JP2012244040A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2012244040A
JP2012244040A JP2011114584A JP2011114584A JP2012244040A JP 2012244040 A JP2012244040 A JP 2012244040A JP 2011114584 A JP2011114584 A JP 2011114584A JP 2011114584 A JP2011114584 A JP 2011114584A JP 2012244040 A JP2012244040 A JP 2012244040A
Authority
JP
Japan
Prior art keywords
heat spreader
external terminal
connection conductor
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011114584A
Other languages
Japanese (ja)
Inventor
Junji Tsuruoka
純司 鶴岡
Seiji Yasui
誠二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2011114584A priority Critical patent/JP2012244040A/en
Publication of JP2012244040A publication Critical patent/JP2012244040A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/8421Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/84214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device and the like capable of efficiently protecting a semiconductor chip from sputters at the time of laser welding by a relatively small quantity of resin and with a good workability, and having an excellent thermal diffusion property.SOLUTION: A semiconductor device 1, 2, 3 has: a heat spreader 20, 200 having recessed parts 22A and 22B; semiconductor chips 10A and 10B fixed in the recessed parts of the heat spreader; a connection conductor 12 fixed to the semiconductor chips 10A and 10B; an insulation resin part 70 covering the semiconductor chips 10A and 10B in the recessed parts 22A and 22B of the heat spreader while exposing a weld part 121 of the connection conductor; and an external terminal 80 bonded to the weld part of the connection conductor by laser welding.

Description

本発明は、レーザ溶接で接続導体と外部端子が接合される半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device in which a connection conductor and an external terminal are joined by laser welding and a method for manufacturing the same.

従来から、この種の半導体装置は知られている(例えば、特許文献1、2参照)。特許文献1、2に記載の半導体装置では、レーザ溶接で発生するスパッタによる半導体チップへのダメージを防止するため、半導体チップを樹脂で被覆することが行われている。   Conventionally, this type of semiconductor device is known (see, for example, Patent Documents 1 and 2). In the semiconductor devices described in Patent Documents 1 and 2, the semiconductor chip is covered with a resin in order to prevent damage to the semiconductor chip due to sputtering generated by laser welding.

国際公開第2009/081723号パンフレットInternational Publication No. 2009/081723 Pamphlet 特開2010−141163号公報JP 2010-141163 A

しかしながら、特許文献1や特許文献2に記載の半導体装置では、半導体チップは、セラミックスを上下から銅箔で挟んだ絶縁基板上に半田により接合されている。かかる絶縁基板を使用する構成では、ヒートスプレッダを使用する構成に比べて熱拡散性が劣るという欠点がある。   However, in the semiconductor devices described in Patent Document 1 and Patent Document 2, the semiconductor chip is joined to the insulating substrate with the ceramic sandwiched from above and below by soldering. In the configuration using such an insulating substrate, there is a disadvantage that the thermal diffusibility is inferior to the configuration using the heat spreader.

ところで、半導体チップを覆うための樹脂は、少量で半導体チップを効率的に保護できれば有利である。一般的に、半導体チップを覆うための樹脂は、流動性があるので、不必要な範囲まで広がりうり、かかる場合、作業性が悪いだけでなく、使用する樹脂の量が不必要に多くなりコスト上の問題も生じうる。更に、基板の表面の全体に亘って樹脂が充填されると、半導体チップの電極と外部端子との間の電気的接続に、中間端子(例えば、特許文献1に記載の半導体装置における接続導体14)等が必要となりうり、部品点数や作業工数が増えてしまう問題も生じる。   By the way, it is advantageous if the resin for covering the semiconductor chip can efficiently protect the semiconductor chip with a small amount. In general, the resin used to cover the semiconductor chip has fluidity, so it can spread to unnecessary areas. In such a case, not only the workability is poor, but the amount of resin used is unnecessarily high and the cost is low. The above problems can also arise. Further, when the resin is filled over the entire surface of the substrate, an intermediate terminal (for example, the connection conductor 14 in the semiconductor device described in Patent Document 1 is used for electrical connection between the electrode of the semiconductor chip and the external terminal. ) And the like may be required, and there is a problem that the number of parts and the number of work steps increase.

そこで、本発明は、良好な作業性で比較的少量の樹脂により効率的に半導体チップをレーザ溶接時のスパッタから保護することができる、熱拡散性に優れた半導体装置及びその製造方法の提供を目的とする。   Accordingly, the present invention provides a semiconductor device excellent in thermal diffusibility and a method for manufacturing the same, which can efficiently protect a semiconductor chip from sputtering during laser welding with a relatively small amount of resin with good workability. Objective.

上記目的を達成するため、本発明の一局面によれば、凹部を有するヒートスプレッダと、
前記ヒートスプレッダの凹部内に固着された半導体チップと、
前記半導体チップに固着された接続導体と、
前記接続導体の溶接部を露出させつつ、前記ヒートスプレッダの凹部内で前記半導体チップを被覆する絶縁樹脂部と、
前記接続導体の溶接部にレーザ溶接で接合された外部端子とを備えることを特徴とする、半導体装置が提供される。
In order to achieve the above object, according to one aspect of the present invention, a heat spreader having a recess,
A semiconductor chip fixed in the recess of the heat spreader;
A connection conductor fixed to the semiconductor chip;
An insulating resin portion that covers the semiconductor chip in the recess of the heat spreader while exposing the welded portion of the connection conductor;
An external terminal joined by laser welding to the welded portion of the connection conductor is provided. A semiconductor device is provided.

また、本発明の他の一局面によれば、凹部を備えるヒートスプレッダの前記凹部内に半導体チップを固着する工程と、
接続導体を前記半導体チップに固着する工程と、
前記接続導体の溶接予定部を露出させつつ前記半導体チップを被覆する態様で、前記ヒートスプレッダの凹部内に樹脂を充填する工程と、
前記接続導体の露出した溶接予定部に外部端子をレーザ溶接で接合する工程とを含む、半導体装置の製造方法が提供される。
According to another aspect of the present invention, a step of fixing a semiconductor chip in the recess of the heat spreader including the recess,
Fixing the connection conductor to the semiconductor chip;
In the aspect of covering the semiconductor chip while exposing the planned welding portion of the connection conductor, filling the resin into the recess of the heat spreader;
There is provided a method of manufacturing a semiconductor device, including a step of joining an external terminal to the exposed welding portion of the connection conductor by laser welding.

本発明によれば、良好な作業性で比較的少量の樹脂により効率的に半導体チップをレーザ溶接時のスパッタから保護することができる、熱拡散性に優れた半導体装置及びその製造方法が得られる。   According to the present invention, it is possible to obtain a semiconductor device excellent in thermal diffusibility and a method for manufacturing the same, which can efficiently protect a semiconductor chip from sputtering during laser welding with a relatively small amount of resin with good workability. .

本発明の一実施例(実施例1)による半導体装置1の要部を上面視で示す図である。It is a figure which shows the principal part of the semiconductor device 1 by one Example (Example 1) of this invention by a top view. 図1に示す半導体装置1のラインA−Aに沿った断面図である。FIG. 2 is a cross-sectional view taken along line AA of the semiconductor device 1 shown in FIG. 1. 図1に示す半導体装置1のラインB−Bに沿った断面図である。FIG. 3 is a cross-sectional view taken along line BB of the semiconductor device 1 shown in FIG. 1. ヒートスプレッダ20の単品図であり、(A)は上面図を示し、(B)はラインA−Aに沿った断面図を示す。It is a single figure of the heat spreader 20, (A) shows a top view, (B) shows sectional drawing along line AA. レーザ溶接時のスパッタに起因したIGBTの耐圧不良の発生メカニズムの主なる一例を示す図である。It is a figure which shows a main example of the generation | occurrence | production mechanism of the pressure | voltage resistant defect of IGBT resulting from the sputter | spatter at the time of laser welding. 比較例による半導体装置の要部を上面視で示す図である。It is a figure which shows the principal part of the semiconductor device by a comparative example by a top view. 図6に示す比較例による半導体装置のラインA−Aに沿った断面図である。It is sectional drawing along line AA of the semiconductor device by the comparative example shown in FIG. 図6に示す比較例による半導体装置のラインB−Bに沿った断面図である。FIG. 7 is a cross-sectional view taken along line BB of the semiconductor device according to the comparative example shown in FIG. 6. 図1に示した半導体装置1の製造方法の流れの一例の要部(その1)を順に示す図である。FIG. 3 is a diagram sequentially illustrating a main part (part 1) of an example of a flow of a manufacturing method of the semiconductor device 1 illustrated in FIG. 1. 図1に示した半導体装置1の製造方法の一例の流れの要部(その2)を順に示す図である。FIG. 3 is a diagram sequentially illustrating a main part (part 2) of the flow of an example of a method for manufacturing the semiconductor device 1 illustrated in FIG. 1. 他の実施例(実施例2)による半導体装置2を示す斜視図である。It is a perspective view which shows the semiconductor device 2 by another Example (Example 2). 他の実施例(実施例3)による半導体装置3の断面図である。It is sectional drawing of the semiconductor device 3 by another Example (Example 3).

