JP2012248517A - Light emitting device and electronic apparatus - Google Patents

Light emitting device and electronic apparatus Download PDF

Info

Publication number
JP2012248517A
JP2012248517A JP2011121791A JP2011121791A JP2012248517A JP 2012248517 A JP2012248517 A JP 2012248517A JP 2011121791 A JP2011121791 A JP 2011121791A JP 2011121791 A JP2011121791 A JP 2011121791A JP 2012248517 A JP2012248517 A JP 2012248517A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
emitting element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011121791A
Other languages
Japanese (ja)
Other versions
JP5741221B2 (en
Inventor
Yukiya Shiratori
幸也 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011121791A priority Critical patent/JP5741221B2/en
Publication of JP2012248517A publication Critical patent/JP2012248517A/en
Application granted granted Critical
Publication of JP5741221B2 publication Critical patent/JP5741221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce irregularities at pixel parts as much as possible and suppress color mixture due to reflection from a vertical conduction part while maintaining high light extraction efficiency, in a top emission type light emitting device comprising a combination of a white organic EL element and a resonance structure.SOLUTION: A light emitting device E1 has an optical structure in which an expression of D={(2πm+φ+φ)/4π}λ is satisfied, where D represents a distance between a reflective layer 12 and a counter electrode 22, φrepresents a phase shift in reflection at the reflective layer 12, φrepresents a phase shift in reflection at the counter electrode 22, λ represents a peak wavelength of a standing wave generated between the reflective layer 12 and the counter electrode 22, and m represents an integer of 2 or less. In the light emitting device E1, a length from an interface between a pixel electrode 15 and a vertical conduction part 330 to the counter electrode 22 is set to a value from the distance D at which a red peak wavelength can be obtained when m is equal to 0 in the expression to the distance D at which a blue peak wavelength can be obtained when m is equal to 1 in the expression.

Description

本発明は、各種の発光素子を利用した発光装置およびこの発光装置を備えた電子機器に関する。   The present invention relates to a light emitting device using various light emitting elements and an electronic apparatus including the light emitting device.

近年、基板上に有機EL(エレクトロルミネッセンス)素子を発光層として形成し、発光素子の発光光を基板と反対側に取り出すトップエミッション方式の発光装置が電子機器の表示装置などとして多用されている。トップエミッション方式は、発光素子を挟み、基板側に形成された一方の第1電極(例えば陽極)と基板との間に反射層を形成し、発光層を挟む他方の第2電極(例えば陰極)側から光を取り出す方式であって、光の利用効率が高い方式である。   In recent years, a top emission type light-emitting device in which an organic EL (electroluminescence) element is formed as a light-emitting layer on a substrate and light emitted from the light-emitting element is extracted on the side opposite to the substrate has been widely used as a display device for electronic devices. In the top emission method, a light emitting element is sandwiched, a reflective layer is formed between the substrate and one first electrode (for example, an anode) formed on the substrate side, and the other second electrode (for example, a cathode) is sandwiched between the light emitting layers. This is a method of extracting light from the side, and is a method with high light use efficiency.

トップエミッション方式の発光装置において、白色の有機EL素子を用い、前記第2電極と反射層との間で所定の波長の光を共振させて、光の取り出し効率を高める技術が開示されている(例えば非特許文献1)。この技術では、共振構造におけるピーク波長をλ、反射層から前記第2電極の光学的距離をD、前記反射層での反射における位相シフトをφ、前記第2電極での反射における位相シフトをφ、整数をmとしたとき、下記の式を満たす光学構造が提案されている。
D={(2πm+φ+φ)/4π}λ・・・(1)
In a top emission type light emitting device, a technology is disclosed in which a white organic EL element is used to resonate light having a predetermined wavelength between the second electrode and the reflective layer, thereby increasing light extraction efficiency ( For example, Non-Patent Document 1). In this technique, the peak wavelength in the resonance structure is λ, the optical distance from the reflective layer to the second electrode is D, the phase shift in reflection at the reflective layer is φ L , and the phase shift in reflection at the second electrode is An optical structure that satisfies the following formula is proposed, where φ U is an integer m.
D = {(2πm + φ L + φ U ) / 4π} λ (1)

特に、前記(1)式において、m=0とした場合には、有機EL素子におけるアレイ構造を単純にしつつ、広い波長の光をある程度の効率で取り出すことができるため、発光装置の低コスト化を実現でき、かつ、高精細画素を作り込みやすいなどの利点がある。   In particular, in the above formula (1), when m = 0, light of a wide wavelength can be extracted with a certain degree of efficiency while simplifying the array structure in the organic EL element. Can be realized and it is easy to make high-definition pixels.

しかしながら、前記(1)式においてm=0とした光学構造の発光装置では、赤色領域、緑色領域、および、青色領域の全ての領域の光を取り出すため、赤色画素、緑色画素、および、青色画素の色分離はカラーフィルターなどで行う必要がある。したがって、観測側での発光スペクトルの帯域幅が広くなり、色純度が悪いという問題があった。また、赤色、緑色、および、青色の各波長領域で比較した場合、光取り出し効率が低いという問題があった。その結果、発光装置の消費電力が高くなり、パネル特性として不利になるという問題があった。   However, in the light emitting device having an optical structure in which m = 0 in the formula (1), the red pixel, the green pixel, and the blue pixel are extracted in order to extract light in all the red region, the green region, and the blue region. It is necessary to perform color separation with a color filter or the like. Therefore, there has been a problem that the bandwidth of the emission spectrum on the observation side is widened and the color purity is poor. In addition, when compared in the red, green, and blue wavelength regions, there is a problem that the light extraction efficiency is low. As a result, there is a problem that the power consumption of the light emitting device is increased, which is disadvantageous as panel characteristics.

また、光取り出し効率を高めるために、上記(1)式を満たす反射層から第2電極の光学的距離Dを、赤色画素、緑色画素および青色画素ごとに異なるように透明層や電極層の層厚を設定した発光装置も提案されている。   Further, in order to increase the light extraction efficiency, the transparent layer and the electrode layer are formed so that the optical distance D of the second electrode from the reflective layer satisfying the above expression (1) is different for each of the red pixel, the green pixel, and the blue pixel. A light emitting device having a set thickness has also been proposed.

しかしながら、このような発光装置では、有機EL素子からなる発光層を成膜する際、その下層となる層の凹凸形状が発光特性に大きく影響するという問題があった。特に、このような発光装置では、画素表面や画素電極のエッジ部などを平坦化することが困難であるため、発光層の層厚が変化し、上記光学的距離Dが変化することにより、目的とする出力光波長だけでなく、他の波長の光が出力される場合がある。その結果、色純度が低下するなど、表示品質が低下するという問題があった。   However, in such a light emitting device, when forming a light emitting layer made of an organic EL element, there is a problem that the uneven shape of the lower layer greatly affects the light emission characteristics. In particular, in such a light-emitting device, it is difficult to flatten the pixel surface, the edge portion of the pixel electrode, and the like. Therefore, the layer thickness of the light-emitting layer changes, and the optical distance D changes. In addition to the output light wavelength, light of other wavelengths may be output. As a result, there has been a problem that display quality is lowered, such as color purity is lowered.

そこで、特許文献1のように、第2電極(画素電極)の各々を、反射層の全体に重なるように反射層よりも大きな面積とした発光装置が提案されている。   Therefore, as in Patent Document 1, a light emitting device has been proposed in which each of the second electrodes (pixel electrodes) has a larger area than the reflective layer so as to overlap the entire reflective layer.

