JP2012247362A - Cumulative lead error measuring apparatus for ball screw axis and measuring method - Google Patents

Cumulative lead error measuring apparatus for ball screw axis and measuring method Download PDF

Info

Publication number
JP2012247362A
JP2012247362A JP2011120700A JP2011120700A JP2012247362A JP 2012247362 A JP2012247362 A JP 2012247362A JP 2011120700 A JP2011120700 A JP 2011120700A JP 2011120700 A JP2011120700 A JP 2011120700A JP 2012247362 A JP2012247362 A JP 2012247362A
Authority
JP
Japan
Prior art keywords
ball
ball screw
screw shaft
contact
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011120700A
Other languages
Japanese (ja)
Other versions
JP5674149B2 (en
Inventor
Shigeyuki Takagi
茂之 高木
Katsuji Uchimura
内村  勝次
Mamoru Ito
守 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2011120700A priority Critical patent/JP5674149B2/en
Priority to TW101112364A priority patent/TWI499757B/en
Priority to KR1020120051056A priority patent/KR101732749B1/en
Priority to CN201210175226.6A priority patent/CN102809350B/en
Publication of JP2012247362A publication Critical patent/JP2012247362A/en
Application granted granted Critical
Publication of JP5674149B2 publication Critical patent/JP5674149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cumulative lead error measuring apparatus for a ball screw axis which is capable of performing high-reproducibility and high-accuracy measurement in a short time and improves productivity, and a measuring method.SOLUTION: A cumulative lead error measuring apparatus comprises: a fixing support table 1 on which a ball screw axis W to be measured is fixed to prevent rotation; a ball contact 5 which is abutted to a thread groove of the ball screw axis W to be measured; ball contact slide means which allows the ball contact 5 to reciprocate and move orthogonally to an axial center Lz of the ball screw axis W to be measured and abuts the ball contact 5 to the thread groove with a predetermined push-in force; position detection slide means which allows the ball contact slide means to horizontally reciprocate and move in parallel with the axial center Lz; positioning reciprocation slide means 2 which allows the position detection slide means to reciprocate and move between screw portions of the ball screw axis W to be measured; and lead position measuring means 6 which detects the position of the ball contact 5 in a direction of the axial center Lz.

Description

本発明は、ボールねじ軸の累積リード誤差を測定する装置及びその装置を用いた測定方法に関する。   The present invention relates to an apparatus for measuring a cumulative lead error of a ball screw shaft and a measurement method using the apparatus.

従来から、ボールねじ軸のリード誤差を測定する装置として、例えば特許文献1に示す測定装置が知られている。この測定装置は、被測定ボールねじ軸に使用されるボールと同じ大きさの球体をボール接触子先端に接着し、このボール接触子2個を被測定ボールねじ軸の軸を中心にして180度位相をずらせた位置で被測定ボールねじ軸のねじ溝に挟み込んで、ねじ軸の半径方向に向かう方向に測定圧力を加えて、ねじ溝の両フランクに接触させた状態で、被測定ボールねじ軸を回転させながらボール接触子の移動距離をレーザー干渉測長器で測定し、被測定ボールねじ軸のねじの理論上の回転移動距離と該測定移動距離との累積移動誤差によって被測定ボールねじ軸のリード誤差を測定する。   Conventionally, as a device for measuring the lead error of a ball screw shaft, for example, a measuring device shown in Patent Document 1 is known. In this measuring apparatus, a sphere having the same size as the ball used for the ball screw shaft to be measured is bonded to the tip of the ball contact, and the two ball contacts are 180 degrees around the axis of the ball screw shaft to be measured. The ball screw shaft to be measured is inserted in the thread groove of the ball screw shaft to be measured at a position shifted in phase, is applied with measuring pressure in the radial direction of the screw shaft, and is in contact with both flank of the screw groove. Measure the moving distance of the ball contactor with a laser interferometer while rotating the ball contactor, and measure the ball screw shaft to be measured by the cumulative movement error between the theoretical rotational moving distance of the ball screw shaft to be measured and the measured moving distance. Measure the lead error.

一方、ねじ溝の中心位置を直接的に検出することで、より高精度に、かつ短時間にねじ溝の中心位置を測定することができるねじ溝検出装置として特許文献2がある。特許文献2のねじ溝検出装置では図1に示すようにボール接触子を被測定ねじ軸に交差するように被測定ねじ軸に押し付け、径側位置検出手段を用いてボール接触子がねじ溝に入ったことを検出し、リード側位置検出手段を用いてボール接触子におけるリード方向の位置を検出して、ねじ溝の位置を検出している。   On the other hand, there is Patent Document 2 as a thread groove detecting device that can measure the center position of the thread groove with higher accuracy and in a short time by directly detecting the center position of the thread groove. In the screw groove detecting device of Patent Document 2, as shown in FIG. 1, the ball contactor is pressed against the screw shaft to be measured so as to intersect the screw shaft to be measured, and the ball contactor is inserted into the screw groove by using the radial position detecting means. The position of the thread groove is detected by detecting the position of the groove and detecting the position of the ball contact in the lead direction using the lead side position detecting means.

特開昭56−26203号公報JP-A-56-26203 特開2010−36332号公報JP 2010-36332 A

しかし、特許文献1の測定装置によれば、3次元方向でのねじリード誤差の把握は可能であるが、被測定ボールねじ軸を回転して測定する必要があるため、例えば被測定ボールねじ軸が大型の工作機械を構成するため1m以上となる長尺の送りねじの場合では、回転軸間で自重たわみが発生するため回転芯振れが発生する。回転芯振れするとボール接触子が不安定な接触となることで振動することになり、リード誤差の管理最小単位である1μm以下での精度測定は困難であり、ゆっくり回転させて測定する必要があり、1回の測定に10数分必要となる。   However, according to the measuring apparatus of Patent Document 1, although it is possible to grasp the screw lead error in the three-dimensional direction, it is necessary to measure by rotating the ball screw shaft to be measured. In the case of a long feed screw having a length of 1 m or more in order to constitute a large machine tool, a deflection of its own weight occurs between the rotating shafts, resulting in rotational runout. When the rotating core swings, the ball contact will vibrate due to unstable contact, and it is difficult to measure the accuracy of 1 μm or less, which is the smallest unit of lead error management. Ten or more minutes are required for one measurement.

また、特許文献2の測定装置も被測定ねじ軸を回転して測定する必要があり、リード側の位置を検出する前に、まず、被測定ねじ軸をリード方向に往復運動させてボール接触子をねじ溝になじませる必要があり、被測定ねじ軸を正逆に回転するためのバックラッシュの影響で、測定誤差が生じる課題がある。   Further, the measuring device of Patent Document 2 also needs to measure by rotating the screw shaft to be measured. Before detecting the position on the lead side, the ball contactor is first moved by reciprocating the screw shaft to be measured in the lead direction. Needs to be adapted to the thread groove, and there is a problem that a measurement error occurs due to the influence of backlash for rotating the screw shaft to be measured forward and backward.

さらに、ボール接触子の支持機構は被測定ねじ軸の軸心方向及び前記軸心方向と直角方向に移動自在にすると共に旋回も自在となっており、リニアガイド軸受などが使われているが、摺動する軸受は数μmレベルのクリアランスが生じており、拘束力がないフリー状態で使用する場合は数十μmのバックラッシュの発生は避けがたく、自動での測定では測定の再現性にバラツキが大きく、データの信頼性に課題がある。   Furthermore, the support mechanism of the ball contactor is movable in the axial direction of the screw shaft to be measured and the direction perpendicular to the axial direction, and is also rotatable, and linear guide bearings are used. The sliding bearing has a clearance of several μm level. When used in a free state without restraining force, the occurrence of backlash of several tens of μm is unavoidable, and automatic measurement varies in measurement reproducibility. There is a problem in data reliability.

本発明は、かかる点に鑑みなされたもので、再現性の高い高精度の測定を、短時間で行える生産性に優れたボールねじ軸の累積リード誤差測定装置及び測定方法を提供することを目的とする。   The present invention has been made in view of such points, and an object of the present invention is to provide a ball screw shaft cumulative lead error measuring apparatus and measuring method capable of performing highly accurate measurement with high reproducibility in a short time and excellent productivity. And

上記の目的を達成するために本発明におけるボールねじ軸の累積リード誤差測定装置は、 被測定ボールねじ軸の軸心方向におけるねじ溝の位置を検出することによって累積リード誤差を測定するボールねじ軸の累積リード誤差測定装置であって、前記被測定ボールねじ軸を回転不動に固定する固定支持台と、前記固定支持台に固定された前記被測定ボールねじ軸のねじ溝に当接させる球体を備えたボール接触子と、前記ボール接触子を前記軸心に対して直交方向に往復移動させるとともに前記ボール接触子を所定の押し込み力で前記ねじ溝に当接させるボール接触子スライド手段と、前記ボール接触子スライド手段を載置し、該ボール接触子スライド手段を前記軸心と平行に水平往復移動する位置検出スライド手段と、前記位置検出スライド手段を載置し、前記位置検出スライド手段を前記被測定ボールねじ軸のねじ部間で往復移動させる位置決め往復スライド手段と、前記ボール接触子の前記軸心方向における位置を検出するリード位置測定手段と、を備えたことを特徴とする。   In order to achieve the above object, an apparatus for measuring a cumulative lead error of a ball screw shaft according to the present invention includes a ball screw shaft that measures a cumulative lead error by detecting a position of a thread groove in an axial direction of a measured ball screw shaft. And a fixed support base for fixing the ball screw shaft to be measured in a non-rotatable manner, and a sphere to be brought into contact with a thread groove of the ball screw shaft to be measured fixed to the fixed support base. And a ball contact sliding means for reciprocating the ball contact in a direction orthogonal to the axis and bringing the ball contact into contact with the screw groove with a predetermined pushing force, Position detecting slide means for mounting the ball contact slide means and horizontally reciprocating the ball contact slide means parallel to the axis; and the position detection slide Positioning reciprocating slide means for reciprocating the position detecting slide means between the threaded portions of the ball screw shaft to be measured, and lead position measuring means for detecting the position of the ball contact in the axial direction And.

