JP2012248320A - Electrode manufacturing method, battery manufacturing method, electrode and battery - Google Patents

Electrode manufacturing method, battery manufacturing method, electrode and battery Download PDF

Info

Publication number
JP2012248320A
JP2012248320A JP2011117151A JP2011117151A JP2012248320A JP 2012248320 A JP2012248320 A JP 2012248320A JP 2011117151 A JP2011117151 A JP 2011117151A JP 2011117151 A JP2011117151 A JP 2011117151A JP 2012248320 A JP2012248320 A JP 2012248320A
Authority
JP
Japan
Prior art keywords
electrode
battery
active material
sintered body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011117151A
Other languages
Japanese (ja)
Inventor
Atsushi Fukunaga
篤史 福永
Shoichiro Sakai
将一郎 酒井
Koji Nitta
耕司 新田
Masatoshi Mashima
正利 真嶋
Shinji Inazawa
信二 稲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011117151A priority Critical patent/JP2012248320A/en
Publication of JP2012248320A publication Critical patent/JP2012248320A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode manufacturing method in which a manufacturing process is simplified, a battery manufacturing method, an electrode of which the internal resistance is reduced by reducing materials which are not contributed to capacity, and a battery comprising the electrode.SOLUTION: Powder of an active substance raw material and resin powder is mixed and a mixture is calcined in an inactive atmosphere. An active substance is sintered, a resin is thermally decomposed and voids are generated, thereby generating a porous active substance sintered body 11. Next, the active substance sintered body 11 is immersed in molten aluminum, thereby filling the active substance sintered body 11 with molten aluminum. The active substance sintered body 11 filled with molten aluminum is cooled. Molten aluminum is solidified by cooling, thereby manufacturing a positive electrode (electrode) 1 in which the active substance sintered body 11 is integrated with an aluminum continuum 12 in which solidified metal aluminum is distributed continuously.

Description

本発明は、電池に用いる電極の製造方法、電池製造方法、電極及び電池に関する。   The present invention relates to an electrode manufacturing method, a battery manufacturing method, an electrode, and a battery used in a battery.

近年、二酸化炭素の排出を伴わずに電力を発生させる手段として、太陽光又は風力等の自然エネルギーを利用した発電が促進されている。自然エネルギーによる発電では、発電量が気候又は天候等の自然条件に左右されることが多いのに加えて、電力需要に合わせた発電量の調整が難しいので、負荷に対する電力供給の平準化が不可欠となる。充電及び放電によって電力供給の平準化を行うためには、高エネルギー密度・高効率で大容量の蓄電池が必要とされる。
このような蓄電池として、特許文献1に開示されたナトリウム−硫黄電池が開発されている。ナトリウム−硫黄電池は、通常は280℃以上の高温で動作させる必要がある。一方、常温又は130℃以下の比較的低温で動作する蓄電池の開発が進められており、電解質には、有機電解液の他、比較的低温で融解する溶融塩を用いる試みがなされている(例えば、特許文献2参照)。
In recent years, power generation using natural energy such as sunlight or wind power has been promoted as means for generating electric power without discharging carbon dioxide. In the case of power generation using natural energy, power generation is often affected by natural conditions such as climate or weather, and it is difficult to adjust the power generation to meet the power demand. It becomes. In order to level the power supply by charging and discharging, a high-energy density, high-efficiency, large-capacity storage battery is required.
As such a storage battery, a sodium-sulfur battery disclosed in Patent Document 1 has been developed. A sodium-sulfur battery is usually required to operate at a high temperature of 280 ° C. or higher. On the other hand, development of a storage battery that operates at a room temperature or a relatively low temperature of 130 ° C. or less is underway, and an attempt has been made to use a molten salt that melts at a relatively low temperature in addition to an organic electrolyte as an electrolyte (for example, , See Patent Document 2).

特開2007−273297号公報JP 2007-273297 A 特開2007−273362号公報JP 2007-273362 A

溶融塩電池は、電解質に溶融塩を用いた電池であり、溶融塩が溶融した状態で動作する。電解質の電気化学的安定性の見地からは、NaFSA(ナトリウム−ビスフルオロスルフォニムアミド)等のナトリウムイオンを電荷のキャリアとする電解質を用いることが好ましい。溶融塩電池の正極は、電解質との間で電荷を交換するNaCrO2 等の複合酸化物を活物質の主成分としている。従来の正極は、粉末として生成した活物質に有機溶剤を添加してペースト化し、ペースト化した活物質をアルミニウム等の導電材製の集電体に塗布し、乾燥させることによって製造している。活物質は粉末として生成されるので、活物質を電極の形に成形するためにはバインダを混ぜておく必要がある。また活物質自体は絶縁体であるので、正極内の導電性を確保するために導電助剤を混ぜておく必要がある。このように、正極の製造過程には工程が多く、正極の製造コストが高くなるという問題がある。 The molten salt battery is a battery using a molten salt as an electrolyte, and operates in a state where the molten salt is melted. From the viewpoint of the electrochemical stability of the electrolyte, it is preferable to use an electrolyte that uses sodium ions such as NaFSA (sodium-bisfluorosulfonylamide) as a charge carrier. The positive electrode of the molten salt battery has a composite oxide such as NaCrO 2 that exchanges electric charge with an electrolyte as a main component of the active material. A conventional positive electrode is manufactured by adding an organic solvent to an active material produced as a powder to form a paste, applying the pasted active material to a current collector made of a conductive material such as aluminum, and drying the paste. Since the active material is produced as a powder, it is necessary to mix a binder in order to form the active material into the shape of an electrode. In addition, since the active material itself is an insulator, it is necessary to mix a conductive additive in order to ensure conductivity in the positive electrode. Thus, there are many processes in the manufacturing process of the positive electrode, and there is a problem that the manufacturing cost of the positive electrode becomes high.