特開2007−280677号公報JP 2007-280677 A

SID2010 P-146/S.Lee, Samsung Mobile Display Co.,LtdSID2010 P-146 / S.Lee, Samsung Mobile Display Co., Ltd

しかしながら、特許文献1のような発光装置では、下辺基板に形成される回路素子またはこの回路素子に接続される配線部と、第2電極(画素電極)との導通を図るために、上下導通部が設けられる。しかし、この上下導通部を平坦化することは困難であり、上述したように光学的距離Dが変化するという問題があった。
しかも、この上下導通部にはアルミニウム等の金属材料が用いられるため、発光層からの光が上下導通部で反射して混色が生じ、その結果、色域が狭くなってしまうという問題があった。
However, in the light emitting device as disclosed in Patent Document 1, a vertical conduction portion is provided in order to establish conduction between a circuit element formed on the lower substrate or a wiring portion connected to the circuit element and the second electrode (pixel electrode). Is provided. However, it is difficult to flatten the vertical conduction part, and there is a problem that the optical distance D changes as described above.
In addition, since a metal material such as aluminum is used for the vertical conduction portion, light from the light emitting layer is reflected by the vertical conduction portion to cause color mixing, resulting in a problem that the color gamut becomes narrow. .

このような事情を背景として、本発明は、白色の有機EL素子と共振構造を組み合わせたトップエミッション方式の発光装置において、高い光取り出し効率を維持しつつ、画素部の凹凸を極力小さくし、かつ、上下導通部からの反射による混色を抑えるという課題の解決を目的としている。   Against this background, the present invention is a top emission type light emitting device that combines a white organic EL element and a resonant structure, while maintaining high light extraction efficiency and minimizing the irregularities of the pixel portion, and The object is to solve the problem of suppressing color mixing due to reflection from the vertical conduction part.

以上の課題を解決するために、本発明に係る発光装置は、赤色発光素子、青色発光素子、および緑色発光素子と、回路素子が形成された基板と、を備えるものであって、前記赤色発光素子、前記青色発光素子、および前記緑色発光素子の各々は、前記基板上に形成された光反射層と、前記光反射層上に形成された透明層と、前記透明層上に形成された画素電極と、前記透明層および画素電極上に形成された発光層と、前記発光層上に形成された対向電極と、前記回路素子と前記画素電極との導通を図る上下導通部とを備え、前記光反射層から対向電極間の距離をD、前記光反射層での反射における位相シフトをφ、前記対向電極での反射における位相シフトをφ、前記光反射層と対向電極の間に発生する定在波のピーク波長をλ、2以下の整数をmとしたとき、次の式 D={(2πm+φ+φ)/4π}λ・・・(2)を満たす光学構造を有し、前記上下導通部と前記画素電極との界面から前記対向電極までの長さは、前記式においてm=0の場合の赤色のピーク波長が得られる距離Dから、前記式においてm=1の場合の青色のピーク波長が得られる距離Dまでの値に設定されている。 In order to solve the above-described problems, a light-emitting device according to the present invention includes a red light-emitting element, a blue light-emitting element, and a green light-emitting element, and a substrate on which a circuit element is formed. Each of the element, the blue light emitting element, and the green light emitting element includes a light reflecting layer formed on the substrate, a transparent layer formed on the light reflecting layer, and a pixel formed on the transparent layer. An electrode, a light-emitting layer formed on the transparent layer and the pixel electrode, a counter electrode formed on the light-emitting layer, and a vertical conduction part for conducting the circuit element and the pixel electrode, The distance between the light reflection layer and the counter electrode is D, the phase shift in reflection at the light reflection layer is φ L , and the phase shift in reflection at the counter electrode is φ U , and is generated between the light reflection layer and the counter electrode The peak wavelength of the standing wave is λ, 2 or less When the integer of m is m, it has an optical structure satisfying the following formula: D = {(2πm + φ L + φ U ) / 4π} λ (2), and from the interface between the vertical conduction portion and the pixel electrode The length to the counter electrode is a value from the distance D at which red peak wavelength is obtained when m = 0 in the above formula to the distance D at which blue peak wavelength is obtained when m = 1 in the above formula. Is set to

本発明においては、前記上下導通部の前記画素電極との界面から前記対向電極までの膜厚は、前記式(2)においてm=0の場合の赤色のピーク波長が得られる距離Dから、前記式においてm=1の場合の青色のピーク波長が得られる距離Dまでの値に設定されているので、前記上下導通部と前記対向電極とに挟まれる領域においては可視光領域の光が取り出し難くなる。その結果、前記上下導通部からの反射光の発生が抑制され、その反射光による混色がなくなり、色域が狭くなることが抑制される。   In the present invention, the film thickness from the interface of the vertical conduction part to the pixel electrode to the counter electrode is determined from the distance D at which a red peak wavelength is obtained when m = 0 in the formula (2). Since the value is set up to the distance D at which a blue peak wavelength is obtained when m = 1 in the equation, it is difficult to extract light in the visible light region in the region sandwiched between the upper and lower conductive portions and the counter electrode. Become. As a result, the generation of reflected light from the upper and lower conductive portions is suppressed, color mixing due to the reflected light is eliminated, and the color gamut is reduced.

本発明に係る発光装置として、前記発光層は、前記赤色発光素子、前記緑色発光素子、前記青色発光素子において、同一の膜厚で一体に形成されることが好ましい。この場合は、発光層を赤色発光素子、緑色発光素子、および青色発光素子で区別することなく一体として形成できるので、発光装置は容易に製造することが可能となる。   In the light emitting device according to the present invention, it is preferable that the light emitting layer is integrally formed with the same film thickness in the red light emitting element, the green light emitting element, and the blue light emitting element. In this case, the light emitting layer can be integrally formed without being distinguished by the red light emitting element, the green light emitting element, and the blue light emitting element, and thus the light emitting device can be easily manufactured.

本発明に係る発光装置として、前記上下導通部は、Al、Cr、Mo、Ti、TiN、W、Cu、もしくはこれらを主成分とした合金で形成することもできる。本発明によれば、前記上下導通部を反射率の高いAlまたはAlを主成分とした合金で形成した場合でも、前記上下導通部と前記対向電極とに挟まれる領域においては可視光領域の光が取り出し難くなる。その結果、前記上下導通部からの反射光の発生が抑制され、その反射光による混色がなくなり、色域が狭くなることが抑制される。また、前記上下導通部をCr、Mo、Ti、TiN、W、Cu、もしくはこれらを主成分とした合金で形成すれば、反射率をAlが低いので、前記上下導通部からの反射光の発生がより一層抑制される。   In the light emitting device according to the present invention, the vertical conduction portion may be formed of Al, Cr, Mo, Ti, TiN, W, Cu, or an alloy containing these as main components. According to the present invention, even when the vertical conduction part is formed of Al having a high reflectivity or an alloy containing Al as a main component, light in a visible light region is present in a region sandwiched between the vertical conduction part and the counter electrode. Becomes difficult to take out. As a result, the generation of reflected light from the upper and lower conductive portions is suppressed, color mixing due to the reflected light is eliminated, and the color gamut is reduced. In addition, if the vertical conduction part is made of Cr, Mo, Ti, TiN, W, Cu, or an alloy containing these as a main component, the reflectance is low, so that the reflected light from the vertical conduction part is generated. Is further suppressed.

本発明に係る発光装置においては、前記画素電極は透明導電膜で形成し、赤色画素、緑色画素、青色画素において前記画素電極の膜厚を同一としてもよい。本発明によれば、画素部の凹凸が極力抑えられ、上記(2)式における距離Dのばらつきが抑制される。その結果、混色がなくなり、色域が狭くなることが抑制される。   In the light emitting device according to the present invention, the pixel electrode may be formed of a transparent conductive film, and the film thickness of the pixel electrode may be the same in a red pixel, a green pixel, and a blue pixel. According to the present invention, unevenness of the pixel portion is suppressed as much as possible, and variation in the distance D in the above equation (2) is suppressed. As a result, color mixing is eliminated and the color gamut is suppressed from being narrowed.

本発明に係る発光装置は、前記上下導通部と前記対向電極との間に絶縁層を形成してもよい。本発明によれば、前記上下導通部上に絶縁層があるので、前記上下導通部からの反射光がより一層確実に抑制される。   In the light emitting device according to the present invention, an insulating layer may be formed between the vertical conduction portion and the counter electrode. According to the present invention, since there is an insulating layer on the vertical conduction part, reflected light from the vertical conduction part is more reliably suppressed.

本発明に係る電子機器は、前記発光装置を備えていることを特徴とする。本発明に係る電子機器においては、前記発光装置を備えているので、消費電力を低減することができる。   An electronic apparatus according to the present invention includes the light emitting device. Since the electronic apparatus according to the present invention includes the light emitting device, power consumption can be reduced.

