JP2012246225A - Silane coupling agent - Google Patents

Silane coupling agent Download PDF

Info

Publication number
JP2012246225A
JP2012246225A JP2011117040A JP2011117040A JP2012246225A JP 2012246225 A JP2012246225 A JP 2012246225A JP 2011117040 A JP2011117040 A JP 2011117040A JP 2011117040 A JP2011117040 A JP 2011117040A JP 2012246225 A JP2012246225 A JP 2012246225A
Authority
JP
Japan
Prior art keywords
group
silane coupling
coupling agent
methoxy
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011117040A
Other languages
Japanese (ja)
Inventor
Naoya Sato
直哉 佐藤
Atsushi Ozaki
淳 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Chemical Industry Co Ltd
Original Assignee
Okamoto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Chemical Industry Co Ltd filed Critical Okamoto Chemical Industry Co Ltd
Priority to JP2011117040A priority Critical patent/JP2012246225A/en
Publication of JP2012246225A publication Critical patent/JP2012246225A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a highly-hydrophobic silane coupling agent into which a functional group having excellent environmental suitability is introduced, which is a stable silane coupling agent exposable preferably by an ultraviolet ray of 300-400 nm, and applicable to positive image formation or the like.SOLUTION: This invention relates to a compound represented by general formula (I) (in the formula, R represents methyl, t-butyl, phenyl which may have a substituent, or cyclohexyl which may have a substituent, m represents an integer of 3-10, n represents an integer of 3-9, and X represents hydrolyzable silyl).

Description

本発明は、疎水性から親水性に変性するシランカップリング剤、より詳しくは、光照射の前後で疎水性が大きく変化し、光照射された際に疎水性能を有する基が解離し親水性能を有するヒドロキシ基が生じる光分解性シランカップリング剤に関する。   The present invention relates to a silane coupling agent that is modified from hydrophobic to hydrophilic. More specifically, the hydrophobicity largely changes before and after light irradiation, and the group having hydrophobic performance is dissociated when irradiated with light, thereby improving the hydrophilic performance. The present invention relates to a photodegradable silane coupling agent in which a hydroxy group is generated.

疎水性から親水性に変性することができる光分解性シランカップリング剤は、特許文献1〜4に記載されているように開示されている。
しかしながら、特許文献1〜2によると精製したシランカップリング剤は材料表面に修飾した際に、光照射前の表面接触角が60〜70°前後のため、光照射前後の疎水性と親水性の差が少なく実用的なパターニングをするには難しかった。一方、疎水性を向上するためにフッ化アルキル鎖を有するシランカップリング剤が特許文献4に記載されているが、確かに光照射前の表面接触角は100°前後まで上昇するが、高価な原料とフッ素化合物の環境への適性を考慮すると工業化に難があった。
Photodegradable silane coupling agents that can be modified from hydrophobic to hydrophilic are disclosed as described in Patent Documents 1 to 4.
However, according to Patent Documents 1 and 2, when the purified silane coupling agent is modified on the surface of the material, the surface contact angle before light irradiation is around 60 to 70 °, so hydrophobic and hydrophilic before and after light irradiation. There were few differences and it was difficult to perform practical patterning. On the other hand, in order to improve hydrophobicity, a silane coupling agent having an fluorinated alkyl chain is described in Patent Document 4, but the surface contact angle before light irradiation certainly increases to around 100 °, but is expensive. Considering the environmental suitability of raw materials and fluorine compounds, it was difficult to industrialize.

特許4644339号Japanese Patent No. 4644339 特許4156858号Japanese Patent No. 4156858 特開2003−321479号公報JP 2003-321479 A 特開2008−50321号公報JP 2008-50321 A

本発明の目的は、従来のシランカップリング剤よりも光照射前の疎水性が高いシランカップリング剤で、汎用露光機を使用できる、好ましくは300〜400nmのような紫外線で露光できて親水性となり、ポジ型の画像形成等に応用できる安定なシランカップリング剤を提供することである。   An object of the present invention is a silane coupling agent having a higher hydrophobicity before light irradiation than that of a conventional silane coupling agent, and a general-purpose exposure machine can be used, preferably it can be exposed to ultraviolet rays such as 300 to 400 nm and is hydrophilic. Thus, it is an object of the present invention to provide a stable silane coupling agent that can be applied to positive image formation and the like.

本発明は、高い疎水性を持ち合わせた光分解性シランカップリング剤である、一般式(I)に示す化合物を提供する。   The present invention provides a compound represented by the general formula (I), which is a photodegradable silane coupling agent having high hydrophobicity.

Figure 2012246225
Figure 2012246225

(上式中、Rは、メチル基、t−ブチル基、置換基を有してもよいフェニル基、又は置換基を有してもよいシクロヘキシル基を表し、mは、3〜10の整数であり、nは、3〜9の整数であり、Xは、加水分解性シリル基を表す。) (In the above formula, R represents a methyl group, a t-butyl group, an optionally substituted phenyl group, or an optionally substituted cyclohexyl group, and m is an integer of 3 to 10. Yes, n is an integer of 3 to 9, and X represents a hydrolyzable silyl group.)

本発明に係るシランカップリング剤によれば、光照射前の高い疎水性を有するシランカップリング剤を提供できる。シランカップリング剤は、環境負荷の少ないフルオロ基非含有の特定置換基の採用により材料表面への導入の際に、シランカップリング剤同士が分子配向し易くなりより疎水性が高くなると考えられる。その後、汎用露光機を使用できる、好ましくは300〜400nmのような紫外線で露光でき、その際に疎水性能を有する基が解離し親水性能を有するヒドロキシ基が生じる。したがって、光照射前後の疎水性と親水性の差が大きく、実用的なパターニングに好適である。   According to the silane coupling agent which concerns on this invention, the silane coupling agent which has high hydrophobicity before light irradiation can be provided. It is considered that the silane coupling agent is more hydrophobic because the silane coupling agent is easily molecularly oriented when introduced onto the surface of the material by adopting a specific substituent having no environmental load and containing no fluoro group. Thereafter, a general-purpose exposure machine can be used, preferably exposure with ultraviolet rays such as 300 to 400 nm. At that time, a group having hydrophobic performance is dissociated to produce a hydroxy group having hydrophilic performance. Therefore, there is a large difference between hydrophobicity and hydrophilicity before and after light irradiation, which is suitable for practical patterning.

応用例4における光照射の時間と接触角との関係を示す。The relationship between the light irradiation time and contact angle in the application example 4 is shown. 応用例5における光照射の時間と接触角との関係を示す。The relationship between the light irradiation time and contact angle in the application example 5 is shown.

以下に、本発明の実施の形態について詳細に説明するが、本発明は、以下の実施形態に限定されるものではない。
一般式(I)中のXは、加水分解性シリル基を表し、ケイ素原子に結合したアルコキシ基又はクロロ基等の加水分解性基を1〜3個有する、アルコキシシリル基又はクロロシリル基等が挙げられる。例えば、各アルコキシ基の炭素数が1〜4(好ましくは1〜2)のトリアルコキシシリル基、アルキル基の炭素数が1〜4(好ましくは1〜2)で各アルコキシ基の炭素数が1〜4(好ましくは1〜2)のアルキルジアルコキシシリル基、各アルキル基の炭素数が1〜4(好ましくは1〜2)でアルコキシ基の炭素数が1〜4(好ましくは1〜2)のジアルキルアルコキシシリル基、トリクロロシリル基、アルキル基の炭素数が1〜4(好ましくは1〜2)のアルキルジクロロシリル基、各アルキル基の炭素数が1〜4(好ましくは1〜2)のジアルキルクロロシリル基が挙げられる。Xは、好ましくは、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチル基、ジエトキシメチル基である。
一般式(I)中のmは、3〜10の整数である。3以上であれば、Karstedt触媒を用いることができ加水分解性シリル基の導入上好ましいからであり、10以下であれば、反応性良く表面修飾できるからである。
Embodiments of the present invention will be described in detail below, but the present invention is not limited to the following embodiments.
X in the general formula (I) represents a hydrolyzable silyl group, and includes an alkoxysilyl group or a chlorosilyl group having 1 to 3 hydrolyzable groups such as an alkoxy group or a chloro group bonded to a silicon atom. It is done. For example, a trialkoxysilyl group having 1 to 4 (preferably 1 to 2) carbon atoms of each alkoxy group, a carbon number of 1 to 4 (preferably 1 to 2) of an alkyl group, and a carbon number of each alkoxy group being 1 -4 (preferably 1-2) alkyl dialkoxysilyl group, each alkyl group has 1-4 carbon atoms (preferably 1-2) and alkoxy group has 1-4 carbon atoms (preferably 1-2). A dialkylalkoxysilyl group, a trichlorosilyl group, an alkyldichlorosilyl group having 1 to 4 carbon atoms (preferably 1 to 2), and an alkyl group having 1 to 4 carbon atoms (preferably 1 to 2 carbon atoms). A dialkylchlorosilyl group is mentioned. X is preferably a trimethoxysilyl group, a triethoxysilyl group, a dimethoxymethyl group, or a diethoxymethyl group.
M in the general formula (I) is an integer of 3 to 10. If it is 3 or more, a Karstedt catalyst can be used, which is preferable in terms of introducing hydrolyzable silyl groups, and if it is 10 or less, surface modification can be performed with good reactivity.