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例(実施例1)による半導体装置1の要部を上面視で示す図である。図2は、図1に示す半導体装置1のラインA−Aに沿った断面図である。図3は、図1に示す半導体装置1のラインB−Bに沿った断面図である。図4は、ヒートスプレッダ20の単品図であり、図4(A)は上面図を示し、図4(B)はラインA−Aに沿った断面図を示す。尚、図1においては、第1外部端子80の下方の構成が理解しやすいようにするための便宜上、第1外部端子80については、透視図で示されている。尚、半導体装置1の上下方向は、半導体装置1の搭載状態に応じて上下方向が異なるが、以下では、便宜上、半導体装置1のヒートスプレッダ20に対して半導体チップ10が存在する側を上方とする。半導体装置1は、例えば、ハイブリッド車又は電気自動車で使用されるモータ駆動用のインバータを構成するものであってよい。   FIG. 1 is a top view of a main part of a semiconductor device 1 according to an embodiment (embodiment 1) of the present invention. FIG. 2 is a cross-sectional view taken along line AA of the semiconductor device 1 shown in FIG. FIG. 3 is a cross-sectional view taken along line BB of the semiconductor device 1 shown in FIG. FIG. 4 is a single product diagram of the heat spreader 20, FIG. 4 (A) shows a top view, and FIG. 4 (B) shows a cross-sectional view along line AA. In FIG. 1, the first external terminal 80 is shown in a perspective view for convenience of understanding the configuration below the first external terminal 80. Although the vertical direction of the semiconductor device 1 differs depending on the mounting state of the semiconductor device 1, hereinafter, for convenience, the side where the semiconductor chip 10 exists is defined as the upper side with respect to the heat spreader 20 of the semiconductor device 1. . The semiconductor device 1 may constitute an inverter for driving a motor used in, for example, a hybrid vehicle or an electric vehicle.

半導体装置1は、図1及び図2に示すように、半導体チップ10と、接続導体12と、ヒートスプレッダ20と、絶縁樹脂部70と、第1外部端子80と、第2外部端子82とを含む。   As shown in FIGS. 1 and 2, the semiconductor device 1 includes a semiconductor chip 10, a connection conductor 12, a heat spreader 20, an insulating resin portion 70, a first external terminal 80, and a second external terminal 82. .

半導体チップ10は、パワー半導体素子を含み、本例ではIGBT(Insulated Gate Bipolar Transistor)を含む。尚、半導体チップ10が含むパワー半導体素子の種類や数は、任意である。半導体チップ10は、IGBTに代えて、MOSFET(Metal Oxide Semiconductor Field‐Effect Transistor)のような他のスイッチング素子を含んでもよい。半導体チップ10は、ヒートスプレッダ20上に半田50により接合される。図示の例では、半導体チップ10は、IGBTからなる半導体チップ10Aと、FWD(Free Wheeling Diode)からなる半導体チップ10Bからなる。この場合、半導体チップ10Aは、上面にエミッタ電極を備え、下面にコレクタ電極を備える。また、半導体チップ10Bは、上面にアノード電極を備え、下面にカソード電極を備える。   The semiconductor chip 10 includes a power semiconductor element, and in this example includes an IGBT (Insulated Gate Bipolar Transistor). The type and number of power semiconductor elements included in the semiconductor chip 10 are arbitrary. The semiconductor chip 10 may include another switching element such as a MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) instead of the IGBT. The semiconductor chip 10 is bonded onto the heat spreader 20 with solder 50. In the illustrated example, the semiconductor chip 10 includes a semiconductor chip 10A made of IGBT and a semiconductor chip 10B made of FWD (Free Wheeling Diode). In this case, the semiconductor chip 10A includes an emitter electrode on the upper surface and a collector electrode on the lower surface. Further, the semiconductor chip 10B includes an anode electrode on the upper surface and a cathode electrode on the lower surface.

ヒートスプレッダ20は、半導体チップ10で発生する熱を吸収し拡散する部材である。ヒートスプレッダ20は、例えば銅、アルミなどの熱拡散性の優れた金属から形成されてもよい。銅としては、伝導率が銅材の中で最も高い無酸素銅(C1020)が好適である。   The heat spreader 20 is a member that absorbs and diffuses heat generated in the semiconductor chip 10. The heat spreader 20 may be formed of a metal having excellent thermal diffusibility such as copper or aluminum. As copper, oxygen-free copper (C1020) having the highest conductivity among copper materials is suitable.

ヒートスプレッダ20は、図4に示すように、半導体チップ10A、10Bのそれぞれの設置領域に対応して、凹部22A,22Bを有する。凹部22A,22Bは、ヒートスプレッダ20の上側の表面(半導体チップ10A、10Bが設置される側の面)に形成される。凹部22A,22Bは、例えばプレスにより形成されてもよい。凹部22A,22Bは、半導体チップ10A、10Bをそれぞれ内部に含むことができるように、上面視で、それぞれ、半導体チップ10A、10Bの外形よりも大きい外形を有する。凹部22A,22Bの深さDは、以下で説明するように、半導体チップ10A、10Bの厚み(高さ)と、半導体チップ10A、10Bの下方の半田50の厚みとを足した合計厚みと同一又はそれよりも大きくなるように設定される。尚、凹部22Aの深さDと凹部22Aの22Bの深さDは、互いに同一であってよいが、必ずしも同一である必要はない。例えば、凹部22A,22Bの深さDは、それぞれ対応する半導体チップ10A、10Bの厚さに応じて設定されてもよい。また、凹部22A,22Bは、図示の例では、互いに連続しない態様でそれぞれ別個に形成されているが、互いに連続する態様で形成されてもよい。即ち、凹部22A,22Bは、凹部22Aと凹部22Bの間の隔壁22c(図4参照)を無くして1つの凹部として形成されてもよい。また、凹部22A,22Bのそれぞれは、典型的には、一定の深さを有しているが、深さが変化してもよい。例えば、凹部22A,22B内における半導体チップ10A、10Bの位置決め用の段差が凹部22A,22B内の表面(凹部22A,22Bの底部の表面)に形成されてもよい。また、凹部22A,22B内の表面は、平滑な表面であってもよいし、微小な凹凸が形成されてもよい。この微小な凹凸は、半導体チップ10A、10Bとヒートスプレッダ20との接合を実現する半田50の厚みを管理するために形成されてもよい。尚、以下では、ヒートスプレッダ20の上面とは、特に言及しない限り、ヒートスプレッダ20における凹部22A,22Bが形成されていない領域の上面を指す。   As shown in FIG. 4, the heat spreader 20 has recesses 22A and 22B corresponding to the installation areas of the semiconductor chips 10A and 10B. Recesses 22A and 22B are formed on the upper surface of heat spreader 20 (the surface on which semiconductor chips 10A and 10B are installed). The recesses 22A and 22B may be formed by pressing, for example. The recesses 22A and 22B have outer shapes larger than the outer shapes of the semiconductor chips 10A and 10B, respectively, as viewed from above so that the semiconductor chips 10A and 10B can be included therein. The depth D of the recesses 22A and 22B is the same as the total thickness obtained by adding the thickness (height) of the semiconductor chips 10A and 10B and the thickness of the solder 50 below the semiconductor chips 10A and 10B, as will be described below. Or, it is set to be larger than that. The depth D of the recess 22A and the depth D of 22B of the recess 22A may be the same, but are not necessarily the same. For example, the depth D of the recesses 22A and 22B may be set according to the thickness of the corresponding semiconductor chips 10A and 10B. In the illustrated example, the recesses 22A and 22B are separately formed in a manner that is not continuous with each other, but may be formed in a manner that is continuous with each other. That is, the recesses 22A and 22B may be formed as one recess without the partition 22c (see FIG. 4) between the recesses 22A and 22B. Each of the recesses 22A and 22B typically has a certain depth, but the depth may vary. For example, the steps for positioning the semiconductor chips 10A and 10B in the recesses 22A and 22B may be formed on the surfaces in the recesses 22A and 22B (the bottom surfaces of the recesses 22A and 22B). In addition, the surfaces in the recesses 22A and 22B may be smooth surfaces or fine irregularities may be formed. The minute unevenness may be formed in order to manage the thickness of the solder 50 that realizes the bonding between the semiconductor chips 10A and 10B and the heat spreader 20. In the following, the upper surface of the heat spreader 20 refers to the upper surface of a region where the recesses 22A and 22B are not formed in the heat spreader 20, unless otherwise specified.