本発明の一実施形態に係る実施例1の発光装置の概要を示す模式的な断面図である。It is typical sectional drawing which shows the outline | summary of the light-emitting device of Example 1 which concerns on one Embodiment of this invention. 図1における正孔輸送層、発光層、および、電子輸送層に用いられた材料を示す図である。It is a figure which shows the material used for the positive hole transport layer, the light emitting layer, and the electron carrying layer in FIG. 共振構造におけるピーク波長をλ、反射層から第2電極の光学的距離をD、第1電極での反射における位相シフトをφ、第2電極での反射における位相シフトをφ、整数をmとしたとき、D={(2πm+φ+φ)/4π}λというの式を満たす光学構造において、整数mと、反射膜間の膜厚と、ピーク波長の関係を示す図である。The peak wavelength in the resonant structure is λ, the optical distance from the reflective layer to the second electrode is D, the phase shift in reflection at the first electrode is φ L , the phase shift in reflection at the second electrode is φ U , and the integer is m In the optical structure satisfying the equation D = {(2πm + φ L + φ U ) / 4π} λ, the relationship between the integer m, the thickness between the reflective films, and the peak wavelength is shown. 本発明の一実施形態に係る実施例4の発光装置の概要を示す模式的な断面図である。It is typical sectional drawing which shows the outline | summary of the light-emitting device of Example 4 which concerns on one Embodiment of this invention. 図1の実施形態に係る発光装置を表示装置として採用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。It is a perspective view which shows the structure of the mobile personal computer which employ | adopted the light-emitting device which concerns on embodiment of FIG. 1 as a display apparatus. 図1の実施形態に係る発光装置を表示装置として採用した携帯電話機の構成を示す斜視図である。It is a perspective view which shows the structure of the mobile telephone which employ | adopted the light-emitting device which concerns on embodiment of FIG. 1 as a display apparatus. 図1の実施形態に係る発光装置を表示装置として採用した携帯情報端末の構成を示す斜視図である。It is a perspective view which shows the structure of the portable information terminal which employ | adopted the light-emitting device which concerns on embodiment of FIG. 1 as a display apparatus.

以下、添付の図面を参照しながら本発明に係る様々な実施の形態を説明する。図面においては、各部の寸法の比率は実際のものとは適宜に異ならせてある。
<A:実施例1>
<A−1:発光装置の構造>
図1は、本発明の一実施形態に係る発光装置E1の概要を示す模式的な断面図である。発光装置E1は、複数の発光素子U1、U2、U3が第1基板10の面上に配列された構成であるが、図1においては、説明の便宜上、赤色、緑色および青色の各色の発光素子U1、U2、U3が一つずつ例示されている。
本実施形態の発光装置E1は、トップエミッション型であり、発光素子U1、U2、U3にて発生した光は第1基板10とは反対側に向かって進行する。従って、ガラスなどの光透過性を有する板材のほか、セラミックスや金属のシートなど不透明な板材を第1基板10として採用することができる。本実施形態では、第1基板10の厚さを0.5mmとした。
第1基板10には、発光素子U1、U2、U3に給電して発光させるための配線が配置されているが、配線の図示は省略する。また、第1基板10には、発光素子U1、U2、U3に給電するための回路素子薄膜11が配置されている。
Hereinafter, various embodiments according to the present invention will be described with reference to the accompanying drawings. In the drawings, the ratio of dimensions of each part is appropriately changed from the actual one.
<A: Example 1>
<A-1: Structure of light emitting device>
FIG. 1 is a schematic cross-sectional view showing an outline of a light emitting device E1 according to an embodiment of the present invention. The light emitting device E1 has a configuration in which a plurality of light emitting elements U1, U2, and U3 are arranged on the surface of the first substrate 10. In FIG. 1, for convenience of explanation, light emitting elements of red, green, and blue colors are used. U1, U2, and U3 are illustrated one by one.
The light emitting device E1 of the present embodiment is a top emission type, and light generated by the light emitting elements U1, U2, U3 travels toward the side opposite to the first substrate 10. Therefore, an opaque plate material such as a ceramic or metal sheet can be used as the first substrate 10 in addition to a light-transmitting plate material such as glass. In the present embodiment, the thickness of the first substrate 10 is 0.5 mm.
Although wiring for supplying light to the light emitting elements U1, U2, and U3 to emit light is arranged on the first substrate 10, illustration of the wiring is omitted. In addition, a circuit element thin film 11 for supplying power to the light emitting elements U1, U2, and U3 is disposed on the first substrate 10.

回路素子薄膜11が配置された第1基板10上には、コンタクトホール360を形成するたに、層間絶縁膜301が形成される。層間絶縁膜301は、SiOまたはSiNで形成される。 An interlayer insulating film 301 is formed on the first substrate 10 on which the circuit element thin film 11 is disposed in order to form a contact hole 360. The interlayer insulating film 301 is formed of SiO 2 or SiN.

層間絶縁膜301上には、反射層12が形成される。反射層12は、光反射性を有する材料によって形成される。この種の材料としては、例えばAl(アルミニウム)、Ag(銀)、Au(金)、Cu(銅)などの単体金属、またはAu、CuまたはAgを主成分とする合金などが好適に採用される。本実施例では、反射層12はAlで形成され、膜厚を100nmとした。   On the interlayer insulating film 301, the reflective layer 12 is formed. The reflective layer 12 is formed of a material having light reflectivity. As this type of material, for example, a single metal such as Al (aluminum), Ag (silver), Au (gold), Cu (copper), or an alloy mainly composed of Au, Cu, or Ag is preferably used. The In this embodiment, the reflective layer 12 is made of Al and has a thickness of 100 nm.

反射層12上には、透明層302が形成される。透明層302はSiOまたはSiNで形成され、本実施形態では、赤色発光素子U1、緑色発光素子U2および青色発光素子U3ごとに透明層302の膜厚を変え、各発光素子ごとに反射層12と対向電極22との間の距離を調節している。本実施形態では、赤色発光素子U1においては透明層302を3層にして層厚を150nmとした。また、緑色発光素子U2においては透明層302を2層にして層厚を100nmとした。さらに、青色発光素子U3においては透明層302を1層にして層厚を70nmとした。 A transparent layer 302 is formed on the reflective layer 12. The transparent layer 302 is formed of SiO 2 or SiN. In this embodiment, the thickness of the transparent layer 302 is changed for each of the red light emitting element U1, the green light emitting element U2, and the blue light emitting element U3. And the counter electrode 22 are adjusted. In the present embodiment, in the red light emitting element U1, the transparent layer 302 has three layers and the layer thickness is 150 nm. Further, in the green light emitting device U2, the transparent layer 302 is formed in two layers and the layer thickness is set to 100 nm. Further, in the blue light emitting element U3, the transparent layer 302 is one layer and the layer thickness is 70 nm.

透明層302上には、画素電極(陽極)15が形成される。本実施形態では、画素電極15はITOの透明導電膜から形成される。また、本実施形態では、反射層12と対向電極22との距離は前記透明層302で調節するため、画素電極15の膜厚は、赤色発光素子U1、緑色発光素子U2および青色発光素子U3において同一の膜厚に設定されている。一例として、本実施形態では、画素電極15の膜厚を20nmに設定した。このように、本実施形態では、各色の発光素子において画素電極15の膜厚を同一にしたので、画素部の凹凸を極力減らすことができる。   A pixel electrode (anode) 15 is formed on the transparent layer 302. In the present embodiment, the pixel electrode 15 is formed of an ITO transparent conductive film. In this embodiment, since the distance between the reflective layer 12 and the counter electrode 22 is adjusted by the transparent layer 302, the film thickness of the pixel electrode 15 in the red light emitting element U1, the green light emitting element U2, and the blue light emitting element U3. The same film thickness is set. As an example, in the present embodiment, the film thickness of the pixel electrode 15 is set to 20 nm. Thus, in this embodiment, since the film thickness of the pixel electrode 15 was made the same in each color light emitting element, the unevenness | corrugation of a pixel part can be reduced as much as possible.