また、正極内では粉末状の活物質と導電助剤とが混合している状態であるので、活物質と導電助剤及び集電体との接触面積が小さく、内部抵抗が大きい。このため、高速の充放電が困難になるという問題がある。また正極内に含まれる導電助剤及びバインダは電池の容量には寄与しないので、導電助剤及びバインダが混合している分だけ電池の容量が低下するという問題がある。   Further, since the powdered active material and the conductive aid are mixed in the positive electrode, the contact area between the active material, the conductive aid and the current collector is small, and the internal resistance is large. For this reason, there exists a problem that high-speed charging / discharging becomes difficult. Further, since the conductive assistant and binder contained in the positive electrode do not contribute to the capacity of the battery, there is a problem that the capacity of the battery is reduced by the amount of the mixed conductive assistant and binder.

本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、導電材で活物質を固めることにより、製造過程を簡素化させた電極製造方法、電池製造方法、容量に寄与しない物質を削減して内部抵抗を低下させた電極、及び該電極を備えた電池を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrode manufacturing method, a battery manufacturing method, and a capacity that simplify a manufacturing process by solidifying an active material with a conductive material. It is an object of the present invention to provide an electrode in which the internal resistance is reduced by reducing substances that do not contribute to the battery, and a battery including the electrode.

本発明に係る電極製造方法は、電池の電極を製造する方法において、活物質が焼結した多孔質の焼結体を生成し、前記焼結体内に液状の導電材を充填し、充填した導電材を固化させることを特徴とする。   An electrode manufacturing method according to the present invention is a method for manufacturing a battery electrode, wherein a porous sintered body in which an active material is sintered is produced, a liquid conductive material is filled in the sintered body, and the filled conductive material is produced. It is characterized by solidifying the material.

本発明に係る電極製造方法は、活物質原料の粉末と樹脂粉末とを混合した混合物を圧縮して成型体を作製し、作製した成型体を不活性雰囲気中で焼成することにより、前記焼結体を生成することを特徴とする。   In the electrode manufacturing method according to the present invention, a sintered body is prepared by compressing a mixture obtained by mixing active material raw material powder and resin powder, and firing the formed body in an inert atmosphere. It is characterized by generating a body.

本発明に係る電極製造方法は、液状の導電材として溶融金属を用い、前記焼結体を溶融金属に浸漬することにより、前記焼結体内に溶融金属を充填し、溶融金属を充填した前記焼結体を固化させるべく冷却することを特徴とする。   The electrode manufacturing method according to the present invention uses a molten metal as a liquid conductive material, immerses the sintered body in the molten metal, fills the sintered body with the molten metal, and fills the sintered metal with the molten metal. It cools in order to solidify a structure, It is characterized by the above-mentioned.

本発明に係る電極製造方法は、前記溶融金属は溶融した金属アルミニウムであることを特徴とする。   The electrode manufacturing method according to the present invention is characterized in that the molten metal is molten metallic aluminum.

本発明に係る電極製造方法は、前記活物質は亜クロム酸ナトリウムであることを特徴とする。   The electrode manufacturing method according to the present invention is characterized in that the active material is sodium chromite.

本発明に係る電池製造方法は、本発明に係る電極製造方法で製造した電極を一方の電極として電池を組み立てることを特徴とする。   The battery manufacturing method according to the present invention is characterized in that a battery is assembled using the electrode manufactured by the electrode manufacturing method according to the present invention as one electrode.

本発明に係る電極は、電池の電極において、活物質が焼結した多孔質の焼結体内に導電材を充填してなり、導電材は前記焼結体内で連続的に分布した連続体を形成してあることを特徴とする。   The electrode according to the present invention is a battery electrode, in which a conductive material is filled in a porous sintered body in which an active material is sintered, and the conductive material forms a continuous body continuously distributed in the sintered body. It is characterized by being.

本発明に係る電池は、本発明に係る電極を備えることを特徴とする。   The battery according to the present invention includes the electrode according to the present invention.

本発明に係る電池は、溶融塩を電解質としたことを特徴とする。   The battery according to the present invention is characterized in that a molten salt is used as an electrolyte.

本発明においては、活物質が焼結した多孔質の活物質焼結体内に液状の導電材を充填し、導電材を固化させることにより、活物質焼結体内と導電材が固化した連続体とが一体となった電極が製造される。活物質焼結体内と導電材の連続体とが一体となることにより、バインダ無しで電極が成形される。   In the present invention, a porous active material sintered body in which an active material is sintered is filled with a liquid conductive material, and the conductive material is solidified, whereby a continuous body in which the active material sintered body and the conductive material are solidified is obtained. Is manufactured. By integrating the sintered body of the active material and the continuous material of the conductive material, the electrode is formed without a binder.

また本発明においては、活物質原料の粉末と樹脂粉末とを混合して成型し、成型体を不活性雰囲気中で焼成することにより、活物質が焼結し、また樹脂が熱分解して空隙が発生することで、多孔質の活物質焼結体が生成される。   In the present invention, the active material raw material powder and the resin powder are mixed and molded, and the molded body is fired in an inert atmosphere so that the active material is sintered, and the resin is thermally decomposed to cause voids. As a result, a porous active material sintered body is generated.

また本発明においては、溶融金属に活物質焼結体を浸漬することによって活物質焼結体内に溶融金属を充填し、活物質焼結体を冷却することにより、溶融金属は固化し、活物質焼結体と一体となった金属の連続体が生成される。   Further, in the present invention, the active material sintered body is immersed in the molten metal to fill the active material sintered body with the molten metal, and the active material sintered body is cooled, so that the molten metal is solidified and the active material A continuous metal body is produced which is integrated with the sintered body.

