JP2012241277A - Method of manufacturing galvanized steel material or galvanized steel molding - Google Patents

Method of manufacturing galvanized steel material or galvanized steel molding Download PDF

Info

Publication number
JP2012241277A
JP2012241277A JP2011115801A JP2011115801A JP2012241277A JP 2012241277 A JP2012241277 A JP 2012241277A JP 2011115801 A JP2011115801 A JP 2011115801A JP 2011115801 A JP2011115801 A JP 2011115801A JP 2012241277 A JP2012241277 A JP 2012241277A
Authority
JP
Japan
Prior art keywords
zinc
flux
plating
plated steel
based plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115801A
Other languages
Japanese (ja)
Other versions
JP5824868B2 (en
Inventor
Nobuyuki Shimoda
信之 下田
Yasuhide Morimoto
康秀 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011115801A priority Critical patent/JP5824868B2/en
Publication of JP2012241277A publication Critical patent/JP2012241277A/en
Application granted granted Critical
Publication of JP5824868B2 publication Critical patent/JP5824868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently and economically manufacturing a hot-dip galvanized steel material and a hot-dip galvanized steel molding with an excellent appearance and excellent corrosion resistance.SOLUTION: The method of manufacturing the galvanized steel material or the galvanized steel molding is characterized in that the temperature of a base material when dipped into a zinc-based plating bath after the base material to be plated is subjected to flux treatment is 300-700°C.

Description

本発明は、亜鉛系めっき鋼製成形品及び亜鉛系めっき鋼材に関し、詳しくは、良好な耐食性と生産性を有する亜鉛系めっき鋼材と亜鉛系めっき鋼製成形品の製造方法に関する。   The present invention relates to a zinc-based plated steel molded product and a zinc-based plated steel material, and more particularly to a zinc-based plated steel material having good corrosion resistance and productivity and a method for producing a zinc-based plated steel molded product.

鉄鋼材料の防錆方法には種々の方法があり、例えば、溶融めっき法、電気めっき法で、鋼製の基材を亜鉛、アルミニウム又はそれらの合金で被覆する方法や塗装する方法がある。その中でも、溶融亜鉛めっき法は、厚膜化が容易であることや、亜鉛の犠牲防食性などの特性から、広く使用されている。   There are various methods for rust prevention of steel materials, for example, there are a method of coating a steel substrate with zinc, aluminum or an alloy thereof, or a method of coating by hot dipping or electroplating. Among them, the hot dip galvanizing method is widely used because it is easy to increase the film thickness and has characteristics such as sacrificial corrosion resistance of zinc.

溶融亜鉛めっき法には、連続ラインでめっきする方法と、鋼管、形鋼などのように前段階でフラックス処理をした後に溶融亜鉛めっきに浸漬して製造する方法(以下「どぶ漬け法」という)がある。   For the hot dip galvanizing method, a method of plating in a continuous line and a method of manufacturing by immersing in hot dip galvanizing after flux treatment at the previous stage, such as steel pipes and shaped steels (hereinafter referred to as the “dough pickling method”) There is.

どぶ漬け法は、被めっき材の形状によらずめっきできるメリットがあるが、連続ラインでめっきする場合と異なり、めっき浴への浸漬時間が長く、鉄・亜鉛の合金層が過剰に成長するなどの不具合もある。   The soaking method has the merit that it can be plated regardless of the shape of the material to be plated, but unlike the case of plating with a continuous line, the immersion time in the plating bath is long, and the alloy layer of iron and zinc grows excessively, etc. There is also a defect.

これを防ぐためには、連続ラインの場合と同じように、めっき浴中にアルミニウムを添加することが有効である。亜鉛系めっき浴へのアルミニウムの添加は、耐食性の向上の観点からも有効である。アルミニウム以外に、マグネシウムやシリコン等の添加も亜鉛系めっきの耐食性向上に有効である。   In order to prevent this, it is effective to add aluminum to the plating bath as in the case of the continuous line. The addition of aluminum to the zinc plating bath is also effective from the viewpoint of improving corrosion resistance. In addition to aluminum, addition of magnesium or silicon is also effective in improving the corrosion resistance of zinc-based plating.

近年、鋼材の耐食性向上が求められる中、純亜鉛めっきよりも耐食性に優れる亜鉛・アルミニウム合金めっき等の高耐食性合金めっきの必要性が高まっている。しかし、特にアルミニウムを含むめっきの場合、めっき浴温が高温となるので、フラックス処理に使用される塩化アンモニウムがアルミニウムと反応して塩化アルミニウムを生成し、フラックスとして機能しなくなる。その結果、どぶ漬け法によるめっきでは、不めっきを発生するという問題がある。   In recent years, the need for high corrosion resistance alloy plating such as zinc / aluminum alloy plating, which is superior in corrosion resistance to pure zinc plating, has been increased while the corrosion resistance of steel materials is required. However, particularly in the case of plating containing aluminum, the plating bath temperature becomes high, so that ammonium chloride used for the flux treatment reacts with aluminum to produce aluminum chloride, which does not function as a flux. As a result, there is a problem that non-plating occurs in plating by the soaking method.

この問題を解決し、アルミニウムと亜鉛の合金めっきをどぶ漬け法で施す方法が、特許文献1に、アルミニウムと亜鉛の合金めっきをどぶ漬け法で施す際に使用可能なフラックスが、特許文献2に開示されている。   A method for solving this problem and applying an aluminum and zinc alloy plating by a soaking method is disclosed in Patent Document 1, and a flux that can be used when applying an aluminum and zinc alloy plating by a soaking method is disclosed in Patent Document 2. It is disclosed.

また、フラックスを変えることなくどぶ漬け法により合金めっきを施す方法として、最初に亜鉛めっきをした後に、アルミニウムやマグネシウムなど耐食性を向上させる合金を含むめっきを施す、いわゆる2浴めっき、又は2回めっきと呼ばれる方法が、特許文献3に開示されている。   In addition, as a method of performing alloy plating by the soaking method without changing the flux, so-called two-bath plating, or two-time plating, in which after zinc plating is first performed, plating containing an alloy such as aluminum or magnesium that improves corrosion resistance is performed. Is referred to as Patent Document 3.

塩化アンモニウムや、上記特許文献のフラックスは水溶性で、めっきを施す基材をフラックスの水溶液に浸漬した後、乾燥させ、めっきを施すものである。これに対して、塩化物フラックスをめっき浴上に浮かべて溶融状態とし、そのフラックス層を通過させてめっき浴に基材を浸漬する、溶融フラックス、又は湿式フラックスと呼ばれる方法が、特許文献4に開示されている。   Ammonium chloride and the flux of the above-mentioned patent document are water-soluble, and a substrate to be plated is immersed in an aqueous solution of the flux and then dried and plated. On the other hand, Patent Document 4 discloses a method called a molten flux or a wet flux in which a chloride flux is floated on a plating bath to be in a molten state, and the substrate is immersed in the plating bath through the flux layer. It is disclosed.