また上記の目的を達成するために本発明におけるボールねじ軸の累積リード誤差測定は、前記被測定ボールねじ軸を回転不動に静置して固定する固定支持台と、前記固定支持台に固定された前記被測定ボールねじ軸のねじ溝に当接させる球体を備えたボール接触子と、前記ボール接触子を前記軸心に対して直交方向に往復移動させるとともに前記ボール接触子を所定の押し込み力で前記ねじ溝に当接させるボール接触子スライド手段と、前記ボール接触子スライド手段を載置し、該ボール接触子スライド手段を前記軸心と平行に水平往復移動する位置検出スライド手段と、前記位置検出スライド手段を載置し、前記位置検出スライド手段を前記被測定ボールねじ軸のねじ部間で往復移動させる位置決め往復スライド手段と、前記ボール接触子の前記軸心方向における位置を検出するリード位置測定手段と、を備えたボールねじ軸の累積リード誤差測定装置を用いて前記被測定ボールねじ軸の累積リード誤差を測定するボールねじ軸の累積リード誤差測定方法であって、前記固定支持台に前記ボール接触子を前記被測定ボールねじ軸の前記軸心に対して直交方向に往復移動させた時の前記球体の中心が前記軸心に直交する位置へ前記被測定ボールねじ軸を固定する固定支持工程と、前記ボール接触子を前記被測定ボールねじ軸の軸心方向に対して直交方向から所定の押し込み力でねじ溝に当接させるボール接触子押し込み工程と、前記ねじ溝に当接された前記ボール接触子の前記軸心方向における位置をレーザー干渉測長器で測定する測定工程と、前記ねじ溝に当接された前記ボール接触子を前記軸心方向に対して直交方向に退避させるボール接触子退避工程と、前記ボール接触子を前記軸心方向と平行に所定間隔に水平移動させるボール接触子移動工程と、を備えたことを特徴とする。   In order to achieve the above object, the cumulative lead error measurement of the ball screw shaft according to the present invention is performed by fixing the ball screw shaft to be measured to be stationary and fixed, and the fixed support base. In addition, a ball contactor having a sphere to be brought into contact with the thread groove of the ball screw shaft to be measured, and reciprocating the ball contactor in a direction orthogonal to the shaft center and a predetermined pushing force of the ball contactor A ball contact slide means for contacting the thread groove, a position detection slide means for mounting the ball contact slide means and moving the ball contact slide means horizontally and reciprocally parallel to the axis; Positioning reciprocating slide means for placing position detecting slide means and reciprocatingly moving the position detecting slide means between the threaded portions of the ball screw shaft to be measured; and the ball contactor A lead position measuring means for detecting a position in the axial direction, and a cumulative lead error of the ball screw shaft for measuring a cumulative lead error of the measured ball screw shaft using a cumulative lead error measuring device of the ball screw shaft. A measuring method, wherein the center of the sphere is perpendicular to the axis when the ball contact is reciprocated in the direction orthogonal to the axis of the ball screw shaft to be measured on the fixed support base. A fixing support step for fixing the ball screw shaft to be measured to the ball contact, and a ball contact that abuts the ball contact with the screw groove with a predetermined pushing force from a direction perpendicular to the axial direction of the ball screw shaft to be measured A step of pushing, a measuring step of measuring the position of the ball contactor in contact with the screw groove in the axial direction with a laser interferometer, and the ball in contact with the screw groove A ball contact retracting step for retracting the contactor in a direction orthogonal to the axial direction, and a ball contact moving step for horizontally moving the ball contact at a predetermined interval in parallel with the axial direction. It is characterized by that.

本発明によれば、ねじ溝の検出にねじのフランクに直接接触させるボール接触子を用いることで、より高精度にねじ溝の中心位置を求めることができる。そして、被測定ボールねじ軸の軸心方向におけるねじ溝の位置は、位置決め往復スライド手段に軸心方向の往復移動が可能な位置検出スライド手段を載置させ、さらに位置検出スライド手段に所定の押し込み力でねじ溝にボール接触子を押し込むボール接触子スライド手段を組み込むことでボール接触子が回転不動に固定されたボールねじ軸のねじ溝になじみやすくなり、リード側位置検出手段で再現性の高い精度で測定を短時間ですることができる。   According to the present invention, the center position of the thread groove can be obtained with higher accuracy by using the ball contactor that directly contacts the flank of the screw for detecting the thread groove. The position of the thread groove in the axial direction of the ball screw shaft to be measured is placed on the positioning reciprocating slide means with position detecting slide means capable of reciprocating in the axial direction, and further pushed into the position detecting slide means by a predetermined amount. By incorporating a ball contact sliding means that pushes the ball contact into the thread groove by force, the ball contact becomes easy to fit into the thread groove of the ball screw shaft fixed in a non-rotatable manner, and the lead side position detection means is highly reproducible. Measurement can be performed in a short time with accuracy.

従来のねじ溝の中心の位置を測定する方法を示す説明図である。It is explanatory drawing which shows the method of measuring the center position of the conventional screw groove. 本発明の第1実施形態のボールねじ軸の累積リード誤差測定装置を示した説明平面図である。1 is an explanatory plan view showing a cumulative lead error measuring device for a ball screw shaft according to a first embodiment of the present invention. FIG. 図1のA−A矢視からの被測定ボールねじ軸と固定支持部を示した説明図である。It is explanatory drawing which showed the to-be-measured ball screw axis | shaft and fixed support part from the AA arrow of FIG. 図1のB−B矢視を示した拡大説明図である。It is the expansion explanatory view which showed the BB arrow of FIG. 図1のC−C矢視を示した拡大説明図である。FIG. 3 is an enlarged explanatory view showing a CC arrow view of FIG. 1. 本発明の第2実施形態のボールねじ軸の累積リード誤差測定装置を示した側面説明図である。It is side surface explanatory drawing which showed the accumulation lead error measuring apparatus of the ball screw shaft of 2nd Embodiment of this invention. 本発明で使用する空気静圧軸受の一実施形態の断面説明図である。図7(B)はオリフィスの拡大説明図である。It is a section explanatory view of one embodiment of an aerostatic bearing used by the present invention. FIG. 7B is an enlarged explanatory view of the orifice. 図7の静圧パッド構造を示す平面説明図である。It is a plane explanatory view showing the static pressure pad structure of FIG. 図8のD−D断面であり、通気溝及び排気溝の幅方向の断面形状を示す断面説明図である。FIG. 9 is a sectional view taken along the line DD of FIG. 8 and showing the cross-sectional shape in the width direction of the ventilation groove and the exhaust groove. 本発明の第1実施形態のボールねじ軸の累積リード誤差測定装置を用いて測定した測定結果を示すグラフである。It is a graph which shows the measurement result measured using the accumulation lead error measuring device of the ball screw axis of a 1st embodiment of the present invention.

以下、本発明の第1実施形態のボールねじ軸の累積リード誤差測定装置及びその装置を用いた測定方法について図面を参照して説明する。
図2は、本発明の第1実施形態にかかわるボールねじ軸の累積リード誤差測定装置を示した説明平面図である。図3は、図1のA−A矢印から見た被測定ボールねじ軸と固定支持部を示した説明図である。図4はB−B矢視を示した拡大説明図である。図5は、図1のC−C矢視を示した拡大説明図である。
まお、図2から5及び後述する図6において、X軸、Y軸、Z軸は直交しており、Z軸は被測定ボールねじ軸の軸心と同一の方向を示し、X軸はZ軸に対して直交する水平方向を示し、Y軸はZ軸に対して直行する鉛直方向を示す。
なお、本発明は以下の実施形態に限定されるものではない。
Hereinafter, a cumulative lead error measuring apparatus for a ball screw shaft according to a first embodiment of the present invention and a measuring method using the apparatus will be described with reference to the drawings.
FIG. 2 is an explanatory plan view showing the cumulative lead error measuring apparatus for the ball screw shaft according to the first embodiment of the present invention. FIG. 3 is an explanatory view showing the ball screw shaft to be measured and the fixed support portion as seen from the arrows AA in FIG. FIG. 4 is an enlarged explanatory view showing the arrow BB. FIG. 5 is an enlarged explanatory view showing a CC arrow view of FIG. 1.
2 to 5 and FIG. 6 described later, the X axis, the Y axis, and the Z axis are orthogonal, the Z axis indicates the same direction as the axis of the ball screw shaft to be measured, and the X axis is the Z axis. Indicates a horizontal direction perpendicular to the Y axis, and a Y axis indicates a vertical direction perpendicular to the Z axis.
In addition, this invention is not limited to the following embodiment.

石定盤100上に被測定ボールねじ軸Wを回転不動に静置して固定するための固定支持台1が配設されている。本実施形態では、固定支持台1は、図3に示すように被測定ボールねじ軸Wの両端とそのほぼ中間の3点で支持するように設置されている。   A fixed support base 1 is disposed on the stone surface plate 100 for stationaryly fixing the ball screw shaft W to be measured in a stationary manner. In the present embodiment, the fixed support base 1 is installed so as to be supported at three points which are at both ends of the measured ball screw shaft W and substantially in the middle as shown in FIG.