また本発明においては、溶融金属として金属アルミニウムを用い、比較的低い温度で電極が製造される。   In the present invention, metal aluminum is used as the molten metal, and the electrode is produced at a relatively low temperature.

また本発明においては、電極の活物質として、耐還元性の高い亜クロム酸ナトリウムを用いる。   In the present invention, sodium chromite having high reduction resistance is used as the active material of the electrode.

本発明にあっては、電極にバインダが不要であり、また電極の製造工程が簡略化されるので、電極及び電池の製造コストが低下する。また従来に比べて電極内で活物質と導電材との接触面積が大きくなるので、従来に比べて高速での充放電が可能となる。また電極にバインダが含まれる従来の電池に比べて、体積エネルギー密度が向上し、電池の容量が向上する等、本発明は優れた効果を奏する。   In the present invention, no binder is required for the electrode, and the manufacturing process of the electrode is simplified, so that the manufacturing costs of the electrode and the battery are reduced. In addition, since the contact area between the active material and the conductive material in the electrode is larger than in the conventional case, charging / discharging can be performed at a higher speed than in the conventional case. In addition, the present invention has excellent effects such as an increase in volumetric energy density and an increase in battery capacity as compared with a conventional battery in which a binder is included in the electrode.

本発明の電池の一例である溶融塩電池の構成例を示す模式的断面図である。It is typical sectional drawing which shows the structural example of the molten salt battery which is an example of the battery of this invention. 正極の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of a positive electrode. 活物質焼結体の模式的断面図である。It is a typical sectional view of an active material sintered compact. 正極の模式的断面図である。It is a typical sectional view of a positive electrode.

以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、本発明の電池の一例である溶融塩電池の構成例を示す模式的断面図である。図1には、溶融塩電池を縦に切断した模式的断面図を示している。溶融塩電池は、上面が開口した直方体の箱状の電池容器51内に、矩形板状の正極1、シート状のセパレータ3及び矩形板状の負極2を並べて配置し、電池容器51に蓋部52を冠着して構成されている。電池容器51及び蓋部52はアルミニウムで形成されている。正極1及び負極2は矩形平板状に形成されており、セパレータ3はシート状に形成されている。セパレータ3は正極1及び負極2の間に介装されている。正極1、セパレータ3及び負極2は、重ねられ、電池容器51の底面に対して縦に配置されている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a schematic cross-sectional view showing a configuration example of a molten salt battery which is an example of the battery of the present invention. FIG. 1 shows a schematic cross-sectional view of a molten salt battery cut longitudinally. In the molten salt battery, a rectangular plate-shaped positive electrode 1, a sheet-shaped separator 3, and a rectangular plate-shaped negative electrode 2 are arranged side by side in a rectangular parallelepiped box-shaped battery container 51 whose upper surface is open, and a lid portion is placed on the battery container 51. 52 is attached. The battery container 51 and the lid 52 are made of aluminum. The positive electrode 1 and the negative electrode 2 are formed in a rectangular flat plate shape, and the separator 3 is formed in a sheet shape. The separator 3 is interposed between the positive electrode 1 and the negative electrode 2. The positive electrode 1, the separator 3, and the negative electrode 2 are stacked and arranged vertically with respect to the bottom surface of the battery container 51.

負極2と電池容器51の内側壁との間には、波板状の金属からなるバネ41が配されている。バネ41は、アルミニウム合金からなり非可撓性を有する平板状の押え板42を付勢して負極2をセパレータ3及び正極1側へ押圧させる。正極1は、バネ41の反作用により、バネ41とは逆側の内側壁からセパレータ3及び負極2側へ押圧される。バネ41は、金属製のスプリング等に限定されず、例えばゴム等の弾性体であってもよい。充放電により正極1又は負極2が膨脹又は収縮した場合は、バネ41の伸縮によって正極1又は負極2の体積変化が吸収される。   A spring 41 made of corrugated metal is disposed between the negative electrode 2 and the inner wall of the battery case 51. The spring 41 is made of an aluminum alloy and biases a flat plate-like presser plate 42 having inflexibility to press the negative electrode 2 toward the separator 3 and the positive electrode 1 side. The positive electrode 1 is pressed by the reaction of the spring 41 from the inner wall opposite to the spring 41 to the separator 3 and the negative electrode 2 side. The spring 41 is not limited to a metal spring or the like, and may be an elastic body such as rubber, for example. When the positive electrode 1 or the negative electrode 2 expands or contracts due to charge / discharge, the volume change of the positive electrode 1 or the negative electrode 2 is absorbed by the expansion and contraction of the spring 41.

正極1は、NaCrO2 (亜クロム酸ナトリウム)を成分とする正極活物質が焼結した活物質焼結体11と金属アルミニウムが連続的に分布したアルミニウム連続体12とが一体となって構成されている。正極1は本発明の電極である。正極1の詳細な製造方法は後述する。負極2は、アルミニウムからなる矩形板状の負極集電体21上に、錫等の負極活物質を含む負極材22をメッキによって形成してある。負極集電体21上に負極材22をメッキする際には、ジンケート処理として下地に亜鉛をメッキした後に錫メッキを施すようにしてある。負極活物質は錫に限定されず、例えば、錫を金属ナトリウム、炭素、珪素又はインジウムに置き換えてもよい。負極材22は、例えば負極活物質の粉末に結着剤を含ませて負極集電体21上に塗布することによって形成してもよい。セパレータ3は、ケイ酸ガラス又は樹脂等の絶縁性の材料で、内部に電解質を保持でき、またナトリウムイオンが通過できるような形状に形成されている。セパレータ3は、例えばガラスクロス又は多孔質の形状に形成された樹脂である。 The positive electrode 1 includes an active material sintered body 11 obtained by sintering a positive electrode active material containing NaCrO 2 (sodium chromite) as a component and an aluminum continuous body 12 in which metallic aluminum is continuously distributed. ing. The positive electrode 1 is an electrode of the present invention. A detailed manufacturing method of the positive electrode 1 will be described later. In the negative electrode 2, a negative electrode material 22 containing a negative electrode active material such as tin is formed on a rectangular plate-shaped negative electrode current collector 21 made of aluminum by plating. When the negative electrode material 22 is plated on the negative electrode current collector 21, tin plating is performed after zinc is plated on the base as a zincate treatment. The negative electrode active material is not limited to tin. For example, tin may be replaced with metallic sodium, carbon, silicon, or indium. The negative electrode material 22 may be formed, for example, by applying a binder to a negative electrode active material powder and applying the powder onto the negative electrode current collector 21. The separator 3 is an insulating material such as silicate glass or resin, and is formed in a shape capable of holding an electrolyte therein and allowing sodium ions to pass therethrough. The separator 3 is a resin formed in, for example, a glass cloth or a porous shape.