上述したコンタクトホール360を埋めるように上下導通部330が形成され、回路素子膜11と画素電極15との導通が図られる。本実施形態では、上下導通部330にはAl(アルミニウム)を用いた。   A vertical conduction portion 330 is formed so as to fill the contact hole 360 described above, and conduction between the circuit element film 11 and the pixel electrode 15 is achieved. In the present embodiment, Al (aluminum) is used for the vertical conduction portion 330.

画素電極15上には、OLED層16が形成される。OLED層16は、正孔注入層上に形成された正孔輸送層(HTL:Hole transport layer)と、正孔輸送層上に形成された発光層(EML:Emitting Layer)と、発光層上に形成された電子輸送層(ETL:Electron Transport Layer)とからなる。この例において、OLED層16は、発光素子U1、U2、U3において一体として形成され、膜厚も同一である。   An OLED layer 16 is formed on the pixel electrode 15. The OLED layer 16 includes a hole transport layer (HTL) formed on the hole injection layer, a light emitting layer (EML) formed on the hole transport layer, and a light emitting layer. It consists of the formed electron transport layer (ETL: Electron Transport Layer). In this example, the OLED layer 16 is integrally formed in the light emitting elements U1, U2, U3, and has the same film thickness.

本実施形態では、正孔輸送層(HTL)は図2に示すようにα−NPDで形成される。本実施形態では、正孔輸送層の膜厚を40nmとした。
発光層(EML)は、正孔と電子が結合して発光する有機EL物質から形成されている。本実施形態では、有機EL物質は低分子材料であって、白色光を発する。赤色のホスト材料および赤色のドーパント材料、ならびに緑色および青色のホスト材料としては図2に示すものが使用される。さらに、青色のドーパント材料としてはDPAVBi(4,4´−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル)が使用される。緑色のドーパント材料としてはキナクリドンが使用される。本実施形態では、発光層(EML)の膜厚を50nmとした。
電子輸送層(ETL)は図2に示すように、Alq3(トリス8−キノリノラトアルミニウム錯体)で形成される。本実施形態では、電子輸送層の膜厚を40nmとした。
In the present embodiment, the hole transport layer (HTL) is formed of α-NPD as shown in FIG. In the present embodiment, the thickness of the hole transport layer is 40 nm.
The light emitting layer (EML) is formed of an organic EL material that emits light by combining holes and electrons. In the present embodiment, the organic EL material is a low molecular material and emits white light. As the red host material and the red dopant material, and the green and blue host materials, those shown in FIG. 2 are used. Further, DPAVBi (4,4′-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl) is used as a blue dopant material. Quinacridone is used as the green dopant material. In the present embodiment, the thickness of the light emitting layer (EML) is 50 nm.
The electron transport layer (ETL) is formed of Alq3 (tris 8-quinolinolato aluminum complex) as shown in FIG. In this embodiment, the thickness of the electron transport layer is 40 nm.

OLED層16上には、対向電極22(陰極)が形成される。対向電極22は、OLED層16を覆うように形成され、複数の発光素子U1、U2、U3に渡って連続している。対向電極22は、その表面に到達した光の一部を透過するとともに他の一部を反射する性質(すなわち半透過反射性)を持った半透過反射層として機能し、例えばマグネシウムや銀などの単体金属、またはマグネシウムや銀を主成分とする合金から形成される。本実施形態では、対向電極30は、MgAg(マグネシウム銀合金)で形成される。対向電極22の膜厚は、10nmとした。   A counter electrode 22 (cathode) is formed on the OLED layer 16. The counter electrode 22 is formed so as to cover the OLED layer 16 and is continuous over the plurality of light emitting elements U1, U2, and U3. The counter electrode 22 functions as a transflective layer having a property of transmitting part of the light reaching the surface and reflecting the other part (that is, transflective), such as magnesium or silver. It is formed from a single metal or an alloy mainly composed of magnesium or silver. In the present embodiment, the counter electrode 30 is made of MgAg (magnesium silver alloy). The thickness of the counter electrode 22 was 10 nm.

対向電極22上には、封止層30が形成される。封止層30は、透明の樹脂材料、例えばエポキシ樹脂などの硬化性樹脂から形成される。本実施形態では、封止層30をエポキシ樹脂などの硬化性樹脂で形成し、層厚を400nmとした。また、この封止層30上には、赤色、緑色、青色のカラーフィルター40、41、42および遮光膜32が形成される。さらに、赤色、緑色、青色のカラーフィルター40、41、42および遮光膜32上には、第2基板50が設けられ、第2基板50は封止層30を介して第1基板10とを貼り合わせられる。第2基板50はガラスなどの光透過性を有する材料で形成される。第2基板50の厚さは0.5mmとした。   A sealing layer 30 is formed on the counter electrode 22. The sealing layer 30 is formed from a transparent resin material, for example, a curable resin such as an epoxy resin. In the present embodiment, the sealing layer 30 is formed of a curable resin such as an epoxy resin, and the layer thickness is set to 400 nm. On the sealing layer 30, red, green, and blue color filters 40, 41, and 42 and a light shielding film 32 are formed. Furthermore, a second substrate 50 is provided on the red, green, and blue color filters 40, 41, and 42 and the light shielding film 32, and the second substrate 50 is attached to the first substrate 10 with the sealing layer 30 interposed therebetween. Adapted. The second substrate 50 is formed of a light transmissive material such as glass. The thickness of the second substrate 50 was 0.5 mm.

本実施形態の発光素子U1、U2、U3においては、反射層12と光取り出し側半透明反射層としての対向電極22との間でOLED層16が発する光を共振させる共振器構造が形成される。これにより、特定の波長の光を効率良く取り出すことができる。   In the light emitting elements U1, U2, and U3 of the present embodiment, a resonator structure that resonates light emitted from the OLED layer 16 is formed between the reflective layer 12 and the counter electrode 22 as the light extraction side translucent reflective layer. . Thereby, the light of a specific wavelength can be taken out efficiently.

<A−2:光学構造>
次に、本実施形態の発光装置E1における光学構造について説明する。本実施形態における発光装置E1は、反射層12から光取り出し側半透明反射層としての対向電極22までの光学的距離を所定値に設定することにより、反射層12から対向電極22に定在波を発生させる共振構造を採用している。
<A-2: Optical structure>
Next, the optical structure in the light emitting device E1 of the present embodiment will be described. The light emitting device E1 in the present embodiment sets a standing wave from the reflective layer 12 to the counter electrode 22 by setting an optical distance from the reflective layer 12 to the counter electrode 22 as the light extraction side translucent reflective layer to a predetermined value. Resonance structure that generates

具体的には、反射層12から対向電極22間の光学的距離をD、反射層12での反射における位相シフトをφ、対向電極22での反射における位相シフトをφ、定在波のピーク波長をλ、整数をmとすると、下記の式を満たす構造となっている。
D={(2πm+φ+φ)/4π}λ・・・(3)
Specifically, the optical distance between the reflective layer 12 and the counter electrode 22 is D, the phase shift in reflection at the reflective layer 12 is φ L , the phase shift in reflection at the counter electrode 22 is φ U , and the standing wave When the peak wavelength is λ and the integer is m, the structure satisfies the following formula.
D = {(2πm + φ L + φ U ) / 4π} λ (3)

上記(3)式で、Alの反射層12とMgAgの対向電極22の間のOLED層16および透明層302の屈折率nを1.8として、反射層12から対向電極22間の光学的距離Dと、整数m、および、赤色、緑色、青色の各色を想定してピーク波長をプロットした図が図3である。   In the above formula (3), the refractive index n of the OLED layer 16 and the transparent layer 302 between the Al reflective layer 12 and the MgAg counter electrode 22 is 1.8, and the optical distance between the reflective layer 12 and the counter electrode 22 is 1.8. FIG. 3 is a diagram in which peak wavelengths are plotted assuming D, an integer m, and red, green, and blue colors.