また、石定盤100上には、固定支持台1に固定された被測定ボールねじ軸Wの軸心Lzに対し平行方向に往復移動が可能な位置決め往復スライド手段2が配設されている。この位置決め往復スライド手段2は、被測定ボールねじ軸Wの軸心Lzに平行に設置されたガイド軸21と、このガイド軸21に沿って往復移動する移動テーブル22とからなる空気静圧軸受20を備えている。そして、この空気静圧軸受20は、真直度が2μm/m以下、姿勢精度が2秒以下の走行精度を有している。
姿勢精度とは、移動テーブル22が走行中に姿勢変化するピッチング、ヨーイング、ローリングの精度のことで、傾き(度)で表される。また、走行精度とは、移動テーブル22が被測定ボールねじ軸Wの軸心Lzに対し平行方向に走行する真直度と姿勢精度を総合した精度をいう。真直度は、移動距離の変位の最大値をいう。
On the stone surface plate 100, positioning reciprocating slide means 2 capable of reciprocating in a direction parallel to the axis Lz of the ball screw shaft W to be measured fixed to the fixed support base 1 is disposed. This positioning reciprocating slide means 2 is an aerostatic bearing 20 comprising a guide shaft 21 installed in parallel to the axis Lz of the ball screw shaft W to be measured, and a moving table 22 that reciprocates along the guide shaft 21. It has. The aerostatic bearing 20 has a running accuracy with a straightness of 2 μm / m or less and a posture accuracy of 2 seconds or less.
The posture accuracy is the accuracy of pitching, yawing, and rolling that changes the posture while the moving table 22 is traveling, and is represented by an inclination (degree). The traveling accuracy refers to accuracy obtained by combining the straightness and the posture accuracy in which the moving table 22 travels in a direction parallel to the axis Lz of the ball screw shaft W to be measured. Straightness refers to the maximum displacement of the moving distance.

本発明における空気静圧軸受とは、固定体と移動体との摺動面間に軸受間隙を設け、当該軸受間隙に加圧気体を供給することにより前記移動体を前記固定体上で浮上させ、移動可能に構成された軸受のことをいう。   The aerostatic bearing in the present invention means that a bearing gap is provided between the sliding surfaces of the fixed body and the moving body, and the moving body is floated on the fixed body by supplying pressurized gas to the bearing gap. It refers to a bearing configured to be movable.

さらに、位置決め往復スライド手段2には、移動テーブル22をガイド軸21に沿って所定の測定位置に往復移動させる位置決め走行手段25を備えている。本実施形態においては、移動テーブル22に連結されたベルト27を介したサーボモータ26によって移動テーブル22を移動させる位置決め走行手段25を用いている。
また、位置決め往復スライド手段2には、位置検出スライド手段3が載置されている(図5)。
Further, the positioning reciprocating slide means 2 is provided with positioning traveling means 25 for reciprocating the moving table 22 along the guide shaft 21 to a predetermined measurement position. In the present embodiment, positioning traveling means 25 that moves the moving table 22 by a servo motor 26 via a belt 27 connected to the moving table 22 is used.
Further, a position detecting slide means 3 is placed on the positioning reciprocating slide means 2 (FIG. 5).

位置検出スライド手段3は、固定軸31と、この固定軸31に沿って移動が可能な受け台32とからなる空気静圧軸受30を備えている。そして固定軸31は、位置決め往復スライド手段2に具備される空気静圧軸受20の移動テーブル22へ被測定ボールねじ軸Wの軸心Lzと平行に固設されている。   The position detection slide means 3 includes an aerostatic bearing 30 including a fixed shaft 31 and a cradle 32 that can move along the fixed shaft 31. The fixed shaft 31 is fixed to the moving table 22 of the aerostatic bearing 20 provided in the positioning reciprocating slide means 2 in parallel with the axis Lz of the ball screw shaft W to be measured.

また、空気静圧軸受30は、固定軸31の両端と受け台32との間にそれぞれ中立位置保持弾性体35、35を備えている(図5)。ボール接触子5がボールねじ軸Wのねじ溝に当接していない時、つまり受け台32にZ軸方向の力が作用していない時は、受け台32が固定軸31のZ軸方向の中立位置に保持される。また、ボール接触子5がボールねじ軸Wのねじ溝に当接する時、つまり受け台32にZ軸方向の力が作用した時は、中立位置保持弾性体35、35は伸縮し、受け台32が固定軸31に沿って往復移動する。なお、第1実施形態では、中立位置保持弾性体35、35としてスプリングを用いている。
さらにまた、位置検出スライド手段3には、ボール接触子スライド手段4が載置されている。
In addition, the aerostatic bearing 30 includes neutral position holding elastic bodies 35 and 35 between both ends of the fixed shaft 31 and the cradle 32 (FIG. 5). When the ball contactor 5 is not in contact with the thread groove of the ball screw shaft W, that is, when a force in the Z-axis direction is not applied to the cradle 32, the cradle 32 is neutral in the Z-axis direction of the fixed shaft 31. Held in position. When the ball contact 5 abuts on the thread groove of the ball screw shaft W, that is, when a force in the Z-axis direction acts on the cradle 32, the neutral position holding elastic bodies 35 and 35 expand and contract, and the cradle 32 Reciprocates along the fixed shaft 31. In the first embodiment, springs are used as the neutral position holding elastic bodies 35, 35.
Furthermore, a ball contact slide means 4 is placed on the position detection slide means 3.

ボール接触子スライド手段4は、被測定ボールねじ軸Wの軸心Lzに対して直交するX軸方向の往復移動が可能な移動軸42と、この移動軸42を支持する固定支持体41とから構成される空気静圧軸受40を備えている。そして、固定支持体41は、位置検出スライド手段3に具備される空気静圧軸受30の受け台32へ固設されている。   The ball contact slide means 4 includes a moving shaft 42 capable of reciprocating in the X-axis direction orthogonal to the axis Lz of the ball screw shaft W to be measured, and a fixed support 41 that supports the moving shaft 42. An aerostatic bearing 40 is provided. The fixed support 41 is fixed to the cradle 32 of the aerostatic bearing 30 provided in the position detection slide means 3.

また、移動軸42の被測定ボールねじ軸W側の先端には、被測定ボールねじ軸Wのねじ溝に当接させるボール接触子5が連接されている。そして、ねじ溝に当接するボール接触子5の先端には、被測定ボールねじ軸Wに使用されるボールと同じ径の球体50が接着されている。また、ボール接触子5は、位置決め往復スライド手段2によって被測定ボールねじ軸Wのねじ部間を移動可能となっている。   Further, a ball contact 5 that is brought into contact with a thread groove of the measured ball screw shaft W is connected to the tip of the moving shaft 42 on the measured ball screw shaft W side. A sphere 50 having the same diameter as that of the ball used for the ball screw shaft W to be measured is bonded to the tip of the ball contact 5 in contact with the screw groove. The ball contactor 5 is movable between the threaded portions of the ball screw shaft W to be measured by the positioning reciprocating slide means 2.

一方、移動軸42のボール接触子5が連接された端の反対側の端部には、押し込み力調整弾性体43を介して伸縮手段44が連接されている。この伸縮手段44によって移動軸42及びボール接触子5が往復直線移動させられる。また、押し込み力調整弾性体43は、ボール接触子5がねじ溝に当接する際の衝突エネルギーを吸収するとともに、ボール接触子5をねじ溝に所定の押し込み力で押し当てて、保持する。
なお、本実施形態においては、押し込み力調整弾性体43としてスプリングが、伸縮手段44としてエアシリンダが用いられている。ただし、押し込み力調整弾性体43や伸縮手段44は前記のものに限られるものでない。
On the other hand, an expansion / contraction means 44 is connected to the end of the moving shaft 42 opposite to the end where the ball contact 5 is connected via a pushing force adjusting elastic body 43. By the expansion / contraction means 44, the moving shaft 42 and the ball contactor 5 are reciprocated linearly. The pushing force adjusting elastic body 43 absorbs the collision energy when the ball contactor 5 comes into contact with the screw groove, and holds the ball contactor 5 against the screw groove with a predetermined pushing force.
In this embodiment, a spring is used as the pushing force adjusting elastic body 43 and an air cylinder is used as the expansion / contraction means 44. However, the pushing force adjusting elastic body 43 and the expansion / contraction means 44 are not limited to those described above.

また、空気静圧軸受40は、ボール接触子5をねじ溝に当接させる時のZ軸方向への変形に耐えうる軸受剛性を有している。   Further, the aerostatic bearing 40 has a bearing rigidity capable of withstanding deformation in the Z-axis direction when the ball contactor 5 is brought into contact with the thread groove.

さらに、本実施形態には、被測定ボールねじWのねじ溝に当接されたボール接触子5の軸心Lz方向の位置を計測するためのリード位置測定手段6を備えている。本実施形態におけるリード位置測定手段6としては、市販のレーザー干渉測長器が用いられている。リード位置測定手段6は、μm単位の計測ができれば、特に限定されるものではない。   Further, the present embodiment is provided with a lead position measuring means 6 for measuring the position of the ball contact 5 in contact with the thread groove of the ball screw W to be measured in the axial center Lz direction. As the lead position measuring means 6 in this embodiment, a commercially available laser interference length measuring device is used. The lead position measuring means 6 is not particularly limited as long as it can measure in units of μm.

