム・6水和物(いずれも和光純薬工業(株)製試薬、粉状)を用いた。
・化合物B1として、硫酸ナトリウム(無水物)(和光純薬工業(株)製試薬、結晶状)を用いた。
・化合物B3として、硫酸カルシウム・2水和物(和光純薬工業(株)製試薬、粉状)、リン酸三カルシウム(和光純薬工業(株)製試薬、粉状)を用いた。
尚、以下では、上記化合物を結晶水無しの化合物名で呼ぶこととする。また、数量は無水換算の値で示す。
EXAMPLES Hereinafter, although an Example is given and the detail of this invention is demonstrated, this invention is not limited by those Examples.
[1] Fertilizers containing nitrogen and / or phosphoric acid are hereinafter abbreviated as “fertilizers”.
-As fertilizer, ammonium sulfate (Sumitomo Chemical Co., Ltd. fertilizer name “Sumitomo 21.0 Ammonium Sulfate”, granular), ammonium nitrate (Sumitomo Chemical Co., Ltd. fertilizer name “Sumitomo 34.4 Anti-agglomerated granular ammonium nitrate”, granular) were used. .
[2] As compounds other than fertilizer,
-As the hygroscopic compound, calcium chloride dihydrate and magnesium chloride hexahydrate (both reagents manufactured by Wako Pure Chemical Industries, Ltd., powder) were used.
-Sodium sulfate (anhydride) (Wako Pure Chemical Industries, Ltd. reagent, crystal form) was used as compound B1.
-As compound B3, calcium sulfate dihydrate (Wako Pure Chemical Industries, Ltd. reagent, powder) and tricalcium phosphate (Wako Pure Chemical Industries, reagent, powder) were used.
In the following, the above compound will be referred to as a compound name without crystal water. The quantity is indicated in terms of anhydrous conversion.

〔実施例1〕
硫酸アンモニウム750gと塩化カルシウム75gとをよく混合して海苔養殖用肥料を作製した。
〔実施例2〜9〕
表1に示した原料をよく混合して海苔養殖用肥料を作製した。
〔比較例1〜3〕
表1に示した原料をよく混合して海苔養殖用肥料を作製した。



















[Example 1]
750 g of ammonium sulfate and 75 g of calcium chloride were mixed well to produce a fertilizer for nori culture.
[Examples 2 to 9]
The raw materials shown in Table 1 were mixed well to prepare a nori culture fertilizer.
[Comparative Examples 1-3]
The raw materials shown in Table 1 were mixed well to prepare a nori culture fertilizer.



















Figure 2012250893
Figure 2012250893

[施肥容器]
無孔のポリエチレン製のチューブタイプの袋(長さ500mm、折り幅90mm)に表1の海苔養殖用肥料を収容した後、ヒートシーラーで開口部を封止した。袋の封止部に挟まれた肥料収容部の長さは400mmとした。溶出孔として、約0.5mm径の細孔を設けた。溶出孔の位置は、肥料収納部の長さ方向において等間隔となるように5箇所設け、その反対面にも同様に細孔を設けた(細孔の数は計10箇所)。
[Fertilization container]
After storing the nori culture fertilizer in Table 1 in a non-porous polyethylene tube-type bag (length: 500 mm, folding width: 90 mm), the opening was sealed with a heat sealer. The length of the fertilizer storage part sandwiched between the sealing parts of the bag was 400 mm. As an elution hole, a pore having a diameter of about 0.5 mm was provided. Five elution holes were provided at equal intervals in the length direction of the fertilizer storage section, and pores were similarly provided on the opposite surface (the total number of the pores was 10).