一般式(I)中のRは、メチル基、t−ブチル基、置換基を有してもよいフェニル基、置換基を有してもよいシクロヘキシル基を表す。フェニル基やシクロヘキシル基が有してもよい置換基としては、好ましくは炭素数1〜4(より好ましくは1〜2)のアルキル基又はアルコキシ基であり、より好ましくは、メチル基、エチル基、メトキシ基等が挙げられる。フェニル基やシクロヘキシル基が有してもよい置換基の個数は、使用する紫外線の波長への影響が少ないので特に限定されないが、好ましくは1〜2である。
一般式(I)中のnは3〜9の整数である。この範囲は、光分解速度の上で好ましい。
R in the general formula (I) represents a methyl group, a t-butyl group, a phenyl group which may have a substituent, or a cyclohexyl group which may have a substituent. The substituent that the phenyl group or the cyclohexyl group may have is preferably an alkyl group or an alkoxy group having 1 to 4 carbon atoms (more preferably 1 to 2), more preferably a methyl group, an ethyl group, A methoxy group etc. are mentioned. The number of substituents that the phenyl group or the cyclohexyl group may have is not particularly limited because it has little influence on the wavelength of ultraviolet rays to be used, but it is preferably 1 to 2.
N in general formula (I) is an integer of 3-9. This range is preferable in terms of the rate of photolysis.

一般式(I)の化合物は、好ましくは、下記式(1ET)〜(12ET)で表される化合物である。   The compound of the general formula (I) is preferably a compound represented by the following formulas (1ET) to (12ET).

Figure 2012246225
Figure 2012246225

一般式(I)の化合物の製造方法の一例を以下に示す。   An example of a method for producing the compound of general formula (I) is shown below.

Figure 2012246225
Figure 2012246225

一般式(I)の化合物は、例えば、バニリンをベンジルブロミドにより保護し、ニトロ化、脱保護し、4位に特定置換基、5位にメトキシ基を有する2−ニトロベンズアルデヒドをヒドラジンと反応させ、二酸化マンガンで酸化してジアゾ化合物とし、過塩素酸の存在下、二重結合を有するアルコールと反応させてエーテルを得た後、エーテルの二重結合をKarstedt’s catalystを触媒として、例えば、トリメトキシシラン、トリエトキシシランと反応させることにより得られる。本発明の化合物の分離する方法は、特に限定されないが、好ましくは、本発明者らの特許文献2の段落0007の記載と同様に、テトラメトキシシランを加えた溶出液を用いるシリカゲルカラムクロマトグラフィー法である。一般式(I)の化合物の製造方法は、これに限らず、他の公知の方法も利用できる。   The compound of the general formula (I) is obtained by, for example, protecting vanillin with benzyl bromide, nitration and deprotection, reacting 2-nitrobenzaldehyde having a specific substituent at the 4-position and a methoxy group at the 5-position with hydrazine, Oxidized with manganese dioxide to form a diazo compound, reacted with an alcohol having a double bond in the presence of perchloric acid to obtain an ether, and then the ether double bond was converted to, for example, tris by using Karstedt's catalyst as a catalyst. It can be obtained by reacting with methoxysilane or triethoxysilane. The method for separating the compound of the present invention is not particularly limited, but preferably, as in the description of paragraph 0007 of the present inventors, a silica gel column chromatography method using an eluate added with tetramethoxysilane. It is. The production method of the compound of the general formula (I) is not limited to this, and other known methods can be used.

一般式(I)の化合物と、表面にヒドロキシ基を有する材料とを反応させ、光照射することにより、材料表面にヒドロキシアルキル基を有する材料の製造できる。
ヒドロキシ基を有する材料は、反応できるヒドロキシ基が存在すれば特に限定されないが、ガラス、シリカ(SiO2)、アルミナ(Al23)、タルク、クレー、アルミニウム、鉄、マイカ、アスベスト、酸化チタン、酸化鉄等が挙げられ、好ましくは、ガラス、シリカ、アルミナ、タルク、クレー、アルミニウム、鉄、マイカ、特に好ましくは、ガラス、シリカ、アルミナである。詳しくは、エヌ・ティー・エヌ社「表面処理技術ハンドブック」等を参照されたい。これらの材料の形状は、特に限定されず、シリカ粉等の粉状物、シリコンウェハ等の板状物であってもよい。
By reacting the compound of the general formula (I) with a material having a hydroxy group on the surface and irradiating with light, a material having a hydroxyalkyl group on the material surface can be produced.
The material having a hydroxy group is not particularly limited as long as a reactive hydroxy group exists, but glass, silica (SiO 2 ), alumina (Al 2 O 3 ), talc, clay, aluminum, iron, mica, asbestos, titanium oxide Iron oxide, etc., preferably glass, silica, alumina, talc, clay, aluminum, iron, mica, particularly preferably glass, silica, alumina. For details, please refer to the “Handbook of Surface Treatment Technology”, etc. The shape of these materials is not particularly limited, and may be a powdery material such as silica powder or a plate-like material such as a silicon wafer.

ヒドロキシ基を有する材料としてシリコンウェハを例にとれば、一般式(I)の化合物は、以下に示すように、シリコンウェハ表面のヒドロキシ基と反応して付着し、UV照射によりアルコールに変換される。なお、この例では、加水分解性シリル基としてトリメトキシシリル基を用いた。   Taking a silicon wafer as an example of a material having a hydroxy group, the compound of general formula (I) adheres by reacting with the hydroxy group on the surface of the silicon wafer and is converted to alcohol by UV irradiation as shown below. . In this example, a trimethoxysilyl group was used as the hydrolyzable silyl group.

Figure 2012246225
Figure 2012246225

一般式(I)のシランカップリング剤を材料表面に付着させる手段は、特に限定されず、通常のシランカップリング剤による表面処理と同様である。例えば、材料が粉体の場合には、一般式(I)の化合物をトルエン又はベンゼン等の溶媒に溶解し、撹拌された粉状のシリカ表面等に噴射したり、溶液中にシリカ等を入れ処理する方法が用いられる。材料がシリコンウェハ等の一定の形状を有する場合には、一般式(I)の化合物をトルエン又はベンゼン等の溶媒に溶解した溶液にシリコンウェハ等を投入し、還流又は室温での振動撹拌を行ったり、又は溶液を材料表面に薄く塗布することにより表面修飾を行うことができる。   The means for attaching the silane coupling agent of the general formula (I) to the material surface is not particularly limited, and is the same as the surface treatment with a normal silane coupling agent. For example, when the material is powder, the compound of the general formula (I) is dissolved in a solvent such as toluene or benzene and sprayed onto a stirred powdery silica surface, or silica or the like is put into the solution. A processing method is used. When the material has a certain shape such as a silicon wafer, the silicon wafer is put into a solution obtained by dissolving the compound of general formula (I) in a solvent such as toluene or benzene, and the mixture is stirred at reflux or at room temperature Alternatively, surface modification can be performed by thinly applying the solution to the material surface.

材料表面に付着した一般式(I)の化合物は、UV照射により、そのエーテル結合が切れて材料表面にヒドロキシ基を存在させることとなる。これは、トルエン又はベンゼン等の溶媒中に分散させた粉体にUV照射したり、又はシリコンウェハ表面に直接UV照射すること等により行うことができる。材料表面での反応(表面修飾)と光照射を同時に行うと、光照射により生じたヒドロキシ基がシリル基と反応することとなり不都合である。
UV照射は、通常の方法が用いられるが、一例を挙げれば、超高圧水銀ランプ(USH−500等)を光源とし、300nm以下の波長はパイレックス(登録商標)製ガラスフィルターでカットして5〜60秒照射する。好ましくは300〜400nmのような紫外線で露光できるため、汎用露光機を使用できる。
The compound of the general formula (I) attached to the material surface breaks the ether bond by UV irradiation and causes a hydroxyl group to exist on the material surface. This can be performed by irradiating the powder dispersed in a solvent such as toluene or benzene with UV, or directly irradiating the silicon wafer surface with UV. If the reaction on the material surface (surface modification) and light irradiation are performed simultaneously, the hydroxy group generated by light irradiation reacts with the silyl group, which is inconvenient.
For UV irradiation, a normal method is used. For example, an ultrahigh pressure mercury lamp (USH-500 or the like) is used as a light source, and a wavelength of 300 nm or less is cut with a glass filter made of Pyrex (registered trademark) to 5 to 5 nm. Irradiate for 60 seconds. Since it can expose preferably by ultraviolet rays, such as 300-400 nm, a general purpose exposure machine can be used.

表面にヒドロキシ基を有する材料が、ヒドロキシ基含有ポリマーであってもよく、この場合、表面にヒドロキシルアルキル基を有するポリマーが製造できる。すなわち、一般式(I)で表される化合物をヒドロキシ基含有ポリマーと反応させ、光照射することによりヒドロキシアルキル基をポリマーに導入することができる。これを用いると、光酸発生剤を必要とせず、ポジ型の画像を形成できる。また、酸素阻害も受けず、この新規ポリマーが有機−無機複合体を形成していることから高い耐熱性も期待される。   The material having a hydroxyl group on the surface may be a hydroxy group-containing polymer, and in this case, a polymer having a hydroxylalkyl group on the surface can be produced. That is, a hydroxyalkyl group can be introduced into a polymer by reacting the compound represented by the general formula (I) with a hydroxy group-containing polymer and irradiating with light. When this is used, a positive-type image can be formed without requiring a photoacid generator. Further, since the novel polymer forms an organic-inorganic composite without being inhibited by oxygen, high heat resistance is also expected.