半導体チップ10A、10Bは、図1及び図2に示すように、ヒートスプレッダ20のそれぞれの凹部22A,22B内に固着される。半導体チップ10A、10Bは、好ましくは、ヒートスプレッダ20の基本面(凹部22A,22Bが形成されていない領域の面)よりも上方に突出しない態様で、凹部22A,22B内に固着される。半導体チップ10A、10Bは、上述の如く、それぞれの凹部22A,22B内において、ヒートスプレッダ20に半田50により固着(接合)される。半導体チップ10A、10Bは、横方向で(上下方向に直角な方向で)凹部22A,22B内の周壁221及び隔壁22cから離間する態様で、凹部22A,22B内に固着されてよい。   The semiconductor chips 10A and 10B are fixed in the recesses 22A and 22B of the heat spreader 20, as shown in FIGS. The semiconductor chips 10A and 10B are preferably fixed in the recesses 22A and 22B in such a manner that they do not protrude above the basic surface of the heat spreader 20 (the surface of the region where the recesses 22A and 22B are not formed). As described above, the semiconductor chips 10A and 10B are fixed (bonded) to the heat spreader 20 with the solder 50 in the respective recesses 22A and 22B. The semiconductor chips 10A and 10B may be fixed in the recesses 22A and 22B in such a manner that they are separated from the peripheral walls 221 and the partition walls 22c in the recesses 22A and 22B in the lateral direction (in a direction perpendicular to the vertical direction).

接続導体12は、半導体チップ10A、10Bの電極に半田50により固着(接合)される。図示の例では、接続導体12は、IGBTのエミッタ電極と、FWDのアノード電極に半田50により接合される。接続導体12は、側面視で、図2に示すように、上向きに凸形状をなし、ヒートスプレッダ20の上面から上方に離間した上部121と、ヒートスプレッダ20の上面付近の高さに延在する2つの接続部122と、上部121及び2つの接続部122を繋ぐ上下方向の脚部123とから構成される。2つの接続部122は、それぞれ、IGBTのエミッタ電極と、FWDのアノード電極に接合される。接続導体12の上部121は、後述の如く、第1外部端子80との接合のための溶接部を画成する。   The connection conductor 12 is fixed (bonded) to the electrodes of the semiconductor chips 10A and 10B with solder 50. In the illustrated example, the connection conductor 12 is joined to the IGBT emitter electrode and the FWD anode electrode by solder 50. As shown in FIG. 2, the connection conductor 12 has a convex shape upward, and includes an upper part 121 spaced upward from the upper surface of the heat spreader 20 and two heights extending near the upper surface of the heat spreader 20. The connection part 122 is comprised from the upper part 121 and the leg part 123 of the up-down direction which connects the two connection parts 122. FIG. The two connection parts 122 are joined to the emitter electrode of the IGBT and the anode electrode of the FWD, respectively. The upper part 121 of the connection conductor 12 defines a weld for joining to the first external terminal 80 as will be described later.

絶縁樹脂部70は、図1及び図2に示すように、ヒートスプレッダ20の凹部22A,22B内に形成される。具体的には、ヒートスプレッダ20の凹部22A,22Bは、上述のように接続導体12が接合された半導体チップ10A、10Bを内部に含む状態で、樹脂が充填される。樹脂は、好ましくは、凹部22A,22B内のみに充填され、上面視で凹部22A,22Bの外形よりも外側に広がらないように充填される。即ち、凹部22A,22B内の周壁221(図4参照)は、凹部22A,22B内に充填された樹脂が上面視で凹部22A,22Bの外形よりも外側に広がらないように堰止める機能を果たす。これにより、凹部22A,22B内に充填される樹脂により凹部22A,22B内に絶縁樹脂部70が形成される。尚、絶縁樹脂部70を構成する樹脂は、任意の樹脂材料であってよく、例えばエポキシ樹脂が使用されてもよい。   As shown in FIGS. 1 and 2, the insulating resin portion 70 is formed in the recesses 22 </ b> A and 22 </ b> B of the heat spreader 20. Specifically, the recesses 22A and 22B of the heat spreader 20 are filled with resin in a state in which the semiconductor chips 10A and 10B to which the connection conductor 12 is bonded as described above are included. The resin is preferably filled only in the recesses 22A and 22B so as not to spread outward from the outer shape of the recesses 22A and 22B in a top view. That is, the peripheral walls 221 (see FIG. 4) in the recesses 22A and 22B function to block the resin filled in the recesses 22A and 22B from spreading outside the outer shape of the recesses 22A and 22B in a top view. . Thus, the insulating resin portion 70 is formed in the recesses 22A and 22B by the resin filled in the recesses 22A and 22B. In addition, resin which comprises the insulating resin part 70 may be arbitrary resin materials, for example, an epoxy resin may be used.

絶縁樹脂部70の最大厚さは、図2に示すように、凹部22A,22Bの深さに対応した厚さであってよい。絶縁樹脂部70は、少なくとも後述のレーザ溶接時のスパッタから半導体チップ10A、10Bを保護できる態様で、半導体チップ10A、10Bを覆っていればよい。即ち、絶縁樹脂部70は、半導体チップ10A、10Bの上面を含む全体(下面を除く全体)を覆うように設けられる。図示の例では、上述の如く、凹部22A,22Bの深さDは、半導体チップ10A、10Bの厚みと、半導体チップ10A、10Bの下方の半田50の厚みとを足した合計厚みよりもより大きくなるように設定されている。そして、絶縁樹脂部70は、凹部22A,22Bの深さに対応した厚さを有し、これにより、半導体チップ10A、10Bの上面を含む全体を覆う。尚、図示の例では、絶縁樹脂部70は、上下方向で、半導体チップ10A、10Bと接続導体12との接合を実現する半田50の上面(即ち、接続導体12の接続部122の下面)と略同一の高さまで延在する。接続導体12の上部121は、絶縁樹脂部70に被覆されず、絶縁樹脂部70の上方に露出される。尚、絶縁樹脂部70の最大厚さは、充填時の表面張力を利用して、凹部22A,22Bの深さよりも僅かに大きくてもよい。   The maximum thickness of the insulating resin portion 70 may be a thickness corresponding to the depth of the recesses 22A and 22B as shown in FIG. The insulating resin portion 70 only needs to cover the semiconductor chips 10A and 10B in such a manner that at least the semiconductor chips 10A and 10B can be protected from sputtering during laser welding described later. That is, the insulating resin portion 70 is provided so as to cover the entire surface including the upper surfaces of the semiconductor chips 10A and 10B (the entire surface excluding the lower surface). In the illustrated example, as described above, the depth D of the recesses 22A and 22B is larger than the total thickness obtained by adding the thickness of the semiconductor chips 10A and 10B and the thickness of the solder 50 below the semiconductor chips 10A and 10B. It is set to be. The insulating resin portion 70 has a thickness corresponding to the depth of the recesses 22A and 22B, thereby covering the entire surface including the upper surfaces of the semiconductor chips 10A and 10B. In the example shown in the figure, the insulating resin portion 70 is formed in the vertical direction with the upper surface of the solder 50 (that is, the lower surface of the connection portion 122 of the connection conductor 12) that realizes the bonding between the semiconductor chips 10A and 10B and the connection conductor 12. Extends to approximately the same height. The upper part 121 of the connection conductor 12 is not covered with the insulating resin part 70 and is exposed above the insulating resin part 70. Note that the maximum thickness of the insulating resin portion 70 may be slightly larger than the depths of the recesses 22A and 22B using the surface tension during filling.