次に試験例を示す。
10℃に設定した振とう器(タイテック製 大型恒温振とう培養機バイオシェーカーBR-300LF)を用いた。振とう台の上に防振シートを置き、前記防振シート上に人工海水12Lを入れた市販の蓋付きポリエチレン製コンテナ(縦31cm×横43cm×高さ20cm)を設置した。人工海水が10℃になったのを確認した後、表1の海苔養殖用肥料を収容した上記施肥容器をコンテナ内に水平方向に設置した(施肥容器全体が浸かることを確認)。振とう器は40rpmで振とうさせた。また、3日毎に10℃の人工海水を交換した。設置時点からの海苔養殖用肥料の状態を18日目まで経時的に観察した。更に、溶出速度を調べるため、施肥容器内の残存物を経時的に回収して残存物の乾燥(40℃)後の質量を測定した。そして、施肥容器に当初収容した海苔養殖用肥料の質量(初期量)と残存物の質量との差を溶出量とし、溶出量/初期量の百分率を溶出率とした。
Next, test examples are shown.
A shaker set at 10 ° C. (manufactured by Taitec Co., Ltd., large-sized constant temperature shake incubator Bioshaker BR-300LF) was used. A vibration-proof sheet was placed on a shaking table, and a commercially available polyethylene container with a lid (length 31 cm × width 43 cm × height 20 cm) in which 12 L of artificial seawater was placed on the vibration-proof sheet was installed. After confirming that the artificial seawater reached 10 ° C., the fertilizer container containing the nori culture fertilizer shown in Table 1 was installed in the container in the horizontal direction (confirmed that the entire fertilizer container was immersed). The shaker was shaken at 40 rpm. The artificial seawater at 10 ° C was changed every 3 days. The state of the nori culture fertilizer from the time of installation was observed over time until the 18th day. Furthermore, in order to investigate the elution rate, the residue in the fertilizer container was collected over time, and the mass of the residue after drying (40 ° C.) was measured. The difference between the mass (initial amount) of the nori culture fertilizer initially contained in the fertilizer container and the mass of the residue was taken as the elution amount, and the percentage of elution amount / initial amount was taken as the elution rate.

表2に、経時的な観察結果を示したが、実施例1〜9は溶出速度が異なる以外は同様の経過を辿ったので、実施例1を代表例として示し、併せて比較例1〜3を示した。また、実施例1〜9における肥料の溶出経過を図1に示した。   Table 2 shows the observation results over time. Examples 1 to 9 followed the same process except that the elution rates were different. Therefore, Example 1 was shown as a representative example, and Comparative Examples 1 to 3 were also shown. showed that. Moreover, the elution process of the fertilizer in Examples 1-9 was shown in FIG.

Figure 2012250893
Figure 2012250893

表2と図1より、実施例1〜9では、施肥容器の設置1日後には人工海水が施肥容器内へ流入することが確認された。さらに、図1より、ほぼ一定の速度で溶出が進行しており、溶出速度が制御でき安定した溶出が得られたことが分かった。   From Table 2 and FIG. 1, in Examples 1-9, it was confirmed that the artificial seawater flows into the fertilizer container one day after the fertilizer container is installed. Furthermore, it was found from FIG. 1 that elution was progressing at a substantially constant rate, and the elution rate was controlled and stable elution was obtained.

また、図1より、硫酸カルシウム又はリン酸カルシウムを含有させた場合(硫酸カルシウム:実施例5と2の比較、実施例8と6の比較。リン酸カルシウム:実施例9と6の比較)、あるいは、施肥容器内でカルシウム塩微粒子を生成させた場合(実施例7と6の比較)、肥料成分の溶出速度が遅くなり、長期にわたり安定して溶出することが分かった。   Moreover, from FIG. 1, when calcium sulfate or calcium phosphate is contained (calcium sulfate: comparison between Examples 5 and 2, comparison between Examples 8 and 6. Calcium phosphate: comparison between Examples 9 and 6), or fertilizer container It was found that when calcium salt fine particles were produced in the inside (comparison of Examples 7 and 6), the elution rate of the fertilizer component was slow and it was stably eluted over a long period of time.

これに対して、比較例1、3では、溶出開始までにはやや時間を要した(表2)。また、比較例2では、設置1日後には人工海水が施肥容器内へ流入することが確認され、その後はほぼ一定の速度で溶出が進行した(表2)が、保管中に吸湿が進むため実用的ではなかった。   On the other hand, in Comparative Examples 1 and 3, it took a little time to start elution (Table 2). In Comparative Example 2, it was confirmed that artificial seawater flowed into the fertilizer container one day after installation, and then elution proceeded at a substantially constant rate (Table 2), but moisture absorption progressed during storage. It was not practical.