一般式(I)の化合物は、ベンゼン環上の置換基を選択することにより、ベンゼン環上に置換基を有しない化合物と比較して光の吸収ピークを長波長側にシフトさせることができる。例えば、ベンゼン環上に置換基を有しない化合物の吸収ピークが243nmであるとき、ベンゼン環上に一つのメトキシ基を有する化合物の吸収ピークが345nmとなる場合が挙げられる。この結果として、一般式(I)の化合物は、ベンゼン環上に置換基を有しない化合物より短時間の光照射により反応を完了するができる。   The compound of the general formula (I) can shift the absorption peak of light to the longer wavelength side by selecting a substituent on the benzene ring as compared with a compound having no substituent on the benzene ring. For example, when the absorption peak of a compound having no substituent on the benzene ring is 243 nm, the absorption peak of a compound having one methoxy group on the benzene ring is 345 nm. As a result, the compound of the general formula (I) can complete the reaction by light irradiation in a shorter time than a compound having no substituent on the benzene ring.

一般式(I)の化合物を付加できるポリマーとしては、ヒドロキシ基を有するポリマーが挙げられる。ヒドロキシ基の存在位置は、特に限定されず、側鎖の一部であってもよい。具体的には、m−クレゾールホルムアルデヒド樹脂、p−クレゾールホルムアルデヒド樹脂、o−クレゾールホルムアルデヒド樹脂、m−とp−の混合クレゾールホルムアルデヒド樹脂、フェノール/クレゾール(m−、p−、o−、m−とp−の混合、又はm−とo−の混合のいずれでもよい。)混合ホルムアルデヒド樹脂などのクレゾールホルムアルデヒド樹脂などが挙げられる。その他、レゾール型フェノール樹脂類、ポリビニルフェノール、t−ブチル置換ポリビニルフェノール樹脂、ヒドロキシル基を有するポリアクリル、ポリウレタン樹脂、ポリビニルアルコール等である。   Examples of the polymer to which the compound of the general formula (I) can be added include polymers having a hydroxy group. The location of the hydroxy group is not particularly limited, and may be a part of the side chain. Specifically, m-cresol formaldehyde resin, p-cresol formaldehyde resin, o-cresol formaldehyde resin, mixed cresol formaldehyde resin of m- and p-, phenol / cresol (m-, p-, o-, m- and Either a mixture of p- or a mixture of m- and o- may be used.) Examples include cresol formaldehyde resins such as mixed formaldehyde resins. Other examples include resol type phenol resins, polyvinyl phenol, t-butyl substituted polyvinyl phenol resin, polyacryl having a hydroxyl group, polyurethane resin, polyvinyl alcohol and the like.

一般式(I)で表される化合物をヒドロキシ基含有ポリマーと反応させ、光照射することによりヒドロキシアルキル基をポリマーに導入する反応スキームを以下に示す。なお、pとqは、モル分率を示す。なお、この例では、加水分解性シリル基としてトリメトキシシリル基を用いた。   A reaction scheme for introducing a hydroxyalkyl group into a polymer by reacting the compound represented by formula (I) with a hydroxy group-containing polymer and irradiating with light is shown below. In addition, p and q show a mole fraction. In this example, a trimethoxysilyl group was used as the hydrolyzable silyl group.

Figure 2012246225
Figure 2012246225

以下、本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。
[合成例1]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(7ET)の合成
[1−1]4−ベンジロキシ−3−メトキシベンザルデヒドの合成
200mlナスフラスコにバニリン16.5g(0.108mol)、アセトン120ml、KCO15.0g(0.108mol)を入れ、室温で25分攪拌した。撹拌後、ベンジルブロミド18.5g(0.108mol)を加えオイルバス上68℃で3時間還流した。その後、濃縮し、水200mlを入れクロロホルム100mlで3回抽出を行った。5%NaHCO水溶液100mlで2回洗浄し無水硫酸マグネシウムで乾燥し、ろ過、濃縮し、液状残渣にヘキサンを入れ固体を析出させ濃縮し、得られた固体を70℃に温めた酢酸エチルに溶かしヘキサンを加えて析出した固体を吸引ろ過し、その後、真空乾燥を行い白色固体18.7gを得た。収量18.7g、収率71%。
1HNMR (400MHz, CDCl3/TMS): δ9.84 (s, 1H, -CHO), 7.45-7.31 (m, 7H, Ar-H), 6.99 (d, 1H,J=8.2 Hz, Ar-H), 5.26 (s, 2H, -O-CH 2-ph), 3.96 (s, 3H, -OCH 3)。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.
[Synthesis Example 1] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 3- (trimethoxysilyl) propyl ether (7ET) [1-1] Synthesis of 4-benzyloxy-3-methoxybenzaldehyde 200 ml eggplant flask 16.5 g (0.108 mol) of vanillin, 120 ml of acetone, and 15.0 g (0.108 mol) of K 2 CO 3 were added and stirred at room temperature for 25 minutes. After stirring, 18.5 g (0.108 mol) of benzyl bromide was added and refluxed at 68 ° C. for 3 hours on an oil bath. Thereafter, the mixture was concentrated, 200 ml of water was added, and extraction was performed three times with 100 ml of chloroform. This was washed twice with 100 ml of 5% NaHCO 3 aqueous solution, dried over anhydrous magnesium sulfate, filtered and concentrated, hexane was added to the liquid residue, solid was precipitated and concentrated, and the obtained solid was dissolved in ethyl acetate warmed to 70 ° C. Hexane was added and the precipitated solid was suction filtered and then vacuum dried to obtain 18.7 g of a white solid. Yield 18.7 g, 71% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ9.84 (s, 1H, -C H O), 7.45-7.31 (m, 7H, Ar- H ), 6.99 (d, 1H, J = 8.2 Hz, Ar - H), 5.26 (s, 2H, -OC H 2 -ph), 3.96 (s, 3H, -OC H 3).

[1−2]4−ベンジロキシ−5−メトキシ−2−ニトロベンザルデヒドの合成
氷浴上で300mlナスフラスコに4−ベンジロキシ−3−メトキシベンザルデヒド18.7g(77mmol)、酢酸140mlを入れ撹拌し、冷却後、発煙硝酸25mlを30分かけて滴下した。3時間撹拌した後、氷浴を外し12.5時間撹拌した。撹拌後、反応溶液を冷水250mlの中に入れ固体を析出させ、吸引ろ過を行い、水で固体を洗浄、酢酸エチルに溶かし無水硫酸マグネシウムで乾燥、濃縮、70℃に温めた酢酸エチルに溶かしヘキサンを加えて固体を析出させ、その後真空乾燥を行い黄色固体14.7gを得た。収量14.7g、収率67%。
1HNMR (400MHz, CDCl3/TMS): δ10.41 (s, 1H, -CHO), 7.67 (s, 1H, Ar-H), 7.47-7.35(m, 6H, Ar-H), 5.28 (s, 2H, -O-CH 2-ph), 4.02 (s, 3H, -OCH 3)。
[1-2] Synthesis of 4-Benzyloxy-5-methoxy-2-nitrobenzaldehyde In a 300 ml eggplant flask on an ice bath, 18.7 g (77 mmol) of 4-benzyloxy-3-methoxybenzaldehyde and 140 ml of acetic acid were added and stirred. After cooling, 25 ml of fuming nitric acid was added dropwise over 30 minutes. After stirring for 3 hours, the ice bath was removed and the mixture was stirred for 12.5 hours. After stirring, the reaction solution is poured into 250 ml of cold water to precipitate a solid, and suction filtration is performed. The solid is washed with water, dissolved in ethyl acetate, dried over anhydrous magnesium sulfate, concentrated, dissolved in ethyl acetate warmed to 70 ° C., and hexane. To precipitate a solid, followed by vacuum drying to obtain 14.7 g of a yellow solid. Yield 14.7 g, 67% yield.
1 HNMR (400 MHz, CDCl 3 / TMS): δ 10.41 (s, 1H, —C 3 H 2 O), 7.67 (s, 1H, Ar—H), 7.47-7.35 (m, 6H, Ar—H), 5.28 (s, 2H, -OC H 2 -ph), 4.02 (s, 3H, -OC H 3 ).