本実施形態のリード位置測定手段6に用いたレーザー干渉測長器の構成について図2に基づいて説明する。位置検出スライド手段3の受け台32にレーザー光線を入射、反射するための直角反射鏡62、63が設置されている。この直角反射鏡62、63は被測定ボールねじ軸Wの軸心Lzと直角をなす線上で、かつ、位置検出スライド手段3の固定軸31のZ軸方向の中心軸に対して左右対称をなす位置に配置されている。なお、直角反射鏡62、63は、ボール接触子スライド手段4の固定支持体41に前述の配置関係と同様に設置してもよい。また、直角反射鏡63のZ軸線上には、直角反射鏡63によって反射されたレーザー光線を入射、反射するためのコーナーキューブ64が配置されている。そして、直角反射鏡62のZ軸線上には、レーザー光源と、レーザー光源からのレーザー光線を分割し、分割した一方のレーザー光線を直角反射鏡62、63、コーナーキューブ64に入射させて得た反射光と、他方のレーザー光線を参照反射鏡に入射させて得た反射光とを干渉させ、反射鏡の移動に伴う干渉縞の変化に対応して変化する電気信号を生成するレーザー干渉ヘッド61が配置されている。さらに、レーザー干渉ヘッド61には、レーザー干渉ヘッド61から出力される電気信号のサイクル数から移動距離を算出する本体部60が接続されている。
そして、リード位置測定手段6により測定された測定値を演算処理する演算手段7及びそれらの結果を記録する記録計8が接続されている。
また、レーザー干渉測長器を用いた距離の測定においては、直角反射鏡62、63を省き、位置検出スライド手段3の受け台32へコーナーキューブ64を設けてもよい。
The configuration of the laser interference length measuring device used for the lead position measuring means 6 of this embodiment will be described with reference to FIG. Right-angle reflecting mirrors 62 and 63 are disposed for receiving and reflecting the laser beam on the cradle 32 of the position detecting slide means 3. The right-angle reflecting mirrors 62 and 63 are symmetric with respect to the central axis in the Z-axis direction of the fixed shaft 31 of the position detecting slide means 3 on a line perpendicular to the axis Lz of the ball screw axis W to be measured. Placed in position. Note that the right-angle reflecting mirrors 62 and 63 may be installed on the fixed support 41 of the ball contactor slide means 4 in the same manner as described above. Further, a corner cube 64 for incident and reflecting the laser beam reflected by the right-angle reflecting mirror 63 is disposed on the Z-axis line of the right-angle reflecting mirror 63. Then, on the Z-axis line of the right-angle reflecting mirror 62, the laser light source and the laser beam from the laser light source are divided, and one of the divided laser beams is incident on the right-angle reflecting mirrors 62 and 63 and the corner cube 64. And a laser interference head 61 that interferes with the reflected light obtained by making the other laser beam incident on the reference reflecting mirror and generates an electrical signal that changes in accordance with the change in the interference fringes accompanying the movement of the reflecting mirror. ing. Furthermore, the laser interference head 61 is connected to a main body 60 that calculates a moving distance from the number of cycles of an electric signal output from the laser interference head 61.
An arithmetic means 7 for arithmetically processing the measurement values measured by the lead position measuring means 6 and a recorder 8 for recording the results are connected.
Further, in the distance measurement using the laser interference length measuring device, the right angle reflecting mirrors 62 and 63 may be omitted, and the corner cube 64 may be provided on the cradle 32 of the position detection slide means 3.

なお、本実施形態で中立位置保持弾性体35に用いられるスプリングのばね定数は、0.1〜3N/mm、好ましくは0.3〜1N/mmである。中立位置保持弾性体35のスプリングのばね定数が0.1N/mm未満では復元力が小さすぎて、受け台32が復元不足となり、中立位置に戻らない恐れがあり、3N/mm以上では、ボール接触子スライド手段4に用いられる空気静圧軸受40の軸受剛性が、ボール接触子5をねじ溝に押し込む際の変形に耐えられなくなる。0.3〜1N/mmであれば、再現性の高い測定が可能となる。
なお、本実施形態の空気静圧軸受40の軸受剛性は、6N/μmである。
In addition, the spring constant of the spring used for the neutral position holding | maintenance elastic body 35 in this embodiment is 0.1-3 N / mm, Preferably it is 0.3-1 N / mm. If the spring constant of the spring of the neutral position holding elastic body 35 is less than 0.1 N / mm, the restoring force is too small, and the cradle 32 may be insufficiently restored, and may not return to the neutral position. The bearing rigidity of the aerostatic bearing 40 used for the contact sliding means 4 cannot withstand deformation when the ball contact 5 is pushed into the thread groove. If it is 0.3-1 N / mm, a measurement with high reproducibility will be attained.
In addition, the bearing rigidity of the aerostatic bearing 40 of this embodiment is 6 N / μm.

また、被測定ボールねじ軸Wのねじ溝へのボール接触子5の押し込み力は、0.5〜5N、好ましくは1〜3Nである。ボール接触子5をねじ溝へ押し込む押し込み力が0.5N未満では、押し込み不測となる恐れがあり、5N以上では押し込みによって被測定ボールねじ軸Wが変形して測定誤差に繋がる。1〜3Nであれば、再現性の高い測定が可能となる。   The pushing force of the ball contactor 5 into the thread groove of the ball screw shaft W to be measured is 0.5 to 5N, preferably 1 to 3N. If the pushing force for pushing the ball contactor 5 into the screw groove is less than 0.5N, pushing may not be possible, and if it is 5N or more, the ball screw shaft W to be measured is deformed by pushing and leads to a measurement error. If it is 1 to 3 N, measurement with high reproducibility becomes possible.

以下に、本実施形態のねじリード誤差測定装置を用いたねじリード誤差測定方法について説明する。   Below, the screw lead error measuring method using the screw lead error measuring apparatus of this embodiment is demonstrated.

まず、被測定ボールねじ軸Wを3台の固定支持台1へ回転不動に静置して固定する。固定支持台1には図示しない高さ調整機構が具備されている。
本発明においては、ボール接触子5の球体50の中心が被測定ボールねじ軸Wの軸心Lzに直交するようにボール接触子5を被測定ボールねじ軸のねじ溝に当接させる必要がある。そのため、前記の高さ調節機構で調節して石定盤100表面から被測定ボールねじ軸Wの軸心Lzの高さHy1をボール接触子5の球体50の中心高さHy2に合わせ、位置決め往復スライド手段2の空気静圧軸受20の走行精度の真直度以内となるように被測定ボールねじWを固定する。
第1実施形態においては被測定ボールねじ軸の自重によるたわみを考慮して3点支持にて固定しているが、ボールねじ軸Wの軸心Lzが位置決め往復スライド手段2に備えられた空気静圧軸受20の走行精度の真直度以内となれば、何点で支持してもよい。
First, the ball screw shaft W to be measured is stationary and fixed to the three fixed support bases 1 without rotation. The fixed support base 1 is provided with a height adjusting mechanism (not shown).
In the present invention, it is necessary to bring the ball contact 5 into contact with the thread groove of the measured ball screw shaft so that the center of the sphere 50 of the ball contact 5 is orthogonal to the axis Lz of the measured ball screw shaft W. . Therefore, the height Hy1 of the axis Lz of the ball screw shaft W to be measured is adjusted from the surface of the stone surface plate 100 to the center height Hy2 of the sphere 50 of the ball contactor 5 by adjusting with the height adjusting mechanism, and positioning reciprocation is performed. The ball screw W to be measured is fixed so that the running accuracy of the aerostatic bearing 20 of the sliding means 2 is within the straightness.
In the first embodiment, the ball screw shaft to be measured is fixed by three-point support in consideration of the deflection due to its own weight, but the axial center Lz of the ball screw shaft W is provided in the positioning reciprocating slide means 2. The pressure bearing 20 may be supported at any number of points as long as it is within the straightness of traveling accuracy.

そして、位置決めスライド手段2の位置決め走行手段25を用いて、ボール接触子5を所定の測定開始位置に移動させる。
続いて、ボール接触子スライド手段4の伸縮手段44を伸長させて移動軸42及びボール接触子5を被測定ボールねじ軸Wの軸心Lzに対して直交するX軸方向から所定の押し込み力で被測定ボールねじ軸Wのねじ溝になじませながら当接させる。
Then, the ball contactor 5 is moved to a predetermined measurement start position by using the positioning traveling means 25 of the positioning slide means 2.
Subsequently, the expansion / contraction means 44 of the ball contactor slide means 4 is extended so that the moving shaft 42 and the ball contactor 5 are pushed with a predetermined pushing force from the X-axis direction orthogonal to the axis Lz of the ball screw shaft W to be measured. While being fitted in the thread groove of the ball screw shaft W to be measured, the contact is made.

ボール接触子5の被測定ボールねじ軸の軸心Lz方向に対する位置をリード位置測定手段6にて測定する。   The lead position measuring means 6 measures the position of the ball contactor 5 with respect to the axis Lz direction of the ball screw shaft to be measured.

その後、伸縮手段44を収縮させて、被測定ボールねじ軸Wよりボール接触子5を退避させる。そして、続いて、ボール接触子5を位置決めスライド往復手段2の位置決め走行手段25にて所定の距離を移動させる。
その後また、伸縮手段44を伸長させてボール接触子5を被測定ボールねじ軸Wのねじ溝に当接させ、当接したボール接触子5の位置をリード位置測定手段6にて測定する。そして、ボール接触子5を退避させ、また、ボール接触子を所定の間隔で移動させる。以上のことを繰り返し行うことによって、実移動量が測定され、実移動量から代表移動量が求められる。
Thereafter, the expansion / contraction means 44 is contracted to retract the ball contact 5 from the ball screw shaft W to be measured. Subsequently, the ball contactor 5 is moved a predetermined distance by the positioning traveling means 25 of the positioning slide reciprocating means 2.
Thereafter, the expansion / contraction means 44 is extended to bring the ball contact 5 into contact with the thread groove of the ball screw shaft W to be measured, and the position of the contacted ball contact 5 is measured by the lead position measurement means 6. Then, the ball contact 5 is retracted, and the ball contact is moved at a predetermined interval. By repeating the above, the actual movement amount is measured, and the representative movement amount is obtained from the actual movement amount.