電池容器51内では、正極1と負極材22とを向かい合わせにし、正極1と負極2との間にセパレータ3を介装してある。正極1、負極2及びセパレータ3には、溶融塩からなる電解質を含浸させてある。電池容器51の内面は、正極1と負極2との短絡を防止するために、絶縁性の樹脂で被覆する等の方法により絶縁性の構造となっている。蓋部52の外側には、外部に接続するための正極端子53及び負極端子54が設けられている。正極端子53と負極端子54との間は絶縁されており、また蓋部52の電池容器51内に対向する部分も絶縁皮膜等によって絶縁されている。正極1の一端部は、正極端子53にリード線55で接続され、負極集電体21の一端部は、負極端子54にリード線56で接続される。リード線55及び56は、蓋部52から絶縁してある。蓋部52は、溶接によって電池容器51に冠着されている。   In the battery container 51, the positive electrode 1 and the negative electrode material 22 face each other, and the separator 3 is interposed between the positive electrode 1 and the negative electrode 2. The positive electrode 1, the negative electrode 2, and the separator 3 are impregnated with an electrolyte made of a molten salt. In order to prevent a short circuit between the positive electrode 1 and the negative electrode 2, the inner surface of the battery container 51 has an insulating structure by a method such as coating with an insulating resin. A positive terminal 53 and a negative terminal 54 for connecting to the outside are provided on the outside of the lid 52. The positive electrode terminal 53 and the negative electrode terminal 54 are insulated from each other, and the portion of the lid 52 facing the inside of the battery container 51 is also insulated by an insulating film or the like. One end of the positive electrode 1 is connected to the positive electrode terminal 53 with a lead wire 55, and one end of the negative electrode current collector 21 is connected to the negative electrode terminal 54 with a lead wire 56. The lead wires 55 and 56 are insulated from the lid portion 52. The lid 52 is attached to the battery container 51 by welding.

電解質は、溶融状態で導電性液体となる溶融塩である。溶融塩の融点以上の温度で、溶融塩は溶融して電解液となり、溶融塩電池は二次電池として動作する。融点を低下させるために、電解質は、複数種類の溶融塩が混合していることが望ましい。例えば、電解質は、ナトリウムイオンをカチオンとしFSA(ビスフルオロスルフォニルアミド)をアニオンとしたNaFSAと、カリウムイオンをカチオンとしFSAをアニオンとしたKFSAとの混合塩である。なお、電解質である溶融塩は、TFSA(ビストリフルオロメチルスルフォニルアミド)又はFTA(フルオロトリフルオロメチルスルフォニルアミド)等の他のアニオンを含んでいてもよく、有機イオン等の他のカチオンを含んでいてもよい。この形態では、電解質中でナトリウムイオンが電荷のキャリアとなる。また、図1に示した溶融塩電池の構成は模式的な構成であり、溶融塩電池内には、内部を加熱するヒータ、又は温度センサ等、図示しないその他の構成物が含まれていてもよい。また、図1には正極1及び負極2を一対備える形態を示したが、本発明の溶融塩電池は、セパレータ3を間に介して複数の正極1及び負極2を交互に重ねてある形態であってもよい。   The electrolyte is a molten salt that becomes a conductive liquid in a molten state. At a temperature equal to or higher than the melting point of the molten salt, the molten salt melts into an electrolytic solution, and the molten salt battery operates as a secondary battery. In order to lower the melting point, it is desirable that the electrolyte is a mixture of a plurality of types of molten salts. For example, the electrolyte is a mixed salt of NaFSA using sodium ion as a cation and FSA (bisfluorosulfonylamide) as an anion and KFSA using potassium ion as a cation and FSA as an anion. The molten salt that is an electrolyte may contain other anions such as TFSA (bistrifluoromethylsulfonylamide) or FTA (fluorotrifluoromethylsulfonylamide) and other cations such as organic ions. Also good. In this form, sodium ions serve as charge carriers in the electrolyte. Moreover, the structure of the molten salt battery shown in FIG. 1 is a schematic structure, and the molten salt battery may include other components (not shown) such as a heater for heating the inside or a temperature sensor. Good. Moreover, although the form provided with one pair of the positive electrode 1 and the negative electrode 2 was shown in FIG. 1, the molten salt battery of this invention is a form with which the some positive electrode 1 and the negative electrode 2 were piled up alternately via the separator 3. There may be.