[1−3]4−ヒドロキシ−5−メトキシ−2−ニトロベンザルデヒド
氷浴上で200mlナスフラスコに4−ベンジロキシ−5−メトキシ−2−ニトロベンザルデヒド14.6g(50.9mmol)、トリフルオロ酢酸90mlを入れ60℃で1時間20分撹拌した。その後、反応溶液を濃縮し、冷ヘキサン100mlに入れて固体を析出させ、吸引ろ過を行い、70℃に温めた酢酸エチルに溶かしヘキサンを加えて固体を析出させ、ろ過後真空乾燥を行い暗黄色固体7.11gを得た。収量7.11g、収率71%。
1HNMR (400MHz, CDCl3/TMS): δ10.4 (s, 1H, -CHO), 7.68 (s, 1H, Ar-H), 7.46(s, 1H, Ar-H), 6.22 (s, 1H, Ar-OH), 4.07 (s, 3H, -OCH 3)。
[1-3] 4-Hydroxy-5-methoxy-2-nitrobenzaldehyde 14.6 g (50.9 mmol) of 4-benzyloxy-5-methoxy-2-nitrobenzaldehyde in a 200 ml eggplant flask on an ice bath, trifluoro 90 ml of acetic acid was added and stirred at 60 ° C. for 1 hour and 20 minutes. Then, the reaction solution is concentrated, put into 100 ml of cold hexane to precipitate a solid, suction filtered, dissolved in ethyl acetate warmed to 70 ° C., hexane added to precipitate the solid, filtered and vacuum dried to dark yellow 7.11 g of solid was obtained. Yield 7.11 g, 71% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ10.4 (s, 1H, -C H 2 O), 7.68 (s, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 6.22 (s , 1H, Ar-OH), 4.07 (s, 3H, -OC H 3).

[1−4]4−ヘキシロキシ−5−メトキシ−2−ニトロベンザルデヒドの合成
窒素気流下で50ml二口ナスフラスコに6−ニトロバニリン1.10g(5.58mmol)、ドライDMF5ml、KCO0.798g(5.77mmol)を入れ室温で20分撹拌し、1−ブロモヘキサン0.960g(5.82mmol)を加えオイルバス上85℃で90分間加熱撹拌した。反応後、水30ml、1N塩酸水溶液10mlを少しづつ反応液に加え、酢酸エチル50mlで3回抽出し、飽和NaCl水溶液100mlで4回洗浄し、無水硫酸マグネシウムを加え乾燥、ろ過、濃縮、シリカゲルカラムクロマトグラフィーによる精製、真空乾燥を行い、明黄色固体1.36gを得た。収量1.36g、収率87%。
1HNMR(400MHz, CDCl3/TMS): δ10.45 (s, 1H, -CHO), 7.59 (s, 1H, Ar-H), 7.41(s, 1H, Ar-H), 4.15 (t, 2H, J=6.7Hz, Ar-O-CH 2-), 4.01 (s, 3H, -OCH 3), 1.90 (quint, 2H, J=7.2Hz, Ar-CH2CH2-, 1.51-1.35 (m, 6H, -(CH 2)3CH3), 0.917 (t, 3H, J=7.1Hz, -(CH2)5CH 3)。
Synthesis of [1-4] 4-hexyloxy-5-methoxy-2-nitrobenzaldehyde In a 50 ml two-necked eggplant flask under a nitrogen stream, 1.10 g (5.58 mmol) of 6-nitrovanillin, 5 ml of dry DMF, K 2 CO 3 0.798 g (5.77 mmol) was added, and the mixture was stirred at room temperature for 20 minutes. 0.960 g (5.82 mmol) of 1-bromohexane was added, and the mixture was heated and stirred at 85 ° C. for 90 minutes on an oil bath. After the reaction, 30 ml of water and 10 ml of 1N hydrochloric acid aqueous solution are gradually added to the reaction solution, extracted 3 times with 50 ml of ethyl acetate, washed 4 times with 100 ml of saturated NaCl aqueous solution, dried over anhydrous magnesium sulfate, filtered, concentrated, silica gel column Purification by chromatography and vacuum drying were performed to obtain 1.36 g of a light yellow solid. Yield 1.36 g, 87% yield.
1 HNMR (400 MHz, CDCl 3 / TMS): δ10.45 (s, 1H, —C 3 H 2 O), 7.59 (s, 1H, Ar—H), 7.41 (s, 1H, Ar—H), 4.15 (t , 2H, J = 6.7Hz, Ar-OC H 2- ), 4.01 (s, 3H, -OC H 3 ), 1.90 (quint, 2H, J = 7.2Hz, Ar-CH 2 CH 2- , 1.51-1.35 (m, 6H,-(C H 2 ) 3 CH 3 ), 0.917 (t, 3H, J = 7.1 Hz,-(CH 2 ) 5 C H 3 ).

[1−5]4−ヘキシロキシ−5−メトキシ−2−ニトロベンザルデヒドのヒドラゾンの合成
100mlナスフラスコに、4−へキシロキシ−5−メトキシ−2−ニトロベンザルデヒド0.616g(2.09mmol)、ヒドラジン一水和物0.642g(12.82mmol)、エタノール45ml、回転子を加え2時間還流した。反応溶液を室温に戻し、析出結晶を自然ろ過した。得られた橙黄色結晶をエタノールで軽く洗い、真空乾燥すると目的物0.62gを得た。収量0.62g、収率44%。
1HNMR (400MHz, CDCl3/TMS): δ8.43 (s, 1H, -CH), 7.56 (s, 1H, Ar-H), 7.48 (s, 1H, Ar-H), 5.80 (s, 2H, -NH 2), 4.07 (t, 2H, Ar-O-CH 2-), 3.98 (s, 3H, -OCH 3), 1.88 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-), 1.48-1.34 (m, 6H, -(CH 2)3CH3), 0.910 (t, 3H, J=7.1Hz, -(CH2)5CH 3)。
Synthesis of [1-5] 4-hexyloxy-5-methoxy-2-nitrobenzaldehyde hydrazone In a 100 ml eggplant flask, 0.616 g (2.09 mmol) of 4-hexyloxy-5-methoxy-2-nitrobenzaldehyde, Hydrazine monohydrate (0.642 g, 12.82 mmol), ethanol (45 ml) and a rotator were added, and the mixture was refluxed for 2 hours. The reaction solution was returned to room temperature, and the precipitated crystals were naturally filtered. The obtained orange-yellow crystals were lightly washed with ethanol and vacuum dried to obtain 0.62 g of the desired product. Yield 0.62 g, yield 44%.
1 HNMR (400MHz, CDCl 3 / TMS): δ8.43 (s, 1H, -C H ), 7.56 (s, 1H, Ar- H ), 7.48 (s, 1H, Ar- H ), 5.80 (s, 2H, -N H 2 ), 4.07 (t, 2H, Ar-OC H 2- ), 3.98 (s, 3H, -OC H 3 ), 1.88 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ), 1.48-1.34 (m, 6H,-(C H 2 ) 3 CH 3 ), 0.910 (t, 3H, J = 7.1 Hz,-(CH 2 ) 5 C H 3 ).

[1−6]アリル 4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテルの合成
300mlナスフラスコに4−ヘキシロキシ−5−メトキシ−2−ニトロベンザルデヒドのヒドラゾン0.616g(2.09mmol)、回転子、ドライクロロホルム50mlを加え撹拌した。均一溶液になったら、二酸化マンガン1.42g(16.3mmol)を少しずつ加えた。室温で10分程撹拌した後二酸化マンガンをろ過により除去した。0.1M炭酸水素ナトリウム水溶液(50mlx2)で洗浄し、有機相を無水硫酸マグネシウムで乾燥した(溶液A)。一方、氷浴上で300mlナスフラスコにアリルアルコール0.24g(4.13mmol)、回転子を加えHClO(70%)7滴を加えた。溶液Aをろ過して無水硫酸マグネシウムを除去した。200ml滴下ロートに溶液Aを加え、300mlナスフラスコに45分で滴下した。氷浴を除去し、室温で一晩撹拌した。飽和炭酸水素ナトリウム水溶液30ml、蒸留水20mlを加え洗浄した。水相をクロロホルムで抽出し(100mlx2)、有機相を合わせ無水硫酸マグネシウムで乾燥した。ろ過後濃縮し、粗生成物を得た。粗生成物を溶出液(クロロホルム:へキサン=4:1)でシリカゲルカラムクロマトグラフィーを行い、目的物(淡橙色結晶)0.10g(0.309mmol)を得た。収量0.10g、収率15%。
1HNMR (400MHz, CDCl3/TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 6.0 (m, 1H, -CH=CH2), 5.37 (m, 1H, Jtrans=16Hz, -CH=CH 2), 5.25 (m, 1H, Jcis=12Hz, -CH=CH 2), 4.92 (s, 2H, Ar-CH 2-O-), 4.16 (d, J=6.9Hz, 2H, CH 2-CH=CH2), 4.07 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.98 (s, 3H, -OCH 3), 1.87 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-), 1.55-1.34 (m, 6H, -(CH 2)3CH3), 0.910 (t, 3H, J=7.1Hz, -(CH2)5CH 3)。
Synthesis of [1-6] allyl 4-hexyloxy-5-methoxy-2-nitrobenzyl ether 0.616 g (2.09 mmol) of 4-hydroxy-5-methoxy-2-nitrobenzaldehyde hydrazone in a 300 ml eggplant flask and rotation A child and 50 ml of dry chloroform were added and stirred. When it became a homogeneous solution, 1.42 g (16.3 mmol) of manganese dioxide was added little by little. After stirring at room temperature for about 10 minutes, manganese dioxide was removed by filtration. The organic phase was washed with 0.1 M aqueous sodium hydrogen carbonate solution (50 ml × 2) and dried over anhydrous magnesium sulfate (solution A). Meanwhile, 0.24 g (4.13 mmol) of allyl alcohol and a rotator were added to a 300 ml eggplant flask on an ice bath, and 7 drops of HClO 4 (70%) were added. Solution A was filtered to remove anhydrous magnesium sulfate. Solution A was added to a 200 ml dropping funnel and dropped into a 300 ml eggplant flask in 45 minutes. The ice bath was removed and stirred at room temperature overnight. 30 ml of a saturated aqueous sodium hydrogen carbonate solution and 20 ml of distilled water were added for washing. The aqueous phase was extracted with chloroform (100 ml × 2), and the organic phases were combined and dried over anhydrous magnesium sulfate. After filtration, it was concentrated to obtain a crude product. The crude product was subjected to silica gel column chromatography using an eluent (chloroform: hexane = 4: 1) to obtain 0.10 g (0.309 mmol) of the desired product (pale orange crystals). Yield 0.10 g, yield 15%.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 6.0 (m, 1H, -C H = CH 2 ), 5.37 (m , 1H, J trans = 16Hz, -CH = C H 2 ), 5.25 (m, 1H, J cis = 12Hz, -CH = C H 2 ), 4.92 (s, 2H, Ar-C H 2 -O-) , 4.16 (d, J = 6.9Hz, 2H, C H 2 -CH = CH 2 ), 4.07 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.98 (s, 3H, -OC H 3 ), 1.87 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ), 1.55-1.34 (m, 6H,-(C H 2 ) 3 CH 3 ), 0.910 (t , 3H, J = 7.1 Hz,-(CH 2 ) 5 C H 3 ).

