JP2012244141A - Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device - Google Patents

Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2012244141A
JP2012244141A JP2011129602A JP2011129602A JP2012244141A JP 2012244141 A JP2012244141 A JP 2012244141A JP 2011129602 A JP2011129602 A JP 2011129602A JP 2011129602 A JP2011129602 A JP 2011129602A JP 2012244141 A JP2012244141 A JP 2012244141A
Authority
JP
Japan
Prior art keywords
silicon substrate
back surface
silicon
manufacturing
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011129602A
Other languages
Japanese (ja)
Inventor
Naoshi Adachi
尚志 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011129602A priority Critical patent/JP2012244141A/en
Publication of JP2012244141A publication Critical patent/JP2012244141A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon wafer suitable for a semiconductor device which is made thin in a device post-process and has its reverse surface ground or polished.SOLUTION: There is provided a method of manufacturing a silicon substrate that can maintain device characteristics without any decrease in chip strength while preventing heavy metal from being diffused to a device active layer side by keeping a fusion region in a silicon single crystallized state by taking elements having high capturing capability against heavy metal contamination in a device-manufactured silicon substrate while fusing a reverse surface side of the silicon substrate having been made thin in the device post-process.

Description

本発明はシリコン基板及びその製造方法に関し、特にマルチチップパッケージ(MCP)やシステムインパッケージ(SiP)などに搭載される半導体デバイス用として好適なシリコン基板及びその製造方法に関する。また、本発明は、MCPやSiPへの搭載が好適な半導体デバイスの製造方法に関する。  The present invention relates to a silicon substrate and a manufacturing method thereof, and more particularly to a silicon substrate suitable for a semiconductor device mounted on a multichip package (MCP), a system in package (SiP), and the like and a manufacturing method thereof. The present invention also relates to a method for manufacturing a semiconductor device suitable for mounting on MCP or SiP.

半導体プロセスにおける問題点の一つとして、シリコン基板中への重金属の混入が挙げられる。シリコン基板の表面側に形成されるデバイス領域へ重金属が拡散した場合、ポーズタイム不良、リテンション不良、接合リーク不良及び酸化膜の絶縁破壊といったデバイス特性に著しい悪影響をもたらす。このため、シリコン基板に混入した重金属がデバイス領域に拡散するのを抑制するため、ゲッタリング法を採用するのが一般的である。  One problem in the semiconductor process is the mixing of heavy metals into the silicon substrate. When heavy metal diffuses into the device region formed on the surface side of the silicon substrate, device characteristics such as a pause time failure, a retention failure, a junction leak failure, and an oxide dielectric breakdown are significantly adversely affected. For this reason, in order to suppress the heavy metal mixed in the silicon substrate from diffusing into the device region, the gettering method is generally adopted.

前工程でデバイス作製されたシリコン基板は、次にシリコン基板の薄型化、ワイヤーボンディング、樹脂封入など行う後工程へと移る。後工程でも重金属の混入は存在していたが、これまで特に重視されていなかった。これは、デバイス後工程の初期段階においてシリコン基板の裏面を薄型化するための研削工程があり、この裏面研削時に導入されるスクラッチ、キズ、非晶質化などが強力なエクストリンシック・ゲッタリング(EG)源として作用していたからである。  The silicon substrate on which the device has been manufactured in the previous process moves to a subsequent process in which the silicon substrate is thinned, wire bonded, encapsulated with resin, and the like. Even in the post-process, heavy metal contamination was present, but so far no particular emphasis has been placed. This is a grinding process for thinning the back surface of the silicon substrate in the initial stage of the device post-process, and there are strong extrinsic gettering (scratch, scratches, amorphization, etc. introduced during this back surface grinding) EG) because it was acting as a source.

しかしながら、最終チップ厚みは年々薄型化しており、特に、MCP搭載されるチップは50μm以下に薄型化されることが多く、製品によっては25μm以下まで薄型化され、将来的には10μm以下とも予測されている。チップの厚みが100μm以下まで薄型化されると、裏面研削によるキズや非晶質化によってシリコン基板が割れやすくなるという新たな問題が生じた。この問題を解決するために、裏面研削後に上記領域を除去する工程、すなわちCMPによる裏面研磨やエッチングを新たに追加している。  However, the final chip thickness is becoming thinner year by year, and in particular, the chip mounted on the MCP is often thinned to 50 μm or less, and depending on the product, it is thinned to 25 μm or less, and is expected to be 10 μm or less in the future. ing. When the thickness of the chip is reduced to 100 μm or less, there arises a new problem that the silicon substrate easily breaks due to scratches or amorphization due to back grinding. In order to solve this problem, a process of removing the region after the back surface grinding, that is, a back surface polishing or etching by CMP is newly added.

ところが、シリコン基板裏面のキズや非晶質領域を除去すると裏面のゲッタリング源も消失することから、EG効果が失われてしまう。しかも、薄型化されたシリコン基板はイントリンシック・ゲッタリング(IG)層の厚みも薄いことから十分な効果が期待できなくなる。より詳細には、IG処理されたエピタキシャル基板やシリコン基板であっても、デバイス作製時の熱処理により酸素析出核が存在しないDZ層が基板表面から10μm前後形成される。従い、チップの最終膜厚が薄くなるとIG層は殆ど存在しない状態になり後工程で発生した不純物金属を全くゲッタリングできなくなる。  However, if scratches or amorphous regions on the back surface of the silicon substrate are removed, the gettering source on the back surface also disappears, so that the EG effect is lost. In addition, the thinned silicon substrate cannot be expected to be sufficiently effective because the intrinsic gettering (IG) layer is thin. More specifically, even with an IG-treated epitaxial substrate or silicon substrate, a DZ layer having no oxygen precipitation nuclei is formed around 10 μm from the substrate surface by heat treatment during device fabrication. Therefore, when the final film thickness of the chip is reduced, the IG layer hardly exists and the impurity metal generated in the subsequent process cannot be gettered at all.