図2は、正極1の製造方法を説明する説明図である。正極活物質の原料であるCr23 (III)及びNa2 CO3 の粉末、並びにエチルセルロース等の樹脂の粉末を混合し、混合物を圧縮成型することにより矩形板状に成型する。この段階では、正極活物質の原料粉末と樹脂粉末との混合物の成型体が作製されている。正極活物質の原料粉末と樹脂粉末との混合物の成型体をアルゴン雰囲気中で850℃以上の温度で焼成する。焼成により、Cr23 (III)とNa2 CO3 とが反応し、発生したCO2 が離脱し、NaCrO2 が生成する。またこのとき、NaCrO2 が生成する化学反応と並行してNaCrO2 の粉末が焼結する反応焼結が起こる。更に、成型体中に含まれる樹脂の粉末は熱分解する。成型体中のCr23 (III)及びNa2 CO3 の部分はNaCrO2 の焼結体となり、樹脂の部分は熱分解して空洞となるので、結果として、NaCrO2 を成分とする正極活物質が焼結してあり、内部に空隙を有する多孔質の活物質焼結体11が生成される。 FIG. 2 is an explanatory diagram for explaining a method of manufacturing the positive electrode 1. A powder of Cr 2 O 3 (III) and Na 2 CO 3 that are raw materials of the positive electrode active material and a resin powder such as ethyl cellulose are mixed, and the mixture is compression-molded to form a rectangular plate. At this stage, a molded body of a mixture of the raw material powder of the positive electrode active material and the resin powder is produced. A molded body of a mixture of the raw material powder of the positive electrode active material and the resin powder is fired at a temperature of 850 ° C. or higher in an argon atmosphere. By firing, Cr 2 O 3 (III) reacts with Na 2 CO 3 , the generated CO 2 is released, and NaCrO 2 is generated. At this time, place reaction sintering powders of NaCrO 2 in parallel with chemical reactions NaCrO 2 is generated by sintering. Further, the resin powder contained in the molded body is thermally decomposed. The Cr 2 O 3 (III) and Na 2 CO 3 parts in the molded body become a sintered body of NaCrO 2 , and the resin part is thermally decomposed into cavities, and as a result, a positive electrode containing NaCrO 2 as a component. The active material is sintered, and a porous active material sintered body 11 having voids therein is generated.

図3は、活物質焼結体11の模式的断面図である。Cr23 (III)とNa2 CO3 とが反応してNaCrO2 の粒子が生成し、NaCrO2 の粒子同士が焼結して焼結体が形成されている。NaCrO2 粒子の粒径は0.5μm程度である。樹脂が熱分解した空洞に対応して、活物質焼結体11の内部には空隙が存在し、活物質焼結体11の表面には多数の空孔が存在する。 FIG. 3 is a schematic cross-sectional view of the active material sintered body 11. Cr 2 O 3 (III) and Na 2 CO 3 react to produce NaCrO 2 particles, and the NaCrO 2 particles are sintered to form a sintered body. The particle size of the NaCrO 2 particles is about 0.5 μm. Corresponding to the cavity in which the resin is thermally decomposed, voids exist inside the active material sintered body 11, and a large number of holes exist on the surface of the active material sintered body 11.

次に、金属アルミニウムを溶融させた溶融アルミニウムに、減圧下で活物質焼結体11を液状の溶融アルミニウムに浸漬することにより、活物質焼結体11内に溶融アルミニウムを充填させる。溶融アルミニウムに浸漬された活物質焼結体11内に溶融アルミニウムが浸入し、活物質焼結体11内の空隙に溶融アルミニウムが充填される。次に、活物質焼結体11を溶融アルミニウムから取り出し、金属アルミニウムの融点よりも低い温度に冷却する。冷却によって溶融アルミニウムは凝固するので、活物質焼結体11内の溶融アルミニウムは固化し、活物質焼結体11と溶融アルミニウムが固化したアルミニウム連続体12とが一体となる。次に、活物質焼結体11とアルミニウム連続体12との一体物を切削等の整形方法で整形することにより、正極1が製造される。   Next, the active material sintered body 11 is filled with molten aluminum by immersing the active material sintered body 11 in liquid molten aluminum in a molten aluminum obtained by melting metal aluminum. Molten aluminum permeates into the active material sintered body 11 immersed in the molten aluminum, and the voids in the active material sintered body 11 are filled with the molten aluminum. Next, the active material sintered body 11 is taken out from the molten aluminum and cooled to a temperature lower than the melting point of the metal aluminum. Since the molten aluminum is solidified by cooling, the molten aluminum in the active material sintered body 11 is solidified, and the active material sintered body 11 and the aluminum continuous body 12 in which the molten aluminum is solidified are integrated. Next, the positive electrode 1 is manufactured by shaping the integrated body of the active material sintered body 11 and the aluminum continuous body 12 by a shaping method such as cutting.

図4は、正極1の模式的断面図である。正極1は、NaCrO2 を成分とする活物質焼結体11と金属アルミニウムが連続的に分布したアルミニウム連続体12とが一体になって構成されている。活物質焼結体11内にはアルミニウム連続体12が充填されており、アルミニウム連続体12は活物質焼結体11内で連続的につながっている。活物質焼結体11を構成するNaCrO2 粒子の間にアルミニウム連続体12が埋まっており、NaCrO2 粒子同士はアルミニウム連続体12を介して互いに連結されている。活物質焼結体11とアルミニウム連続体12とが一体になっていることにより、バインダ無しで正極1の形状が維持されている。金属アルミニウムは導電材であり、正極1内の導電性はアルミニウム連続体12によって確保される。正極活物質であるNaCrO2 粒子間ではアルミニウム連続体12を通して導電が行われる。 FIG. 4 is a schematic cross-sectional view of the positive electrode 1. The positive electrode 1 is composed of an active material sintered body 11 containing NaCrO 2 as a component and an aluminum continuous body 12 in which metallic aluminum is continuously distributed. The active material sintered body 11 is filled with an aluminum continuous body 12, and the aluminum continuous body 12 is continuously connected in the active material sintered body 11. An aluminum continuum 12 is buried between NaCrO 2 particles constituting the active material sintered body 11, and the NaCrO 2 particles are connected to each other via the aluminum continuum 12. Since the active material sintered body 11 and the aluminum continuous body 12 are integrated, the shape of the positive electrode 1 is maintained without a binder. Metal aluminum is a conductive material, and conductivity within the positive electrode 1 is ensured by the aluminum continuum 12. Conduction is performed through the aluminum continuum 12 between NaCrO 2 particles as the positive electrode active material.