(第2実施形態)
次に、本発明のボールねじ軸の累積リード誤差測定装置の第2実施形態について説明する。図6は第2実施形態を示した側面説明図である。基本的構成及び測定方法は、第1実施形態と同様のため省略する。
(Second Embodiment)
Next, a second embodiment of the cumulative lead error measuring apparatus for the ball screw shaft of the present invention will be described. FIG. 6 is an explanatory side view showing the second embodiment. The basic configuration and the measurement method are the same as those in the first embodiment, and thus will be omitted.

本実施形態が第1実施形態と相違する点は、第1実施形態においてはボール接触子5を被測定ボールねじ軸Wの軸心Lzに対して直交するX軸方向から当接させていたが、第2実施形態ではボール接触子5をボールねじ軸Wの軸心Lzに対して直交するY軸方向より当接させる点である。そのため、第2実施形態では、図6に示すようにボール接触子スライド手段4をL型ブラケット80を介して位置検出スライド手段3に載置する構成としている。   This embodiment differs from the first embodiment in that the ball contact 5 is brought into contact with the axis Lz of the measured ball screw shaft W from the X-axis direction in the first embodiment. In the second embodiment, the ball contact 5 is brought into contact with the axis Lz of the ball screw shaft W from the Y-axis direction orthogonal thereto. Therefore, in the second embodiment, the ball contact slide means 4 is placed on the position detection slide means 3 via the L-shaped bracket 80 as shown in FIG.

本実施形態のようにボール接触子5をボールねじ軸Wの軸心Lzに対して直交するY軸方向より当接させることで、被測定ボールねじ軸Wの自重によるたわみ変形に影響されずに測定が可能となる。特に、長尺のボールねじ軸を測定する場合、自重によるたわみ変形は大きく、固定支持方法が測定誤差につながるため、作業が複雑となる。軸心Lzの高さの許容差をねじ全長で±1μm以内にしなければ、1μm以内の測定の再現性が確保できない。
また、第1実施形態では、被測定ボールねじ軸Wの径を変更する度に、被測定ボールねじ軸Wの固定する高さをボール接触子5の中心高さと同一となるように固定支持台の高さと支持間隔を厳密に調節しなければならないが、第2実施形態であれば、その必要がなくなるという利点もある。
By making the ball contact 5 abut from the Y-axis direction perpendicular to the axis Lz of the ball screw shaft W as in the present embodiment, it is not affected by the deflection deformation due to the weight of the ball screw shaft W to be measured. Measurement is possible. In particular, when measuring a long ball screw shaft, the deflection deformation due to its own weight is large, and the fixed support method leads to measurement errors, which complicates the work. Unless the tolerance of the height of the shaft center Lz is within ± 1 μm in terms of the total screw length, the reproducibility of measurement within 1 μm cannot be ensured.
In the first embodiment, each time the diameter of the measured ball screw shaft W is changed, the fixed support base is set so that the height of the measured ball screw shaft W is the same as the center height of the ball contactor 5. However, the second embodiment has an advantage that it is not necessary.

なお、本発明で使用される空気静圧軸受について詳細に説明する。本発明で使用される空気静圧軸受は、移動体61に、加圧気体を供給する主配管64と、摺動面66に開口する主配管64の吐出口64aに設けられ加圧気体を整流するオリフィス65と、このオリフィス65に連通しオリフィス65から吐出された加圧気体を固定体62との軸受間隙67に分配して供給する通気溝68が形成された静圧パッド63を備えている(図7参照)。そしてこの通気溝68は、オリフィス65を囲み環状に形成された環状溝68bと、オリフィス65を中心に環状溝68bに向かって放射状に延設され、この環状溝68bとオリフィス65とを連通する複数の分配溝68aとからなっている(図8参照)。さらに、通気溝68は、移動体61の移動方向に対して対称となるように形成されている。また、通気溝68の幅方向の断面形状が摺動面66から離れる方向に凸の曲線を形成している(図9参照)。   The aerostatic bearing used in the present invention will be described in detail. The aerostatic bearing used in the present invention is provided in a main pipe 64 for supplying pressurized gas to the moving body 61 and a discharge port 64a of the main pipe 64 opened to the sliding surface 66, and rectifies the pressurized gas. And a static pressure pad 63 formed with a ventilation groove 68 that communicates with the orifice 65 and distributes and supplies the pressurized gas discharged from the orifice 65 to the bearing gap 67 with the fixed body 62. (See FIG. 7). The ventilation groove 68 has an annular groove 68b formed in an annular shape surrounding the orifice 65, and extends radially toward the annular groove 68b around the orifice 65, and a plurality of the annular groove 68b and the orifice 65 communicate with each other. Distribution groove 68a (see FIG. 8). Further, the ventilation groove 68 is formed to be symmetric with respect to the moving direction of the moving body 61. Further, the cross-sectional shape of the ventilation groove 68 in the width direction forms a convex curve in a direction away from the sliding surface 66 (see FIG. 9).

また、分配溝68aの幅方向の断面積の総和は、オリフィス65の断面積以上であり、通気溝68の表面粗さは、移動体61の摺動面66の表面粗さよりも小さくなるように形成されている。   Further, the sum of the cross-sectional areas in the width direction of the distribution grooves 68 a is equal to or larger than the cross-sectional area of the orifice 65, and the surface roughness of the ventilation grooves 68 is smaller than the surface roughness of the sliding surface 66 of the moving body 61. Is formed.

さらに、移動体61には、環状溝68bを囲んで設けられ、通気溝68から軸受間隙67に供給された加圧気体を軸受間隙67の外方に案内して排気する排気溝69が、移動体61の移動方向に対して対称となるように形成されている(図8参照)。また、排気溝69は、幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成しているとともに、断面積が環状溝68bの断面積以上となっている。(図9参照)。
そして、移動体61及び固定体62はセラミックスにより形成されている。
Further, the moving body 61 is provided with an exhaust groove 69 that surrounds the annular groove 68b and guides the pressurized gas supplied from the ventilation groove 68 to the bearing gap 67 to the outside of the bearing gap 67 and exhausts it. It is formed so as to be symmetric with respect to the moving direction of the body 61 (see FIG. 8). Further, the exhaust groove 69 forms a convex curve in a direction in which the cross-sectional shape in the width direction is away from the sliding surface, and the cross-sectional area is equal to or larger than the cross-sectional area of the annular groove 68b. (See FIG. 9).
The moving body 61 and the fixed body 62 are made of ceramics.

以上のように構成された空気静圧軸受は、静圧パッド63から軸受間隙67へ吐出される加圧気体を圧力分布が一様な層流とすることができるので、振動の発生を防止できる高精度な空気静圧軸受となっている。
さらに、層流を安定して維持することができるため、加圧気体の給気圧力を上げることができるので、高剛性の空気静圧軸受となっている。
The aerostatic bearing configured as described above can prevent the occurrence of vibration because the pressurized gas discharged from the static pressure pad 63 to the bearing gap 67 can be a laminar flow with a uniform pressure distribution. It is a highly accurate aerostatic bearing.
Furthermore, since the laminar flow can be stably maintained, the supply pressure of the pressurized gas can be increased, and thus a highly rigid aerostatic bearing is obtained.

なお、図7、8、9に示す空気静圧軸受は、本発明に使用する空気静圧軸受の一実施形態であり、これに限られるものではない。   In addition, the aerostatic bearing shown to FIG.7,8,9 is one Embodiment of the aerostatic bearing used for this invention, and is not restricted to this.

(実施例)
以下に、第1実施形態のボールねじ軸の累積リード誤差測定装置の測定した例を示す。
軸径が40mm、リードピッチが10mm、全長が1400mmのJIS規格でC3級に相当する規格に合格したボールねじ軸(THK製)を、室温が20℃±0.5℃に空調されたで室内で該ボールねじ軸の累積リード誤差を測定した。
まず、被測定ボールねじ軸を位置決めスライド往復手段2に備えられた空気静圧軸受のガイド軸に平行となるように3台の固定支持台に静置した。さらに、ボール接触子5の球体50の中心高さに合わせて、被測定ボールねじ軸の軸心Lzの高さが±1μm以内となるように固定支持台1を調節した。そして、被測定ボールねじ軸Wの先端から200mmの位置から10mmピッチの間隔で、ボール接触子5を被測定ボールねじ軸Wの軸心Lzに対して直交するX軸方向より押し込んだ。1リードピッチは5秒/ポイント間隔で、全長測定時間は500秒/100ポイントで測定した。なお、位置検出スライド手段2に備えられる中立位置保持弾性体35のスプリングには、ばね定数0.3N/mmのものを用いた。また、ボール接触子スライド手段4に備えられた押し込み力調整弾性体43のスプリングには、ばね定数2.4N/mmのものを用い、伸縮手段で押し込み力調整弾性体43を1mm押し込むように設定した。
以上により測定した結果を図10に示す。図10より4回測定した累積リード誤差のバラツキは代表移動量誤差で19〜20μm、再現性が最大0.7μm以内で、高精度に再現性よく測定できることが見て取れる。
(Example)
An example measured by the cumulative lead error measuring apparatus for the ball screw shaft of the first embodiment will be shown below.
A ball screw shaft (manufactured by THK) that passed the JIS standard equivalent to C3 class with a shaft diameter of 40 mm, a lead pitch of 10 mm, and an overall length of 1400 mm, is air-conditioned at a room temperature of 20 ° C ± 0.5 ° C. Then, the accumulated lead error of the ball screw shaft was measured.
First, the ball screw shaft to be measured was placed on three fixed support bases so as to be parallel to the guide shaft of the aerostatic bearing provided in the positioning slide reciprocating means 2. Further, the fixed support 1 was adjusted so that the height of the axis Lz of the ball screw shaft to be measured was within ± 1 μm in accordance with the center height of the sphere 50 of the ball contactor 5. Then, the ball contactor 5 was pushed in from the X-axis direction orthogonal to the axis Lz of the measured ball screw shaft W from the position of 200 mm from the tip of the measured ball screw shaft W at an interval of 10 mm. One lead pitch was measured at intervals of 5 seconds / point, and the total length measurement time was measured at 500 seconds / 100 points. A spring having a spring constant of 0.3 N / mm was used as the spring of the neutral position holding elastic body 35 provided in the position detection slide means 2. Further, the spring of the pushing force adjusting elastic body 43 provided in the ball contactor slide means 4 has a spring constant of 2.4 N / mm, and is set so that the pushing force adjusting elastic body 43 is pushed in by 1 mm by the expansion / contraction means. did.
The results measured as described above are shown in FIG. From FIG. 10, it can be seen that the variation in the accumulated read error measured four times is a typical movement amount error of 19 to 20 μm, the reproducibility is within 0.7 μm at maximum, and can be measured with high accuracy and good reproducibility.