このように、シリコン基板裏面の研磨またはエッチングされる薄型半導体デバイスにおいては、後工程における重金属汚染によるデバイス特性の低下が顕在化し始めている。  As described above, in thin semiconductor devices in which the back surface of a silicon substrate is polished or etched, deterioration of device characteristics due to heavy metal contamination in a later process has begun to be manifested.

この対策法として、特許文献1には、薄型化された基板裏面に種々の方法によりゲッタリング能力を付与する技術が開示されている。例えば、薄型化されたシリコン基板の裏面に多結晶シリコン膜や窒化膜を堆積させる方法、粒径の小さなシリカ粒子を用いて裏面にわずかにキズを与える方法、イオン注入により裏面にダメージ層を与える方法などが挙げられている。確かにこれらの方法は、チップ厚みがある程度厚ければ効果があると考えられるが、既に説明したとおり、最終的なチップ厚みが25μm以下、将来的には10μm程度まで薄型化されるとシリカ粒子やイオン注入による物理的ダメージの導入によって抗折強度が低下しチップの割れ問題が予想される。また、後工程での成膜法やイオン注入法では、薄型基板を保持させるためのガラス基板への貼付け・取り外し工程などを追加する必要があり、更に薄型基板の反りやワレによる歩留低下を招くため現実的ではない。  As a countermeasure against this, Patent Document 1 discloses a technique for imparting gettering capability to a thin substrate back surface by various methods. For example, a method of depositing a polycrystalline silicon film or nitride film on the back surface of a thinned silicon substrate, a method of slightly scratching the back surface using silica particles having a small particle diameter, and a damage layer on the back surface by ion implantation The method is mentioned. Certainly, these methods are considered to be effective if the chip thickness is thick to some extent, but as already explained, when the final chip thickness is reduced to 25 μm or less and in the future to about 10 μm, silica particles In addition, by introducing physical damage due to ion implantation, the bending strength is lowered and chip cracking is expected. Also, in the film formation method and ion implantation method in the subsequent process, it is necessary to add a process for attaching to and removing from the glass substrate to hold the thin substrate, and further reduce the yield due to warping and cracking of the thin substrate. It is not realistic to invite.

他方、特許文献2には、シリコン基板表面近傍に炭素イオン注入を行った後にエピタキシャル膜を形成する方法が記載されてある。この手法であれば、最終デバイス後工程での薄型化工程を行っても炭素注入領域がゲッタリング層として機能する。 しかし、イオン注入工程後にエピタキシャル膜成長工程が必須となるため製造原価が高くなる。特にメモリ基板に関しては、低価格要求が強いため量産適用が厳しい。
On the other hand, Patent Document 2 describes a method of forming an epitaxial film after carbon ion implantation near the surface of a silicon substrate. With this method, the carbon implantation region functions as a gettering layer even if a thinning process is performed in the final device post-process. However, since an epitaxial film growth step is essential after the ion implantation step, the manufacturing cost is increased. Especially for memory substrates, mass production is difficult because of low price requirements.

特開2006−41258号公報JP 2006-41258 A 特許第3384506号公報Japanese Patent No. 3384506

本発明の目的は、デバイス後工程で薄型化されたシリコン基板に対してチップ強度の低下を抑制でき、重金属汚染に対してもデバイス特性の劣化を防止できるシリコン基板及びその製造方法を提供することにある。  An object of the present invention is to provide a silicon substrate that can suppress a reduction in chip strength with respect to a silicon substrate that has been thinned in a device post-process, and that can prevent device characteristics from deteriorating against heavy metal contamination, and a method for manufacturing the same. It is in.

発明者は、上記課題を解決するため鋭意検討した結果、シリコン基板の少なくとも一方向の面からレーザー光を照射することによりシリコン表面または裏面を溶融させた状態で重金属を捕獲できる物質を所定濃度ドープさせ、再結晶化させる際に転位を導入させることによりチップ強度の低下がなく強力なゲッタリング作用を有していることを見出し、本発明を完成させるに到った。  As a result of intensive studies to solve the above problems, the inventor has doped a substance capable of capturing heavy metals in a state in which the silicon surface or back surface is melted by irradiating laser light from at least one surface of the silicon substrate. Thus, by introducing dislocations during recrystallization, it has been found that the chip strength does not decrease and has a strong gettering action, and the present invention has been completed.

請求項1に記載の発明は、デバイス後工程での裏面研削後もしくは研磨後に最終シリコンチップ厚みが100μm以下に薄型化されるシリコン基板に対して、裏面全面または一部にレーザー光を照射することによりシリコンを溶融させ、溶融面から重金属を捕獲させる事が可能な物質を所定濃度取り込ませる製造方法である。  The invention according to claim 1 irradiates the whole or part of the back surface with a laser beam on a silicon substrate whose final silicon chip thickness is reduced to 100 μm or less after back surface grinding or polishing in the device post-process. This is a manufacturing method in which a predetermined concentration of a substance capable of melting silicon and capturing a heavy metal from the molten surface is obtained.

請求項1に記載の発明によれば、研削後もしくは研磨後の薄型化されたシリコン基板の裏面側からレーザー光を照射し全面または一部を溶融させる。シリコン材料を溶融させると溶融面と接する環境物質を取り込む現象は知られており、この現象を利用して重金属を捕獲する物質を雰囲気あるいは溶融させる面に存在させることにより所定濃度取り込ませる。これにより後工程での重金属汚染を捕獲することが可能となりデバイス特性を維持できる。  According to the first aspect of the invention, the entire surface or a part thereof is melted by irradiating the laser beam from the back side of the thinned silicon substrate after grinding or polishing. It is known that when a silicon material is melted, an environmental substance in contact with the melting surface is taken in. By utilizing this phenomenon, a substance that captures heavy metal is present in an atmosphere or a surface to be melted, and a predetermined concentration is taken in. This makes it possible to capture heavy metal contamination in a later process and maintain device characteristics.