溶融フラックス法ならば、水に溶けにくいが、塩化物より腐食性が低く取り扱いやすいフッ化物を使用することも可能である。特許文献5に、その方法が開示されている。   With the melt flux method, it is also possible to use a fluoride that is less soluble in water but is less corrosive than chloride and easy to handle. Patent Document 5 discloses the method.

溶融フラックス法では、めっきされた鋼材をめっき浴から取り出し時に表面に付着したフラックスを取り除く必要があるが、フラックスの浴と合金めっきの浴を分けることで生産性の向上を狙った方法が、特許文献6に開示されている。   In the fusion flux method, it is necessary to remove the flux adhering to the surface when the plated steel material is taken out from the plating bath. However, a method aimed at improving productivity by separating the flux bath and the alloy plating bath is patented. It is disclosed in Document 6.

また、薄板材料以外では、一般的なフラックスによるどぶ漬け法ではなく、フラックスを使用しないで、連続ラインと同様に、還元雰囲気で予熱しめっきする方法が、特許文献7に開示されている。さらに、フラックス成分を還元加熱時のガス内に導入し、加熱処理した後にめっきする方法が、特許文献8に開示されている。   In addition to the thin plate material, Patent Document 7 discloses a method of preheating and plating in a reducing atmosphere in the same manner as a continuous line without using a flux instead of a general soaking method using flux. Furthermore, Patent Document 8 discloses a method in which a flux component is introduced into a gas at the time of reduction heating, followed by heat treatment and then plating.

フラックス法の生産性を向上させる方法として、溶融フラックスの成分であるフッ化物を被めっき材に塗布した後、乾燥し、溶融温度まで加熱した後にめっきする方法が、特許文献9に開示されている。   As a method for improving the productivity of the flux method, Patent Document 9 discloses a method in which a fluoride, which is a component of a molten flux, is applied to a material to be plated, dried, heated to a melting temperature, and then plated. .

特開平3−162557JP-A-3-162557 特開平4−202751JP-A-4-202751 特開2002−47548JP2002-47548 特開平4−293761JP-A-4-293761 特開2010−133022JP2010-133302 特許2963091Patent 2963091 特開2007−70725JP2007-70725A 特開2007−332415JP2007-332415A 特開2005−272950JP 2005-272950 A

関東化学(株) AlF3 MSDSKanto Chemical Co., Ltd. AlF3 MSDS

特許文献1、特許文献2で開示されているアルカリ金属の塩化物や、脂肪族窒素誘導体を利用する方法は、純亜鉛用フラックスに使用されている塩化亜鉛や塩化アンモニウムと比べて融点が高く、どぶ漬けめっきでの鋼材からの剥離が十分ではなく、外観が悪くなることがある。   The method using an alkali metal chloride or an aliphatic nitrogen derivative disclosed in Patent Document 1 and Patent Document 2 has a higher melting point than zinc chloride or ammonium chloride used in pure zinc flux, The peeling from the steel material is not sufficient in the soaking plating, and the appearance may be deteriorated.

また、マグネシウムを含むめっきの場合には、鋼材表面の塩素とマグネシウムの反応生成物により、不めっきや、変色が生じることがある。これを防ぐために、浴内で被めっき物を揺動する、又は、めっき後、塩化アンモニウムの高温水溶液で表面を洗浄するなどの手間をかける必要がある。   In the case of plating containing magnesium, non-plating or discoloration may occur due to a reaction product of chlorine and magnesium on the surface of the steel material. In order to prevent this, it is necessary to take troubles such as shaking the object to be plated in the bath or washing the surface with a high temperature aqueous solution of ammonium chloride after plating.

特許文献3の2浴めっきは上記のような欠点はなく、どのようなめっきにも対応できる方法である。しかし、常に2種類以上のめっき浴を準備する必要があり、設備投資やランニングコストの増加を伴い、生産性も低下する。また、最初の亜鉛めっき層の合金化が進み、硬くなることから、疲労特性に劣る欠点がある。   The two-bath plating disclosed in Patent Document 3 does not have the above-described drawbacks, and is a method that can cope with any plating. However, it is always necessary to prepare two or more types of plating baths, and the capital investment and running cost increase, and the productivity also decreases. Moreover, since the alloying of the first galvanized layer progresses and becomes hard, there is a defect inferior in fatigue characteristics.

特許文献4に記載されている、めっき浴上に塩化物を浮かべて溶融させる方法は、フラックスに浸漬させる工程がいらず、乾燥工程もいらないメリットがある。また、特許文献5の方法は、塩化物を使用しないので、塩化アンモニウムの分解や塩素とマグネシウムの反応などのおそれはない。   The method of floating and melting chloride on a plating bath described in Patent Document 4 has an advantage that a step of immersing in a flux is not required and a drying step is not required. Moreover, since the method of patent document 5 does not use a chloride, there is no possibility of decomposition | disassembly of an ammonium chloride, reaction of chlorine and magnesium, etc.

しかし、めっき浴上に広く、かつある厚みを持って塩化物やフッ化物を浮かべるには大量のフラックスを必要とするので、作業性やコスト高の問題がある。また、めっきされた鋼材を浴から取り出すときには、フラックスを浴上からどかす必要があるので手間がかかり、生産性に優れる方法とは言えない。   However, a large amount of flux is required to float a chloride or fluoride with a certain thickness on the plating bath, and there are problems of workability and high cost. Further, when the plated steel material is removed from the bath, it is necessary to remove the flux from the bath, which is troublesome and cannot be said to be a method with excellent productivity.

上述した手間は、特許文献6のようにフラックス浴とめっき浴を分けることで、省くことができる。しかし、大量のフラックスが必要となるので、特に、大きな被めっき物の場合は事実上実施が困難である。また、大量の塩化物やフッ化物フラックスは、使用後に廃棄する場合、処理に手間がかかる。さらに、フッ化物は、従来の塩化アンモニウムに比べて高価であり、コストの面からも不利といえる。   The trouble described above can be saved by separating the flux bath and the plating bath as in Patent Document 6. However, since a large amount of flux is required, it is practically difficult to implement particularly in the case of a large object to be plated. In addition, when a large amount of chloride or fluoride flux is discarded after use, it takes time to process. Furthermore, fluoride is more expensive than conventional ammonium chloride, which is disadvantageous in terms of cost.