また、表1に本発明の実施例と従来の一般的な例の比較を示す。本発明は測定の再現性で1μm以下であり、高精度の測定が実現しており、さらに、測定時間が従来方法比べ、1/3の時間で達成できており、ボールねじ軸の検査時間を大幅に短縮することが可能である。   Table 1 shows a comparison between examples of the present invention and conventional general examples. In the present invention, the reproducibility of measurement is 1 μm or less, high-precision measurement is realized, and the measurement time can be achieved in 1/3 of the conventional method. It can be significantly shortened.

以上のことから明らかなように本発明のねじリード誤差測定装置を用いれば、ねじ溝の検出にねじのフランクに直接接触させるボール接触子5を用いることで、より高精度にねじ溝の中心位置を求めることができる。そして、被測定ボールねじ軸Wの軸心Lz方向におけるねじ溝の位置は、位置決め往復スライド手段2にボールねじ軸Wの軸心Lzと平行に水平往復移動する位置検出スライド手段3を載置させ、さらに位置検出スライド手段3に所定の押し込み力でねじ溝にボール接触子5を押し込むボール接触子スライド手段4を組み込むことでボール接触子5がねじ溝になじみやすくなり、そしてリード側位置検出手段6を用いることにより正確に検出することができる。   As is apparent from the above, by using the screw lead error measuring device of the present invention, the ball contactor 5 that makes direct contact with the flank of the screw is used for detecting the thread groove, so that the center position of the thread groove is more accurately detected. Can be requested. Then, the position of the thread groove in the direction of the axis Lz of the ball screw shaft W to be measured is placed on the positioning reciprocating slide means 2 with the position detecting slide means 3 that horizontally reciprocates parallel to the axis Lz of the ball screw axis W. Further, by incorporating the ball contactor slide means 4 for pushing the ball contactor 5 into the screw groove with a predetermined pushing force into the position detection slide means 3, the ball contactor 5 becomes easy to become familiar with the screw groove, and the lead side position detection means 6 can be accurately detected.

さらに、本発明のねじリード誤差測定装置においては、位置決め往復スライド手段2に真直度が2μm/m以下、姿勢精度が2秒以下の走行精度を有するセラミックス製の空気静圧軸受20を備えているので、ボール接触子5がボールねじ軸Wのねじ溝になじみやすく、再現性を高い精度で測定できる装置をコンパクトに構成することができる。   Furthermore, in the screw lead error measuring device of the present invention, the positioning reciprocating slide means 2 is provided with a ceramic aerostatic bearing 20 having a running accuracy with a straightness of 2 μm / m or less and an attitude accuracy of 2 seconds or less. As a result, the ball contactor 5 can be easily adapted to the thread groove of the ball screw shaft W, and a device capable of measuring reproducibility with high accuracy can be configured in a compact manner.

さらに、本発明のねじリード誤差測定装置においては、位置検出スライド手段3に摺動抵抗の極めて少ないセラミックス製の空気静圧軸受30を備え、さらに、この空気静圧軸受30の受け台32と固定軸31の間にZ軸方向に対するずれ量に応じて受け台32を固定軸31の中立位置に戻す復元力を有した中立位置保持弾性体35を備えているので、ねじ溝位置の検出誤差を小さくすることができる。   Further, in the screw lead error measuring apparatus of the present invention, the position detecting slide means 3 is provided with a ceramic hydrostatic bearing 30 having a very small sliding resistance, and further fixed to the cradle 32 of the aerostatic bearing 30. Since the neutral position holding elastic body 35 having a restoring force to return the cradle 32 to the neutral position of the fixed shaft 31 according to the amount of deviation with respect to the Z-axis direction is provided between the shafts 31, the detection error of the screw groove position is reduced. Can be small.

また、ボール接触子スライド手段4には、ボール接触子5をねじ溝に押し込んだ時にZ軸方向の変形量に耐えうる軸剛性を有したセラミックス製の空気静圧軸受40を備えているので、コンパクトで再現性の高い測定ができる。   Further, since the ball contact slide means 4 is provided with a ceramic aerostatic bearing 40 having axial rigidity capable of withstanding the deformation amount in the Z-axis direction when the ball contact 5 is pushed into the thread groove. Compact and highly reproducible measurement.

さらに、ボール接触子スライド手段4にボール接触子5をねじ軸に押し込むための伸縮手段44に押し込み力調整弾性体43を連接させているので、ボール接触子5をねじ溝に押し込んだ時の衝突エネルギーを吸収し、ねじ溝の中心位置を検出する前のボール接触子5の押し込み力を一定に保持させることで、ボール接触子5を適切にねじ溝の中心位置に収めることができるので、ねじ溝位置の検出誤差を更に小さくすることができる。   Further, since the pushing force adjusting elastic body 43 is connected to the expansion / contraction means 44 for pushing the ball contact 5 into the screw shaft into the ball contact sliding means 4, the collision when the ball contact 5 is pushed into the screw groove. Since the ball contact 5 can be properly stored in the center position of the screw groove by absorbing energy and holding the pushing force of the ball contact 5 before detecting the center position of the screw groove constant, The detection error of the groove position can be further reduced.

W ボールねじ軸
1 固定支持台
2 位置決め往復スライド手段
3 位置検出スライド手段
4 ボール接触子スライド手段
5 ボール接触子
6 リード位置測定手段
20 空気静圧軸受
21 ガイド軸
22 移動テーブル
25 位置決め走行手段
30 空気静圧軸受
31 固定軸
32 受け台
35 中立位置保持弾性体
40 空気静圧軸受
41 固定支持体
42 移動軸
43 押し込み力調整弾性体
44 伸縮手段
50 球体
W Ball screw shaft 1 Fixed support base 2 Positioning reciprocating slide means 3 Position detecting slide means 4 Ball contact slide means 5 Ball contact 6 Lead position measuring means 20 Aerostatic bearing 21 Guide shaft 22 Moving table 25 Positioning travel means 30 Air Static pressure bearing 31 Fixed shaft 32 Receiving base 35 Neutral position holding elastic body 40 Air static pressure bearing 41 Fixed support body 42 Moving shaft 43 Pushing force adjusting elastic body 44 Telescopic means 50 Sphere

Claims (14)