レーザー光としては、短一波長に限定するものでなく複数の波長光を使用しても良く、連続照射法でもパルス照射法でも可能である。レーザー光の照射は、研削あるいは研磨後の薄厚化されたシリコン基板またはチップ化された後でも良い。尚、本説明はレーザー光を用いた記載をしているがシリコンを溶融できる手法であれば電子線など採用可能である。  The laser beam is not limited to a short wavelength, and a plurality of wavelength beams may be used. Either continuous irradiation or pulse irradiation may be used. The laser light irradiation may be performed after the silicon substrate or chip after thinning after grinding or polishing. Although this description uses laser light, an electron beam or the like can be used as long as it can melt silicon.

請求項2に記載の発明は、少なくとも炭素、酸素、窒素、ホウ素などの重金属を捕獲できる元素を1又は2以上含む物質である請求項1の製造方法である。  Invention of Claim 2 is a manufacturing method of Claim 1 which is a substance containing 1 or 2 or more elements which can capture heavy metals, such as carbon, oxygen, nitrogen, and boron at least.

請求項2に記載の発明によれば、取り込み物質はシリコン裏面に重金属を捕獲できる元素を含む有機化合物、ホウ素化合物などを吸着、塗布あるいは成膜すればよい。一方、雰囲気ガスに該物質を含有させる方法としては、酸素と窒素の場合には空気導入、炭素の場合には二酸化炭素、アルコールなど炭素化合物ガスを導入すればよい。ホウ素の場合にはマイクロガラス繊維であるホウ素酸化物(B)を充填させた容器を通したガスなどを採用すればよい。尚、いずれの手法も取り込み物質の濃度は、目的とする元素を含む物質濃度やガス分圧を変化させることで調整することができる。According to the second aspect of the present invention, the taking-in substance may be formed by adsorbing, coating, or depositing an organic compound, boron compound, or the like containing an element capable of capturing heavy metal on the silicon back surface. On the other hand, as a method of incorporating the substance into the atmospheric gas, air introduction may be used in the case of oxygen and nitrogen, and carbon compound gas such as carbon dioxide or alcohol may be introduced in the case of carbon. In the case of boron, a gas passed through a container filled with boron oxide (B 2 O 3 ) that is micro glass fiber may be employed. In any method, the concentration of the incorporated substance can be adjusted by changing the concentration of the substance containing the target element or the gas partial pressure.

取り込み物質の濃度は、元素に依存するがピーク濃度として5×1017/cm以上1×1021/cm以下とする。物質濃度が5×1017/cm以下であれば重金属の捕獲能力が弱く、1×1021/cm超であると再結晶化時に単結晶シリコン構造が出来にくくなりシリコンチップ強度の低下を招くためである。より好ましい物質濃度は、1×1018/cm以上1×1020/cm以下である。The concentration of the uptake substance is 5 × 10 17 / cm 3 or more and 1 × 10 21 / cm 3 or less as a peak concentration although it depends on the element. If the material concentration is 5 × 10 17 / cm 3 or less, the capture capability of heavy metals is weak, and if it exceeds 1 × 10 21 / cm 3 , it becomes difficult to form a single crystal silicon structure at the time of recrystallization, resulting in a decrease in silicon chip strength. This is to invite. A more preferable substance concentration is 1 × 10 18 / cm 3 or more and 1 × 10 20 / cm 3 or less.

更に効率よく重金属を捕獲するためには、取り込み物質量を増加させれば良い。すなわち、レーザー光の照射時間の延長や照射回数を増加させることで溶融表面から逐次取り込まれる物質を高濃度で均一にシリコン内部に拡散し物質濃度を増加させる。  In order to capture heavy metals more efficiently, the amount of the incorporated substance may be increased. That is, by extending the irradiation time of the laser beam and increasing the number of times of irradiation, the substance sequentially taken in from the melt surface is uniformly diffused at a high concentration into the silicon, thereby increasing the substance concentration.

シリコン溶融深さに関しては、特に限定しないがレーザー光照射によりデバイス作製面の温度が400℃を超えないようにする。400℃を超えるとデバイス特性に悪影響を及ぼすと言われているためでありシリコン裏面の溶融条件であれば1μm以下とすることが好ましい。  The silicon melt depth is not particularly limited, but the temperature of the device fabrication surface should not exceed 400 ° C. by laser light irradiation. This is because if it exceeds 400 ° C., it is said that the device characteristics are adversely affected, and if it is a melting condition of the silicon back surface, it is preferably 1 μm or less.

請求項3に記載の発明は、溶融させたシリコンに対して単結晶化させながら同時に転位を導入させる請求項1記載の製造方法である。  The invention described in claim 3 is the manufacturing method according to claim 1, wherein dislocations are simultaneously introduced while single-crystallizing molten silicon.

請求項3に記載の発明によれば、シリコン溶融後の再結晶速度を速めることで単結晶化と同時に転位を導入する事ができる。一般的に転位の存在は、強度を低下させると考えられているが、後工程の処理温度は400℃以下のため、転位の移動や増殖が起こらない。従い、転位が存在していてもチップ強度の低下はなく、導入させた転位はゲッタリングサイトとして作用するばかりでなく金属捕獲物質の取り込み量も増加させる事ができデバイス特性に悪影響を与える重金属を確実に捕獲できる。  According to the invention described in claim 3, dislocations can be introduced simultaneously with the single crystallization by increasing the recrystallization speed after silicon melting. In general, the presence of dislocations is considered to reduce the strength, but since the processing temperature in the subsequent process is 400 ° C. or lower, dislocation migration and proliferation do not occur. Therefore, even if dislocations exist, there is no reduction in chip strength.Introduced dislocations not only act as gettering sites, but also increase the amount of metal trapping substances, and can cause heavy metals that adversely affect device characteristics. Can capture reliably.

本発明の工程を説明すると、前工程でデバイス形成されたシリコン基板は後工程へと移る。先ず、デバイス作製面にバックグラインド用保護テープが貼り付けられシリコン基板の裏面研削が行われる。シリコン基板の厚みは、裏面研削により100μm以下まで薄型化され、更に裏面を研磨あるいはエッチングを行い研削キズ、スクラッチや非晶質領域を除去する。次に、ドーピング物質の存在する環境下でレーザー光をシリコン基板裏面の全面または一部に照射する。その後、ダイシング工程、ワイヤーボンディング、樹脂封入工程へと進んでいく。  Explaining the process of the present invention, the silicon substrate on which the device is formed in the previous process moves to the subsequent process. First, a backgrinding protective tape is affixed to the device fabrication surface, and the back surface of the silicon substrate is ground. The thickness of the silicon substrate is reduced to 100 μm or less by back surface grinding, and the back surface is further polished or etched to remove grinding scratches, scratches and amorphous regions. Next, the whole or part of the back surface of the silicon substrate is irradiated with laser light in an environment where a doping substance is present. Thereafter, the process proceeds to a dicing process, wire bonding, and resin encapsulation process.