尚、ヒートスプレッダ20の上面は、絶縁樹脂部70を構成する樹脂以外の樹脂で更に被覆されてもよい。例えば、シリコンゲルのようなゲル材料が、ヒートスプレッダ20の上面を封止するように付与されてもよい。但し、この場合、ゲル材料は、後述の第2外部端子82のヒートスプレッダ20へのレーザ溶接による接合が完了した後に設けられる。   Note that the upper surface of the heat spreader 20 may be further coated with a resin other than the resin constituting the insulating resin portion 70. For example, a gel material such as silicon gel may be applied so as to seal the upper surface of the heat spreader 20. However, in this case, the gel material is provided after the joining of the second external terminal 82 described later to the heat spreader 20 by laser welding is completed.

第1外部端子80は、図1及び図2に示すように、接続導体12の上部121にレーザ溶接により接合される。第1外部端子80は、ヒートスプレッダ20の上面から離間してヒートスプレッダ20の上方に延在する。第1外部端子80は、接続導体12の上部121に対応する高さに設けられる。第1外部端子80は、図1に示すように、上面視で、接続導体12の上部121と重なるように延在する。尚、第1外部端子80の幅(長手方向に対して垂直方向の長さ)は、任意であってよい。図示の例では、第1外部端子80の幅は、図1に示すように、接続導体12の上部121の幅と略同一であるが、接続導体12の上部121の幅よりも大きく設定されてもよい。また、図示の例では、第1外部端子80は、ヒートスプレッダ20の上方において同一面内に延在する平面状の形態を有しているが、上下に段差を有してもよい。   As shown in FIGS. 1 and 2, the first external terminal 80 is joined to the upper portion 121 of the connection conductor 12 by laser welding. The first external terminal 80 extends away from the upper surface of the heat spreader 20 and above the heat spreader 20. The first external terminal 80 is provided at a height corresponding to the upper portion 121 of the connection conductor 12. As shown in FIG. 1, the first external terminal 80 extends so as to overlap the upper portion 121 of the connection conductor 12 in a top view. The width of the first external terminal 80 (the length in the direction perpendicular to the longitudinal direction) may be arbitrary. In the illustrated example, the width of the first external terminal 80 is substantially the same as the width of the upper portion 121 of the connection conductor 12 as shown in FIG. 1, but is set larger than the width of the upper portion 121 of the connection conductor 12. Also good. In the illustrated example, the first external terminal 80 has a planar shape extending in the same plane above the heat spreader 20, but may have a step difference in the vertical direction.

第1外部端子80と接続導体12の上部121とは、図1及び図2に示すように、1つの溶接点80a,12aにて溶接により接合されてもよいし、2つ以上の溶接点にて互いに接合されてもよい。第1外部端子80と接続導体12の間の溶接点80a,12aは、好ましくは、ヒートスプレッダ20の上面よりも上方向にひいては半導体チップ10A、10Bの上面よりも上方向にオフセットした位置に設定される。図示の例では、接続導体12側の溶接点12aは、ヒートスプレッダ20の上面から上方向に離間した上部121に設定されている。   The first external terminal 80 and the upper part 121 of the connection conductor 12 may be joined by welding at one welding point 80a, 12a as shown in FIGS. May be joined together. The welding points 80a and 12a between the first external terminal 80 and the connection conductor 12 are preferably set at positions offset upward from the upper surface of the heat spreader 20 and further upward from the upper surface of the semiconductor chips 10A and 10B. The In the illustrated example, the welding point 12 a on the connection conductor 12 side is set to an upper portion 121 that is spaced upward from the upper surface of the heat spreader 20.

第2外部端子82は、図1及び図3に示すように、ヒートスプレッダ20の上面にレーザ溶接により接合される。尚、ヒートスプレッダ20には、上述の如く半導体チップ10AとしてのIGBTのコレクタ電極(及び半導体チップ10BとしてのFWDのカソード電極)が接続されるので、ヒートスプレッダ20自体がIGBTのコレクタ電極の取り出し部を構成する。第2外部端子82は、側面視で、図3に示すように、下向きに凸形状をなす部位を有し、当該部位は、ヒートスプレッダ20の上面から上方に離間した高さに延在する上部822と、ヒートスプレッダ20の上面に接する下部821と、上部822及び下部821を繋ぐ上下方向の脚部823とから構成される。第2外部端子82の下部821は、ヒートスプレッダ20の上面との接合のための溶接部を画成する。第2外部端子82の下部821は、上面視で、図1に示すように、ヒートスプレッダ20における凹部22A,22Bの存在しない表面に対向する。尚、第2外部端子82の上部822は、第1外部端子80と同一の高さに延在してもよい。また、第2外部端子82は、第1外部端子80と共に同一のバスバーモジュール(図11参照)に組み込まれてもよい。また、第2外部端子82は、上面視で、図1に示すように、第1外部端子80に対して平行な関係で、ヒートスプレッダ20における凹部22A,22Bの存在しない領域の上方を延在してもよい。   As shown in FIGS. 1 and 3, the second external terminal 82 is joined to the upper surface of the heat spreader 20 by laser welding. The heat spreader 20 is connected to the collector electrode of the IGBT as the semiconductor chip 10A (and the cathode electrode of the FWD as the semiconductor chip 10B) as described above. To do. As shown in FIG. 3, the second external terminal 82 has a portion that protrudes downward, as shown in FIG. 3, and this portion extends to a height that is spaced upward from the upper surface of the heat spreader 20. And a lower part 821 in contact with the upper surface of the heat spreader 20 and an upper and lower leg part 823 that connects the upper part 822 and the lower part 821. The lower part 821 of the second external terminal 82 defines a weld for joining to the upper surface of the heat spreader 20. As shown in FIG. 1, the lower portion 821 of the second external terminal 82 faces the surface of the heat spreader 20 where the recesses 22 </ b> A and 22 </ b> B are not present, as shown in FIG. 1. The upper part 822 of the second external terminal 82 may extend to the same height as the first external terminal 80. The second external terminal 82 may be incorporated in the same bus bar module (see FIG. 11) together with the first external terminal 80. Further, as shown in FIG. 1, the second external terminal 82 extends above a region where the recesses 22 </ b> A and 22 </ b> B do not exist in the heat spreader 20 in a parallel relationship with the first external terminal 80 as viewed from above. May be.

第2外部端子82の下部821とヒートスプレッダ20の上面とは、図1及び図3に示すように、1つの溶接点82a,20aにて溶接により接合されてもよいし、2つ以上の溶接点にて互いに接合されてもよい。また、第2外部端子82は、好ましくは、ヒートスプレッダ20の上面に直接接合される。これにより、中間端子(例えば図8に示す中間端子14)等を必要とすることなく、IGBTのコレクタ電極を直接取り出すことができる。   The lower part 821 of the second external terminal 82 and the upper surface of the heat spreader 20 may be joined by welding at one welding point 82a, 20a as shown in FIGS. 1 and 3, or two or more welding points. May be joined together. The second external terminal 82 is preferably directly joined to the upper surface of the heat spreader 20. As a result, the collector electrode of the IGBT can be directly taken out without requiring an intermediate terminal (for example, the intermediate terminal 14 shown in FIG. 8).

図5は、レーザ溶接時のスパッタに起因したIGBTの耐圧不良の発生メカニズムの主なる一例を示す図であり、半導体チップ10Aに対応するIGBTの断面図を示す図である。尚、この耐圧不良の発生メカニズムは、FWDの場合も同様である。   FIG. 5 is a diagram illustrating a main example of the generation mechanism of the breakdown voltage failure of the IGBT caused by sputtering during laser welding, and is a diagram illustrating a cross-sectional view of the IGBT corresponding to the semiconductor chip 10A. The generation mechanism of this breakdown voltage failure is the same in the case of FWD.

レーザ溶接時には、スパッタとして煤(カーボン)が発生する場合がある。このような煤は、例えば周辺の樹脂がレーザ溶接時に焼けることで発生する。このような煤が、図5に示すように、半導体チップ(IGBT)のエッジ部分に付着すると、コレクタ−エミッタ間がショートすることで、耐圧不良が生じると考えられる。   During laser welding, soot (carbon) may be generated as spatter. Such wrinkles occur, for example, when the surrounding resin is burned during laser welding. As shown in FIG. 5, when such a flaw adheres to the edge portion of the semiconductor chip (IGBT), it is considered that a breakdown voltage failure occurs due to a short circuit between the collector and the emitter.