[1−7]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテルの合成
20mlナスフラスコを窒素置換し、アリル 4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテル 0.095g(0.29mmol)、トリメトキシシラン0.245g(2.00mmol)、Karstedt’s触媒を4滴加え、室温で終夜撹拌した。中圧カラムを用いてシリカゲルカラムクロマトグラフィーによる精製を行った。溶出液としてヘキサン:酢酸エチル:テトラメトキシシラン=4:1:0.05(体積比)を用い、目的物を0.061g(0.14mmol)得た。収量0.061g、収率47%。
1HNMR (400MHz, CDCl3/TMS): δ7.70 (s, 1H, Ar), 7,30 (s, 1H, Ar),4.89 (s, 2H, Ar-CH 2-O-), 4.06 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.97 (s, 3H, Ar-OCH 3), 3.58 (s, 2H, -CH 2-O-CH2-Ar), 3.58 (s, 9H, -Si-(OCH 3)3), 1.77-1.9 (m, 4H, -Si-CH2-CH 2-CH2-,Ar-O-CH2-CH 2-),1.34-1.48 (m, 6H, -(CH 2)3-CH3), 0.91 (t,3H, J=7.1Hz, -(CH2)5CH 3), 0.72-0.76 (m, 2H, -CH 2-Si-)。
FT-IR (KBr): 1527 (NO2), 1328 (NO2), 1275 (C-O-C)。
[1-7] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 3- (trimethoxysilyl) propyl ether A 20 ml eggplant flask was replaced with nitrogen, and allyl 4-hexyloxy-5-methoxy-2-nitrobenzyl ether 0.095 g (0.29 mmol), 0.245 g (2.00 mmol) of trimethoxysilane and 4 drops of Karstedt's catalyst were added, and the mixture was stirred at room temperature overnight. Purification by silica gel column chromatography was performed using an intermediate pressure column. Using hexane: ethyl acetate: tetramethoxysilane = 4: 1: 0.05 (volume ratio) as an eluent, 0.061 g (0.14 mmol) of the desired product was obtained. Yield 0.061 g, 47% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.70 (s, 1H, Ar), 7,30 (s, 1H, Ar), 4.89 (s, 2H, Ar-C H 2 -O-), 4.06 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.97 (s, 3H, Ar-OC H 3 ), 3.58 (s, 2H, -C H 2 -O-CH 2 -Ar), 3.58 (s, 9H, -Si- (OC H 3 ) 3 ), 1.77-1.9 (m, 4H, -Si-CH 2 -C H 2 -CH 2- , Ar-O-CH 2 -C H 2- ), 1.34-1.48 (m, 6H,-(C H 2 ) 3 -CH 3 ), 0.91 (t, 3H, J = 7.1Hz,-(CH 2 ) 5 C H 3 ), 0.72-0.76 (m, 2H, -C H 2 -Si-).
FT-IR (KBr): 1527 (NO 2 ), 1328 (NO 2 ), 1275 (COC).

[合成例2]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 6−(トリメトキシシリル)ヘキシルエーテル(2ET)の合成
[2−1]5−ヘキセニル 4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテルの合成
200mlナスフラスコに合成例1−5で得られた4−ヘキシロキシ−5−メトキシ−2−ニトロベンザルデヒドのヒドラゾン0.88g(3.9mmol)、回転子、ドライクロロホルム60mlを加え撹拌した。均一溶液になったら、二酸化マンガン2.8g(32mmol)を少しずつ加えた。室温で10分程撹拌した後、二酸化マンガンをろ過により除去した。0.1M炭酸水素ナトリウム水溶液(50mlx2)で洗浄し、有機相を無水硫酸マグネシウムで乾燥した(溶液A)。
一方、氷浴上で300mlナスフラスコに5−ヘキセン−1−オール0.5g(5.0mmol)、回転子を加えHClO(70%)2滴を加えた。溶液Aをろ過して無水硫酸マグネシウムを除去した。100ml滴下ロートに溶液Aを加え、300mlナスフラスコに30分で滴下した。氷浴を除去し、室温で一晩撹拌した。飽和炭酸水素ナトリウム水溶液20ml、蒸留水30mlを加え洗浄した。水相をクロロホルムで抽出し(100mlx2)、有機相を合わせ無水硫酸マグネシウムで乾燥した。ろ過後濃縮し、粗生成物を1.4g得た。粗生成物を溶出液クロロホルムでシリカゲルカラムクロマトグラフィーを行い、目的物(橙色結晶)0.48g(1.6mmol)を得た。収量0.48g、収率41%。
1HNMR (400MHz, CDCl3/TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 5.77-5.87 (m, 1H, -CH=CH2), 5.00-5.04 (s, 1H, Jtrans=16Hz, -CH=CH 2), 4.95-4.98 (s, 1H, Jcis=8Hz, -CH=CH 2), 4.92 (s, 1H, Ar-CH 2-O-), 4.07 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.99 (s, 3H, -OCH 3) 、3.60-3.63 (t, 2H, -O-CH 2-CH2), 2.09-2.15 (m, 2H, -CH 2-CH=CH2), 1.87 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-), 1.68-1.75 (m, 2H, -O-CH2-CH 2-), 1.34-1.58 (m, 8H, -CH2-CH 2-CH2-CH=CH2, -(CH 2)3CH3), 0.910 (t, 3H, J=7.1Hz, -(CH2)5CH 3)。
[Synthesis Example 2] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 6- (trimethoxysilyl) hexyl ether (2ET) [2-1] 5-hexenyl 4-hexyloxy-5-methoxy-2-nitro Synthesis of benzyl ether To a 200 ml eggplant flask, add 0.88 g (3.9 mmol) of hydrazone of 4-hexyloxy-5-methoxy-2-nitrobenzaldehyde obtained in Synthesis Example 1-5, a rotor and 60 ml of dry chloroform, and stir. did. When a homogeneous solution was obtained, 2.8 g (32 mmol) of manganese dioxide was added little by little. After stirring at room temperature for about 10 minutes, manganese dioxide was removed by filtration. The organic phase was washed with 0.1 M aqueous sodium hydrogen carbonate solution (50 ml × 2) and dried over anhydrous magnesium sulfate (solution A).
On the other hand, 0.5 g (5.0 mmol) of 5-hexen-1-ol and a rotator were added to a 300 ml eggplant flask on an ice bath, and 2 drops of HClO 4 (70%) were added. Solution A was filtered to remove anhydrous magnesium sulfate. Solution A was added to a 100 ml dropping funnel and dropped into a 300 ml eggplant flask in 30 minutes. The ice bath was removed and stirred at room temperature overnight. 20 ml of saturated aqueous sodium hydrogen carbonate solution and 30 ml of distilled water were added for washing. The aqueous phase was extracted with chloroform (100 ml × 2), and the organic phases were combined and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to obtain 1.4 g of a crude product. The crude product was subjected to silica gel column chromatography with eluent chloroform to obtain 0.48 g (1.6 mmol) of the desired product (orange crystals). Yield 0.48 g, 41% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 5.77-5.87 (m, 1H, -C H = CH 2 ), 5.00 -5.04 (s, 1H, J trans = 16Hz, -CH = C H 2 ), 4.95-4.98 (s, 1H, J cis = 8Hz, -CH = C H 2 ), 4.92 (s, 1H, Ar-C H 2 -O-), 4.07 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.99 (s, 3H, -OC H 3 ), 3.60-3.63 (t, 2H, -OC H 2 -CH 2 ), 2.09-2.15 (m, 2H, -C H 2 -CH = CH 2 ), 1.87 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ), 1.68 -1.75 (m, 2H, -O-CH 2 -C H 2- ), 1.34-1.58 (m, 8H, -CH 2 -C H 2 -CH 2 -CH = CH 2 ,-(C H 2 ) 3 CH 3), 0.910 (t, 3H, J = 7.1Hz, - (CH 2) 5 C H 3).