研削や研磨工程が重金属混入の主原因と言われているが、上記デバイス組み立て工程で使用されるインターポーザや封入樹脂の材質などからも混入する。特に、銅が主汚染元素であり、これを捕獲する事が重要である。ニッケルに関しては、高濃度のホウ素を取り込んでも捕獲能力がないため転位網を形成させることで容易にゲッタリングさせることが出来る。鉄に関しては、ホウ素や炭素を取り込むとゲッタリングできる。しかし、銅に関しては、イオン化して室温下でもシリコン基板内を自由に拡散できる元素であるため、例えば、研削工程で導入された銅は転位網に一旦は捕獲されるが組み立て工程での熱処理により簡単に転位から放出してデバイス活性層へと移動しデバイス特性を劣化させる。従い、銅に対して捕獲能力の高いホウ素や炭素を高濃度ドープさせることが必要であり、転位網を形成させることで高濃度化させることが可能である。  Grinding and polishing processes are said to be the main cause of heavy metal contamination, but they are also mixed from materials such as interposers and encapsulating resins used in the device assembly process. In particular, copper is the main pollutant and it is important to capture it. Nickel can be easily gettered by forming a dislocation network because it has no capture ability even when high-concentration boron is incorporated. For iron, gettering can be achieved by incorporating boron and carbon. However, copper is an element that can be ionized and diffused freely in the silicon substrate even at room temperature. For example, copper introduced in the grinding process is once captured by the dislocation network, but is heat-treated in the assembly process. It is easily released from dislocations and moves to the device active layer, degrading device characteristics. Accordingly, it is necessary to dope boron or carbon having a high trapping ability with respect to copper at a high concentration, and it is possible to increase the concentration by forming a dislocation network.

本発明の別の手法としては、シリコン基板表面のデバイス作製領域を除く領域やスクライブラインに捕獲能力の高い炭素やホウ素をドープさせる事も可能であり裏面側から拡散してきた銅イオンを確実にゲッタリングできデバイス特性の劣化を抑制できる。  As another method of the present invention, it is possible to dope carbon or boron having a high capturing ability into a region other than the device manufacturing region on the surface of the silicon substrate or a scribe line, and reliably get copper ions diffused from the back side. It can ring and can suppress the deterioration of device characteristics.

このように、本発明によるシリコン基板及びその製造方法によれば、最終チップ厚みが100μm以下となるデバイス作製されたシリコン基板に対してデバイス後工程での重金属汚染に対するデバイス特性の劣化を抑制でき、チップ強度の低下もないため歩留を大幅に改善できる。  Thus, according to the silicon substrate and the manufacturing method thereof according to the present invention, it is possible to suppress degradation of device characteristics due to heavy metal contamination in the device post-process for a silicon substrate having a final chip thickness of 100 μm or less, Yield can be greatly improved since there is no drop in chip strength.

[比較例1]
直径100mm、厚み525μm、初期酸素濃度が1.4×1018atoms/cm、比抵抗が1Ω・cmから2Ω・cmに調整されたボロンドープのCZ基板を準備した。全てのサンプルに対して表面にバックグラインドテープを貼り付け裏面側から#2000番の砥石にて研削を行い、最終厚みを200μmとした。図1に裏面側断面の電子顕微鏡写真を示す。更に、裏面側から4μm深さ研磨を行い完全に研削キズを除去させた。同様に電子顕微鏡観察した結果を図2に示す。(サンプル1)
[Comparative Example 1]
A boron-doped CZ substrate having a diameter of 100 mm, a thickness of 525 μm, an initial oxygen concentration of 1.4 × 10 18 atoms / cm 3 , and a specific resistance adjusted from 1 Ω · cm to 2 Ω · cm was prepared. A back grind tape was applied to the surface of all the samples and ground with a # 2000 grindstone from the back surface side to a final thickness of 200 μm. FIG. 1 shows an electron micrograph of the back side cross section. Further, polishing by a depth of 4 μm was performed from the back side to completely remove the grinding scratches. Similarly, the result of observation with an electron microscope is shown in FIG. (Sample 1)

[比較例2]
サンプル1から各5枚抜き取り、フッ化水素水溶液にて自然酸化膜を除去させた後に固体レーザー808nm連続発振レーザーで基板を溶融させないように補助加熱を行い、同時にエキシマーレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてアルゴンガス雰囲気下で裏面全面にレーザー光を照射させ表面から約0.2μmの深さを溶融させた。(サンプル2)
[Comparative Example 2]
Extract 5 samples each from sample 1, remove the natural oxide film with hydrogen fluoride aqueous solution, and then perform auxiliary heating so as not to melt the substrate with a solid state laser 808 nm continuous wave laser, and at the same time, using an excimer laser device, a wavelength of 515 nm, Under the conditions of a pulse width of 200 nanoseconds and an energy density of 4 J / cm 2 , the entire back surface was irradiated with laser light in an argon gas atmosphere to melt a depth of about 0.2 μm from the surface. (Sample 2)

サンプル1から4枚抜き取り、自然酸化膜を除去させた後にエキシマーレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてアルゴン雰囲気下で裏面全面にレーザー光を照射させ表面から約0.3μmの深さを溶融させた。(サンプル3)Four samples were extracted from Sample 1, and after removing the natural oxide film, an excimer laser device was used to apply laser light to the entire back surface under an argon atmosphere under the conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. Irradiation was performed to melt a depth of about 0.3 μm from the surface. (Sample 3)