ここで、本実施例によれば、上述の如く、半導体チップ10A、10Bは凹部22A,22B内で絶縁樹脂部70によりその上面及び側面(即ちエッジ部分を構成する上面及び側面)が保護される。従って、図5に示すような第1外部端子80や第2外部端子82のレーザ溶接時に煤が発生した場合でも、絶縁樹脂部70によって半導体チップ10A、10Bのエッジ部分に煤が付着することを防止することができる。これにより、レーザ溶接時のスパッタに起因して半導体チップ10A、10Bに耐圧不良が生じるのを防止することができる。また、絶縁樹脂部70により半導体チップ10A、10Bを保護することができるので、レーザ溶接時に半導体チップ10A、10Bを保護するための特別な治具なども不要とすることができる。   Here, according to the present embodiment, as described above, the semiconductor chips 10A and 10B have their upper surfaces and side surfaces (that is, upper surfaces and side surfaces constituting the edge portions) protected by the insulating resin portion 70 in the recesses 22A and 22B. . Therefore, even when wrinkles occur during laser welding of the first external terminal 80 and the second external terminal 82 as shown in FIG. 5, the wrinkles adhere to the edge portions of the semiconductor chips 10A and 10B by the insulating resin portion 70. Can be prevented. As a result, it is possible to prevent a breakdown voltage failure from occurring in the semiconductor chips 10A and 10B due to sputtering during laser welding. Further, since the semiconductor chips 10A and 10B can be protected by the insulating resin portion 70, a special jig or the like for protecting the semiconductor chips 10A and 10B during laser welding can be eliminated.

図6は、比較例による半導体装置の要部を上面視で示す図である。図7は、図6に示す比較例による半導体装置のラインA−Aに沿った断面図である。図8は、図6に示す比較例による半導体装置のラインB−Bに沿った断面図である。尚、図6乃至図8において、図1乃至図4に示した本実施例による半導体装置1における対応する構成要素については、同様の参照符号を付している。   FIG. 6 is a diagram showing a main part of a semiconductor device according to a comparative example in a top view. FIG. 7 is a sectional view taken along line AA of the semiconductor device according to the comparative example shown in FIG. FIG. 8 is a cross-sectional view taken along line BB of the semiconductor device according to the comparative example shown in FIG. 6 to 8, the same reference numerals are assigned to the corresponding components in the semiconductor device 1 according to the present embodiment shown in FIGS. 1 to 4.

この比較例による半導体装置は、ヒートスプレッダ20’に、本実施例による凹部22A,22Bが形成されず、それ故に、ヒートスプレッダ20’の上面上に半導体チップ10A、10Bが設けられると共に、ヒートスプレッダ20’の上面の全体に亘って一定の厚さで絶縁樹脂部70’が設けられる。即ち、絶縁樹脂部70’は、ヒートスプレッダ20’の上面よりも高い位置にある半導体チップ10A、10Bの上面を覆うように、ヒートスプレッダ20’の上面から上方に所定厚みで形成される。また、絶縁樹脂部70’がヒートスプレッダ20’の上面の全体に亘って形成されるため、ヒートスプレッダ20’の上面には、コレクタ電極の取り出し用の中間端子14が半田50により接合される。ヒートスプレッダ20’の上面に半導体チップ10A、10Bが接合され、半導体チップ10A、10Bに接続導体12が接合され、更に、中間端子14が半田50により接合された後、絶縁樹脂部70’が形成される。   In the semiconductor device according to the comparative example, the recesses 22A and 22B according to the present embodiment are not formed in the heat spreader 20 ′. Therefore, the semiconductor chips 10A and 10B are provided on the upper surface of the heat spreader 20 ′, and the heat spreader 20 ′ An insulating resin portion 70 ′ is provided with a constant thickness over the entire top surface. In other words, the insulating resin portion 70 ′ is formed with a predetermined thickness above the upper surface of the heat spreader 20 ′ so as to cover the upper surfaces of the semiconductor chips 10 </ b> A and 10 </ b> B located higher than the upper surface of the heat spreader 20 ′. Further, since the insulating resin portion 70 ′ is formed over the entire upper surface of the heat spreader 20 ′, the intermediate terminal 14 for taking out the collector electrode is joined to the upper surface of the heat spreader 20 ′ by the solder 50. The semiconductor chips 10A and 10B are bonded to the upper surface of the heat spreader 20 ′, the connection conductor 12 is bonded to the semiconductor chips 10A and 10B, and the intermediate terminal 14 is bonded by the solder 50, and then the insulating resin portion 70 ′ is formed. The

ここで、この比較例では、絶縁樹脂部70’により半導体チップ10A、10Bの全体を覆うので、第1及び第2外部端子80,82’と接続導体12及び中間端子14との間のレーザ溶接時のスパッタから半導体チップ10A、10Bを保護することができる。しかしながら、絶縁樹脂部70’がヒートスプレッダ20’の上面の全体を覆うので、絶縁樹脂部70’を形成するために必要な樹脂の量が比較的多くなる。また、絶縁樹脂部70’がヒートスプレッダ20’の上面の全体を覆うので、図8に示すように、コレクタ端子を第2外部端子82’へと取り出すための中間端子14が必要となる。即ち、第2外部端子82’をヒートスプレッダ20’の上面に直接接合できないため、絶縁樹脂部70’から上方に露出する中間端子14を設定する必要がある。従って、かかる比較例の構成では、比較的多い使用する樹脂の量に起因したコスト増のみならず、中間端子14を必要とすることから部品点数や作業工数が増えてしまう。   Here, in this comparative example, since the entire semiconductor chips 10A and 10B are covered with the insulating resin portion 70 ′, laser welding between the first and second external terminals 80 and 82 ′ and the connection conductor 12 and the intermediate terminal 14 is performed. The semiconductor chips 10A and 10B can be protected from spattering. However, since the insulating resin portion 70 ′ covers the entire upper surface of the heat spreader 20 ′, the amount of resin required to form the insulating resin portion 70 ′ is relatively large. Further, since the insulating resin portion 70 ′ covers the entire upper surface of the heat spreader 20 ′, an intermediate terminal 14 for taking out the collector terminal to the second external terminal 82 ′ is required as shown in FIG. 8. That is, since the second external terminal 82 ′ cannot be directly bonded to the upper surface of the heat spreader 20 ′, it is necessary to set the intermediate terminal 14 exposed upward from the insulating resin portion 70 ′. Therefore, in the configuration of the comparative example, not only the cost increases due to the relatively large amount of resin used but also the intermediate terminal 14 is required, so that the number of parts and the number of work steps increase.

これに対して、本実施例によれば、上述の如く、ヒートスプレッダ20の凹部22A,22B内に半導体チップ10A、10Bを収容し、ヒートスプレッダ20の凹部22A,22B内にのみ樹脂を充填して半導体チップ10A、10Bを保護する絶縁樹脂部70を形成する。従って、絶縁樹脂部70’がヒートスプレッダ20’の上面の全体を覆う比較例に比べて、半導体チップ10A、10Bを保護する絶縁樹脂部70を形成するために必要な樹脂の量を低減することができる。また、ヒートスプレッダ20の上面に絶縁樹脂部70が形成されない領域が存在するので、第2外部端子82をヒートスプレッダ20の上面(絶縁樹脂部70が形成されない領域)に直接接合することが可能であり、上記の比較例で必要となるような中間端子14を無くすことができる。また、本実施例によれば、ヒートスプレッダ20の凹部22A,22B内に樹脂を充填して絶縁樹脂部70を形成するので、表面張力の作用等で樹脂の流動が凹部22A,22B内に規制され、ヒートスプレッダ20の上面(ヒートスプレッダ20における凹部22A,22Bが形成されていない領域の上面)への樹脂の望ましくない流動(広がり)を防止することができる。このように本実施例によれば、半導体チップ10A、10Bと第2外部端子82との間の電気的接続を効率的に実現可能であり、良好な作業性で比較的少量の樹脂により半導体チップ10A、10Bを効率的に保護することができる。   On the other hand, according to the present embodiment, as described above, the semiconductor chips 10A and 10B are accommodated in the recesses 22A and 22B of the heat spreader 20, and the resin is filled only in the recesses 22A and 22B of the heat spreader 20. An insulating resin portion 70 that protects the chips 10A and 10B is formed. Therefore, compared to the comparative example in which the insulating resin portion 70 ′ covers the entire upper surface of the heat spreader 20 ′, the amount of resin necessary for forming the insulating resin portion 70 that protects the semiconductor chips 10A and 10B can be reduced. it can. Further, since there is a region where the insulating resin portion 70 is not formed on the upper surface of the heat spreader 20, it is possible to directly bond the second external terminal 82 to the upper surface of the heat spreader 20 (region where the insulating resin portion 70 is not formed) The intermediate terminal 14 as required in the above comparative example can be eliminated. In addition, according to the present embodiment, since the insulating resin portion 70 is formed by filling the recesses 22A and 22B of the heat spreader 20 with the resin, the resin flow is restricted in the recesses 22A and 22B due to the action of surface tension and the like. Undesirable flow (spreading) of the resin to the upper surface of the heat spreader 20 (the upper surface of the region where the recesses 22A and 22B are not formed in the heat spreader 20) can be prevented. As described above, according to the present embodiment, the electrical connection between the semiconductor chips 10A and 10B and the second external terminal 82 can be efficiently realized, and the semiconductor chip is formed with a relatively small amount of resin with good workability. 10A and 10B can be protected efficiently.