被測定ボールねじ軸の軸心方向におけるねじ溝の位置を検出することによって累積リード誤差を測定するボールねじ軸の累積リード誤差測定装置であって、
前記被測定ボールねじ軸を回転不動に固定する固定支持台と、
前記固定支持台に固定された前記被測定ボールねじ軸のねじ溝に当接させる球体を備えたボール接触子と、
前記ボール接触子を前記軸心に対して直交方向に往復移動させるとともに前記ボール接触子を所定の押し込み力で前記ねじ溝に当接させるボール接触子スライド手段と、
前記ボール接触子スライド手段を載置し、該ボール接触子スライド手段を前記軸心と平行に水平往復移動する位置検出スライド手段と、
前記位置検出スライド手段を載置し、前記位置検出スライド手段を前記被測定ボールねじ軸のねじ部間で往復移動させる位置決め往復スライド手段と、
前記ボール接触子の前記軸心方向における位置を検出するリード位置測定手段と、
を備えたことを特徴とするボールねじ軸の累積リード誤差測定装置。
A ball screw shaft cumulative lead error measuring device for measuring a cumulative lead error by detecting a position of a thread groove in an axial direction of a measured ball screw shaft,
A fixed support base for fixing the ball screw shaft to be measured to be stationary;
A ball contactor comprising a sphere to be brought into contact with a thread groove of the ball screw shaft to be measured fixed to the fixed support;
Ball contact sliding means for reciprocating the ball contact in a direction perpendicular to the axis and bringing the ball contact into contact with the screw groove with a predetermined pushing force;
Position detecting slide means for placing the ball contact slide means and horizontally reciprocating the ball contact slide means parallel to the axis;
Positioning reciprocating slide means for placing the position detection slide means and reciprocatingly moving the position detection slide means between the thread portions of the ball screw shaft to be measured;
Lead position measuring means for detecting a position of the ball contact in the axial direction;
A cumulative lead error measuring device for a ball screw shaft, comprising:
前記ボール接触子スライド手段が、前記ボール接触子を前記軸心に対して鉛直または水平の直交方向に往復移動させることを特徴とする請求項1記載のボールねじ軸の累積リード誤差測定装置。   2. The ball screw shaft cumulative lead error measuring device according to claim 1, wherein the ball contact sliding means reciprocates the ball contact in a vertical or horizontal orthogonal direction with respect to the axis. 前記ボール接触子スライド手段が、前記被測定ボールねじ軸側の一端に前記ボール接触子が連結された移動軸と、該移動軸を支持する固定支持体とからなる空気静圧軸受であることを特徴とする請求項1または2記載のボールねじ軸の累積リード誤差測定装置。   The ball contact slide means is an aerostatic bearing comprising a moving shaft having the ball contact connected to one end on the measured ball screw shaft side, and a fixed support for supporting the moving shaft. The cumulative lead error measuring device for a ball screw shaft according to claim 1 or 2, characterized in that: 前記ボール接触子スライド手段が、前記移動軸の他端に前記ボール接触子の押し込み力を調整するための押し込み力調整弾性体を介して伸縮手段をさらに具備していることを特徴とする請求項1、2または3に記載のボールねじ軸の累積リード誤差測定装置。   The ball contact sliding means further comprises an expansion / contraction means on the other end of the moving shaft via a pressing force adjusting elastic body for adjusting the pressing force of the ball contact. A cumulative lead error measuring device for a ball screw shaft according to any one of 1, 2 or 3. 前記ボール接触子スライド手段が、前記ボール接触子を前記ねじ溝に0.5〜5Nの押し込み力で押し込むことを特徴とする請求項4に記載のボールねじ軸の累積リード誤差測定装置。   5. The cumulative lead error measuring apparatus for a ball screw shaft according to claim 4, wherein the ball contact sliding means pushes the ball contact into the thread groove with a pushing force of 0.5 to 5N. 前記ボール接触子スライド手段が、前記ボール接触子を前記ねじ溝に1〜3Nの押し込み力で押し込むことを特徴とする請求項4に記載のボールねじ軸の累積リード誤差測定装置。   5. The cumulative lead error measuring device for a ball screw shaft according to claim 4, wherein the ball contact sliding means pushes the ball contact into the screw groove with a pushing force of 1 to 3N. 前記位置検出スライド手段が、前記軸心と平行に設けられた固定軸と、該固定軸に沿って移動可能で前記ボール接触子スライド手段が載置される受け台と、からなる空気静圧軸受であることを特徴とする請求項1〜6のいずれか1項に記載のボールねじ軸の累積リード誤差測定装置。   An aerostatic bearing in which the position detection slide means includes a fixed shaft provided in parallel with the shaft center, and a cradle on which the ball contact slide means is mounted so as to be movable along the fixed shaft. The cumulative lead error measuring device for a ball screw shaft according to any one of claims 1 to 6, wherein: 前記位置検出スライド手段は、前記受け台と固定軸の両端との間に前記受け台を前記ボール接触子が前記ねじ溝に当接していない状態の前記軸心方向と平行な中立位置に戻す復元力を有する中立位置保持弾性体を、さらに備えることを特徴とする請求項7に記載のボールねじ軸の累積リード誤差測定装置。   The position detection slide means restores the cradle between the cradle and both ends of the fixed shaft to a neutral position parallel to the axial direction in a state where the ball contact is not in contact with the screw groove. 8. The ball screw shaft cumulative lead error measuring device according to claim 7, further comprising a neutral position holding elastic body having force. 前記中立位置保持弾性体が、0.1〜3N/mmのばね定数を有するスプリングであることを特徴とする請求項8に記載のボールねじ軸の累積リード誤差測定装置。   The cumulative lead error measuring apparatus for a ball screw shaft according to claim 8, wherein the neutral position holding elastic body is a spring having a spring constant of 0.1 to 3 N / mm. 前記中立位置保持弾性体が、0.3〜1N/mmのばね定数を有するスプリングであることを特徴とする請求項8に記載のボールねじ軸の累積リード誤差測定装置。   The cumulative lead error measuring apparatus for a ball screw shaft according to claim 8, wherein the neutral position holding elastic body is a spring having a spring constant of 0.3 to 1 N / mm. 前記位置決め往復スライド手段が、前記軸心に平行に設けられたガイド軸と、該ガイド軸に沿って移動する移動テーブルとからなり、真直度が2μm/m以下、姿勢精度が2秒以下の走行精度を有する空気静圧軸受であることを特徴とする請求項1〜10のいずれか1項に記載のボールねじ軸の累積リード誤差測定装置。   The positioning reciprocating slide means comprises a guide shaft provided parallel to the axis and a moving table that moves along the guide shaft. The straightness is 2 μm / m or less and the posture accuracy is 2 seconds or less. It is an aerostatic bearing which has accuracy, The accumulation lead error measuring device of a ball screw axis given in any 1 paragraph of Claims 1-10 characterized by the above-mentioned. 前記位置決め往復スライド手段が、前記移動テーブルを前記ガイド軸に沿って所定の位置へ移動させる位置決め走行手段をさらに備えていることを特徴とする請求項11に記載のボールねじ軸の累積リード誤差測定装置。   12. The accumulated lead error measurement of a ball screw shaft according to claim 11, wherein the positioning reciprocating sliding means further comprises positioning traveling means for moving the moving table to a predetermined position along the guide shaft. apparatus. 前記リード位置測定手段が、レーザー干渉測長器を備えることを特徴とする請求項1〜12のいずれか1項に記載のボールねじ軸の累積リード誤差測定装置。   The said lead position measuring means is equipped with a laser interference length measuring device, The accumulated lead error measuring apparatus of the ball screw shaft of any one of Claims 1-12 characterized by the above-mentioned. 前記被測定ボールねじ軸を回転不動に静置して固定する固定支持台と、
前記固定支持台に固定された前記被測定ボールねじ軸のねじ溝に当接させる球体を備えたボール接触子と、
前記ボール接触子を前記軸心に対して直交方向に往復移動させるとともに前記ボール接触子を所定の押し込み力で前記ねじ溝に当接させるボール接触子スライド手段と、
前記ボール接触子スライド手段を載置し、該ボール接触子スライド手段を前記軸心と平行に水平往復移動する位置検出スライド手段と、
前記位置検出スライド手段を載置し、前記位置検出スライド手段を前記被測定ボールねじ軸のねじ部間で往復移動させる位置決め往復スライド手段と、
前記ボール接触子の前記軸心方向における位置を検出するリード位置測定手段と、
を備えたボールねじ軸の累積リード誤差測定装置を用いて前記被測定ボールねじ軸の累積リード誤差を測定するボールねじ軸の累積リード誤差測定方法であって、
前記固定支持台に前記ボール接触子を前記被測定ボールねじ軸の前記軸心に対して直交方向に往復移動させた時の前記球体の中心が前記軸心に直交する位置へ前記被測定ボールねじ軸を固定する固定支持工程と、
前記ボール接触子を前記被測定ボールねじ軸の軸心方向に対して直交方向から所定の押し込み力でねじ溝に当接させるボール接触子押し込み工程と、
前記ねじ溝に当接された前記ボール接触子の前記軸心方向における位置を前記リード位置測定手段で測定する測定工程と、
前記ねじ溝に当接された前記ボール接触子を前記軸心方向に対して直交方向に退避させるボール接触子退避工程と、
前記ボール接触子を前記軸心方向と平行に所定間隔に水平移動させるボール接触子移動工程と、
を備えたことを特徴とするねじリード誤差測定方法。
A fixed support base for stationaryly fixing the ball screw shaft to be measured to be stationary;
A ball contactor comprising a sphere to be brought into contact with a thread groove of the ball screw shaft to be measured fixed to the fixed support;
Ball contact sliding means for reciprocating the ball contact in a direction perpendicular to the axis and bringing the ball contact into contact with the screw groove with a predetermined pushing force;
Position detecting slide means for placing the ball contact slide means and horizontally reciprocating the ball contact slide means parallel to the axis;
Positioning reciprocating slide means for placing the position detection slide means and reciprocatingly moving the position detection slide means between the thread portions of the ball screw shaft to be measured;
Lead position measuring means for detecting a position of the ball contact in the axial direction;
A cumulative lead error measurement method for the ball screw shaft using a cumulative lead error measuring device for the ball screw shaft with a ball screw shaft, comprising:
The ball screw to be measured is moved to a position where the center of the sphere is perpendicular to the axis when the ball contact is reciprocated in the direction orthogonal to the axis of the ball screw shaft to be measured on the fixed support base. A fixing support step for fixing the shaft;
A ball contactor pushing step for bringing the ball contactor into contact with the screw groove with a predetermined pushing force from a direction orthogonal to the axial direction of the ball screw shaft to be measured;
A measuring step of measuring the position of the ball contactor in contact with the screw groove in the axial direction with the lead position measuring means;
A ball contact retracting step of retracting the ball contact in contact with the screw groove in a direction orthogonal to the axial direction;
A ball contactor moving step for horizontally moving the ball contactor at a predetermined interval parallel to the axial direction;
A screw lead error measuring method comprising:
JP2011120700A 2011-05-30 2011-05-30 Cumulative lead error measuring device and measuring method for ball screw shaft Active JP5674149B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011120700A JP5674149B2 (en) 2011-05-30 2011-05-30 Cumulative lead error measuring device and measuring method for ball screw shaft
TW101112364A TWI499757B (en) 2011-05-30 2012-04-06 Accumulated lead error measurement device and determination method of ball screw shaft
KR1020120051056A KR101732749B1 (en) 2011-05-30 2012-05-14 Cumulative-lead errors measurement device and measurement method for ball screw shaft
CN201210175226.6A CN102809350B (en) 2011-05-30 2012-05-30 The accumulation lead error determinator of ballscrew shaft and assay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120700A JP5674149B2 (en) 2011-05-30 2011-05-30 Cumulative lead error measuring device and measuring method for ball screw shaft