試験開始6日目に、海苔養殖用肥料を施肥容器からバットに移し替えて形状を観察した。実施例1〜9と比較例2では、海苔養殖用肥料全体が乳白色のペースト状(肥料が半溶解状態であり、また微粒子の混在も確認できる状態)であり、塊は見られなかった。図2に、実施例1〜9と比較例2の代表例として実施例1の場合を示した。一方、比較例1と3では、透明感のあるシャーベット状(肥料が固結することなく各粒が水と接触して溶解している状態)であった。図3に、比較例1と3の代表例として比較例1の場合を示した。
上記のような肥料の状態の相違が、溶出の仕方の相違の原因となっているものと考えられた。
On the 6th day from the start of the test, the shape of the nori culture fertilizer was transferred from the fertilizer container to the vat. In Examples 1 to 9 and Comparative Example 2, the whole nori culture fertilizer was in the form of a milky white paste (the fertilizer was in a semi-dissolved state and a mixture of fine particles could be confirmed), and no lumps were observed. FIG. 2 shows the case of Example 1 as a representative example of Examples 1 to 9 and Comparative Example 2. On the other hand, Comparative Examples 1 and 3 were transparent sherbet-like (state in which each grain was in contact with water and dissolved without fertilizer being consolidated). FIG. 3 shows the case of Comparative Example 1 as a representative example of Comparative Examples 1 and 3.
It was thought that the difference in the state of the fertilizer as described above caused the difference in the elution method.

Claims (5)

窒素及び/又はリン酸を含有する肥料(但し、硝酸カルシウム及び硝酸マグネシウムを除く)の有姿100質量部に対して、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウム及び吸湿性尿素からなる群より選ばれた1種以上の吸湿性化合物を無水換算で0.5〜25質量部の割合で含有することを特徴とする海苔養殖用肥料。 From the group consisting of calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate, and hygroscopic urea for 100 parts by mass of fertilizer containing nitrogen and / or phosphoric acid (excluding calcium nitrate and magnesium nitrate) A fertilizer for nori cultivation, comprising one or more selected hygroscopic compounds in a proportion of 0.5 to 25 parts by mass in terms of anhydrous. 吸湿性化合物が塩化カルシウム及び硝酸カルシウムのうちいずれか一方又は双方である請求項1記載の海苔養殖用肥料であって、さらに、該吸湿性化合物1モルに対して、硫酸ナトリウム、硫酸カリウム及び硫酸マグネシウムからなる群より選ばれた1種以上の化合物を1〜3モルの割合で含有する海苔養殖用肥料。 2. The nori culture fertilizer according to claim 1, wherein the hygroscopic compound is one or both of calcium chloride and calcium nitrate, and further, sodium sulfate, potassium sulfate and sulfuric acid per 1 mol of the hygroscopic compound. A fertilizer for nori cultivation containing one or more compounds selected from the group consisting of magnesium in a proportion of 1 to 3 moles. 請求項1又は2記載の海苔養殖用肥料であって、さらに、窒素及び/又はリン酸を含有する肥料(但し、リン酸カルシウムを除く)の有姿100質量部に対して、硫酸カルシウム(粉末)及びリン酸カルシウム(粉末)のうちいずれか一方又は双方を無水換算で0.5〜25質量部の割合で含有する海苔養殖用肥料。 The fertilizer for nori cultivation according to claim 1 or 2, further comprising calcium sulfate (powder) and 100 parts by mass of fertilizer containing nitrogen and / or phosphoric acid (excluding calcium phosphate) and A fertilizer for laver cultivation containing either one or both of calcium phosphate (powder) in a proportion of 0.5 to 25 parts by mass in terms of anhydrous. 窒素及び/又はリン酸を含有する肥料が、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、尿素、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸二水素マグネシウム、過リン酸石灰及び重過リン酸石灰からなる群より選ばれた1種以上である請求項1〜3のいずれか1項記載の海苔養殖用肥料。 Fertilizers containing nitrogen and / or phosphoric acid are ammonium sulfate, ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, urea, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, 4. One or more types selected from the group consisting of dipotassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium dihydrogen phosphate, lime superphosphate and lime heavy superphosphate. Noriculture fertilizer as described. 請求項1〜4のいずれか1項記載の海苔養殖用肥料を、孔径0.1〜1mmの多孔性容器に収容した海苔養殖用施肥容器。 A fertilizer container for laver culture, wherein the fertilizer for laver culture according to any one of claims 1 to 4 is accommodated in a porous container having a pore diameter of 0.1 to 1 mm.
JP2011126579A 2011-06-06 2011-06-06 Fertilizer for laver culture Pending JP2012250893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011126579A JP2012250893A (en) 2011-06-06 2011-06-06 Fertilizer for laver culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126579A JP2012250893A (en) 2011-06-06 2011-06-06 Fertilizer for laver culture