サンプル1を3枚抜き取り、自然酸化膜を除去させた後に固体レーザー808nm連続発振レーザーで基板を溶融させないように補助加熱を行い、エキシマーレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にて二酸化炭素ガス下で裏面全面にレーザー光を照射させ表面から約0.3μmの深さを溶融させた。(サンプル4)Three samples 1 were extracted, and after the natural oxide film was removed, auxiliary heating was performed so as not to melt the substrate with a solid state laser 808 nm continuous wave laser, and a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density using an excimer laser device. Under the condition of 4 J / cm 2, the entire back surface was irradiated with laser light under carbon dioxide gas to melt a depth of about 0.3 μm from the surface. (Sample 4)

サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でエキシマーレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にて二酸化炭素ガス下で裏面全面にレーザー光を照射させ表面から約0.3μmの深さを溶融させた。(サンプル5)Two samples 1 were extracted, and with the natural oxide film removed, an excimer laser device was used to laser the entire back surface under carbon dioxide gas under the conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. Light was irradiated to melt a depth of about 0.3 μm from the surface. (Sample 5)

サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でエキシマーレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通ったエアーを溶融面に吹き付けながら裏面全面にレーザー光を照射させ表面から約0.3μmの深さを溶融させた。(サンプル6)Two samples 1 were extracted and passed through a container filled with micro glass fibers using an excimer laser device with a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2 with the natural oxide film removed. The air was irradiated on the entire back surface while blowing air on the melted surface to melt a depth of about 0.3 μm from the surface. (Sample 6)

サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長532nm、パルス幅200ナノ秒、エネルギー密度5J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通った二酸化炭素ガスを溶融面に吹き付けながら裏面全面にレーザー光を照射させ表面から約0.3μmの深さを溶融させた。(サンプル7)Two samples 1 were extracted and passed through a container filled with micro glass fibers using a green laser device with a wavelength of 532 nm, a pulse width of 200 nanoseconds, and an energy density of 5 J / cm 2 with the natural oxide film removed. While blowing the carbon dioxide gas on the melt surface, the entire back surface was irradiated with laser light to melt a depth of about 0.3 μm from the surface. (Sample 7)

サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長532nm、パルス幅200ナノ秒、エネルギー密度5J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通った二酸化炭素ガスを溶融面に吹き付けながら裏面レーザー光を5mmピッチで全面に照射させ表面から約0.3μmの深さを溶融させた。(サンプル8)Two samples 1 were extracted and passed through a container filled with micro glass fibers using a green laser device with a wavelength of 532 nm, a pulse width of 200 nanoseconds, and an energy density of 5 J / cm 2 with the natural oxide film removed. While blowing the carbon dioxide gas on the melting surface, the entire surface was irradiated with a backside laser beam at a pitch of 5 mm to melt a depth of about 0.3 μm from the surface. (Sample 8)

[評価1]
サンプル2とサンプル3を各1枚抜き出して電子顕微鏡にて裏面側の断面観察を行った。図3に示すようにサンプル2は、非晶質層やクラックなどのキズは観察されず補助加熱にて徐冷させているため転位も形成されていない。サンプル3に関しては、図4に示すように非晶質層やクラックなど観察されず急冷効果のためシリコン単結晶に転位網が形成されていることを確認した。
[Evaluation 1]
One each of Sample 2 and Sample 3 was extracted, and cross-sectional observation on the back side was performed with an electron microscope. As shown in FIG. 3, Sample 2 has no dislocations formed because it is slowly cooled by auxiliary heating without observing scratches such as amorphous layers and cracks. Regarding sample 3, as shown in FIG. 4, it was confirmed that a dislocation network was formed in the silicon single crystal due to a rapid cooling effect without observing an amorphous layer or a crack.

[評価2]
サンプル2とサンプル3を1枚抜き取り、ニッケル汚染濃度が5×1011atoms/cmになるようにシリコン基板裏面側にスピンコートさせた。得られたサンプルを9000℃で1時間熱処理を施した後にWright Etchingにて表面に析出したニッケルシリサイドを評価した。サンプル2には欠陥密度が1×10個/cm発生しているのに対してサンプル3には欠陥が観察されなかった。
[Evaluation 2]
One sample 2 and 3 were extracted and spin-coated on the back side of the silicon substrate so that the nickel contamination concentration was 5 × 10 11 atoms / cm 2 . The obtained sample was heat-treated at 9000 ° C. for 1 hour, and then nickel silicide deposited on the surface was evaluated by Wright Etching. Sample 2 had a defect density of 1 × 10 5 / cm 2 , whereas sample 3 had no defects.

[評価3]
各サンプルから2枚抜き取り、銅汚染濃度が1×1012atoms/cmになるようにシリコン基板裏面側にスピンコートさせた。得られたサンプルは、ホットプレートにて250℃となるようにサンプル裏面側から30分間加熱した。全てのサンプルに対して、シリコン基板表面まで拡散した銅を全反射蛍光X線にて評価した。サンプル1からサンプル3は、汚染濃度の半分以上の銅濃度が検出された。サンプル4は、5×1010atoms/cmの銅濃度であったが、サンプル5からサンプル8では、1.2×1010atoms/cm以下の銅濃度であった。
[Evaluation 3]
Two samples were extracted from each sample and spin-coated on the back side of the silicon substrate so that the copper contamination concentration was 1 × 10 12 atoms / cm 2 . The obtained sample was heated for 30 minutes from the back side of the sample so as to be 250 ° C. on a hot plate. For all samples, copper diffused to the silicon substrate surface was evaluated by total reflection fluorescent X-ray. In Samples 1 to 3, a copper concentration of more than half of the contamination concentration was detected. Sample 4 had a copper concentration of 5 × 10 10 atoms / cm 2 , while Sample 5 to Sample 8 had a copper concentration of 1.2 × 10 10 atoms / cm 2 or less.