Publications (2)

Publication Number Publication Date
JP2012247362A true JP2012247362A (en) 2012-12-13
JP5674149B2 JP5674149B2 (en) 2015-02-25

Family

ID=47233131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120700A Active JP5674149B2 (en) 2011-05-30 2011-05-30 Cumulative lead error measuring device and measuring method for ball screw shaft

Country Status (4)

Country Link
JP (1) JP5674149B2 (en)
KR (1) KR101732749B1 (en)
CN (1) CN102809350B (en)
TW (1) TWI499757B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075989A (en) * 2012-12-31 2013-05-01 深圳市配天数控科技有限公司 Screw pitch error compensating method
CN103615960A (en) * 2013-12-16 2014-03-05 南车戚墅堰机车车辆工艺研究所有限公司 External thread coaxiality measuring device and measuring method
CN104279928A (en) * 2014-10-09 2015-01-14 浙江万达汽车方向机有限公司 Device and method for measuring screw path position of steering piston nut of power steering gear
CN104374324A (en) * 2014-11-13 2015-02-25 长沙德自信息技术有限公司 Image recognition based displacement measurement device
CN107063043A (en) * 2017-06-12 2017-08-18 北京霹西自动化技术有限公司 Ball screw assembly, journey error detecting system
CN108710338A (en) * 2018-06-21 2018-10-26 南京理工大学 A kind of suspension type ball screw assembly, measurement Error Compensation device
CN108955539A (en) * 2018-08-24 2018-12-07 河北工业大学 A kind of bearing machining quality automatic inspection line
DE102017126198A1 (en) * 2017-11-09 2019-05-09 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for the unthreaded measurement of a thread
CN117367787A (en) * 2023-12-07 2024-01-09 上海狄兹精密机械有限公司 Device and method for detecting lead precision of screw rod

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075967B (en) * 2013-01-06 2016-01-13 江苏科技大学 Anchor chain or mooring cable monocycle or five rings length measuring method and measurement mechanism
CN104613910B (en) * 2015-02-13 2015-09-09 方流生 The pick-up unit of the power industry turbine spindle bearing with illuminating lamp and detection method
TWI600492B (en) * 2015-04-01 2017-10-01 Hiwin Tech Corp Compensation screw lead error method
CN107091630A (en) * 2017-01-18 2017-08-25 浙江精久轴承工业有限公司 A kind of ball screw pitch detection and uniform decision maker and method
JP6841137B2 (en) * 2017-04-11 2021-03-10 株式会社ジェイテクト Ball screw mechanism inspection method, ball screw mechanism inspection device, ball screw mechanism manufacturing method, and steering device inspection method
CN107063032A (en) * 2017-07-04 2017-08-18 重庆帅能机床制造有限公司 A kind of measurement apparatus of numerically controlled lathe ball screw installation accuracy
KR102034928B1 (en) * 2017-09-27 2019-11-08 신치성 Pitch measuring device of ball- screw
CN108195340A (en) * 2017-12-21 2018-06-22 常州海特赐仁传动科技有限公司 A kind of ball screw accuracy detector
CN109048860B (en) * 2018-08-30 2019-06-14 南京禹智智能科技有限公司 A kind of industrial robot mobile platform
CN109615225B (en) * 2018-12-11 2023-02-07 重庆大学 Meta-motion assembly quality assessment method and device of ball screw mechanism
CN111854633B (en) * 2020-06-23 2021-10-26 南京理工大学 Device and method for rapidly measuring errors of ball screw nut raceway
CN111964550B (en) * 2020-07-11 2022-03-29 芜湖市宇特机械制造有限公司 Detection apparatus for automobile panel
CN116592767B (en) * 2023-07-17 2024-02-27 上海威瞳视觉技术有限公司 Method and system for detecting positioning error of linear movement mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626203A (en) * 1979-08-10 1981-03-13 Nippon Seiko Kk Method and device for measurement of cumulative lead error of ball screw shaft
JPH10111122A (en) * 1996-10-03 1998-04-28 Honda Motor Co Ltd Device for measuring screw of ball screw unit and nut measuring device
WO2000052419A1 (en) * 1999-03-03 2000-09-08 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231187B1 (en) * 1970-12-23 1977-08-12
JP5381013B2 (en) 2008-03-31 2014-01-08 株式会社ジェイテクト Thread groove detection device, thread groove detection method, and machine tool
CN101701798A (en) * 2009-01-20 2010-05-05 南京理工大学 Method and device for automatic detection of composite errors of ball screw spiral raceway
KR101128913B1 (en) * 2009-05-07 2012-03-27 에스엔유 프리시젼 주식회사 Vision inspection system and method for converting coordinates using the same
CN101907441B (en) * 2009-06-03 2015-08-12 上海莱恩精密机床附件有限公司 The laser pitchometer of ball-screw and measuring method thereof
CN101762388B (en) * 2009-12-25 2012-11-14 重庆大学 Method for measuring tooth surface error of enveloping worm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626203A (en) * 1979-08-10 1981-03-13 Nippon Seiko Kk Method and device for measurement of cumulative lead error of ball screw shaft
JPH10111122A (en) * 1996-10-03 1998-04-28 Honda Motor Co Ltd Device for measuring screw of ball screw unit and nut measuring device
WO2000052419A1 (en) * 1999-03-03 2000-09-08 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075989A (en) * 2012-12-31 2013-05-01 深圳市配天数控科技有限公司 Screw pitch error compensating method
CN103615960A (en) * 2013-12-16 2014-03-05 南车戚墅堰机车车辆工艺研究所有限公司 External thread coaxiality measuring device and measuring method
CN104279928A (en) * 2014-10-09 2015-01-14 浙江万达汽车方向机有限公司 Device and method for measuring screw path position of steering piston nut of power steering gear
CN104374324A (en) * 2014-11-13 2015-02-25 长沙德自信息技术有限公司 Image recognition based displacement measurement device
CN107063043A (en) * 2017-06-12 2017-08-18 北京霹西自动化技术有限公司 Ball screw assembly, journey error detecting system
DE102017126198A1 (en) * 2017-11-09 2019-05-09 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for the unthreaded measurement of a thread
DE102017126198B4 (en) 2017-11-09 2021-11-11 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for gaugeless measurement of a thread
CN108710338A (en) * 2018-06-21 2018-10-26 南京理工大学 A kind of suspension type ball screw assembly, measurement Error Compensation device
CN108955539A (en) * 2018-08-24 2018-12-07 河北工业大学 A kind of bearing machining quality automatic inspection line
CN108955539B (en) * 2018-08-24 2023-06-09 河北工业大学 Automatic detection line for bearing machining quality
CN117367787A (en) * 2023-12-07 2024-01-09 上海狄兹精密机械有限公司 Device and method for detecting lead precision of screw rod
CN117367787B (en) * 2023-12-07 2024-02-13 上海狄兹精密机械有限公司 Device and method for detecting lead precision of screw rod

Also Published As

Publication number Publication date
JP5674149B2 (en) 2015-02-25
TW201248118A (en) 2012-12-01
TWI499757B (en) 2015-09-11
CN102809350A (en) 2012-12-05
KR101732749B1 (en) 2017-05-04
CN102809350B (en) 2016-02-17
KR20120134007A (en) 2012-12-11

Similar Documents

Publication Publication Date Title
JP5674149B2 (en) Cumulative lead error measuring device and measuring method for ball screw shaft
EP1749247B1 (en) A measurement configuration based on linear scales able to measure to a target also moving perpendicular to the measurement axis
US20160040987A1 (en) Method and machine for determining a shape contour on a measurement object
JP6046967B2 (en) Precision two-dimensional moving device, precision three-dimensional moving device, and three-dimensional measuring machine
CN101352817A (en) Method of measuring position detection error in machine tool
JPH03180711A (en) Probe and method, apparatus and guide means for calibrating continuously measuring probe
US6026583A (en) Shape measuring apparatus and method
Nouira et al. Ultra-high precision CMMs and their associated tactile or/and optical scanning probes
CN115388771A (en) Ultra-precise form and position error measuring instrument based on reflector measuring head integrated design
US6446950B2 (en) Travelling worktable apparatus
CN103884270A (en) Device for measuring two-dimensional micro angle generated in installation of circular grating and method thereof
JP4923441B2 (en) Shape measuring instrument
JP2000249540A (en) Device and method for measuring shape of cylindrical object
Donker et al. ISARA 400: Enabling ultra-precision coordinate metrology for large parts
JP6395542B2 (en) Contact type probe and shape measuring device
JP5292668B2 (en) Shape measuring apparatus and method
EP2754992A1 (en) Optical profilometer
CN219368698U (en) X-axis motion platform and three-coordinate measuring machine
JP2015150668A (en) Machine tool and processing method of workpiece
Bosmans et al. Reproducibility of a nanometre accurate moving-scale measurement system
CN118168469A (en) Cylindrical coordinate profile scanning measuring device capable of compensating motion precision and application method thereof
JP2020056735A (en) Shape measurement method, shape measurement device, and article manufacturing method
JP2019082492A (en) Three-dimensional coordinate measuring machine
Bosmans et al. Long-term stability of a moving-scale measurement system with nanometer uncertainty
JP2002032129A (en) Moving stage mechanism using controlling sensor and correcting sensor and method and device for controlling the mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250