Publications (1)

Publication Number Publication Date
JP2012250893A true JP2012250893A (en) 2012-12-20

Family

ID=47524061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126579A Pending JP2012250893A (en) 2011-06-06 2011-06-06 Fertilizer for laver culture

Country Status (1)

Country Link
JP (1) JP2012250893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621017B1 (en) * 2013-01-18 2016-05-16 황영수 the funtional nutrients for cultivating laver
KR102334749B1 (en) * 2021-03-31 2021-12-06 주식회사 팜한농 Nutrient for seaweed and uses thereof
KR20220037637A (en) * 2020-09-18 2022-03-25 김한샘 Nutrient agent for Laver spores or Laver cultivation and Manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101384A (en) * 1996-06-13 1998-01-06 Daiichi Seimo Kk Laver quality improving agent
JPH1179876A (en) * 1997-08-29 1999-03-23 Daiichi Seimo Kk Fertilizer for marine alga culture
JP2009273424A (en) * 2008-05-16 2009-11-26 Taki Chem Co Ltd Fertilizer tool for laver culture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101384A (en) * 1996-06-13 1998-01-06 Daiichi Seimo Kk Laver quality improving agent
JPH1179876A (en) * 1997-08-29 1999-03-23 Daiichi Seimo Kk Fertilizer for marine alga culture
JP2009273424A (en) * 2008-05-16 2009-11-26 Taki Chem Co Ltd Fertilizer tool for laver culture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621017B1 (en) * 2013-01-18 2016-05-16 황영수 the funtional nutrients for cultivating laver
KR20220037637A (en) * 2020-09-18 2022-03-25 김한샘 Nutrient agent for Laver spores or Laver cultivation and Manufacturing method of the same
KR102452301B1 (en) * 2020-09-18 2022-10-17 김한샘 Nutrient agent for Laver spores or Laver cultivation and Manufacturing method of the same
KR102334749B1 (en) * 2021-03-31 2021-12-06 주식회사 팜한농 Nutrient for seaweed and uses thereof

Similar Documents

Publication Publication Date Title
EP3374332B1 (en) Improved urea-based blend composition and method for the manufacture thereof
UA127642C2 (en) METHOD OF OBTAINING 2-(N-3,4-DIMETHYLPYRAZOLE)Succinic acid
US11578009B2 (en) Urea-based blend composition and method for the manufacture thereof
BR112019018489A2 (en) improved urea-based composition and method of manufacturing the same
US20210230080A1 (en) Urea ammonium sulphate-based composition and method for the manufacture thereof
US20160318763A1 (en) Methods and compositions for chemical drying and producing struvite
JP2012250893A (en) Fertilizer for laver culture
US11332412B2 (en) Urea-based composition comprising elemental sulphur and method for the manufacture thereof
TWI637933B (en) Thixotropic suspension agent for plant nutrients or animal feed supplements: composition, method of making, and use thereof
US20220388919A1 (en) Urea-based blend composition and method for the manufacture thereof
US20220298085A1 (en) Improved urea-based composition and method for the manufacture thereof
RU2643042C2 (en) Continuous method for production of liquid solid acid phosphoro-potassium (p/p) fertilizer
JP5777085B2 (en) Underwater plant fertilizer
WO2001087805A1 (en) Fertilizers containing ammonium thiosulfate
JPS5830273B2 (en) Method for producing fertilizer by solidifying fermentation waste liquid
JP2009529484A (en) Soluble and solubilizing free-flowing solid fertilizer composition and its preparation
RU2815884C2 (en) Concentrated aqueous composition of microfibrillated cellulose containing plant nutrition salts
EP4293000A1 (en) Method for the manufacture of a solid, particulate fertilizer composition comprising an additive
RU2797320C2 (en) Improved composition based on urea-ammonium sulphate and method for its manufacturing
RU2478599C1 (en) Method of producing compound nitrogen-phosphorus-sulphate fertiliser from phosphogypsum (versions)
JP2018050514A (en) Material for promoting growth of algae
JPH0651608B2 (en) Agricultural oxygen supply
JP2000159590A (en) Ammonium thiosulfate-containing fertilizer
JPS5978992A (en) Potassium phosphate composite fertilizer
JPH0114197B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616