図3に示すように、斜線部の150〜200nmの領域では、可視光領域の光が取り出し難い領域であることがわる。つまり、AlからMgAgまでの膜厚を、上記(3)式でm=0の場合の光学構造における赤色のピーク波長が得られる膜厚と、上記(3)式でm=1の場合の光学構造における青色のピーク波長が得られる膜厚との間に設定すれば、可視光領域の光が取り出し難いことがわかる。   As shown in FIG. 3, it can be understood that light in the visible light region is difficult to extract in the shaded region of 150 to 200 nm. That is, the film thickness from Al to MgAg is such that the red peak wavelength in the optical structure when m = 0 in the above equation (3) is obtained, and the optical when m = 1 in the above equation (3). It can be seen that light in the visible light region is difficult to extract if it is set between the film thickness and the blue peak wavelength in the structure.

本実施形態では、図1に示すように、透明導電膜の画素電極15にAlの上下導通部330が接触している。従って、この上下導通部330の上面からMgAgの対向電極22までの膜厚(図1に矢印D4で示す膜厚)を、150〜200nmになるように設定することにより、上下導通部330と対向電極22で挟まれた領域からは、可視光領域の光が取り出し難くなる。その結果、上下導通部330からの反射光が生じ難くなり、混色の発生を抑えることができ、色域が狭くなることを防止することができる。   In the present embodiment, as shown in FIG. 1, the Al vertical conduction part 330 is in contact with the pixel electrode 15 of the transparent conductive film. Therefore, by setting the film thickness (the film thickness indicated by the arrow D4 in FIG. 1) from the upper surface of the vertical conduction part 330 to the MgAg counter electrode 22 to be 150 to 200 nm, it is opposed to the vertical conduction part 330. From the region sandwiched between the electrodes 22, it becomes difficult to extract light in the visible light region. As a result, it is difficult for reflected light from the vertical conduction portion 330 to be generated, color mixture can be suppressed, and the color gamut can be prevented from being narrowed.

本実施形態では、OLED層16の膜厚が130nmに設定され、画素電極15の膜厚が20nmに設定されている。従って、Alの上下導通部330の上面からMgAgの対向電極22までの膜厚(図1に矢印D4で示す膜厚)は、150nmに設定されている。   In the present embodiment, the film thickness of the OLED layer 16 is set to 130 nm, and the film thickness of the pixel electrode 15 is set to 20 nm. Therefore, the film thickness from the upper surface of the Al vertical conduction part 330 to the MgAg counter electrode 22 (the film thickness indicated by the arrow D4 in FIG. 1) is set to 150 nm.

また、赤色発光素子U1における反射層12と対向電極22の間の膜厚(図1に矢印D1で示す膜厚)、緑色発光素子U2における反射層12と対向電極22の間の膜厚(図1に矢印D2で示す膜厚)、および、青色発光素子U3における反射層12と対向電極22の間の膜厚(図1に矢印D3で示す膜厚)のそれぞれは、m=1の場合に上記(3)式を満たすように設定されている。従って、赤色発光素子U1、緑色発光素子U2、および、青色発光素子U3の各画素領域においては、高い光取り出し効率で各色の光を良好に取り出すことができる。しかも、上述のように、上下導通部330からの反射光が生じ難くなり、混色の発生を抑えることができ、色域が狭くなることを防止することができる。   Further, the film thickness between the reflective layer 12 and the counter electrode 22 in the red light emitting element U1 (the film thickness indicated by the arrow D1 in FIG. 1), and the film thickness between the reflective layer 12 and the counter electrode 22 in the green light emitting element U2 (see FIG. 1 and the film thickness between the reflective layer 12 and the counter electrode 22 in the blue light emitting element U3 (film thickness indicated by the arrow D3 in FIG. 1) are respectively when m = 1. It is set to satisfy the above equation (3). Therefore, in each pixel region of the red light emitting element U1, the green light emitting element U2, and the blue light emitting element U3, light of each color can be extracted with high light extraction efficiency. In addition, as described above, it is difficult for reflected light from the vertical conduction portion 330 to be generated, so that the occurrence of color mixing can be suppressed, and the color gamut can be prevented from becoming narrow.

<B:実施例2>
次に、本実施形態の実施例2の発光装置について説明する。実施例1で説明した図1の例は、反射層をAl、対向電極をMgAgとした場合の計算結果であるが、反射層としてAl以外の材料を用いた場合でも、同様に可視光領域の光が殆ど得られない膜厚がある。従って、上下導通部330にAl以外の材料を用いた場合でも、上下導通部330から対向電極22までの膜厚を、上記(3)式でm=0の場合の光学構造における赤色のピーク波長が得られる膜厚と、上記(3)式でm=1の場合の光学構造における青色のピーク波長が得られる膜厚との間に設定すれば、可視光領域の光が取り出し難くなり、上下導通部330からの反射光の発生を抑えることができる。
<B: Example 2>
Next, the light emitting device of Example 2 of the present embodiment will be described. The example of FIG. 1 described in Example 1 is a calculation result when the reflective layer is made of Al and the counter electrode is made of MgAg, but even when a material other than Al is used as the reflective layer, the visible light region is similarly displayed. There is a film thickness where almost no light can be obtained. Therefore, even when a material other than Al is used for the vertical conduction portion 330, the film thickness from the vertical conduction portion 330 to the counter electrode 22 is set to the red peak wavelength in the optical structure when m = 0 in the above equation (3). And the film thickness at which the blue peak wavelength in the optical structure when m = 1 in the above equation (3) is obtained, it becomes difficult to extract light in the visible light region. Generation of reflected light from the conducting portion 330 can be suppressed.

実施例2は、上下導通部330にAl以外の材料を用いた例である。上下導通部330に、Alよりも反射率の低い金属材料を用いれば、より一層確実に上下導通部330からの反射光の発生を抑えることができる。   Example 2 is an example in which a material other than Al is used for the vertical conduction part 330. If a metal material having a reflectance lower than that of Al is used for the vertical conduction part 330, generation of reflected light from the vertical conduction part 330 can be suppressed more reliably.

そこで、実施例2では、上下導通部330に、Cr(クロム)、Mo(モリブデン)、チタン(Ti)、窒化チタン(TiN)、タングステン(W)などを用いる。特に、タングステン(W)は、上下導通部330の材料としてよく使われる材料であり、製造プロセス上も容易に上下導通部330を形成することができる。また、これらのCr、Ti、TiN、Wは、透明導電膜のITOと接触しても電蝕が生じないという利点もある。   In the second embodiment, therefore, Cr (chromium), Mo (molybdenum), titanium (Ti), titanium nitride (TiN), tungsten (W), or the like is used for the vertical conduction portion 330. In particular, tungsten (W) is a material often used as a material of the vertical conduction part 330, and the vertical conduction part 330 can be easily formed in the manufacturing process. Further, Cr, Ti, TiN, and W also have an advantage that no electrolytic corrosion occurs even when they come into contact with ITO of the transparent conductive film.

実施例2では、上下導通部330を、Cr(クロム)、Mo(モリブデン)、チタン(Ti)、窒化チタン(TiN)、タングステン(W)などで形成し、上下導通部330から対向電極22までの膜厚を、上記(3)式でm=0の場合の光学構造における赤色のピーク波長が得られる膜厚と、上記(3)式でm=1の場合の光学構造における青色のピーク波長が得られる膜厚との間に設定した。
その結果、可視光領域の光が取り出し難くなり、かつ、上下導通部330の反射率がAlよりも低いので、上下導通部330からの反射光の発生をより一層確実に抑えることができる。
In Example 2, the vertical conduction part 330 is formed of Cr (chromium), Mo (molybdenum), titanium (Ti), titanium nitride (TiN), tungsten (W), etc., and from the vertical conduction part 330 to the counter electrode 22. Of the optical structure when m = 0 in the above equation (3) and the blue peak wavelength in the optical structure when m = 1 in the above equation (3) Is set between the film thickness and
As a result, it becomes difficult to extract light in the visible light region, and since the reflectance of the vertical conduction part 330 is lower than that of Al, generation of reflected light from the vertical conduction part 330 can be suppressed more reliably.