次に、製造した正極1を用いて溶融塩電池を製造する方法を説明する。製造した正極1とセパレータ3と負極2とを図1に示すように重ねて電池容器51内に配置し、正極1、負極2及びセパレータ3に、溶融塩電池の電解質として用いる溶融塩を含浸させる。含浸の工程は、正極1、負極2及びセパレータ3に含浸させる溶融塩の融点以上の温度で行う。次に、必要な他の構成要素を加えて溶融塩電池を組み立てることにより、溶融塩電池を製造する。   Next, a method for manufacturing a molten salt battery using the manufactured positive electrode 1 will be described. The manufactured positive electrode 1, separator 3 and negative electrode 2 are stacked in a battery container 51 as shown in FIG. 1, and the positive electrode 1, the negative electrode 2 and the separator 3 are impregnated with a molten salt used as an electrolyte of a molten salt battery. . The impregnation step is performed at a temperature equal to or higher than the melting point of the molten salt impregnated in the positive electrode 1, the negative electrode 2, and the separator 3. Next, the molten salt battery is manufactured by assembling the molten salt battery by adding other necessary components.

以上詳述したように、本実施の形態に係る正極1の製造方法では、粉末として生成した活物質をペースト化する工程と、ペースト化した活物質を集電体に塗布する工程と、乾燥させる工程とが不要となっている。このため、正極1を製造する方法及び溶融塩電池を製造する方法が簡略化され、正極1及び溶融塩電池の製造コストが低下する。また本実施の形態で製造した正極1は、活物質焼結体11及びアルミニウム連続体12で構成されており、バインダ及び集電体を必要としていない。このため、正極1の材料のコストを低下させることができるので、正極1及び溶融塩電池の製造コストがより低下する。また活物質焼結体11内に充填されたアルミニウム連続体12は、溶融アルミニウムが固化したものであるので、粉末状の活物質と導電助剤とが混合している従来の電極に比べて、正極活物質と導電材との接触面積が大きくなる。このため、正極1の内部抵抗が低下し、従来に比べて高速での充放電が可能となる。更に、電池の容量に寄与しないバインダが正極1に含まれていないので、本実施の形態に係る溶融塩電池は、電極にバインダが含まれる従来の電池に比べて、体積エネルギー密度が向上し、容量が向上する。   As described above in detail, in the method of manufacturing positive electrode 1 according to the present embodiment, the step of pasting the active material produced as powder, the step of applying the pasted active material to the current collector, and drying The process is unnecessary. For this reason, the method of manufacturing the positive electrode 1 and the method of manufacturing the molten salt battery are simplified, and the manufacturing costs of the positive electrode 1 and the molten salt battery are reduced. Moreover, the positive electrode 1 manufactured in the present embodiment is composed of an active material sintered body 11 and an aluminum continuous body 12, and does not require a binder and a current collector. For this reason, since the cost of the material of the positive electrode 1 can be reduced, the manufacturing cost of the positive electrode 1 and the molten salt battery is further reduced. Moreover, since the aluminum continuum 12 filled in the active material sintered body 11 is obtained by solidifying molten aluminum, compared to a conventional electrode in which a powdered active material and a conductive additive are mixed, The contact area between the positive electrode active material and the conductive material is increased. For this reason, the internal resistance of the positive electrode 1 is reduced, and charging / discharging can be performed at a higher speed than in the prior art. Furthermore, since the positive electrode 1 does not contain a binder that does not contribute to the capacity of the battery, the molten salt battery according to the present embodiment has an improved volume energy density compared to a conventional battery in which a binder is contained in the electrode, Capacity is improved.