[評価4]
サンプル2、サンプル4、サンプル5に関して、裏面深さ方向の炭素濃度プロファイルを測定するためにSIMSを用いた。サンプル2の炭素濃度ピークは、2。0×1017atoms/cm、サンプル4では8.5×1017atoms/cmあったがサンプル5では1.2×1018atoms/cmであることがわかった。
[Evaluation 4]
For Sample 2, Sample 4, and Sample 5, SIMS was used to measure the carbon concentration profile in the depth direction of the back surface. Sample 2 had a carbon concentration peak of 2.0 × 10 17 atoms / cm 3 , sample 4 had 8.5 × 10 17 atoms / cm 3 , and sample 5 had 1.2 × 10 18 atoms / cm 3 . I understood it.

比較例1に係るシリコン基板の製造方法により得られた研削後のシリコン裏面断面の図面である。It is drawing of the silicon back surface cross section after grinding obtained by the manufacturing method of the silicon substrate concerning comparative example 1. 比較例1に係るシリコン基板の製造方法により得られた研磨後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after grinding | polishing obtained by the manufacturing method of the silicon substrate which concerns on the comparative example 1. FIG. 比較例2に係るシリコン基板の製造方法により得られたレーザー光照射後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after the laser beam irradiation obtained by the manufacturing method of the silicon substrate which concerns on the comparative example 2. FIG. 実施例1に係るシリコン基板の製造方法により得られたレーザー光照射後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after the laser beam irradiation obtained by the manufacturing method of the silicon substrate which concerns on Example 1. FIG.

発明者は、上記課題を解決するため鋭意検討した結果、シリコン基板の少なくとも一方向の面からレーザー光を照射することによりシリコン表面または裏面を溶融させた状態で重金属を捕獲できる物質を所定濃度ドープさせ、完全再結晶化あるいは再結晶化させる際に転位を導入させることによりチップ強度の低下を起こす事なく強力なゲッタリング作用を具備させることを見出し、本発明を完成させるに到った。  As a result of intensive studies to solve the above problems, the inventor has doped a substance capable of capturing heavy metals in a state in which the silicon surface or back surface is melted by irradiating laser light from at least one surface of the silicon substrate. Thus, the inventors have found that a strong gettering action can be achieved without causing a reduction in chip strength by introducing dislocations during complete recrystallization or recrystallization, and the present invention has been completed.

請求項1に記載の発明は、デバイス後工程での裏面研削もしくは研磨後に最終シリコンチップ厚みが100μm以下に薄型化されるシリコン基板に対して、裏面全面または一部にレーザー光を照射することによりシリコンを溶融させ、同時に重金属を捕獲させる事が可能な物質を所定濃度取り込ませた領域を形成させるシリコン基板及び製造方法である。  According to the first aspect of the present invention, the entire or part of the back surface is irradiated with laser light on a silicon substrate whose final silicon chip thickness is reduced to 100 μm or less after back surface grinding or polishing in the device post-process. A silicon substrate and a manufacturing method for forming a region in which a predetermined concentration of a substance capable of melting silicon and simultaneously capturing heavy metal is captured.

レーザー光としては、単一波長に限定するものでなく複数の波長光を使用しても良く、連続照射法でもパルス照射法でも可能である。レーザー光の照射は、研削あるいは研磨後の薄厚化されたシリコン基板またはバックグラインドテープに貼りつけられた状態でのチップ化された後でも良い。尚、本説明はレーザー光を用いた記載をしているがシリコンを溶融できる手法であれば電子線など採用可能である。  The laser beam is not limited to a single wavelength, and a plurality of wavelength beams may be used, and either a continuous irradiation method or a pulse irradiation method is possible. The laser light irradiation may be performed after chipping in a state of being attached to a thinned silicon substrate or back grind tape after grinding or polishing. Although this description uses laser light, an electron beam or the like can be used as long as it can melt silicon.

請求項2に記載の発明は、少なくとも炭素、酸素、窒素、ホウ素など重金属を捕獲できる元素を1又は2以上含む物質であることを特徴としている請求項1のシリコン基板及び製造方法である。  A second aspect of the present invention is the silicon substrate and the manufacturing method according to the first aspect, wherein the silicon substrate is a substance containing one or more elements capable of capturing heavy metals such as carbon, oxygen, nitrogen, and boron.

請求項3に記載の発明は、溶融させたシリコンに対して単結晶化させながら同時に転位を導入させる請求項1記載のシリコン基板及び製造方法である。  A third aspect of the present invention is the silicon substrate and the manufacturing method according to the first aspect, wherein dislocations are simultaneously introduced while single-crystallizing molten silicon.

本発明の一例を具体的に説明すると、前工程でデバイス形成されたシリコン基板は後工程へと移る。先ず、デバイス作製面にバックグラインド用保護テープが貼り付けられシリコン基板の裏面研削が行われる。シリコン基板の厚みは、裏面研削により100μm以下まで薄型化され、更に裏面を研磨あるいはエッチングを行い研削キズ、スクラッチや非晶質領域を除去した後に洗浄する。この状態では裏面側の自然酸化膜は未成長である。ここで、ドーピング物質の存在する環境下でレーザー光の照射により裏面全面または一部を溶融させ、完全単結晶化あるいは転位を導入させながら再結晶化させる。その後、ダイシング、工程ワイヤーボンディング、封止工程へと進んでいく。  An example of the present invention will be specifically described. The silicon substrate on which the device is formed in the previous process moves to the subsequent process. First, a backgrinding protective tape is affixed to the device fabrication surface, and the back surface of the silicon substrate is ground. The thickness of the silicon substrate is reduced to 100 μm or less by back surface grinding, and further, the back surface is polished or etched to remove grinding scratches, scratches and amorphous regions, and then washed. In this state, the natural oxide film on the back side is not grown. Here, the entire back surface or a part thereof is melted by irradiation with laser light in an environment where a doping substance is present, and recrystallization is performed while introducing complete single crystallization or dislocation. Then, the process proceeds to dicing, process wire bonding, and sealing process.