特許文献7の方法は、フラックスを使用しない点で画期的といえる。しかし、雰囲気制御可能な大型設備が必要で、大型部材や多種多様な形態の物品を手軽にめっきできる、どぶ漬け法のメリットは失われており、生産の自由度がない。   The method of Patent Document 7 is epoch-making in that no flux is used. However, a large-scale facility that can control the atmosphere is required, and the merit of the soaking method, which allows easy plating of large-sized members and various forms of articles, is lost, and there is no freedom in production.

特許文献8も、この点は同様であり、加熱時の雰囲気を制御することは生産性の低下につながる。   This point is the same in Patent Document 8, and controlling the atmosphere during heating leads to a decrease in productivity.

特許文献9の方法は、上記の欠点を克服した優れた方法ではあるが、めっき浴温によってフラックス成分を変えるなど手間がかかる。フッ化物の使用量は低く抑えることが可能であるが、塩化物に比べると安価ではない。塗布方法は、水溶液にすることが提案されている。しかし、例えば、AlFは、非特許文献1によると、水1Lに対して5.59gの溶解度と小さいなど、フッ化物は水への溶解性が小さいものが多く、制約条件が多く、ある一定量以上の均一塗布には手間がかかり、生産性に劣る。 Although the method of Patent Document 9 is an excellent method that overcomes the above-described drawbacks, it takes time and effort to change the flux component depending on the plating bath temperature. Although the amount of fluoride used can be kept low, it is less expensive than chloride. It has been proposed that the coating method is an aqueous solution. However, for example, according to Non-Patent Document 1, AlF 3 has a low solubility in water, such as a low solubility of 5.59 g in 1 L of water, and many fluorides have low solubility in water. The uniform coating over the amount takes time and is inferior in productivity.

本発明は、上述の問題に鑑みて、外観が美麗で、耐食性に優れるめっき製品を、経済的に製造する、フラックスめっき方法を提供するものである。   In view of the above-mentioned problems, the present invention provides a flux plating method for economically producing a plated product having a beautiful appearance and excellent corrosion resistance.

本発明者らは、外観が美麗で、耐食性に優れためっき層を鉄鋼製品に形成する方法に関して、種々の検討を行った。   The inventors of the present invention have made various studies on a method for forming a plating layer having a beautiful appearance and excellent corrosion resistance on a steel product.

アルミニウムやマグネシウムを含有する合金系のどぶ漬けめっきに塩化物フラックスを使用した場合にめっき外観を悪化させる主な要因は、塩化亜鉛などのフラックスそのものが剥離せずに残存することであることが、従来から知られている。本発明者らは、それ以外に、フラックス成分中の塩素がめっき浴中の金属元素と反応して、めっき又は被めっき材の表面に残存することが、めっき外観を悪化させる原因であることを突き止めた。   The main factor that deteriorates the plating appearance when chloride flux is used for soaking plating of alloys containing aluminum or magnesium is that the flux itself such as zinc chloride remains without peeling. Conventionally known. In addition to this, the fact that chlorine in the flux component reacts with the metal element in the plating bath and remains on the surface of the plated or plated material is a cause of deteriorating the plating appearance. I found it.

特にマグネシウムは、生成エンタルピーが低く、フラックス成分中の塩素との反応物を生成しやすい。これは、フッ化物を使用しても同様で、めっき外観の悪化が観察される。   Magnesium in particular has a low generation enthalpy and tends to generate a reaction product with chlorine in the flux component. This is the same even when fluoride is used, and the deterioration of the plating appearance is observed.

そして、めっき又は被めっき材の表面に残存したフラックス成分中の塩素とめっき金属との生成物を剥離させるには、めっき浴浸漬時の基材の温度が極めて重要な因子であることも分かった。これは、単に、温度を上げることで剥離を促進するという意味ではない。   It was also found that the temperature of the base material during immersion in the plating bath is a very important factor for peeling off the product of chlorine and plating metal in the flux component remaining on the surface of the plating or plating material. . This does not simply mean that peeling is promoted by raising the temperature.

基材の温度が低いと、フラックスが剥離しにくいので、フラックス成分中の塩素とめっき金属との生成物が基材表面で生成しやすく、さらに、この生成物が、温度の低い基材表面で凝固、固着する現象が起きる。生成物が基材表面で凝固、固着した場合、めっき浴中への浸漬を継続して、基材の温度が上昇しても、その剥離は困難になる。   Since the flux is difficult to peel off when the substrate temperature is low, the product of chlorine and plating metal in the flux component is likely to be generated on the substrate surface. The phenomenon of solidification and sticking occurs. When the product is solidified and fixed on the surface of the base material, even if the immersion in the plating bath is continued and the temperature of the base material rises, the separation becomes difficult.

すなわち、外観が美麗で、耐食性に優れためっき層を鉄鋼製品に形成するためには、フラックスを速やかに基材表面から剥離させること、及び、フラックス成分中の塩素とめっき金属との生成物を基材表面で凝固させないことが重要であることが分かった。   That is, in order to form a plating layer with a beautiful appearance and excellent corrosion resistance on a steel product, the flux should be promptly peeled off from the surface of the base material, and the product of chlorine and plating metal in the flux component should be removed. It has been found that it is important not to solidify on the substrate surface.

本発明者らは、これらを満足する方法とその条件について、鋭意検討を行った。その結果、フラックスを塗布した基材をめっき浴に近い温度まで昇温し、その温度を維持したままめっき浴に浸漬することで、フラックスを速やかに基材表面から剥離させ、フラックス成分中の塩素とめっき金属との生成物を基材表面で凝固させないことができることを見出した。   The inventors of the present invention have intensively studied a method and conditions for satisfying these requirements. As a result, the substrate coated with the flux is heated to a temperature close to that of the plating bath, and immersed in the plating bath while maintaining the temperature, the flux is quickly peeled off from the substrate surface, and the chlorine in the flux component And found that the product of the plated metal cannot be solidified on the substrate surface.

本願発明はこれらの知見に基づいて完成されたもので、その要旨は以下のとおりである。   The present invention has been completed based on these findings, and the gist thereof is as follows.