図9乃至図10は、図1に示した半導体装置1の製造方法の流れの一例の要部を示す図である。図9(A)乃至(C)は、図1におけるラインA−Aに沿った断面に対応し、図10(A)乃至(B)は、図1におけるラインA−Aに沿った断面に対応し、図10(C)は、図1におけるラインB−Bに沿った断面に対応する。   9 to 10 are diagrams showing an example of a main part of an example of the flow of the manufacturing method of the semiconductor device 1 shown in FIG. 9A to 9C correspond to the cross section along the line AA in FIG. 1, and FIGS. 10A to 10B correspond to the cross section along the line AA in FIG. 10C corresponds to a cross section taken along line BB in FIG.

先ず、図9(A)に示すように、凹部22A,22Bを備えるヒートスプレッダ20が用意される。尚、ここでは、理解を容易にするための説明の都合上、単一のヒートスプレッダ20が用意されている。しかしながら、ヒートスプレッダ20は、複数のヒートスプレッダ20を形成するフープ材が用意されてもよく、最終段階で、フープ材が切断されて各ヒートスプレッダ20へと分割されてもよい。   First, as shown in FIG. 9A, a heat spreader 20 having recesses 22A and 22B is prepared. Here, a single heat spreader 20 is prepared for convenience of explanation for easy understanding. However, the heat spreader 20 may be provided with a hoop material for forming a plurality of heat spreaders 20, and the hoop material may be cut and divided into heat spreaders 20 at the final stage.

次いで、図9(B)に示すように、ヒートスプレッダ20の凹部22A,22B内に半導体チップ10A、10Bが半田50により接合される。尚、この際、凹部22A,22B内において、半導体チップ10A、10Bと半田50とにより占められる部分以外は空間である。   Next, as shown in FIG. 9B, the semiconductor chips 10 </ b> A and 10 </ b> B are joined by solder 50 in the recesses 22 </ b> A and 22 </ b> B of the heat spreader 20. At this time, in the recesses 22 </ b> A and 22 </ b> B, spaces other than the portions occupied by the semiconductor chips 10 </ b> A and 10 </ b> B and the solder 50 are spaces.

次いで、図9(C)に示すように、半導体チップ10A、10Bに接続導体12が半田50により接合される。   Next, as illustrated in FIG. 9C, the connection conductor 12 is joined to the semiconductor chips 10 </ b> A and 10 </ b> B with solder 50.

次いで、図10(A)に示すように、凹部22A,22B内に樹脂が充填され、半導体チップ10A、10Bを覆う絶縁樹脂部70が形成される。この際、絶縁樹脂部70からは、接続導体12の溶接予定部、即ち接続導体12の上部121が露出する。   Next, as shown in FIG. 10A, the recesses 22A and 22B are filled with resin, and an insulating resin portion 70 that covers the semiconductor chips 10A and 10B is formed. At this time, the portion to be welded of the connection conductor 12, that is, the upper portion 121 of the connection conductor 12 is exposed from the insulating resin portion 70.

次いで、図10(B)に示すように、絶縁樹脂部70から露出する接続導体12の上部121に第1外部端子80がレーザ溶接により接合される。レーザ溶接は、第1外部端子80を接続導体12の上部121に対して下方に押し付けた状態で、第1外部端子80に上方から略面直方向にレーザ光を照射することにより実行されてもよい。このようなレーザ溶接に用いるレーザとしては、例えばYAGレーザ、COレーザ、半導体レーザなどの任意のレーザが使用されてもよい。 Next, as shown in FIG. 10B, the first external terminal 80 is joined to the upper portion 121 of the connection conductor 12 exposed from the insulating resin portion 70 by laser welding. Laser welding may be performed by irradiating the first external terminal 80 with laser light in a substantially perpendicular direction from above with the first external terminal 80 pressed downward against the upper portion 121 of the connection conductor 12. Good. As a laser used for such laser welding, for example, an arbitrary laser such as a YAG laser, a CO 2 laser, or a semiconductor laser may be used.

次いで、図10(C)に示すように、ヒートスプレッダ20の上面(凹部22A,22B以外の部位)に第2外部端子82がレーザ溶接により接合される。同様に、レーザ溶接は、第2外部端子82をヒートスプレッダ20の上面に対して下方に押し付けた状態で、第2外部端子82に上方から略面直方向にレーザ光を照射することにより実行されてもよい。尚、第2外部端子82の接合は、第1外部端子80の接合よりも前に又は第1外部端子80の接合と同時に実行されてもよい。要するに、第1外部端子80及び第2外部端子82の接合は、絶縁樹脂部70が形成された後であれば任意の適切なタイミングで実行されてよい。例えば、第1外部端子80及び第2外部端子82のレーザ溶接は、絶縁樹脂部70を形成する樹脂が完全に硬化してから実行されてもよいし、絶縁樹脂部70を形成する樹脂が硬化する前に実行されてもよい。尚、第1外部端子80及び第2外部端子82の接合後に、シリコンゲルのようなゲル材料が、ヒートスプレッダ20の上面を封止するように付与されてもよい。   Next, as shown in FIG. 10C, the second external terminal 82 is joined to the upper surface of the heat spreader 20 (parts other than the recesses 22A and 22B) by laser welding. Similarly, the laser welding is performed by irradiating the second external terminal 82 with laser light in a substantially perpendicular direction from above with the second external terminal 82 pressed downward against the upper surface of the heat spreader 20. Also good. The joining of the second external terminals 82 may be performed before the joining of the first external terminals 80 or simultaneously with the joining of the first external terminals 80. In short, the joining of the first external terminal 80 and the second external terminal 82 may be performed at any appropriate timing as long as the insulating resin portion 70 is formed. For example, laser welding of the first external terminal 80 and the second external terminal 82 may be performed after the resin forming the insulating resin portion 70 is completely cured, or the resin forming the insulating resin portion 70 is cured. It may be executed before In addition, after joining the 1st external terminal 80 and the 2nd external terminal 82, a gel material like a silicon gel may be provided so that the upper surface of the heat spreader 20 may be sealed.

図11は、他の実施例(実施例2)による半導体装置2を示す斜視図であり、バスバーモジュール60が組み付けられる前の状態を示す。本実施例2において、上述の実施例1と実質的に同一であってよい構成については、同一の参照符号を付して説明を省略する。   FIG. 11 is a perspective view showing a semiconductor device 2 according to another embodiment (embodiment 2), and shows a state before the bus bar module 60 is assembled. In the second embodiment, components that may be substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施例2では、6つのヒートスプレッダ20が1つのモジュールとして搭載されている。各ヒートスプレッダ20の構成は、上述した実施例1による半導体装置1の場合と同様であってよい。6つのヒートスプレッダ20上の各半導体チップ10A、10Bは、モータ駆動用のインバータのU相、V相、W相の各上アーム及び各下アームを構成するものであってよい。このように、1つのモジュール内に任意の数のヒートスプレッダ20を含んでもよい。   In the second embodiment, six heat spreaders 20 are mounted as one module. The configuration of each heat spreader 20 may be the same as that of the semiconductor device 1 according to the first embodiment described above. Each of the semiconductor chips 10A and 10B on the six heat spreaders 20 may constitute the U-phase, V-phase, and W-phase upper arms and the lower arms of the motor drive inverter. In this manner, any number of heat spreaders 20 may be included in one module.