デバイス後工程での重金属は、薄型化工程は基より上記デバイス組み立て工程で使用するインターポーザや封止樹脂の材質などからも混入する。特に、銅に関しては、イオン化して室温下でもシリコン基板内を自由に拡散できる元素であるため、例えば、研削工程で導入された銅は転位網に一旦は捕獲されるが組み立て工程での100℃から400℃以下の熱処理により簡単に転位から放出してデバイス活性層へと移動しデバイス特性を劣化させる。従い、銅に対して捕獲能力の高いホウ素や炭素を高濃度ドープさせることが必要であり、転位網を形成させることで更に高濃度化が可能となる。  Heavy metals in the device post-process are mixed from the material of the interposer and the sealing resin used in the device assembly process from the thinning process. In particular, copper is an element that can be ionized and diffuse freely in a silicon substrate even at room temperature. For example, copper introduced in a grinding process is once captured by a dislocation network, but is 100 ° C. in an assembly process. The heat treatment at 400 ° C. or lower from the surface easily releases from dislocations and moves to the device active layer to deteriorate the device characteristics. Accordingly, it is necessary to dope boron or carbon having a high trapping ability with respect to copper at a high concentration, and it is possible to further increase the concentration by forming a dislocation network.

【0027】
【実施例1】
サンプル1から各3枚抜き取り、フッ化水素水溶液にて自然酸化膜を除去させた後に固体レーザー808nm連続発振レーザーで基板を溶融させないように補助加熱を行い、同時にグリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてアルゴンガス雰囲気下で裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル2)
[0027]
[Example 1]
Three samples were extracted from Sample 1, and after removing the natural oxide film with an aqueous hydrogen fluoride solution, auxiliary heating was performed so as not to melt the substrate with a solid-state laser 808 nm continuous wave laser, and at the same time, a wavelength of 515 nm using a green laser device, Under the conditions of a pulse width of 200 nanoseconds and an energy density of 4 J / cm 2 , the entire back surface was irradiated with laser light in an argon gas atmosphere to melt a depth of about 1.0 μm from the surface. (Sample 2)

【0028】
【実施例2】
サンプル1から3枚抜き取り、自然酸化膜を除去させた後にグリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてアルゴン雰囲気下で裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル3)
[0028]
[Example 2]
Three samples were extracted from Sample 1, and after removing the natural oxide film, a laser beam was applied to the entire back surface under an argon atmosphere using a green laser device under the conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. Irradiation was performed to melt a depth of about 1.0 μm from the surface. (Sample 3)

【0029】
【実施例3】
サンプル1を2枚抜き取り、自然酸化膜を除去させた後に固体レーザー808nm連続発振レーザーで基板を溶融させないように補助加熱を行い、グリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にて二酸化炭素ガス下で裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル4)
[0029]
[Example 3]
Two samples 1 were extracted, and after the natural oxide film was removed, auxiliary heating was performed so as not to melt the substrate with a solid-state laser 808 nm continuous wave laser, and a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density using a green laser device. Under the condition of 4 J / cm 2, the entire back surface was irradiated with laser light under carbon dioxide gas to melt a depth of about 1.0 μm from the surface. (Sample 4)

【0030】
【実施例4】
サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にて二酸化炭素ガス下で裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル5)
[0030]
[Example 4]
Two samples 1 were extracted and the natural oxide film was removed. A laser was applied to the entire back surface under carbon dioxide gas using a green laser device under the conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. Light was irradiated to melt a depth of about 1.0 μm from the surface. (Sample 5)

【0031】
【実施例5】
サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通ったエアーを溶融面に吹き付けながら裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル6)
[0031]
[Example 5]
Two samples 1 were extracted, and with the natural oxide film removed, the sample was passed through a container filled with micro glass fibers using a green laser device under conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. The air was irradiated on the entire back surface while blowing air on the melted surface to melt a depth of about 1.0 μm from the surface. (Sample 6)

【0032】
【実施例6】
サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長515nm、パルス幅200ナノ秒、エネルギー密度4J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通った二酸化炭素ガスを溶融面に吹き付けながら裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル7)
[0032]
[Example 6]
Two samples 1 were extracted, and with the natural oxide film removed, the sample was passed through a container filled with micro glass fibers using a green laser device under conditions of a wavelength of 515 nm, a pulse width of 200 nanoseconds, and an energy density of 4 J / cm 2. While blowing the carbon dioxide gas on the melted surface, the entire back surface was irradiated with laser light to melt a depth of about 1.0 μm from the surface. (Sample 7)

【0033】
【実施例7】
サンプル1を2枚抜き取り、自然酸化膜を除去させた状態でグリーンレーザー装置を用いて波長532nm、パルス幅200ナノ秒、エネルギー密度5J/cmの条件にてマイクロガラス繊維を詰め込んだ容器を通った二酸化炭素ガスを溶融面に吹き付けながら裏面全面にレーザー光を照射させ表面から約1.0μmの深さを溶融させた。(サンプル8)
[0033]
[Example 7]
Two samples 1 were extracted and passed through a container filled with micro glass fibers using a green laser device with a wavelength of 532 nm, a pulse width of 200 nanoseconds, and an energy density of 5 J / cm 2 with the natural oxide film removed. While blowing the carbon dioxide gas on the melted surface, the entire back surface was irradiated with laser light to melt a depth of about 1.0 μm from the surface. (Sample 8)

[評価3]
各サンプルから1枚抜き取り、銅汚染濃度が1×1012atoms/cmになるようにシリコン基板裏面側にスピンコートさせた。得られたサンプルは、ホットプレートにて250℃となるようにサンプル裏面側から30分間加熱した。全てのサンプルに対して、シリコン基板表面まで拡散した銅を全反射蛍光X線にて評価した。サンプル1は、汚染濃度の半分以上の銅濃度が検出された。サンプル2と3は、3.5×1010atoms/cmの銅濃度であったが、サンプル4からサンプル8では、1.2×1010atoms/cm以下の銅濃度であった。
[Evaluation 3]
One sample was extracted from each sample and spin-coated on the back side of the silicon substrate so that the copper contamination concentration was 1 × 10 12 atoms / cm 2 . The obtained sample was heated for 30 minutes from the back side of the sample so as to be 250 ° C. on a hot plate. For all samples, copper diffused to the silicon substrate surface was evaluated by total reflection fluorescent X-ray. In sample 1, a copper concentration of more than half of the contamination concentration was detected. Samples 2 and 3 had a copper concentration of 3.5 × 10 10 atoms / cm 2 , while samples 4 to 8 had a copper concentration of 1.2 × 10 10 atoms / cm 2 or less.