なお、本発明は、正極活物質のNaCrO2 を予め作成し、作成したNaCrO2 の粉末を焼結させることにより活物質焼結体11を製造する形態であってもよい。また本発明では、電池に利用できる導電材であれば、他の金属、合金又は導電性樹脂等の金属アルミニウム以外の導電材を用いてもよい。但し、本実施の形態のように、活物質の原料を焼成することで活物質焼結体11を製造する方法を用いるのが好ましく、導電材として金属アルミニウムを用いるのが好ましい。正極活物質の粉末から活物質焼結体11を製造する方法を用いた場合は、活物質焼結体11内の空隙を導電材が完全に充填し、正極1内に電解質が含浸される空間が無くなり、正極活物質と電解質との間でイオンの伝達が困難になる虞がある。また溶融した導電材と正極活物質とが反応し、正極活物質の電池動作時の特性が劣化する虞がある。本実施の形態では、活物質原料のCr23 (III)及びNa2 CO3 を焼成することにより、正極活物質のNaCrO2 の生成と焼結とを同時に実施するので、反応時に発生したCO2 によって活物質焼結体11内に微細な空孔が発生する。このため、活物質焼結体11内に導電材に充填され難い空隙が発生し、正極1内に電解質が含浸される空間が確保される。また、本実施の形態では、正極活物質の原料粉末に樹脂の粉末を混合した上で焼成するので、導電材が充填すべき空隙が樹脂の熱分解により生成されると共に、樹脂の一部が炭化して正極活物質の表面に残留する。正極活物質の表面に残留した炭化した樹脂は、正極活物質と溶融した導電材との反応を抑制し、正極活物質の特性の劣化が抑制される。また、金属アルミニウムは、融点が660℃であって銅又はニッケル等の他の金属に比べて融点が低い。このため、本実施の形態では、銅又はニッケル等の金属アルミニウムよりも融点の高い導電材を用いる場合に比べて、正極活物質と溶融した導電材との反応がより抑制される。 The present invention creates a NaCrO 2 of the positive electrode active material in advance, may be in the form of manufacturing an active material sintered body 11 by sintering the powder of NaCrO 2 created. Moreover, in this invention, if it is a conductive material which can be utilized for a battery, you may use conductive materials other than metal aluminum, such as another metal, an alloy, or a conductive resin. However, as in this embodiment, it is preferable to use a method of manufacturing the active material sintered body 11 by firing the raw material of the active material, and it is preferable to use metal aluminum as the conductive material. When the method of manufacturing the active material sintered body 11 from the positive electrode active material powder is used, the space in the active material sintered body 11 is completely filled with the conductive material and the positive electrode 1 is impregnated with the electrolyte. There is a risk that the transfer of ions may be difficult between the positive electrode active material and the electrolyte. In addition, the molten conductive material and the positive electrode active material may react to deteriorate the characteristics of the positive electrode active material during battery operation. In the present embodiment, the active material raw materials Cr 2 O 3 (III) and Na 2 CO 3 are fired to simultaneously generate and sinter NaCrO 2 of the positive electrode active material. Fine holes are generated in the active material sintered body 11 by CO 2 . Therefore, voids that are difficult to be filled with the conductive material are generated in the active material sintered body 11, and a space in which the electrolyte is impregnated in the positive electrode 1 is secured. In the present embodiment, since the resin powder is mixed with the raw material powder of the positive electrode active material and fired, voids to be filled with the conductive material are generated by thermal decomposition of the resin, and a part of the resin is formed. Carbonizes and remains on the surface of the positive electrode active material. The carbonized resin remaining on the surface of the positive electrode active material suppresses the reaction between the positive electrode active material and the molten conductive material, and the deterioration of the characteristics of the positive electrode active material is suppressed. Metal aluminum has a melting point of 660 ° C. and a lower melting point than other metals such as copper or nickel. For this reason, in this Embodiment, reaction with a positive electrode active material and the fuse | melted electrically conductive material is suppressed more compared with the case where the electrically conductive material whose melting | fusing point is higher than metal aluminum, such as copper or nickel.

また、本発明は、NaCrO2 以外の物質を正極活物質とした形態であってもよい。例えば、本発明は、正極活物質の成分をLiCoO2 とした形態であってもよい。Co23 及びLi2 CO3 の粉末を混合して反応焼結を行うことにより、同様に、LiCoO2 を成分とした活物質焼結体を製造することができる。また例えば、本発明は、正極活物質の成分をLiMn24 とした形態であってもよい。MnO2 及びLi2 CO3 の粉末を混合して反応焼結を行うことにより、同様に、LiMn24 を成分とした活物質焼結体を製造することができる。但し、正極活物質の成分がNaCrO2 である場合は、正極活物質と溶融した導電材との反応が比較的抑制されるので、本実施の形態のように正極活物質の成分をNaCrO2 とすることが好ましい。この効果は、遷移金属元素の内でクロム元素の有する比較的高い耐還元性に起因する。 Further, the present invention may be in a form in which a substance other than NaCrO 2 is used as the positive electrode active material. For example, the present invention may be in a form in which the component of the positive electrode active material is LiCoO 2 . Similarly, an active material sintered body containing LiCoO 2 as a component can be manufactured by mixing powders of Co 2 O 3 and Li 2 CO 3 and performing reactive sintering. For example, the present invention may be in a form in which the component of the positive electrode active material is LiMn 2 O 4 . Similarly, an active material sintered body containing LiMn 2 O 4 as a component can be produced by performing reactive sintering by mixing MnO 2 and Li 2 CO 3 powders. However, when the component of the positive electrode active material is NaCrO 2 , the reaction between the positive electrode active material and the molten conductive material is relatively suppressed, so that the component of the positive electrode active material is NaCrO 2 as in the present embodiment. It is preferable to do. This effect is attributed to the relatively high reduction resistance of the chromium element among the transition metal elements.

また本実施の形態においては、本発明の電池が溶融塩電池である形態を示したが、本発明の電池は、これに限るものではなく、その他の電池であってもよい。例えば、本発明の電池は、正極活物質の成分をNaCrO2 としたリチウムイオン電池であってもよい。また、本発明に係る電池の形状は、直方体の形状に限るものではなく、円柱状等、その他の形状であってもよい。また、以上の実施の形態においては、本発明の電極が正極1である形態を示したが、本発明の電池は、本発明の電極を負極として用いた電池であってもよい。今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 Moreover, in this Embodiment, although the battery of this invention showed the form which is a molten salt battery, the battery of this invention is not restricted to this, Other batteries may be sufficient. For example, the battery of the present invention may be a lithium ion battery in which the positive electrode active material component is NaCrO 2 . Moreover, the shape of the battery according to the present invention is not limited to the shape of a rectangular parallelepiped, and may be other shapes such as a columnar shape. Moreover, although the electrode of this invention showed the form which is the positive electrode 1 in the above embodiment, the battery using the electrode of this invention as a negative electrode may be sufficient as the battery of this invention. The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 正極
11 活物質焼結体
12 アルミニウム連続体
2 負極
21 負極集電体
22 負極材
3 セパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Active material sintered compact 12 Aluminum continuum 2 Negative electrode 21 Negative electrode collector 22 Negative electrode material 3 Separator

Claims (9)