[2−2]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 6−(トリメトキシシリル)ヘキシルエーテルの合成
20mlナスフラスコを窒素置換し、5−ヘキセニル4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテル 2.95g(10.0mmol)、トリメトキシシラン1.47g(12mmol)、Karstedt触媒を4滴加え、室温で終夜撹拌した。中圧カラムを用いてシリカゲルカラムクロマトグラフィーによる精製を行った。溶出液としてヘキサン:酢酸エチル:テトラメトキシシラン=4:1:0.05(体積比)を用い、目的物を1.4g(3.35mmol)得た。収量1.4g、収率34%。
1HNMR (400MHz, CDCl3/TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 4.89 (s, 2H, Ar-CH 2-O-),4.06 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.99 (s, 3H, Ar-OCH 3), 3.58-3.61 (s, 2H, -O-CH 2-CH2-), 3.57 (s, 9H, -Si(OCH 3)3), 1.87 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-),
1.4-1.7 (m, 14H, -CH2-(CH 2)4-CH2-,-(CH 2)3CH3), 0.91 (t,3H, J=7.1Hz, -(CH2)5CH 3), 0.63-0.67 (m, 2H, -CH 2-Si-)。
FT-IR (KBr): 1525 (NO2), 1328 (NO2), 1276 (C-O-C)。
[2-2] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 6- (trimethoxysilyl) hexyl ether A 20 ml eggplant flask was purged with nitrogen, and 5-hexenyl 4-hexyloxy-5-methoxy-2-nitro was synthesized. 4.95 g (10.0 mmol) of benzyl ether, 1.47 g (12 mmol) of trimethoxysilane and 4 drops of Karstedt catalyst were added and stirred at room temperature overnight. Purification by silica gel column chromatography was performed using an intermediate pressure column. Hexane: ethyl acetate: tetramethoxysilane = 4: 1: 0.05 (volume ratio) was used as an eluent to obtain 1.4 g (3.35 mmol) of the desired product. Yield 1.4 g, yield 34%.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.71 (s, 1H, Ar), 7,31 (s, 1H, Ar), 4.89 (s, 2H, Ar-C H 2 -O-), 4.06 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.99 (s, 3H, Ar-OC H 3 ), 3.58-3.61 (s, 2H, -OC H 2 -CH 2- ), 3.57 (s, 9H, -Si (OC H 3 ) 3 ), 1.87 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ),
1.4-1.7 (m, 14H, -CH 2- (C H 2 ) 4 -CH 2 -,-(C H 2 ) 3 CH 3 ), 0.91 (t, 3H, J = 7.1Hz,-(CH 2 ) 5 C H 3 ), 0.63-0.67 (m, 2H, -C H 2 -Si-).
FT-IR (KBr): 1525 (NO 2 ), 1328 (NO 2 ), 1276 (COC).

[合成例3]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 10−(トリメトキシシリル)デシルエーテル(10ET)の合成
[3−1]9−デセニル 4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテルの合成
500mlナスフラスコに4−ヘキシロキシ−5−メトキシ−2−ニトロベンザルデヒドのヒドラゾン4.33g(19.2mmol)、回転子、ドライクロロホルム300mlを加え撹拌した。均一溶液になったら、二酸化マンガン13.9g(158.7mmol)を少しずつ加えた。室温で10分程撹拌した後、二酸化マンガンをろ過により除去した。0.1M炭酸水素ナトリウム水溶液(50mlx2)で洗浄し、有機相を無水硫酸マグネシウムで乾燥した(溶液A)。一方、氷浴上で500mlナスフラスコに9−デセン−1−オール3.8g(24.6mmol)、回転子を加えHClO(70%)10滴を加えた。溶液Aをろ過して無水硫酸マグネシウムを除去した。200ml滴下ロートに溶液Aを加え、500mlナスフラスコに45分で滴下した。氷浴を除去し、室温で一晩撹拌した。飽和炭酸水素ナトリウム水溶液20ml、蒸留水30mlを加え洗浄した。水相をクロロホルムで抽出し(100mlx2)、有機相を合わせ無水硫酸マグネシウムで乾燥した。ろ過後濃縮し、粗生成物を得た。粗生成物を溶出液クロロホルムでシリカゲルカラムクロマトグラフィーを行い、目的物(橙色結晶)2.85g(8.1mmol)を得た。収量2.85g、収率42%。
1HNMR (400MHz, CDCl3/TMS): δ7.71 (s, 1H, Ar), 7,32 (s, 1H, Ar), 5.78-5.84 (m, 1H, -CH=CH2), 4.98-5.00 (s, 1H, Jtrans=8Hz, -CH=CH 2), 4.92-4.94 (s, 1H, Jcis=8Hz, -CH=CH 2), 4.89 (s, 2H, Ar-CH 2-O-),4.07 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.99 (s, 3H, -OCH 3) 、3.58-3.61 (t, 2H, -O-CH 2-CH2), 2.01-2.06 (m, 2H, -CH 2-CH=CH2), 1.87 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-), 1.66-1.69 (m, 2H, -O-CH2-CH 2-), 1.31-1.55 (m, 16H, -CH2-(CH 2)5-CH2-CH=CH2, -(CH 2)3CH3), 0.910 (t, 3H, J=7.1Hz, -(CH2)5CH 3)。
[Synthesis Example 3] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 10- (trimethoxysilyl) decyl ether (10ET) [3-1] 9-decenyl 4-hexyloxy-5-methoxy-2-nitro Synthesis of benzyl ether To a 500 ml eggplant flask, 4.33 g (19.2 mmol) of hydrazone of 4-hexyloxy-5-methoxy-2-nitrobenzaldehyde, a rotor and 300 ml of dry chloroform were added and stirred. When a homogeneous solution was obtained, 13.9 g (158.7 mmol) of manganese dioxide was added little by little. After stirring at room temperature for about 10 minutes, manganese dioxide was removed by filtration. The organic phase was washed with 0.1 M aqueous sodium hydrogen carbonate solution (50 ml × 2) and dried over anhydrous magnesium sulfate (solution A). On the other hand, 3.8 g (24.6 mmol) of 9-decen-1-ol and a rotor were added to a 500 ml eggplant flask on an ice bath, and 10 drops of HClO 4 (70%) was added. Solution A was filtered to remove anhydrous magnesium sulfate. Solution A was added to a 200 ml dropping funnel and dropped into a 500 ml eggplant flask in 45 minutes. The ice bath was removed and stirred at room temperature overnight. 20 ml of saturated aqueous sodium hydrogen carbonate solution and 30 ml of distilled water were added for washing. The aqueous phase was extracted with chloroform (100 ml × 2), and the organic phases were combined and dried over anhydrous magnesium sulfate. After filtration, it was concentrated to obtain a crude product. The crude product was subjected to silica gel column chromatography with eluent chloroform to obtain 2.85 g (8.1 mmol) of the desired product (orange crystals). Yield 2.85 g, 42% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.71 (s, 1H, Ar), 7,32 (s, 1H, Ar), 5.78-5.84 (m, 1H, -C H = CH 2 ), 4.98 -5.00 (s, 1H, J trans = 8Hz, -CH = C H 2 ), 4.92-4.94 (s, 1H, J cis = 8Hz, -CH = C H 2 ), 4.89 (s, 2H, Ar-C H 2 -O-), 4.07 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.99 (s, 3H, -OC H 3 ), 3.58-3.61 (t, 2H, -OC H 2 -CH 2 ), 2.01-2.06 (m, 2H, -C H 2 -CH = CH 2 ), 1.87 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ), 1.66 -1.69 (m, 2H, -O-CH 2 -C H 2- ), 1.31-1.55 (m, 16H, -CH 2- (C H 2 ) 5 -CH 2 -CH = CH 2 ,-(C H 2 ) 3 CH 3 ), 0.910 (t, 3H, J = 7.1 Hz,-(CH 2 ) 5 C H 3 ).