(1)亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法であって、基材となる鋼材又は鋼製成形品をフラックス処理し、次いで、上記基材を300℃以上700℃未満に加熱し、その後、亜鉛系めっき浴へ浸漬することを特徴とする亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法   (1) A method for producing a zinc-based plated steel material or a zinc-based plated steel molded product, wherein the steel material or steel molded product as a base material is flux-treated, and then the base material is heated to 300 ° C or higher and lower than 700 ° C. A method for producing a zinc-based plated steel material or a zinc-based plated steel molded product characterized by heating and then immersing in a zinc-based plating bath

(2)前記基材の温度が、めっき浴温±20℃の範囲にあることを特徴とする前記(1)の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法   (2) The method for producing a zinc-based plated steel material or a zinc-based plated steel molded product according to (1) above, wherein the temperature of the substrate is in the range of the plating bath temperature ± 20 ° C

(3)前記亜鉛系めっき浴が、質量%で、Al:1〜75%、Mg:0.1〜10%、及びSi:0.1〜10%の少なくとも1種を含むことを特徴とする前記(1)又は(2)の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法   (3) The zinc-based plating bath contains at least one of Al: 1 to 75%, Mg: 0.1 to 10%, and Si: 0.1 to 10% by mass%. Method for producing a zinc-based plated steel material or a zinc-based plated steel molded product according to (1) or (2)

(4)前記フラックスが、フッ化物を含まないことを特徴とする前記(1)〜(3)のいずれかの亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法   (4) The method for producing a zinc-based plated steel material or a zinc-based plated steel molded product according to any one of (1) to (3), wherein the flux does not contain fluoride.

(5)前記フラックスが、塩化亜鉛とアルカリ金属の塩化物、塩化錫の混合物からなることを特徴とする前記(1)〜(4)のいずれかの亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法   (5) The zinc-based plated steel material or the zinc-based plated steel molding according to any one of (1) to (4), wherein the flux comprises a mixture of zinc chloride, an alkali metal chloride, and tin chloride. Manufacturing method

(6)前記フラックスが、ZnCl:100〜200g/L、NaCl及びKClの1種又は2種:20〜100g/L、SnCl:5〜30g/Lを含み、pHを3以下に調整された水溶液であることを特徴とする前記(1)〜(5)のいずれかの亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法 (6) the flux, ZnCl 2: 100~200g / L, 1 kind of NaCl and KCl or two: 20~100g / L, SnCl 2: comprises 5 to 30 g / L, adjusted to pH 3 or less A method for producing a zinc-based plated steel material or a molded product made of zinc-based plated steel according to any one of (1) to (5) above,

本発明によれば、外観に優れ、耐食性に優れた亜鉛系溶融めっき鋼材及び亜鉛系めっき鋼製成形品を効率よく、経済的に提供することができる。   According to the present invention, it is possible to efficiently and economically provide a zinc-based hot-dip galvanized steel material and a molded product made of galvanized steel that are excellent in appearance and excellent in corrosion resistance.

以下に本発明の詳細を説明する。以降、「%」は「質量%」を表すものとする。   Details of the present invention will be described below. Hereinafter, “%” represents “mass%”.

本発明は、めっき前の基材となる鋼材又は鋼製成形品にフラックスで処理し、その後、300℃以上700℃未満の温度に加熱し、所定のめっき浴に浸漬めっきする方法である。ここで適用される鋼材の成分は特に限定するものではなく、また、形状も限定されるものではないが、特に、厚鋼板、形鋼、鋼管、棒鋼、線材、その他、溶接加工後の鋼製成形品に効果がある。   The present invention is a method in which a steel material or a steel molded product as a base material before plating is treated with a flux, then heated to a temperature of 300 ° C. or higher and lower than 700 ° C., and dip plated in a predetermined plating bath. The component of the steel material applied here is not particularly limited, and the shape is not limited, but in particular, steel plate, section steel, steel pipe, bar steel, wire, etc. Effective for molded products.

前述のとおり、めっき浴浸漬時の基材の温度は、めっき浴に浸漬した際にフラックスが剥離し、フラックスとめっき浴成分の反応生成物が凝固することなく剥離するために、重要な因子である。   As described above, the temperature of the substrate during immersion in the plating bath is an important factor in that the flux peels off when immersed in the plating bath and the reaction product of the flux and the plating bath components peels off without solidification. is there.

本発明者らが検討した結果、めっき浴浸漬時の基材の温度を300℃以上700℃未満とすれば、めっき浴に浸漬した際にフラックスが剥離し、フラックスとめっき浴成分の反応生成物が凝固することなく剥離することが分かった。   As a result of investigations by the present inventors, if the temperature of the substrate during immersion in the plating bath is set to 300 ° C. or higher and lower than 700 ° C., the flux peels when immersed in the plating bath, and the reaction product of the flux and the plating bath components Was found to peel without solidification.

めっき浴浸漬時の基材の温度が300℃未満になると、フラックスとめっき浴の成分との反応生成物が基材から剥離しにくくなり、めっき外観が悪化する。また、基材の温度を700℃以上にするのは、どぶ漬けめっきに通常用いられる成分組成のめっきの融点を大幅に超えるので、コスト的に無意味である。また、基材の材質への影響が大きくなり、基材の変形など、どぶ漬けめっきの本来の用途、最終製品の作りこみといったメリットがなくなる。   When the temperature of the base material at the time of immersion in the plating bath is less than 300 ° C., the reaction product of the flux and the components of the plating bath becomes difficult to peel from the base material, and the appearance of plating deteriorates. Further, the temperature of the base material is set to 700 ° C. or higher because the melting point of the plating having the component composition usually used for soaking plating is greatly exceeded, so that the cost is meaningless. In addition, the influence on the material of the base material is increased, and there are no advantages such as deformation of the base material, the original use of the immersion plating, and the creation of the final product.

好ましいめっき浴浸漬時の基材の温度は、400℃以上、650℃未満であり、より好ましくは、450〜620℃である。   The temperature of the base material at the time of preferable plating bath immersion is 400 degreeC or more and less than 650 degreeC, More preferably, it is 450-620 degreeC.

加熱のためのコストや取り扱い、めっき浴温の維持の観点からは、めっき浴浸漬時の基材の温度は、めっき浴温±20℃とすることが好ましい。   From the viewpoint of heating cost and handling, and maintaining the plating bath temperature, the temperature of the substrate during immersion in the plating bath is preferably set to a plating bath temperature ± 20 ° C.

基材にフラックスを塗布する方法は、フラックスにより種々選択可能である。塩化物系主体のフラックスの場合には、粉末を塗布する、フラックスを加熱溶融させその浴に浸漬する、フラックスの水溶液に浸漬するなどの方法が考えられる。   Various methods for applying the flux to the substrate can be selected depending on the flux. In the case of a chloride-based flux, methods such as applying a powder, heating and melting the flux and immersing it in a bath, or immersing it in an aqueous flux solution are conceivable.

一方、フッ化物系フラックスの場合は、一般に水への溶解度が低いため、粉末を塗布、加熱溶融させて、その浴に浸漬する方法が考えられる。   On the other hand, in the case of a fluoride-based flux, since the solubility in water is generally low, a method in which powder is applied, melted by heating, and immersed in the bath can be considered.