電池の電極を製造する方法において、
活物質が焼結した多孔質の焼結体を生成し、
前記焼結体内に液状の導電材を充填し、充填した導電材を固化させること
を特徴とする電極製造方法。
In a method of manufacturing a battery electrode,
Producing a porous sintered body in which the active material is sintered,
An electrode manufacturing method comprising filling the sintered body with a liquid conductive material and solidifying the filled conductive material.
活物質原料の粉末と樹脂粉末とを混合した混合物を圧縮して成型体を作製し、
作製した成型体を不活性雰囲気中で焼成することにより、前記焼結体を生成すること
を特徴とする請求項1に記載の電極製造方法。
Compressing a mixture of active material raw material powder and resin powder to produce a molded body,
The electrode manufacturing method according to claim 1, wherein the sintered body is produced by firing the produced molded body in an inert atmosphere.
液状の導電材として溶融金属を用い、
前記焼結体を溶融金属に浸漬することにより、前記焼結体内に溶融金属を充填し、
溶融金属を充填した前記焼結体を固化させるべく冷却すること
を特徴とする請求項1又は2に記載の電極製造方法。
Using molten metal as a liquid conductive material,
By immersing the sintered body in the molten metal, the sintered body is filled with the molten metal,
The electrode manufacturing method according to claim 1, wherein the sintered body filled with the molten metal is cooled to be solidified.
前記溶融金属は溶融した金属アルミニウムであることを特徴とする請求項3に記載の電極製造方法。   The electrode manufacturing method according to claim 3, wherein the molten metal is molten metal aluminum. 前記活物質は亜クロム酸ナトリウムであることを特徴とする請求項1乃至4の何れか一つに記載の電極製造方法。   5. The electrode manufacturing method according to claim 1, wherein the active material is sodium chromite. 請求項1乃至5の何れか一つに記載の電極製造方法で製造した電極を一方の電極として電池を組み立てることを特徴とする電池製造方法。   A battery manufacturing method comprising assembling a battery using the electrode manufactured by the electrode manufacturing method according to claim 1 as one electrode. 電池の電極において、
活物質が焼結した多孔質の焼結体内に導電材を充填してなり、
導電材は前記焼結体内で連続的に分布した連続体を形成してあること
を特徴とする電極。
In the battery electrode,
A porous sintered body in which the active material is sintered is filled with a conductive material,
The electrode is characterized in that the conductive material forms a continuous body distributed continuously in the sintered body.
請求項7に記載の電極を備えることを特徴とする電池。   A battery comprising the electrode according to claim 7. 溶融塩を電解質としたことを特徴とする請求項8に記載の電池。   The battery according to claim 8, wherein the molten salt is an electrolyte.
JP2011117151A 2011-05-25 2011-05-25 Electrode manufacturing method, battery manufacturing method, electrode and battery Withdrawn JP2012248320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117151A JP2012248320A (en) 2011-05-25 2011-05-25 Electrode manufacturing method, battery manufacturing method, electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117151A JP2012248320A (en) 2011-05-25 2011-05-25 Electrode manufacturing method, battery manufacturing method, electrode and battery

Publications (1)

Publication Number Publication Date
JP2012248320A true JP2012248320A (en) 2012-12-13

Family

ID=47468601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117151A Withdrawn JP2012248320A (en) 2011-05-25 2011-05-25 Electrode manufacturing method, battery manufacturing method, electrode and battery

Country Status (1)

Country Link
JP (1) JP2012248320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136357A1 (en) * 2013-03-08 2014-09-12 住友電気工業株式会社 Positive electrode active material for sodium molten salt batteries, positive electrode for sodium molten salt batteries, and sodium molten salt battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136357A1 (en) * 2013-03-08 2014-09-12 住友電気工業株式会社 Positive electrode active material for sodium molten salt batteries, positive electrode for sodium molten salt batteries, and sodium molten salt battery
JP2014175179A (en) * 2013-03-08 2014-09-22 Sumitomo Electric Ind Ltd Cathode active material for sodium molten salt battery, positive electrode for sodium molten salt battery, and sodium molten salt battery
CN105027348A (en) * 2013-03-08 2015-11-04 住友电气工业株式会社 Positive electrode active material for sodium molten salt batteries, positive electrode for sodium molten salt batteries, and sodium molten salt battery

Similar Documents

Publication Publication Date Title
CN110498611B (en) Sulfide-based solid electrolyte, method for producing sulfide-based solid electrolyte, and method for producing all-solid-state battery
JP6469725B2 (en) Galvanic element and manufacturing method thereof
US20120263993A1 (en) Electrochemical device
US9337492B2 (en) Electrochemical element
EP3043406A1 (en) Solid-state batteries and methods for fabrication
JP5664114B2 (en) Molten salt battery
US20120264022A1 (en) Electrode for electrochemical device and method for producing the same
JP6944783B2 (en) Manufacturing method of electrodes for all-solid-state batteries and manufacturing method of all-solid-state batteries
JP6936661B2 (en) Manufacturing method of all-solid-state battery
US8528375B2 (en) Method for producing electrode for electrochemical element
US20150280227A1 (en) Predoping method for an electrode active material in an energy storage device, and energy storage devices
WO2018016166A1 (en) Battery
JP2015526859A (en) Sustainable current collector for lithium batteries
KR20130083837A (en) Molten salt battery
WO2012111707A1 (en) Electrode for electrochemical element, and manufacturing method therefor
JP5849543B2 (en) Electrode body for lithium ion secondary battery, method for producing electrode body for lithium ion secondary battery, and lithium ion secondary battery
US8541134B2 (en) Electrode using three-dimensional network aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
JP5471905B2 (en) Molten salt battery
JP2017195076A (en) Bipolar type battery
JP2012248320A (en) Electrode manufacturing method, battery manufacturing method, electrode and battery
KR20220156571A (en) High-energy-density lithium metal-based anodes for solid-state lithium-ion batteries
JP2012256583A (en) Manufacturing method of electrode for electrochemical element
JP2012243417A (en) Molten salt battery
JP7008420B2 (en) Composite solid electrolyte, its manufacturing method, and all-solid-state battery
KR20160067615A (en) Sodium Secondary Battery Including Cathode Unified with Collector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805