<C:実施例3>
次に、本実施形態の実施例3の発光装置について説明する。実施例3では、上下導通部330をCu(銅)、または、Cuを主成分とした合金で形成した。
上下導通部330に、CuまたはCuを主成分とした材料を用いることにより、赤色領域では反射率が高いものの、青色領域の反射率は低く、可視光領域の光が出てこないように設計しやすいという利点がある。
また、上下導通部330に、CuまたはCuを主成分とした材料を用いた場合には、上下導通部330をダマシン法で形成しやすく、Si等を用いる半導体製造ラインで製造することができるという利点がある。
実施例3によれば、可視光領域の光が取り出し難くなり、かつ、上下導通部330の反射率がAlよりも低いので、上下導通部330からの反射光の発生をより一層確実に抑えることができる。しかも、上下導通部330の製造も容易になる。
<C: Example 3>
Next, a light emitting device of Example 3 of the present embodiment will be described. In Example 3, the vertical conduction part 330 was formed of Cu (copper) or an alloy containing Cu as a main component.
By using a material having Cu or Cu as a main component for the vertical conduction part 330, the reflectance in the red region is high, but the reflectance in the blue region is low, and the light in the visible light region is not emitted. There is an advantage that it is easy.
In addition, when the vertical conduction part 330 is made of Cu or a material mainly composed of Cu, the vertical conduction part 330 can be easily formed by a damascene method, and can be manufactured on a semiconductor production line using Si or the like. There are advantages.
According to the third embodiment, it is difficult to extract light in the visible light region, and the reflectance of the vertical conduction portion 330 is lower than that of Al, so that the generation of reflected light from the vertical conduction portion 330 is more reliably suppressed. Can do. In addition, the vertical conduction portion 330 can be easily manufactured.

<D:実施例4>
次に、本実施形態の実施例4の発光装置を図4に基づいて説明する。実施例3では、図4に示すように、上下導通部330と対向電極22の間に絶縁層370を設ける。絶縁層370は、SiOやSiNで形成する。
上下導通部330と対向電極22の間に絶縁層370を設けることより、上下導通部330からの反射光をより一層確実に防止することができる。
<D: Example 4>
Next, the light-emitting device of Example 4 of this embodiment is demonstrated based on FIG. In Example 3, as shown in FIG. 4, an insulating layer 370 is provided between the vertical conduction portion 330 and the counter electrode 22. The insulating layer 370 is formed of SiO 2 or SiN.
By providing the insulating layer 370 between the vertical conduction part 330 and the counter electrode 22, the reflected light from the vertical conduction part 330 can be more reliably prevented.

実施例4においても、上下導通部330から対向電極22までの膜厚を、上記(3)式でm=0の場合の光学構造における赤色のピーク波長が得られる膜厚と、上記(3)式でm=1の場合の光学構造における青色のピーク波長が得られる膜厚との間に設定する。   Also in Example 4, the film thickness from the vertical conduction part 330 to the counter electrode 22 is such that the red peak wavelength in the optical structure when m = 0 in the above equation (3) is obtained, and (3) above. It sets between the film thickness from which the blue peak wavelength in the optical structure in the case of m = 1 is obtained by a type | formula.

また、上下導通部330と対向電極22の間に絶縁層370は、実施例1から実施例3までのどの発光装置に設けてもよい。また、図4の例では、隣の発光素子の画素電極15に重ならないように絶縁層370を形成したが、本発明はこの例に限定されるものではない。例えば、緑色発光素子U2の画素電極15と絶縁層370を覆うと共に、隣の赤色発光素子U1の画素電極15の端部にも絶縁層370が重なるように形成してもよい。つまり、図4における絶縁層370を隣の発光素子の画素電極15の端部に重なるように形成してもよい。
実施例4によれば、可視光領域の光が取り出し難くなり、かつ、上下導通部330を絶縁層370で覆うので、上下導通部330からの反射光の発生をより一層確実に抑えることができる。
Further, the insulating layer 370 may be provided in any light emitting device from the first embodiment to the third embodiment between the vertical conduction portion 330 and the counter electrode 22. In the example of FIG. 4, the insulating layer 370 is formed so as not to overlap the pixel electrode 15 of the adjacent light emitting element, but the present invention is not limited to this example. For example, the pixel electrode 15 and the insulating layer 370 of the green light emitting element U2 may be covered and the insulating layer 370 may be overlapped with the end of the pixel electrode 15 of the adjacent red light emitting element U1. That is, the insulating layer 370 in FIG. 4 may be formed so as to overlap with the end portion of the pixel electrode 15 of the adjacent light emitting element.
According to the fourth embodiment, it is difficult to extract light in the visible light region, and the vertical conduction portion 330 is covered with the insulating layer 370, and therefore, the generation of reflected light from the vertical conduction portion 330 can be further reliably suppressed. .

<E:応用例>
次に、本発明に係る発光装置を利用した電子機器について説明する。図5は、上述の実施形態に係る発光装置E1を表示装置として採用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。パーソナルコンピュータ2000は、表示装置としての発光装置E1と本体部2010とを備える。本体部2010には、電源スイッチ2001およびキーボード2002が設けられている。この発光装置E1は有機EL素子を使用しているので、視野角が広く見易い画面を表示できる。
<E: Application example>
Next, an electronic apparatus using the light emitting device according to the present invention will be described. FIG. 5 is a perspective view showing a configuration of a mobile personal computer adopting the light emitting device E1 according to the above-described embodiment as a display device. The personal computer 2000 includes a light emitting device E1 as a display device and a main body 2010. The main body 2010 is provided with a power switch 2001 and a keyboard 2002. Since the light emitting device E1 uses an organic EL element, it is possible to display an easy-to-see screen with a wide viewing angle.

図6に、上述の実施形態に係る発光装置E1を適用した携帯電話機の構成を示す。携帯電話機3000は、複数の操作ボタン3001およびスクロールボタン3002、ならびに表示装置としての発光装置E1を備える。スクロールボタン3002を操作することによって、発光装置E1に表示される画面がスクロールされる。   FIG. 6 shows a configuration of a mobile phone to which the light emitting device E1 according to the above-described embodiment is applied. The cellular phone 3000 includes a plurality of operation buttons 3001, scroll buttons 3002, and a light emitting device E1 as a display device. By operating the scroll button 3002, the screen displayed on the light emitting device E1 is scrolled.

図7に、上述の実施形態に係る発光装置E1を適用した携帯情報端末(PDA:Personal Digital Assistant)の構成を示す。情報携帯端末4000は、複数の操作ボタン4001および電源スイッチ4002、ならびに表示装置としての発光装置E1を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が発光装置E1に表示される。   FIG. 7 shows a configuration of a portable information terminal (PDA: Personal Digital Assistant) to which the light emitting device E1 according to the above-described embodiment is applied. The information portable terminal 4000 includes a plurality of operation buttons 4001, a power switch 4002, and a light emitting device E1 as a display device. When the power switch 4002 is operated, various kinds of information such as an address book and a schedule book are displayed on the light emitting device E1.

なお、本発明に係る発光装置が適用される電子機器としては、図5から図7に示したもののほか、デジタルスチルカメラ、テレビ、ビデオカメラ、カーナビゲーション装置、ページャ、電子手帳、電子ペーパー、電卓、ワードプロセッサー、ワークステーション、テレビ電話、POS端末、プリンター、スキャナー、複写機、ビデオプレーヤ、タッチパネルを備えた機器等などが挙げられる。   Electronic devices to which the light emitting device according to the present invention is applied include those shown in FIGS. 5 to 7, digital still cameras, televisions, video cameras, car navigation devices, pagers, electronic notebooks, electronic papers, calculators. , Word processors, workstations, videophones, POS terminals, printers, scanners, copiers, video players, devices equipped with touch panels, and the like.

なお、上述した実施形態においては、各発光素子の光学構造を、上記(3)式において整数mが1となる場合について説明したが、本発明はこれに限定されるものでなく、整数mが2以上となる場合にも適用可能である。   In the embodiment described above, the optical structure of each light emitting element has been described for the case where the integer m is 1 in the above formula (3), but the present invention is not limited to this, and the integer m is The present invention can also be applied when the number is two or more.