本発明はいずれの方法でも適用できるが、均一塗布が容易であり、扱いやすいこと、従来のどぶ漬けめっきの延長線上にあり安定して使用できること、コストも低いことから、塩化物フラックスの水溶液に浸漬する方法がより望ましいといえる。   Although the present invention can be applied by any method, it is easy to apply uniformly, it is easy to handle, it is on the extension line of conventional soaking plating, can be used stably, and the cost is low. It can be said that a dipping method is more desirable.

めっき前の加熱方法は、特に限定しない。電気炉に挿入する、高周波加熱など種々の方法が考えられる。めっき前の加熱は、通常の大気雰囲気での加熱で十分にめっき可能であり、不活性ガス、還元ガスなどをあえて使用する必要はない。   The heating method before plating is not particularly limited. Various methods such as high-frequency heating inserted into an electric furnace are conceivable. Heating before plating can be sufficiently performed by heating in a normal air atmosphere, and it is not necessary to dare to use an inert gas, a reducing gas, or the like.

本発明は、亜鉛系めっきに広く適用できる。純亜鉛めっきにも適用は可能であるが、純亜鉛めっきの場合は、従来技術においてもどぶ漬けめっきは容易であるので、本発明を適用するメリットは小さい。   The present invention is widely applicable to zinc-based plating. Although the present invention can also be applied to pure zinc plating, in the case of pure zinc plating, since immersion plating is easy in the prior art, the merit of applying the present invention is small.

本願発明は、従来技術ではどぶ漬けめっきによるめっきが困難である合金系のめっきへの適用に意義があり、特に、Al:1〜75%、Mg:0.1〜10%、Si:0.1〜10%の少なくとも一つを含む亜鉛系合金めっきへの適用が有効である。   The present invention is significant for application to alloy-based plating, which is difficult to plate by dipping plating with the prior art, and in particular, Al: 1 to 75%, Mg: 0.1 to 10%, Si: 0.00. Application to zinc-based alloy plating containing at least one of 1 to 10% is effective.

次に、亜鉛系めっき浴に添加する元素の役割と、その濃度範囲について説明する。   Next, the role of elements added to the zinc-based plating bath and the concentration range will be described.

Alは、耐食性を高める元素である。Alの添加量が1%未満では、効果が不十分で添加する意味がない。Alの添加量が75%を超えると、添加の効果が飽和し、さらに、Zn量が少なくなるので、それにつれて、犠牲防食性能が低下する。また、めっき浴温が高くなり、操業しにくいなどの問題が生じる。   Al is an element that enhances corrosion resistance. If the addition amount of Al is less than 1%, the effect is insufficient and there is no point in adding. When the addition amount of Al exceeds 75%, the effect of addition is saturated, and furthermore, the Zn amount is reduced, and accordingly, sacrificial anticorrosion performance is lowered. In addition, the plating bath temperature becomes high, causing problems such as difficulty in operation.

Mgも、耐食性を高める元素である。Mgの添加量が0.1%未満では、添加の効果がほとんど得られない。Mgの添加量が10%を超えると、添加の効果が飽和し、さらに、ドロス量が増えるなど操業に問題が生じる。   Mg is also an element that enhances corrosion resistance. If the addition amount of Mg is less than 0.1%, the effect of addition is hardly obtained. When the added amount of Mg exceeds 10%, the effect of the addition is saturated, and further, a problem occurs in operation such as an increase in the dross amount.

Siも、耐食性を高める元素である。さらに、Alと併用することで、めっき時にAlとFeの合金層の生成を抑制し、適正な界面を維持するために有効である。また、Mgと併用すると、MgSiが生成し、耐食性を飛躍的に高めることができる。これらの効果は、Siの添加量が0.1%未満では発現せず、10%を超えると飽和する。 Si is also an element that enhances corrosion resistance. Furthermore, the combined use with Al is effective for suppressing the formation of an alloy layer of Al and Fe during plating and maintaining an appropriate interface. Moreover, when used together with Mg, Mg 2 Si is generated, and the corrosion resistance can be drastically improved. These effects do not appear when the added amount of Si is less than 0.1%, and saturate when the amount exceeds 10%.

本発明で使用するフラックスは、特に限定するものではない。ただし、基材の加熱温度に対し安定である必要があるので、処理温度に応じて選択する必要がある。具体的には、塩化物、フッ化物、あるいはそれらの混合物を利用することが可能である。   The flux used in the present invention is not particularly limited. However, since it is necessary to be stable with respect to the heating temperature of the base material, it is necessary to select according to the processing temperature. Specifically, chlorides, fluorides, or mixtures thereof can be used.

塩化物としては、塩化亜鉛(ZnCl)、NHCl、NaCl及びKCl等のアルカリ金属の塩化物、塩化錫(SnCl)を2種以上混合したものを使用することが好ましい。これは、鋼材表面の酸化物やめっき元素の酸化物の除去に効果があり、フラックスとして基本機能を発揮するZnCl、NHClと、融点が高く化学的により安定で、めっき金属との副反応が少ないNaCl、KClと、鋼材表面にSnが置換析出することで清浄効果を出すSnClとを混合することによる複合効果が得られるからである。この複合効果により、特に問題が発生しやすい、アルミニウムやマグネシウムを含む合金めっきの、表面外観の向上、不めっきの防止効果も期待できる。 As the chloride, it is preferable to use a mixture of two or more of alkali metal chlorides such as zinc chloride (ZnCl 2 ), NH 4 Cl, NaCl and KCl, and tin chloride (SnCl 2 ). This is effective in removing oxides on the surface of steel materials and oxides of plating elements. ZnCl 2 and NH 4 Cl, which exhibit basic functions as flux, have a high melting point, are chemically more stable, and are secondary to plating metal. This is because a combined effect can be obtained by mixing NaCl, KCl with little reaction, and SnCl 2 that produces a cleaning effect by substitutional precipitation of Sn on the steel surface. Due to this combined effect, it is possible to expect an effect of improving the surface appearance and preventing non-plating of an alloy plating containing aluminum or magnesium, which is particularly problematic.

また、フッ化物としては、NaAlF、KAlF、NaF、KF、AlFなどが適用できる。 As the fluoride, NaAlF 4 , KAlF 4 , NaF, KF, AlF 3 or the like can be applied.

塩化物だけ、又は少量のフッ化物を含むフラックスであれば、水溶液で塗布することが可能であり、塗布の均一性や扱いやすさから好ましい。フッ化物だけのフラックスは、水で懸濁して塗布することは可能であるが、均一性はやや劣る。   A flux containing only chloride or a small amount of fluoride can be applied with an aqueous solution, which is preferable from the uniformity of application and ease of handling. A fluoride-only flux can be applied by suspending in water, but the uniformity is somewhat inferior.