比較例1に係るシリコン基板の製造方法により得られた研削後のシリコン裏面断面の図面である。It is drawing of the silicon back surface cross section after grinding obtained by the manufacturing method of the silicon substrate concerning comparative example 1. 比較例1に係るシリコン基板の製造方法により得られた研磨後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after grinding | polishing obtained by the manufacturing method of the silicon substrate which concerns on the comparative example 1. FIG. 実施例1に係るシリコン基板の製造方法により得られたレーザー光照射後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after the laser beam irradiation obtained by the manufacturing method of the silicon substrate which concerns on Example 1. FIG. 実施例2に係るシリコン基板の製造方法により得られたレーザー光照射後のシリコン裏面断面の図面である。It is drawing of the silicon | silicone back surface cross section after the laser beam irradiation obtained by the manufacturing method of the silicon substrate which concerns on Example 2. FIG.

Claims (3)

デバイス後工程にて最終シリコンチップ厚みが100μm以下となる半導体デバイス用シリコン基板において、裏面研削もしくは研磨後にレーザー光を照射し裏面全面または一部を溶融させる際に重金属を捕獲する物質を取り込ませる事を特徴とするシリコン基板の製造方法。  In a silicon substrate for a semiconductor device in which the final silicon chip thickness is 100 μm or less in the post-device process, a substance that captures heavy metals is incorporated when the back surface is ground or polished to irradiate a laser beam and melt the whole or part of the back surface. A method for manufacturing a silicon substrate. 溶融領域に取り込ませる物質は、炭素、ボロンなどの元素から構成された物質であり裏面から1μm以下の深さにピーク濃度が5×1017/cm以上1×1021/cm以下とする請求項1に記載のシリコン基板の製造方法。The substance to be taken into the molten region is a substance composed of elements such as carbon and boron, and has a peak concentration of 5 × 10 17 / cm 3 or more and 1 × 10 21 / cm 3 or less at a depth of 1 μm or less from the back surface. The method for manufacturing a silicon substrate according to claim 1. レーザー光照射によるシリコン基板の溶融後の固化過程でシリコン単結晶構造に転位を導入させる事を特徴とする請求項1に記載のシリコン基板。  2. The silicon substrate according to claim 1, wherein dislocations are introduced into the silicon single crystal structure in a solidification process after the silicon substrate is melted by laser light irradiation.
JP2011129602A 2011-05-23 2011-05-23 Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device Withdrawn JP2012244141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129602A JP2012244141A (en) 2011-05-23 2011-05-23 Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129602A JP2012244141A (en) 2011-05-23 2011-05-23 Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2012244141A true JP2012244141A (en) 2012-12-10

Family

ID=47465465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129602A Withdrawn JP2012244141A (en) 2011-05-23 2011-05-23 Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2012244141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175421A (en) * 2013-03-07 2014-09-22 Japan Steel Works Ltd:The Gettering semiconductor wafer and manufacturing method thereof
JP2015146391A (en) * 2014-02-03 2015-08-13 富士通株式会社 Semiconductor device and method of manufacturing the same
WO2015186625A1 (en) * 2014-06-03 2015-12-10 株式会社日本製鋼所 Method for producing semiconductor having gettering layer, method for manufacturing semiconductor device, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175421A (en) * 2013-03-07 2014-09-22 Japan Steel Works Ltd:The Gettering semiconductor wafer and manufacturing method thereof
JP2015146391A (en) * 2014-02-03 2015-08-13 富士通株式会社 Semiconductor device and method of manufacturing the same
WO2015186625A1 (en) * 2014-06-03 2015-12-10 株式会社日本製鋼所 Method for producing semiconductor having gettering layer, method for manufacturing semiconductor device, and semiconductor device
JPWO2015186625A1 (en) * 2014-06-03 2017-06-22 株式会社日本製鋼所 Manufacturing method of semiconductor having gettering layer, manufacturing method of semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
US8846493B2 (en) Methods for producing silicon on insulator structures having high resistivity regions in the handle wafer
JP6544807B2 (en) Method of manufacturing semiconductor having gettering layer, method of manufacturing semiconductor device, and semiconductor device
KR100698981B1 (en) Semiconductor device and manufacturing method thereof
JP6511516B2 (en) Method of manufacturing germanium on insulator substrate
KR101340002B1 (en) SOI Wafer Manufacturing Method
JP2006041258A (en) Semiconductor chip having gettering layer and its manufacturing method
KR101380514B1 (en) Method for manufacturing semiconductor substrate
JP2007220825A (en) Production process of silicon wafer
JP2012244141A (en) Silicon substrate and method of manufacturing the same, and method of manufacturing semiconductor device
JP2010283296A (en) Silicon wafer, manufacturing method thereof, and method for manufacturing semiconductor device
KR101356685B1 (en) Method for Manufacturing SOI Substrate and SOI Substrate
CN1581430A (en) Silicon crystal round piece and its making method
US20120299156A1 (en) Wafer processing method
JP2011003576A (en) Method of manufacturing semiconductor device
JP5584959B2 (en) Silicon wafer manufacturing method
JP2012049397A (en) Method of manufacturing silicon wafer
CN101145512A (en) Method of producing bonded wafer
KR100857386B1 (en) Heat treatment method for Sanyo wafer
JP2013084866A (en) Silicon semiconductor device substrate and manufacturing equipment
JP2013106024A (en) Silicon substrate, manufacturing method therefor, and semiconductor device manufacturing method
JP2021022730A (en) Manufacturing method of semiconductor device, and semiconductor substrate
JP2017157811A (en) SOI substrate and manufacturing method thereof
JP2010287855A (en) Silicon wafer, method for manufacturing the same, and method for manufacturing semiconductor device
JP2011044590A (en) Method of manufacturing silicon wafer, and method of manufacturing semiconductor device
WO2013120867A1 (en) Method for forming a gettering layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805