[3−2]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 10−(トリメトキシシリル)デシルエーテルの合成
20mlナスフラスコを窒素置換し、9−デセニル 4−ヘキシロキシ−5−メトキシ−2−ニトロベンジルエーテル 2.95g(10.0mmol)、トリメトキシシラン1.47g(12mmol)、Karstedt触媒を4滴加え、室温で終夜撹拌した。中圧カラムを用いてシリカゲルカラムクロマトグラフィーによる精製を行った。溶出液としてヘキサン:酢酸エチル:テトラメトキシシラン=4:1:0.05(体積比)を用い、目的物を1.4g(3.35mmol)得た。収量1.5g、収率56%。
1HNMR (400MHz, CDCl3/TMS): δ7.71 (s, 1H, Ar), 7,32 (s, 1H, Ar), 4.90 (s, 2H, Ar-CH 2-O-),4.06 (t, 2H, J=6.8Hz, Ar-O-CH 2-), 3.99 (s, 3H, Ar-OCH 3) 3.58-3.61 (s, 2H, -O-CH 2-CH2-), 3.57 (s, 9H, -Si-(OCH 3)3), 1.87 (quint, J=7.4Hz, 2H, Ar-O-CH2CH 2CH2-),
1.65-1.72 (m, 2H, -CH2-CH 2-CH2-),1.34-1.48 (m, 6H, -(CH 2)3-CH3), 0.91 (t,3H, J=7.1Hz, -(CH2)5CH 3), 0.62-0.66 (m, 2H, -CH 2-Si-)。
[3-2] Synthesis of 4-hexyloxy-5-methoxy-2-nitrobenzyl 10- (trimethoxysilyl) decyl ether A 20 ml eggplant flask was purged with nitrogen, and 9-decenyl 4-hexyloxy-5-methoxy-2-nitro was synthesized. 4.95 g (10.0 mmol) of benzyl ether, 1.47 g (12 mmol) of trimethoxysilane and 4 drops of Karstedt catalyst were added, and the mixture was stirred at room temperature overnight. Purification by silica gel column chromatography was performed using an intermediate pressure column. Hexane: ethyl acetate: tetramethoxysilane = 4: 1: 0.05 (volume ratio) was used as an eluent to obtain 1.4 g (3.35 mmol) of the desired product. Yield 1.5 g, 56% yield.
1 HNMR (400MHz, CDCl 3 / TMS): δ7.71 (s, 1H, Ar), 7,32 (s, 1H, Ar), 4.90 (s, 2H, Ar-C H 2 -O-), 4.06 (t, 2H, J = 6.8Hz, Ar-OC H 2- ), 3.99 (s, 3H, Ar-OC H 3 ) 3.58-3.61 (s, 2H, -OC H 2 -CH 2- ), 3.57 ( s, 9H, -Si- (OC H 3 ) 3 ), 1.87 (quint, J = 7.4Hz, 2H, Ar-O-CH 2 C H 2 CH 2- ),
1.65-1.72 (m, 2H, -CH 2 -C H 2 -CH 2- ), 1.34-1.48 (m, 6H,-(C H 2 ) 3 -CH 3 ), 0.91 (t, 3H, J = 7.1 Hz,-(CH 2 ) 5 C H 3 ), 0.62-0.66 (m, 2H, -C H 2 -Si-).

[応用例1]シランカップリング剤(2ET)のアルカリ可溶性樹脂への導入
ビニルフェノールとスチレンの共重合体であるCST−70(丸善石油化学社製)(2.0g)、CST−15(丸善石油化学社製)(2.0g)、シランカップリング剤として、4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 6−(トリメトキシシリル)ヘキシルエーテル(2ET)(0.35g)、トルエン(20ml)を70℃で一時間加熱した。トルエン濃縮後、PSF2803(群栄化学工業社製)(5.0g)、PSF2807(群栄化学工業社製)(3.0g)、オイルブルー613(0.1g)、MEK(160ml)を加え、室温撹拌した。ろ過後、親水化処理したアルミ板に回転塗布し、その後70℃で一時間乾燥機で乾燥させた。露光には超高圧水銀ランプ(500W)を用いて、365nm、100mW/cmの条件で約60秒間程照射した。その後、アルカリ現像液にて現像をし、ポジ型の画像を得た。
[Application Example 1] Introduction of silane coupling agent (2ET) into alkali-soluble resin CST-70 (manufactured by Maruzen Petrochemical Co., Ltd.) (2.0 g), CST-15 (Maruzen), which is a copolymer of vinylphenol and styrene Petrochemical Co., Ltd. (2.0 g), 4-hexyloxy-5-methoxy-2-nitrobenzyl 6- (trimethoxysilyl) hexyl ether (2ET) (0.35 g), toluene (20 ml) as a silane coupling agent ) At 70 ° C. for 1 hour. After toluene concentration, PSF2803 (manufactured by Gunei Chemical Industry Co., Ltd.) (5.0 g), PSF2807 (manufactured by Gunei Chemical Industry Co., Ltd.) (3.0 g), oil blue 613 (0.1 g), MEK (160 ml) were added, Stir at room temperature. After filtration, it was spin-coated on a hydrophilized aluminum plate and then dried in a dryer at 70 ° C. for 1 hour. For the exposure, an ultra-high pressure mercury lamp (500 W) was used for irradiation for about 60 seconds under conditions of 365 nm and 100 mW / cm 2 . Thereafter, development was performed with an alkali developer to obtain a positive image.

[応用例2]シランカップリング剤(7ET)のアルカリ可溶性樹脂への導入
シランカップリング剤として4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(7ET)(0.35g)を用いた以外は応用例1と同様にして、ポジ型の画像を得た。
Application Example 2 Introduction of Silane Coupling Agent (7ET) into Alkali-Soluble Resin 4-Hexyloxy-5-methoxy-2-nitrobenzyl 3- (trimethoxysilyl) propyl ether (7ET) (0 .35 g) was used in the same manner as in Application Example 1 to obtain a positive image.

[応用例3]シランカップリング剤(10ET)のアルカリ可溶性樹脂への導入
シランカップリング剤として4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 10−(トリメトキシシリル)デシルエーテル(10ET)(0.35g)を用いた以外は応用例1と同様にして、ポジ型の画像を得た。
Application Example 3 Introduction of Silane Coupling Agent (10ET) into Alkali-Soluble Resin 4-Hexyloxy-5-methoxy-2-nitrobenzyl 10- (trimethoxysilyl) decyl ether (10ET) (0 .35 g) was used in the same manner as in Application Example 1 to obtain a positive image.

応用例1〜3では、光酸発生剤を必要とせず、コントラストの高いポジ型の画像を形成できた。また、必要に応じた性能を出すために、反応させるポリマーを選択することにより容易に光反応性ポリマーを合成でき、且つ酸素阻害等も受けず、この新規ポリマーが有機−無機複合体を形成していることから高い耐熱性も期待できる。   In Application Examples 1 to 3, a photoacid generator was not required, and a positive image with high contrast could be formed. In addition, in order to obtain the performance as required, it is possible to easily synthesize a photoreactive polymer by selecting a polymer to be reacted, and this new polymer forms an organic-inorganic composite without being subjected to oxygen inhibition. Therefore, high heat resistance can be expected.

[応用例4]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 6−(トリメトキシシリル)ヘキシルエーテル(2ET)を用いたシリコンウェハの表面修飾
シランカップリング剤として4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 6−(トリメトキシシリル)ヘキシルエーテル(2ET)の無水トルエン溶液に、シリコンウェハを投入し、窒素雰囲気下で1時間還流して、表面修飾を行った。得られた修飾ウェハをクロロホルムで10分間超音波洗浄し、超高圧水銀灯(500W)を光源としてパイレックス(登録商標)ガラスフィルターを通して光照射し表面をヒドロキシ基に変換した。接触角計(協和界面科学社製CA−A)を用い、液滴法(静的接触角)、JIS R3257:99に基づき、それぞれのウェハの接触角を測定し、表面状態の変化を評価すると、光照射時間30秒でヒドロキシ基への変換を終了したことがわかった。光照射の時間と接触角との関係を図1、照射前後の接触角の差を表1に示す。
[Application Example 4] Surface modification of silicon wafer using 4-hexyloxy-5-methoxy-2-nitrobenzyl 6- (trimethoxysilyl) hexyl ether (2ET) 4-hexyloxy-5-methoxy- as a silane coupling agent A silicon wafer was put into an anhydrous toluene solution of 2-nitrobenzyl 6- (trimethoxysilyl) hexyl ether (2ET), and the surface was modified by refluxing for 1 hour in a nitrogen atmosphere. The obtained modified wafer was ultrasonically cleaned with chloroform for 10 minutes, and irradiated with light through a Pyrex (registered trademark) glass filter using an ultrahigh pressure mercury lamp (500 W) as a light source to convert the surface into hydroxy groups. Using a contact angle meter (CA-A manufactured by Kyowa Interface Science Co., Ltd.), measuring the contact angle of each wafer based on the droplet method (static contact angle), JIS R3257: 99, and evaluating the change in the surface state It was found that the conversion to a hydroxy group was completed after a light irradiation time of 30 seconds. FIG. 1 shows the relationship between the time of light irradiation and the contact angle, and Table 1 shows the difference in contact angle before and after irradiation.

[応用例5]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(7ET)を用いたシリコンウェハの表面修飾
シランカップリング剤として4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(7ET)を用いた以外は応用例4と同様にして、表面をヒドロキシ基に変換したシリコンウェハを得た。
接触角計(協和界面科学社製CA−A)を用い、液滴法(静的接触角)、JIS R3257:99に基づき、それぞれのウェハの接触角を測定し、表面状態の変化を評価すると、光照射時間30秒でヒドロキシ基への変換を終了したことがわかった。光照射の時間と接触角との関係を図2、照射前後の接触角の差を表1に示す。
[Application Example 5] Surface modification of silicon wafer using 4-hexyloxy-5-methoxy-2-nitrobenzyl 3- (trimethoxysilyl) propyl ether (7ET) 4-Hexyloxy-5-methoxy- as a silane coupling agent A silicon wafer having a surface converted to a hydroxy group was obtained in the same manner as in Application Example 4 except that 2-nitrobenzyl 3- (trimethoxysilyl) propyl ether (7ET) was used.
Using a contact angle meter (CA-A manufactured by Kyowa Interface Science Co., Ltd.), measuring the contact angle of each wafer based on the droplet method (static contact angle), JIS R3257: 99, and evaluating the change in the surface state It was found that the conversion to a hydroxy group was completed after a light irradiation time of 30 seconds. FIG. 2 shows the relationship between the light irradiation time and the contact angle, and Table 1 shows the difference in contact angle before and after the irradiation.