フッ化物の量が少量であれば、フッ化物を含むフラックスの水溶液に被めっき物を浸漬させることが可能であるが、フッ化物を大量に水に溶かす場合、取り扱いによってはフッ化水素が発生するおそれがあり注意を要するので、より好ましくはフッ化物を含まないフラックスを使用する。   If the amount of fluoride is small, it is possible to immerse the object to be plated in an aqueous flux solution containing fluoride. However, when a large amount of fluoride is dissolved in water, hydrogen fluoride is generated depending on the handling. Since there is a fear and attention is required, a flux containing no fluoride is more preferably used.

本発明のめっき浴の温度域では、ZnClを100〜200g/L、NaClとKClの1種類、又は合計で、20〜100g/L、SnClを5〜30g/Lを含み、pHを3以下に調整された水溶液であるフラックスが、優れた機能を発揮するので望ましい。 In the temperature range of the plating bath of the present invention, ZnCl 2 contains 100 to 200 g / L, NaCl and KCl, or a total of 20 to 100 g / L, SnCl 2 contains 5 to 30 g / L, and the pH is 3 A flux which is an aqueous solution prepared as described below is desirable because it exhibits excellent functions.

pHの調整には、特に限定されるものではないが、水溶液中のイオンの種類を増やさないために、HClを用いるのが好ましい。   The pH adjustment is not particularly limited, but it is preferable to use HCl so as not to increase the types of ions in the aqueous solution.

基材は、フラックスが均一に塗布された状態で、めっき浴に浸漬することがさらに好ましい。フラックスとして塗布する水溶液の温度は特に規定するものではないが、フラックス成分が均一に溶解すること、及び、液の塗布のしやすさの観点から、40℃以上であることが好ましい。   More preferably, the substrate is immersed in the plating bath in a state where the flux is uniformly applied. The temperature of the aqueous solution to be applied as a flux is not particularly specified, but is preferably 40 ° C. or higher from the viewpoint of uniform dissolution of the flux component and ease of application of the liquid.

ZnClの機能は、フラックスの基本機能と考えられている、鋼材表面のFe、Znなどの酸化物を除去し、めっきの付着を容易にすることである。ZnCl量が100g/L未満ではこの効果が弱く、200g/Lを超えると効果が飽和するので、100〜200g/LがZnCl量の好ましい範囲である。 The function of ZnCl 2 is to remove oxides such as Fe and Zn on the surface of the steel, which is considered to be a basic function of the flux, and facilitate the adhesion of plating. If the amount of ZnCl 2 is less than 100 g / L, this effect is weak, and if it exceeds 200 g / L, the effect is saturated. Therefore, 100 to 200 g / L is a preferable range of the amount of ZnCl 2 .

NaClとKClの機能は、ZnClと混合して使用することで、ZnClがめっき中の元素、アルミニウムなどと反応して、フラックスとしての機能を発揮する前に分解することを防止することである。NaCl及び/又はKClの量が、1種類又は合計で20g/L未満では効果が弱く、100g/Lを超えると効果が飽和するので、20〜100g/Lが好ましい範囲である。 Features of NaCl and KCl, by used in admixture with ZnCl 2, by ZnCl 2 is an element in the plating, it reacts like aluminum prevents decomposing prior to exert the function as a flux is there. When the amount of NaCl and / or KCl is one or less than 20 g / L in total, the effect is weak, and when it exceeds 100 g / L, the effect is saturated, so 20 to 100 g / L is a preferable range.

SnClには、鋼材表面にSnを置換析出させることで、めっき性を高める効果がある。SnCl量が5g/L以下では効果が弱い。また、多量に溶解するとSnの水酸化物が沈殿するので、30g/L以下とすることが好ましい。 SnCl 2 has an effect of improving the plating property by substitutional precipitation of Sn on the steel material surface. The effect is weak when the amount of SnCl 2 is 5 g / L or less. Moreover, since Sn hydroxide precipitates when dissolved in a large amount, it is preferably 30 g / L or less.

また、pHが大きくなると、水に溶けにくいSnの水酸化物が生成し、水溶液中のSnイオンの量が少なくなるので、これらのフラックスの効果を最大限に発揮させるためには、pHを3以下に保つことが好ましい。   Further, when the pH is increased, Sn hydroxide that is hardly soluble in water is generated, and the amount of Sn ions in the aqueous solution is decreased. Therefore, in order to maximize the effects of these fluxes, the pH is set to 3 It is preferable to keep it below.

フッ化物系フラックスを用いる場合は、めっき浴浸漬時の基材の温度をフラックスの溶融温度以上とし、フラックスが基材表面に均一に広がるようにすることがより好ましい。そのため、フラックスは融点が700℃以下のもの、又は、複数のフッ化物を混ぜて融点を下げ、700℃以下で溶解するものを用いるのが好ましい。   When a fluoride-based flux is used, it is more preferable that the temperature of the substrate when immersed in the plating bath is equal to or higher than the melting temperature of the flux so that the flux spreads uniformly on the surface of the substrate. Therefore, it is preferable to use a flux having a melting point of 700 ° C. or lower, or a flux that mixes a plurality of fluorides to lower the melting point and dissolves at 700 ° C. or lower.

塩化物フラックスの水溶液に浸漬する場合には、既にフラックスが基材表面に均一に付着しているので、フラックスを溶融させるか否かは気にしなくてよい。   When immersed in an aqueous solution of chloride flux, the flux is already uniformly attached to the surface of the substrate, so it is not necessary to worry about whether or not to melt the flux.

以下に、本発明を実施例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

3.2mm厚のSS400(JIS G3141)を脱脂、インヒビター入りの10%塩酸で酸洗後、表1に示す成分のフラックスを用いて、フラックス処理を行った。   The SS400 (JIS G3141) having a thickness of 3.2 mm was degreased and pickled with 10% hydrochloric acid containing an inhibitor, and then subjected to flux treatment using the flux of the components shown in Table 1.

Figure 2012241277
Figure 2012241277

フラックス処理の条件は、表2に示す2通りのいずれかとした。   The conditions for the flux treatment were either two shown in Table 2.

Figure 2012241277
Figure 2012241277

フラックス処理の条件がAの場合のめっき浴浸入温度は、表3に示す2通りのいずれかとした。   The plating bath intrusion temperature when the flux treatment condition is A was one of the two shown in Table 3.

Figure 2012241277
Figure 2012241277

めっき浴は、表4に示すいずれかの浴とし、めっき浴に10sec浸漬後、取り出し、空冷した。   The plating bath was any one of those shown in Table 4, and was immersed in the plating bath for 10 seconds, then taken out and air-cooled.

Figure 2012241277
Figure 2012241277

製造した亜鉛系めっき鋼材について、外観、耐食性、加工性を、表5〜7に示す基準で評価した。   About the manufactured galvanized steel material, the external appearance, corrosion resistance, and workability were evaluated according to the criteria shown in Tables 5-7.