10……第1基板、11……回路素子薄膜、12……反射層、15……画素電極、16……OLED層、22……対向電極、30……封止層、32……遮光膜、40……赤色用カラーフィルター、41……緑色用カラーフィルター、42……青色用カラーフィルター、50……第2基板、301……層間絶縁膜、302……透明層、330……上下導通部、360……コンタクトホール、370……絶縁膜、E1……発光装置、U1…赤色発光素子、U2…緑色発光素子、U3…青色発光素子
DESCRIPTION OF SYMBOLS 10 ... 1st board | substrate, 11 ... Circuit element thin film, 12 ... Reflective layer, 15 ... Pixel electrode, 16 ... OLED layer, 22 ... Counter electrode, 30 ... Sealing layer, 32 ... Light shielding film 40 …… Red color filter, 41 …… Green color filter, 42 …… Blue color filter, 50 …… Second substrate, 301 …… Interlayer insulating film, 302 …… Transparent layer, 330 …… Vertical conduction 360, contact hole, 370, insulating film, E1, light emitting device, U1, red light emitting element, U2, green light emitting element, U3, blue light emitting element.

Claims (6)

赤色発光素子、青色発光素子、および緑色発光素子と、回路素子が形成された基板と、を備えた発光装置であって、
前記赤色発光素子、前記青色発光素子、および前記緑色発光素子の各々は、
前記基板上に形成された光反射層と、
前記光反射層上に形成された透明層と、
前記透明層上に形成された画素電極と、
前記透明層および画素電極上に形成された発光層と、
前記発光層上に形成された対向電極と、
前記回路素子と前記画素電極との導通を図る上下導通部とを備え、
前記光反射層から対向電極間の距離をD、前記光反射層での反射における位相シフトをφ、前記対向電極での反射における位相シフトをφ、前記光反射層と対向電極の間に発生する定在波のピーク波長をλ、2以下の整数をmとしたとき、次の式
D={(2πm+φ+φ)/4π}λ
を満たす光学構造を有し、
前記上下導通部と前記画素電極との界面から前記対向電極までの長さは、前記式においてm=0の場合の赤色のピーク波長が得られる距離Dから、前記式においてm=1の場合の青色のピーク波長が得られる距離Dまでの値に設定されている、
ことを特徴とする発光装置。
A light emitting device comprising a red light emitting element, a blue light emitting element, and a green light emitting element, and a substrate on which a circuit element is formed,
Each of the red light emitting element, the blue light emitting element, and the green light emitting element is
A light reflecting layer formed on the substrate;
A transparent layer formed on the light reflecting layer;
A pixel electrode formed on the transparent layer;
A light emitting layer formed on the transparent layer and the pixel electrode;
A counter electrode formed on the light emitting layer;
A vertical conduction part for conducting the circuit element and the pixel electrode;
The distance between the light reflection layer and the counter electrode is D, the phase shift in reflection at the light reflection layer is φ L , the phase shift in reflection at the counter electrode is φ U , and the distance between the light reflection layer and the counter electrode is When the peak wavelength of the generated standing wave is λ, and an integer equal to or less than 2 is m, the following formula D = {(2πm + φ L + φ U ) / 4π} λ
Having an optical structure satisfying
The length from the interface between the vertical conduction part and the pixel electrode to the counter electrode is the distance D from which the red peak wavelength is obtained when m = 0 in the equation, and the length when m = 1 in the equation. It is set to a value up to the distance D at which the blue peak wavelength is obtained,
A light emitting device characterized by that.
前記発光層は、前記赤色発光素子、前記緑色発光素子、前記青色発光素子において、同一の膜厚で一体に形成されることを特徴する請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the light emitting layer is integrally formed with the same film thickness in the red light emitting element, the green light emitting element, and the blue light emitting element. 前記上下導通部は、Al、Cr、Mo、Ti、TiN、W、Cu、もしくはこれらを主成分とした合金で形成することを特徴する請求項1または2に記載の発光装置   3. The light emitting device according to claim 1, wherein the vertical conduction portion is formed of Al, Cr, Mo, Ti, TiN, W, Cu, or an alloy containing these as a main component. 前記画素電極は透明導電膜で形成されており、前記赤色発光素子、前記緑色発光素子、前記青色発光素子において前記画素電極の膜厚が同一であることを特徴とする請求項1ないし請求項3のいずれか一記載の発光装置。   4. The pixel electrode is formed of a transparent conductive film, and the film thickness of the pixel electrode is the same in the red light emitting element, the green light emitting element, and the blue light emitting element. The light emitting device according to any one of the above. 前記上下導通部と前記対向電極との間に絶縁層を形成したことを特徴とする請求項1ないし請求項4のいずれか一記載の発光装置。   5. The light emitting device according to claim 1, wherein an insulating layer is formed between the vertical conduction portion and the counter electrode. 請求項1ないし請求項5のいずれか一記載の発光装置を備えたことを特徴とする電子機器。
An electronic apparatus comprising the light emitting device according to any one of claims 1 to 5.
JP2011121791A 2011-05-31 2011-05-31 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE Active JP5741221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121791A JP5741221B2 (en) 2011-05-31 2011-05-31 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121791A JP5741221B2 (en) 2011-05-31 2011-05-31 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Publications (2)

Publication Number Publication Date
JP2012248517A true JP2012248517A (en) 2012-12-13
JP5741221B2 JP5741221B2 (en) 2015-07-01

Family

ID=47468760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121791A Active JP5741221B2 (en) 2011-05-31 2011-05-31 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Country Status (1)

Country Link
JP (1) JP5741221B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011913A (en) * 2013-07-01 2015-01-19 セイコーエプソン株式会社 Light emitting device and electronic apparatus
KR20160032338A (en) * 2014-09-15 2016-03-24 삼성디스플레이 주식회사 Organic light-emitting display apparatus and manufacturing the same
WO2016125347A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Display device and electronic instrument
GB2544899A (en) * 2015-11-30 2017-05-31 Lg Display Co Ltd Organic light emitting display device and head mounted display including the same
JP2017107887A (en) * 2017-03-27 2017-06-15 セイコーエプソン株式会社 Electro-optic device and electronic equipment
JP2017220452A (en) * 2016-06-06 2017-12-14 セイコーエプソン株式会社 Organic el device, method for manufacturing organic el device, and electronic instrument
JP2018029070A (en) * 2017-10-02 2018-02-22 セイコーエプソン株式会社 Light-emitting device and electronic apparatus
JP2018088417A (en) * 2018-02-02 2018-06-07 セイコーエプソン株式会社 Light-emitting device, manufacturing method for the same, and electronic apparatus
JP2018125302A (en) * 2018-05-01 2018-08-09 セイコーエプソン株式会社 Electrooptic device, manufacturing method for the same and electronic equipment
US10115778B2 (en) 2013-06-05 2018-10-30 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
JP2019021642A (en) * 2018-10-30 2019-02-07 セイコーエプソン株式会社 Electro-optic device, manufacturing method of electro-optic device, and electronic apparatus
JP2019054006A (en) * 2018-12-19 2019-04-04 セイコーエプソン株式会社 Light-emitting device and electronic equipment
JP2019179717A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Organic electroluminescent display device
US10490776B2 (en) 2014-12-25 2019-11-26 Seiko Epson Corporation Electro-optical apparatus, manufacturing method thereof, and electronic device
US10714555B2 (en) 2013-08-27 2020-07-14 Seiko Epson Corporation Light emitting device and electronic equipment including a light reflection layer, an insulation layer, and a plurality of pixel electrodes
JP2020149983A (en) * 2018-12-19 2020-09-17 セイコーエプソン株式会社 Light-emitting device, manufacturing method for the same, and electronic apparatus
DE102020126488B4 (en) 2019-10-10 2023-07-06 Lg Display Co., Ltd. Organic light emission display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116516A (en) * 2003-09-19 2005-04-28 Sony Corp Display apparatus and method of manufacturing the same
JP2005197011A (en) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd Display device and manufacturing method of the same
US20060158403A1 (en) * 2004-07-22 2006-07-20 Hitoshi Kuma Color emitting device
JP2006253015A (en) * 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd Organic electroluminescence color light-emitting device
JP2007207460A (en) * 2006-01-31 2007-08-16 Seiko Epson Corp Organic electroluminescent device and electronic equipment, as well as manufacturing method of organic electroluminescent device
US20090251051A1 (en) * 2008-04-04 2009-10-08 Young-In Hwang Organic light emitting diode display and method for manufacturing the same
JP2010056017A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Color display device and method of manufacturing the same
JP2011096379A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Light-emitting device and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116516A (en) * 2003-09-19 2005-04-28 Sony Corp Display apparatus and method of manufacturing the same
JP2005197011A (en) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd Display device and manufacturing method of the same
US20060158403A1 (en) * 2004-07-22 2006-07-20 Hitoshi Kuma Color emitting device
JP2006253015A (en) * 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd Organic electroluminescence color light-emitting device
JP2007207460A (en) * 2006-01-31 2007-08-16 Seiko Epson Corp Organic electroluminescent device and electronic equipment, as well as manufacturing method of organic electroluminescent device
US20090251051A1 (en) * 2008-04-04 2009-10-08 Young-In Hwang Organic light emitting diode display and method for manufacturing the same
JP2010056017A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Color display device and method of manufacturing the same
JP2011096379A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Light-emitting device and electronic equipment