尚、バスバーモジュール60は、6つのヒートスプレッダ20に対応して、6組の第1外部端子80及び第2外部端子82を含んでよい。第1外部端子80及び第2外部端子82は、樹脂で形成された支持体84によりモジュール化されてもよい。バスバーモジュール60は、例えば樹脂のインサート成形により形成されてもよい。尚、本実施例2では、バスバーモジュール60を各ヒートスプレッダ20に対して位置決めして下方向に押圧した状態で、各第1外部端子80及び第2外部端子82に対して順次又は同時にレーザ溶接が実行されてもよい。また、各第1外部端子80及び第2外部端子82のレーザ溶接による接合後に、ゲル材料が各ヒートスプレッダ20の上面を封止するように付与されてもよい。   The bus bar module 60 may include six sets of first external terminals 80 and second external terminals 82 corresponding to the six heat spreaders 20. The 1st external terminal 80 and the 2nd external terminal 82 may be modularized by the support body 84 formed with resin. The bus bar module 60 may be formed by resin insert molding, for example. In the second embodiment, the laser bar welding is sequentially or simultaneously performed on each of the first external terminals 80 and the second external terminals 82 in a state where the bus bar module 60 is positioned with respect to each heat spreader 20 and pressed downward. May be executed. Moreover, after joining each 1st external terminal 80 and 2nd external terminal 82 by laser welding, a gel material may be provided so that the upper surface of each heat spreader 20 may be sealed.

尚、ヒートスプレッダ20は、図11に示すように、絶縁層30を介してヒートシンク40に接合されてよい。絶縁層30は、樹脂接着剤や樹脂シートから構成されてよい。絶縁層30は、例えばアルミナをフィラーとした樹脂で形成されてもよい。絶縁層30は、ヒートスプレッダ20とヒートシンク40の間に設けられ、ヒートスプレッダ20とヒートシンク40に接合する。絶縁層30は、ヒートスプレッダ20とヒートシンク40との間の電気的な絶縁性を確保しつつ、ヒートスプレッダ20からヒートシンク40への高い熱伝導性を確保する。ヒートシンク40は、熱伝導性の良い材料から形成され、例えば、アルミなどの金属により形成されてもよい。ヒートシンク40は、上面がヒートスプレッダ20に接合される。ヒートシンク40は、下面側にフィン42を備える。フィン42の数や配列態様は任意である。フィン42は、図示のようなストレートフィンであってもよいし、その他、ピンフィンの千鳥配置等で実現されてもよい。半導体装置2の実装状態では、フィン42は、冷却水や冷却油のような冷却媒体と接触する。このようにして、半導体装置2の駆動時に生じる半導体チップ10からの熱は、ヒートスプレッダ20、絶縁層30を介して、ヒートシンク40のフィン42から冷却媒体へと伝達され、半導体装置2の冷却が実現される。   In addition, the heat spreader 20 may be joined to the heat sink 40 via the insulating layer 30, as shown in FIG. The insulating layer 30 may be composed of a resin adhesive or a resin sheet. The insulating layer 30 may be formed of a resin using alumina as a filler, for example. The insulating layer 30 is provided between the heat spreader 20 and the heat sink 40 and is bonded to the heat spreader 20 and the heat sink 40. The insulating layer 30 ensures high thermal conductivity from the heat spreader 20 to the heat sink 40 while ensuring electrical insulation between the heat spreader 20 and the heat sink 40. The heat sink 40 is formed of a material having good thermal conductivity, and may be formed of a metal such as aluminum, for example. The upper surface of the heat sink 40 is bonded to the heat spreader 20. The heat sink 40 includes fins 42 on the lower surface side. The number and arrangement of the fins 42 are arbitrary. The fins 42 may be straight fins as illustrated, or may be realized by staggered arrangement of pin fins. In the mounted state of the semiconductor device 2, the fins 42 are in contact with a cooling medium such as cooling water or cooling oil. In this way, the heat from the semiconductor chip 10 generated when the semiconductor device 2 is driven is transmitted to the cooling medium from the fins 42 of the heat sink 40 via the heat spreader 20 and the insulating layer 30, and cooling of the semiconductor device 2 is realized. Is done.

図12は、他の実施例(実施例3)による半導体装置3の断面図であり、図1に示した半導体装置1のラインB−Bに沿った断面図に相当する。本実施例3は、第2外部端子82が、第2外部端子部202としてヒートスプレッダ200と一体に形成されている点が、上述の実施例1による半導体装置1の構成と異なる。本実施例3において、上述の実施例1と実質的に同一であってよい構成については、同一の参照符号を付して説明を省略する。   12 is a cross-sectional view of the semiconductor device 3 according to another embodiment (embodiment 3), and corresponds to a cross-sectional view along the line BB of the semiconductor device 1 shown in FIG. The third embodiment is different from the configuration of the semiconductor device 1 according to the first embodiment described above in that the second external terminal 82 is integrally formed with the heat spreader 200 as the second external terminal portion 202. In the third embodiment, components that may be substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施例3では、ヒートスプレッダ200は、本体部201と、第2外部端子部202とを一体に備える。ヒートスプレッダ200は、例えば異型材リードフレームにより形成されてもよい。この場合、本体部201と第2外部端子部202とが初期的に連結されているので、本体部201と第2外部端子部202との間の接合(レーザ溶接)が不要となる。第2外部端子部202の端部(本体部201側とは逆側の端部)は、図示しない基板に半田等により接続されてもよい。尚、本体部201の他の構成は、上述した実施例1による半導体装置1のヒートスプレッダ20の構成(特に図2の断面図を参照して説明した構成)と同様であってよい。   In the third embodiment, the heat spreader 200 integrally includes a main body portion 201 and a second external terminal portion 202. The heat spreader 200 may be formed of, for example, a modified material lead frame. In this case, since the main body part 201 and the second external terminal part 202 are initially connected, joining (laser welding) between the main body part 201 and the second external terminal part 202 is not necessary. The end of the second external terminal 202 (the end opposite to the main body 201) may be connected to a substrate (not shown) by soldering or the like. The other configuration of the main body 201 may be the same as the configuration of the heat spreader 20 of the semiconductor device 1 according to the first embodiment described above (particularly, the configuration described with reference to the cross-sectional view of FIG. 2).

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の実施例1では、半導体装置1は、他の構成(例えば、走行モータ駆動用のDC/DC昇圧コンバータの素子の一部)を含んでよいし、また、半導体装置1は、半導体チップ10A、10Bと共に、他の素子(コンデンサ、リアクトル等)を含んでもよい。また、半導体装置1は、車両用のインバータに適用されるものであったが、半導体装置1は、他の用途(鉄道、エアコン、エレベータ、冷蔵庫等)で使用されるインバータに使用されてもよい。更に、半導体装置1は、インバータ以外の装置、例えば、コンピューター用のMPU(Microprocessor Unit)や、無線通信機の送信部の電力増幅回路に使用される高周波パワーモジュールに使用されてもよい。これらは、上述の実施例2,3においても同様である。   For example, in the first embodiment described above, the semiconductor device 1 may include another configuration (for example, a part of a DC / DC boost converter element for driving the traction motor), and the semiconductor device 1 may be a semiconductor device. Other elements (capacitor, reactor, etc.) may be included together with the chips 10A, 10B. Moreover, although the semiconductor device 1 was applied to the inverter for vehicles, the semiconductor device 1 may be used for the inverter used for other purposes (railway, air conditioner, elevator, refrigerator, etc.). . Further, the semiconductor device 1 may be used in a device other than an inverter, for example, an MPU (Microprocessor Unit) for a computer or a high-frequency power module used in a power amplification circuit of a transmission unit of a wireless communication device. The same applies to the second and third embodiments.

また、上述の実施例1では、ヒートスプレッダ20がIGBTのコレクタ電極と等電位になることから、コレクタ電極を取り出すための第2外部端子82をヒートスプレッダ20上にレーザ溶接で接合しているが、例えば、IGBTに代えてMOSFETからなる半導体チップ10Aを用いる場合には、ヒートスプレッダ20がMOSFETのドレイン電極と等電位になることから、ドレイン電極を取り出すための同様の第2外部端子82をヒートスプレッダ20上にレーザ溶接で接合すればよい。   In the first embodiment, since the heat spreader 20 is equipotential with the collector electrode of the IGBT, the second external terminal 82 for taking out the collector electrode is joined to the heat spreader 20 by laser welding. When a semiconductor chip 10A made of a MOSFET is used instead of the IGBT, the heat spreader 20 is equipotential with the drain electrode of the MOSFET, so that a similar second external terminal 82 for taking out the drain electrode is placed on the heat spreader 20. What is necessary is just to join by laser welding.