[応用例6]4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 10−(トリメトキシシリル)デシルエーテル(10ET)を用いたシリコンウェハの表面修飾
シランカップリング剤として4−ヘキシロキシ−5−メトキシ−2−ニトロベンジル 10−(トリメトキシシリル)デシルエーテル(10ET)を用いた以外は応用例4と同様にして、表面をヒドロキシ基に変換したシリコンウェハを得た。
接触角計(協和界面科学社製CA−A)を用い、液滴法(静的接触角)、JIS R3257:99に基づき、それぞれのウェハの接触角を測定し、表面状態の変化を評価すると、光照射時間30秒でヒドロキシ基への変換を終了したことがわかった。照射前後の接触角の差を表1に示す。
[Application Example 6] Surface modification of silicon wafer using 4-hexyloxy-5-methoxy-2-nitrobenzyl 10- (trimethoxysilyl) decyl ether (10ET) 4-hexyloxy-5-methoxy- as a silane coupling agent A silicon wafer having a surface converted to a hydroxy group was obtained in the same manner as in Application Example 4 except that 2-nitrobenzyl 10- (trimethoxysilyl) decyl ether (10ET) was used.
Using a contact angle meter (CA-A manufactured by Kyowa Interface Science Co., Ltd.), measuring the contact angle of each wafer based on the droplet method (static contact angle), JIS R3257: 99, and evaluating the change in the surface state It was found that the conversion to a hydroxy group was completed after a light irradiation time of 30 seconds. Table 1 shows the difference in contact angle before and after irradiation.

[比較例1]4,5‐ジメトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(比較化合物1)を用いたシリコンウェハの表面修飾
4,5‐ジメトキシ−2−ニトロベンジル 3−(トリメトキシシリル)プロピルエーテル(比較化合物1)を用いた以外は応用例4と同様にして、表面をヒドロキシ基に変換したシリコンウェハを得た。
接触角計(協和界面科学社製CA−A)を用い、液滴法(静的接触角)、JIS R3257:99に基づき、それぞれのウェハの接触角を測定し、表面状態の変化を評価すると、光照射時間30秒でヒドロキシ基への変換を終了したことがわかった。照射前後の接触角の差を表1に示す。
[Comparative Example 1] Surface modification of silicon wafer with 4,5-dimethoxy-2-nitrobenzyl 3- (trimethoxysilyl) propyl ether (Comparative Compound 1) 4,5-dimethoxy-2-nitrobenzyl 3- ( A silicon wafer having a surface converted to a hydroxy group was obtained in the same manner as in Application Example 4 except that trimethoxysilyl) propyl ether (Comparative Compound 1) was used.
Using a contact angle meter (CA-A manufactured by Kyowa Interface Science Co., Ltd.), measuring the contact angle of each wafer based on the droplet method (static contact angle), JIS R3257: 99, and evaluating the change in the surface state It was found that the conversion to a hydroxy group was completed after a light irradiation time of 30 seconds. Table 1 shows the difference in contact angle before and after irradiation.

[比較例2]2−ニトロベンジル3−(トリメトキシシリル)へキシルエーテル(比較化合物2)を用いたシリコンウェハの表面修飾
2−ニトロベンジル3−(トリメトキシシリル)へキシルエーテル(比較化合物2)を用いた以外は応用例4と同様にして、表面をヒドロキシ基に変換したシリコンウェハを得た。
接触角計(協和界面科学社製CA−A)を用い、液滴法(静的接触角)、JIS R3257:99に基づき、それぞれのウェハの接触角を測定し、表面状態の変化を評価すると、変換の終了まで20分程度を要したことがわかった。照射前後の接触角の差を表1に示す。
[Comparative Example 2] Surface modification of silicon wafer using 2-nitrobenzyl 3- (trimethoxysilyl) hexyl ether (Comparative Compound 2) 2-nitrobenzyl 3- (trimethoxysilyl) hexyl ether (Comparative Compound 2) ) Was used in the same manner as in Application Example 4 except that a silicon wafer having a surface converted to a hydroxy group was obtained.
Using a contact angle meter (CA-A manufactured by Kyowa Interface Science Co., Ltd.), measuring the contact angle of each wafer based on the droplet method (static contact angle), JIS R3257: 99, and evaluating the change in the surface state It was found that it took about 20 minutes to complete the conversion. Table 1 shows the difference in contact angle before and after irradiation.

Figure 2012246225
Figure 2012246225

Figure 2012246225
Figure 2012246225

Claims (3)

下記一般式(I)
Figure 2012246225
(上式中、Rは、メチル基、t−ブチル基、置換基を有してもよいフェニル基、又は置換基を有してもよいシクロヘキシル基を表し、mは、3〜10の整数であり、nは、3〜9の整数であり、Xは、加水分解性シリル基を表す。)
で表される化合物。
The following general formula (I)
Figure 2012246225
(In the above formula, R represents a methyl group, a t-butyl group, an optionally substituted phenyl group, or an optionally substituted cyclohexyl group, and m is an integer of 3 to 10. Yes, n is an integer of 3 to 9, and X represents a hydrolyzable silyl group.)
A compound represented by
請求項1に記載の化合物と、表面にヒドロキシ基を有する材料を反応させ、光照射することを特徴する材料表面にヒドロキシアルキル基を有する材料の製造方法。   A method for producing a material having a hydroxyalkyl group on the surface of the material, wherein the compound according to claim 1 is reacted with a material having a hydroxy group on the surface and irradiated with light. 上記表面にヒドロキシ基を有する材料が、ヒドロキシ基含有ポリマーである請求項2に記載の材料表面にヒドロキシルアルキル基を有する材料の製造方法。   The method for producing a material having a hydroxyl alkyl group on the material surface according to claim 2, wherein the material having a hydroxy group on the surface is a hydroxy group-containing polymer.
JP2011117040A 2011-05-25 2011-05-25 Silane coupling agent Withdrawn JP2012246225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117040A JP2012246225A (en) 2011-05-25 2011-05-25 Silane coupling agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117040A JP2012246225A (en) 2011-05-25 2011-05-25 Silane coupling agent

Publications (1)

Publication Number Publication Date
JP2012246225A true JP2012246225A (en) 2012-12-13

Family

ID=47467051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117040A Withdrawn JP2012246225A (en) 2011-05-25 2011-05-25 Silane coupling agent

Country Status (1)

Country Link
JP (1) JP2012246225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326971A4 (en) * 2015-07-21 2019-02-06 Universitat Politècnica de València Antimicrobial, insecticidal and acaricidal system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326971A4 (en) * 2015-07-21 2019-02-06 Universitat Politècnica de València Antimicrobial, insecticidal and acaricidal system

Similar Documents

Publication Publication Date Title
JP4948813B2 (en) Method for producing ketimine structure-containing alkoxysilane
US7999127B2 (en) Siloxane monomers and oligomers
JP4156858B2 (en) Silane coupling agent
JPH04202196A (en) Texiltrialkoxysilane
JP4644339B2 (en) Silane coupling agent
JP2012246225A (en) Silane coupling agent
JP2701103B2 (en) Fluorine-containing organosilicon compound and method for producing the same
JP2008255062A (en) Organosilicon compound, method for producing the same, photopolymerizable composition and inorganic material
JPH0770325A (en) Production of polyorganosilane
JPH0517487A (en) New silane compound and its production
JPH082911B2 (en) 1,3-Bis (p-hydroxybenzyl) -1,1,3,3-tetramethyldisiloxane and method for producing the same
JP6202431B2 (en) Cage-type silsesquioxane derivatives
JP2008239634A (en) Organic silicon resin having alcoholic hydroxy group, and method for producing the same
JPH01275586A (en) Fluorine-containing silane coupling agent and production thereof
JPS6313446B2 (en)
Hayase et al. Photopolymerization of cyclohexene oxide by use of o‐nitrobenzyl triphenylsilyl ether/aluminum compound catalyst. Dependence of catalyst activity on the structure of the silyl ether
WO2005044828A1 (en) Method for producing cyclic organic silicon compound and organic silicon resin having alcoholic hydroxyl group
JPH02117682A (en) Production of 1,3-bis(hydroxyphenyl)disiloxane derivative
JP3087597B2 (en) Silicon-containing phenol compound
JP2599313B2 (en) Siloxane compound having tetrahydrophthalic anhydride group and method for producing the same
JP4433563B2 (en) Organosilicon compound
JP3571445B2 (en) Method for producing silyl enol ether
JP4316230B2 (en) Oxetane compounds having a carboxyl group
JP3650156B2 (en) Process for producing trialkylsilyltrialkylsiloxymethylene compounds
JPH11171891A (en) Production of silicon compound

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805