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541289B2 (en) 2013-06-05 2020-01-21 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10115778B2 (en) 2013-06-05 2018-10-30 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10991779B2 (en) 2013-06-05 2021-04-27 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10044000B2 (en) 2013-07-01 2018-08-07 Seiko Epson Corporation Light-emitting device and electronic apparatus
US10608208B2 (en) 2013-07-01 2020-03-31 Seiko Epson Corporation Light-emitting device and electronic apparatus
JP2015011913A (en) * 2013-07-01 2015-01-19 セイコーエプソン株式会社 Light emitting device and electronic apparatus
US9647238B2 (en) 2013-07-01 2017-05-09 Seiko Epson Corporation Light-emitting device and electronic apparatus
US10957876B2 (en) 2013-07-01 2021-03-23 Seiko Epson Corporation Light-emitting device and electronic apparatus
US11882724B2 (en) 2013-07-01 2024-01-23 Seiko Epson Corporation Light-emitting device and electronic apparatus
US11404673B2 (en) 2013-07-01 2022-08-02 Seiko Epson Corporation Light-emitting device and electronic apparatus
US11895871B2 (en) 2013-08-27 2024-02-06 Seiko Epson Corporation Light emitting device and electronic equipment including a light reflection layer, an insulation layer, and a plurality of pixel electrodes
US11374077B2 (en) 2013-08-27 2022-06-28 Seiko Epson Corporation Light emitting device and electronic equipment including a light reflection layer, an insulation layer, and a plurality of pixel electrodes
US11557637B2 (en) 2013-08-27 2023-01-17 Seiko Epson Corporation Light emitting device and electronic equipment including a light reflection layer, an insulation layer, and a plurality of pixel electrodes
US10714555B2 (en) 2013-08-27 2020-07-14 Seiko Epson Corporation Light emitting device and electronic equipment including a light reflection layer, an insulation layer, and a plurality of pixel electrodes
KR102310902B1 (en) 2014-09-15 2021-10-12 삼성디스플레이 주식회사 Organic light-emitting display apparatus and manufacturing the same
US9570710B2 (en) 2014-09-15 2017-02-14 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same including RGB insulating layer configuration
KR20160032338A (en) * 2014-09-15 2016-03-24 삼성디스플레이 주식회사 Organic light-emitting display apparatus and manufacturing the same
US10490776B2 (en) 2014-12-25 2019-11-26 Seiko Epson Corporation Electro-optical apparatus, manufacturing method thereof, and electronic device
CN107211505A (en) * 2015-02-03 2017-09-26 索尼公司 Display device and electronic equipment
US10541275B2 (en) 2015-02-03 2020-01-21 Sony Corporation Display device and electronic apparatus
CN107211505B (en) * 2015-02-03 2020-06-23 索尼公司 Display device and electronic apparatus
WO2016125347A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Display device and electronic instrument
GB2544899B (en) * 2015-11-30 2019-06-05 Lg Display Co Ltd Organic light emitting display device and head mounted display including a bank formed of color changing material
US10283571B2 (en) 2015-11-30 2019-05-07 Lg Display Co., Ltd. Organic light emitting display device with bank structure for enhanced image quality and head mounted display including the same
GB2544899A (en) * 2015-11-30 2017-05-31 Lg Display Co Ltd Organic light emitting display device and head mounted display including the same
US20170154930A1 (en) 2015-11-30 2017-06-01 Lg Display Co., Ltd. Organic light emitting display device and head mounted display including the same
DE102016118494B4 (en) 2015-11-30 2023-11-02 Lg Display Co., Ltd. ORGANIC LIGHT EMITTING DISPLAY DEVICE AND HEAD-MOUNTED DISPLAY INCLUDING THE SAME
JP2017220452A (en) * 2016-06-06 2017-12-14 セイコーエプソン株式会社 Organic el device, method for manufacturing organic el device, and electronic instrument
JP2017107887A (en) * 2017-03-27 2017-06-15 セイコーエプソン株式会社 Electro-optic device and electronic equipment
JP2018029070A (en) * 2017-10-02 2018-02-22 セイコーエプソン株式会社 Light-emitting device and electronic apparatus
JP2018088417A (en) * 2018-02-02 2018-06-07 セイコーエプソン株式会社 Light-emitting device, manufacturing method for the same, and electronic apparatus
JP7031446B2 (en) 2018-03-30 2022-03-08 大日本印刷株式会社 Organic electroluminescence display device
JP2019179717A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Organic electroluminescent display device
JP2018125302A (en) * 2018-05-01 2018-08-09 セイコーエプソン株式会社 Electrooptic device, manufacturing method for the same and electronic equipment
JP2019021642A (en) * 2018-10-30 2019-02-07 セイコーエプソン株式会社 Electro-optic device, manufacturing method of electro-optic device, and electronic apparatus
JP2020149983A (en) * 2018-12-19 2020-09-17 セイコーエプソン株式会社 Light-emitting device, manufacturing method for the same, and electronic apparatus
JP2019054006A (en) * 2018-12-19 2019-04-04 セイコーエプソン株式会社 Light-emitting device and electronic equipment
DE102020126488B4 (en) 2019-10-10 2023-07-06 Lg Display Co., Ltd. Organic light emission display device
US11839114B2 (en) 2019-10-10 2023-12-05 Lg Display Co., Ltd. Organic light emitting display device including reflection electrode and first electrode with dielectric layer therebetween

Also Published As

Publication number Publication date
JP5741221B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5741221B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5617700B2 (en) Light emitting device and method for manufacturing light emitting device
TWI740078B (en) Organic light emitting diode display
US7872412B2 (en) Organic light emitting display device and electronic device
JP5411469B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
WO2016056364A1 (en) Display device, display device manufacturing method, and electronic equipment
JP5418144B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
US8033675B2 (en) Light emitting device and electronic device
US8686448B2 (en) Light emitting device, electronic apparatus, and manufacturing method of light emitting device
JP4858379B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2015046280A (en) Light-emitting device and electronic device
CN108550713B (en) Organic light emitting display panel and display device thereof
US9343512B2 (en) Light-emitting device and electronic apparatus
JP2009266459A (en) Organic el device and electronic equipment
JP2012248432A (en) Light emitting device and electronic apparatus, and method for manufacturing light emitting device
JP5760699B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5613998B2 (en) Light emitting device and method for manufacturing light emitting device
CN108493210B (en) Organic light-emitting display panel and organic light-emitting display device thereof
JP2013089444A (en) Organic light-emitting device, manufacturing method therefor and electronic apparatus
JP2012256503A (en) Light-emitting device and electronic apparatus
JP5786675B2 (en) Organic light emitting device
JP2012252933A (en) Light emitting device and electronic equipment
JP2012252863A (en) Manufacturing method for light-emitting device
JP5803282B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP4962441B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350