また、上述の実施例1では、絶縁樹脂部70を形成する樹脂よりも安価な樹脂(例えばシリコンゲル)によりヒートスプレッダ20の上面等が封止されうるが、このような封止は省略されてもよい。或いは、絶縁樹脂部70を形成する樹脂と同一の樹脂によりヒートスプレッダ20の上面等が封止されてもよい。これらは、上述の実施例2,3においても同様である。   In the first embodiment described above, the upper surface of the heat spreader 20 and the like can be sealed with a resin (for example, silicon gel) that is less expensive than the resin that forms the insulating resin portion 70, but such sealing may be omitted. Good. Alternatively, the upper surface of the heat spreader 20 may be sealed with the same resin as that forming the insulating resin portion 70. The same applies to the second and third embodiments.

また、上述した実施例1では、絶縁樹脂部70は、半導体チップ10A、10Bの上面の全体(接続導体12の接続部122が接合された領域を除く全体)を被覆しているが、半導体チップ10A、10Bのエッジ部分のみ、即ち半導体チップ10A、10Bの上面の外周部と側面のみを被覆する構成であってもよい。具体的には、図5に示したガードリング(エミッタ電極とコレクタ電極の間を絶縁するためのリング状の絶縁部位)のみ被覆する構成又はガードリング及びその周辺を被覆する構成であってもよい。但し、半導体チップ10A、10Bの上面への直接的なスパッタの衝突による物理的なダメージを防止するため、絶縁樹脂部70は半導体チップ10A、10Bの上面の全体を被覆することが望ましい。これらは、上述の実施例2,3においても同様である。   In the first embodiment described above, the insulating resin portion 70 covers the entire top surface of the semiconductor chips 10A and 10B (the entire surface excluding the region where the connection portion 122 of the connection conductor 12 is joined). It may be configured to cover only the edge portions of 10A and 10B, that is, only the outer peripheral portion and the side surface of the upper surface of the semiconductor chips 10A and 10B. Specifically, the guard ring (ring-shaped insulating portion for insulating between the emitter electrode and the collector electrode) shown in FIG. 5 may be covered, or the guard ring and its periphery may be covered. . However, it is desirable that the insulating resin portion 70 covers the entire upper surface of the semiconductor chips 10A and 10B in order to prevent physical damage due to the direct sputtering collision with the upper surfaces of the semiconductor chips 10A and 10B. The same applies to the second and third embodiments.

1,2,3 半導体装置
10(10A,10B) 半導体チップ
12 接続端子
12a 溶接点
20,200 ヒートスプレッダ
20a 溶接点
22A,22B 凹部
30 絶縁層
40 ヒートシンク
42 フィン
50 半田
60 バスバーモジュール
70 絶縁樹脂部
80 第1外部端子
80a 溶接点
82 第2外部端子
82a 溶接点
84 支持体
121 上部
122 接続部
201 本体部
202 第2外部端子部
221 周壁
821 下部
822 上部
823 脚部
1, 2 and 3 Semiconductor device 10 (10A, 10B) Semiconductor chip 12 Connection terminal 12a Welding point 20,200 Heat spreader 20a Welding point 22A, 22B Recessed part 30 Insulating layer 40 Heat sink 42 Fin 50 Solder 60 Bus bar module 70 Insulating resin part 80 DESCRIPTION OF SYMBOLS 1 External terminal 80a Welding point 82 2nd external terminal 82a Welding point 84 Support body 121 Upper part 122 Connection part 201 Main body part 202 2nd external terminal part 221 Peripheral wall 821 Lower part 822 Upper part 823 Leg part

Claims (4)

凹部を有するヒートスプレッダと、
前記ヒートスプレッダの凹部内に固着された半導体チップと、
前記半導体チップに固着された接続導体と、
前記接続導体の溶接部を露出させつつ、前記ヒートスプレッダの凹部内で前記半導体チップを被覆する絶縁樹脂部と、
前記接続導体の溶接部にレーザ溶接で接合された外部端子とを備えることを特徴とする、半導体装置。
A heat spreader having a recess;
A semiconductor chip fixed in the recess of the heat spreader;
A connection conductor fixed to the semiconductor chip;
An insulating resin portion that covers the semiconductor chip in the recess of the heat spreader while exposing the welded portion of the connection conductor;
An external terminal joined by laser welding to a welded portion of the connection conductor.
前記ヒートスプレッダにレーザ溶接で直接接合される第2外部端子を更に備える、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a second external terminal directly joined to the heat spreader by laser welding. 前記ヒートスプレッダの凹部の深さは、該凹部内に固着される半導体チップの高さよりも大きい、請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein a depth of the concave portion of the heat spreader is larger than a height of a semiconductor chip fixed in the concave portion. 凹部を備えるヒートスプレッダの前記凹部内に半導体チップを固着する工程と、
接続導体を前記半導体チップに固着する工程と、
前記接続導体の溶接予定部を露出させつつ前記半導体チップを被覆する態様で、前記ヒートスプレッダの凹部内に樹脂を充填する工程と、
前記接続導体の露出した溶接予定部に外部端子をレーザ溶接で接合する工程とを含む、半導体装置の製造方法。
Fixing a semiconductor chip in the recess of the heat spreader including the recess;
Fixing the connection conductor to the semiconductor chip;
In the aspect of covering the semiconductor chip while exposing the planned welding portion of the connection conductor, filling the resin into the recess of the heat spreader;
And a step of joining an external terminal to the exposed welding portion of the connection conductor by laser welding.
JP2011114584A 2011-05-23 2011-05-23 Semiconductor device and method of manufacturing the same Withdrawn JP2012244040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114584A JP2012244040A (en) 2011-05-23 2011-05-23 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114584A JP2012244040A (en) 2011-05-23 2011-05-23 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012244040A true JP2012244040A (en) 2012-12-10

Family

ID=47465390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114584A Withdrawn JP2012244040A (en) 2011-05-23 2011-05-23 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012244040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079905A (en) * 2017-10-24 2019-05-23 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
US11631641B2 (en) 2018-10-05 2023-04-18 Fuji Electric Co., Ltd. Semiconductor device, semiconductor module, and vehicle
JP7411910B2 (en) 2020-03-18 2024-01-12 パナソニックIpマネジメント株式会社 Cooling structure, charging device, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079905A (en) * 2017-10-24 2019-05-23 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
US11631641B2 (en) 2018-10-05 2023-04-18 Fuji Electric Co., Ltd. Semiconductor device, semiconductor module, and vehicle
JP7411910B2 (en) 2020-03-18 2024-01-12 パナソニックIpマネジメント株式会社 Cooling structure, charging device, and vehicle

Similar Documents

Publication Publication Date Title
JP5273101B2 (en) Semiconductor module and manufacturing method thereof
US9240371B2 (en) Semiconductor module, semiconductor device having semiconductor module, and method of manufacturing semiconductor module
JP5067267B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
US8779584B2 (en) Semiconductor apparatus
US8610263B2 (en) Semiconductor device module
EP3026701B1 (en) Power module and manufacturing method thereof
JP7187992B2 (en) Semiconductor modules and vehicles
JP2009158787A (en) Power semiconductor device
JP2020072106A (en) Semiconductor device
JP2009111154A (en) Power semiconductor module
JP2012248700A (en) Semiconductor device
WO2013065462A1 (en) Semiconductor device and manufacturing method therefor
WO2016203743A1 (en) Semiconductor device
JPWO2015194023A1 (en) Power module device and power conversion device
JP5278126B2 (en) Manufacturing method of semiconductor device
JP2012244040A (en) Semiconductor device and method of manufacturing the same
JP2013105884A (en) Semiconductor module
JP2012222327A (en) Semiconductor device and manufacturing method of the same
JP6575739B1 (en) Semiconductor device, semiconductor device manufacturing method, and power conversion device
JP5152263B2 (en) Semiconductor module
JP6218856B2 (en) Power converter
JP5840102B2 (en) Power semiconductor device
JP7074046B2 (en) Semiconductor devices and their manufacturing methods
JP2022165462A (en) Semiconductor device and manufacturing method of the semiconductor device
WO2020105556A1 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805