Figure 2012241277
Figure 2012241277

Figure 2012241277
Figure 2012241277

Figure 2012241277
Figure 2012241277

試験は1条件につき、n=5で行い、外観評価、加工性評価はすべての合計、耐食性は平均で評価した。表8、9に結果を示す。   The test was performed at n = 5 per condition, appearance evaluation and workability evaluation were all summed, and corrosion resistance was evaluated on average. Tables 8 and 9 show the results.

Figure 2012241277
Figure 2012241277

Figure 2012241277
Figure 2012241277

表8、9に示した結果から、本発明は、いずれも外観と耐食性に優れるめっき方法であることが分かる。   From the results shown in Tables 8 and 9, it can be seen that the present invention is a plating method excellent in both appearance and corrosion resistance.

本発明の亜鉛系めっき鋼材及び亜鉛系めっき鋼製成形品の製造方法によれば、外観と耐食性に優れた製品を、効率よく、経済的、安定的に製造することが可能であり、産業上の利用可能性は大きい。   According to the method for producing a zinc-based plated steel material and a zinc-based plated steel molded product according to the present invention, it is possible to efficiently, economically and stably produce a product excellent in appearance and corrosion resistance. The availability of is great.

Claims (6)

亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法であって、
基材となる鋼材又は鋼製成形品をフラックスで処理し、次いで、
上記基材を300℃以上700℃未満に加熱し、その後、
亜鉛系めっき浴へ浸漬することを特徴とする亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。
A method for producing a zinc-based plated steel material or a molded product made of zinc-based plated steel,
Treat the steel material or steel molding as the base material with flux,
The substrate is heated to 300 ° C or higher and lower than 700 ° C, and then
A method for producing a zinc-based plated steel material or a molded product made of zinc-based plated steel, characterized by being immersed in a zinc-based plating bath.
前記基材の温度が、めっき浴温±20℃の範囲であることを特徴とする請求項1に記載の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。   2. The method for producing a zinc-based plated steel material or a zinc-based plated steel molded product according to claim 1, wherein the temperature of the substrate is in the range of the plating bath temperature ± 20 ° C. 3. 前記亜鉛系めっき浴が、質量%で、Al:1〜75%、Mg:0.1〜10%、及びSi:0.1〜10%の少なくとも1種を含むことを特徴とする請求項1又は2に記載の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。   The zinc-based plating bath includes at least one of Al: 1 to 75%, Mg: 0.1 to 10%, and Si: 0.1 to 10% by mass. Or the manufacturing method of the zinc-based plated steel material of 2 or a zinc-based plated steel molded article. 前記フラックスが、フッ化物を含まないことを特徴とする請求項1〜3のいずれか1項に記載の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。   The method for producing a zinc-based plated steel material or a zinc-based plated steel molded product according to any one of claims 1 to 3, wherein the flux does not contain fluoride. 前記フラックスが、塩化亜鉛、アルカリ金属の塩化物、及び塩化錫から選択した2種以上の混合物からなることを特徴とする請求項1〜4のいずれか1項に記載の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。   The zinc-based plated steel material or zinc according to any one of claims 1 to 4, wherein the flux comprises a mixture of two or more selected from zinc chloride, alkali metal chloride, and tin chloride. Of manufacturing a molded product made of galvanized steel. 前記フラックスが、
ZnCl:100〜200g/L、
NaCl及びKClの1種又は2種:20〜100g/L、
SnCl:5〜30g/L
を含み、pHを3以下に調整された水溶液であることを特徴とする請求項1〜5のいずれか1項に記載の亜鉛系めっき鋼材又は亜鉛系めっき鋼製成形品の製造方法。
The flux is
ZnCl 2: 100~200g / L,
One or two of NaCl and KCl: 20 to 100 g / L,
SnCl 2: 5~30g / L
The method for producing a zinc-based plated steel material or a zinc-based plated steel molded article according to any one of claims 1 to 5, wherein the aqueous solution is adjusted to a pH of 3 or less.
JP2011115801A 2011-05-24 2011-05-24 Method for producing zinc-based plated steel material or zinc-based plated steel molded product Active JP5824868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115801A JP5824868B2 (en) 2011-05-24 2011-05-24 Method for producing zinc-based plated steel material or zinc-based plated steel molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115801A JP5824868B2 (en) 2011-05-24 2011-05-24 Method for producing zinc-based plated steel material or zinc-based plated steel molded product

Publications (2)

Publication Number Publication Date
JP2012241277A true JP2012241277A (en) 2012-12-10
JP5824868B2 JP5824868B2 (en) 2015-12-02

Family

ID=47463309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115801A Active JP5824868B2 (en) 2011-05-24 2011-05-24 Method for producing zinc-based plated steel material or zinc-based plated steel molded product

Country Status (1)

Country Link
JP (1) JP5824868B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834888A (en) * 2014-03-13 2014-06-04 昆明理工大学 Ammonia-free fluxing agent for hot dipping and use method thereof
CN103834889A (en) * 2014-03-18 2014-06-04 李斌 Plating aid free of white smoke for hot galvanizing of steel work and hot galvanizing technology using same
CN105256196A (en) * 2015-10-23 2016-01-20 首钢总公司 Aluminum-zinc-magnesium clad steel sheet and preparing method thereof
JP2017008387A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel, flux, and manufacturing method of plated steel
JP6065997B1 (en) * 2016-02-17 2017-01-25 学校法人同志社 Smokeless flux for hot dip galvanizing and hot dip galvanizing method using the flux
CN111270184A (en) * 2020-03-20 2020-06-12 首钢京唐钢铁联合有限责任公司 Aluminum-zinc-magnesium coated steel plate and preparation method thereof
CN111270183A (en) * 2020-03-20 2020-06-12 首钢京唐钢铁联合有限责任公司 Aluminum-zinc-magnesium coated steel plate adopting online switching method and preparation method thereof
WO2021038992A1 (en) 2019-08-30 2021-03-04 日本製鉄株式会社 Flux and production method of steel formed product with hot-dip zn-al-mg coating using said flux
RU2780615C1 (en) * 2019-08-30 2022-09-28 Ниппон Стил Корпорейшн FLUX AND METHOD FOR MANUFACTURING STEEL PRODUCT COATED FROM Zn-Al-Mg ALLOY OBTAINED BY MELTING DIP WITH THE USE OF THE MENTIONED FLUX
US11486014B2 (en) 2017-09-26 2022-11-01 Hitachi Metals, Ltd. Method for producing plated black heart malleable cast iron member, plated black heart malleable cast iron member, and pipe joint

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441235A (en) * 1977-09-08 1979-04-02 Nisshin Steel Co Ltd Method of making one side molten plated steel pipe
JPS5647554A (en) * 1979-09-26 1981-04-30 Nisshin Steel Co Ltd Melt-galvanizing
JPH07224369A (en) * 1994-05-23 1995-08-22 Tokyo Seiko Co Ltd Method for hot-dip coating steel wire with zinc-aluminum alloy
JPH07316770A (en) * 1994-05-19 1995-12-05 Tokyo Seiko Co Ltd Hot dip coating method under continuously applied vibration
JP2005272950A (en) * 2004-03-25 2005-10-06 Denso Corp Method for plating steel material
JP2007070725A (en) * 2005-09-02 2007-03-22 Korea Bundy Co Ltd Steel pipe superior in corrosion resistance and manufacturing method therefor
JP2008169478A (en) * 2006-12-11 2008-07-24 Nippon Steel Corp Hot dip coated steel member and method of producing the same
JP2011006785A (en) * 2009-05-29 2011-01-13 Jfe Steel Corp HOT-DIP Al-Zn-PLATED STEEL SHEET

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441235A (en) * 1977-09-08 1979-04-02 Nisshin Steel Co Ltd Method of making one side molten plated steel pipe
JPS5647554A (en) * 1979-09-26 1981-04-30 Nisshin Steel Co Ltd Melt-galvanizing
JPH07316770A (en) * 1994-05-19 1995-12-05 Tokyo Seiko Co Ltd Hot dip coating method under continuously applied vibration
JPH07224369A (en) * 1994-05-23 1995-08-22 Tokyo Seiko Co Ltd Method for hot-dip coating steel wire with zinc-aluminum alloy
JP2005272950A (en) * 2004-03-25 2005-10-06 Denso Corp Method for plating steel material
JP2007070725A (en) * 2005-09-02 2007-03-22 Korea Bundy Co Ltd Steel pipe superior in corrosion resistance and manufacturing method therefor
JP2008169478A (en) * 2006-12-11 2008-07-24 Nippon Steel Corp Hot dip coated steel member and method of producing the same
JP2011006785A (en) * 2009-05-29 2011-01-13 Jfe Steel Corp HOT-DIP Al-Zn-PLATED STEEL SHEET

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834888A (en) * 2014-03-13 2014-06-04 昆明理工大学 Ammonia-free fluxing agent for hot dipping and use method thereof
CN103834889A (en) * 2014-03-18 2014-06-04 李斌 Plating aid free of white smoke for hot galvanizing of steel work and hot galvanizing technology using same
JP2017008387A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel, flux, and manufacturing method of plated steel
CN105256196A (en) * 2015-10-23 2016-01-20 首钢总公司 Aluminum-zinc-magnesium clad steel sheet and preparing method thereof
JP6065997B1 (en) * 2016-02-17 2017-01-25 学校法人同志社 Smokeless flux for hot dip galvanizing and hot dip galvanizing method using the flux
US11486014B2 (en) 2017-09-26 2022-11-01 Hitachi Metals, Ltd. Method for producing plated black heart malleable cast iron member, plated black heart malleable cast iron member, and pipe joint
KR20220052976A (en) 2019-08-30 2022-04-28 닛폰세이테츠 가부시키가이샤 Flux and manufacturing method of hot-dip Zn-Al-Mg-based plated steel molded article using same
WO2021038992A1 (en) 2019-08-30 2021-03-04 日本製鉄株式会社 Flux and production method of steel formed product with hot-dip zn-al-mg coating using said flux
JP2021038416A (en) * 2019-08-30 2021-03-11 日本製鉄株式会社 FLUX AND METHOD FOR MANUFACTURING HOT-DIP Zn-Al-Mg BASED PLATED STEEL MOLDING USING THE SAME
RU2780615C1 (en) * 2019-08-30 2022-09-28 Ниппон Стил Корпорейшн FLUX AND METHOD FOR MANUFACTURING STEEL PRODUCT COATED FROM Zn-Al-Mg ALLOY OBTAINED BY MELTING DIP WITH THE USE OF THE MENTIONED FLUX
JP7311767B2 (en) 2019-08-30 2023-07-20 日本製鉄株式会社 FLUX AND METHOD FOR MANUFACTURING Zn-Al-Mg-BASED PLATED STEEL PRODUCT USING THE SAME
KR102657882B1 (en) * 2019-08-30 2024-04-17 닛폰세이테츠 가부시키가이샤 Flux and manufacturing method of molten Zn-Al-Mg plated steel molded products using the same
CN111270183A (en) * 2020-03-20 2020-06-12 首钢京唐钢铁联合有限责任公司 Aluminum-zinc-magnesium coated steel plate adopting online switching method and preparation method thereof
CN111270184A (en) * 2020-03-20 2020-06-12 首钢京唐钢铁联合有限责任公司 Aluminum-zinc-magnesium coated steel plate and preparation method thereof

Also Published As

Publication number Publication date
JP5824868B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5824868B2 (en) Method for producing zinc-based plated steel material or zinc-based plated steel molded product
NO333662B1 (en) Flux, flux bath and hot drip galvanizing method
JP5884200B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
CN105734479B (en) A kind of production method for plating magnalium zine plate steel plate
US2686355A (en) Process for coating metals with aluminum
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
JP5871035B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP3811109B2 (en) Hot-dip zinc-aluminum alloy plating method
WO2013161122A1 (en) Galvanized steel tube, and method for manufacturing galvanized steel tube
JP5979186B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP4337653B2 (en) Hot-dip galvanized steel and method for producing the same
JPH06279968A (en) Aluminum-zinc alloy plating method for iron and steel products
JP5930136B1 (en) Method for producing hot-dip galvanized steel
JP6468493B2 (en) High corrosion resistance plated steel material and method for producing the same
JP2004244650A (en) METHOD OF PRODUCING Zn-Al-Mg BASED ALLOY PLATED STEEL
JP6468492B2 (en) Flux for pre-plating of steel and method for producing plated steel
JPH08188864A (en) Method of hot-dip coating aluminum alloy by flux method
JP3494134B2 (en) Hot-dip plating method
JP2609344B2 (en) Flux for hot-dip zinc alloy plating
JP2021031772A (en) Hot-dip galvanizing flux liquid and method for manufacturing hot-dip galvanized steel pipe
JP2002194518A (en) Hot-dip galvanized steel sheet superior in weldability and manufacturing method therefor
JP2609345B2 (en) Flux for hot-dip zinc alloy plating
JPH0472047A (en) Aluminum/zinc alloy hot-dip coated material and aluminum/zinc alloy hot-dip coating method
CN110923603A (en) High-heat-resistance hot-dip aluminum-zinc plated steel plate and production method thereof
WO2020263089A1 (en) A process for coating a surface of a substrate with a metal layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5824868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350