JP2609345B2 - Flux for hot-dip zinc alloy plating - Google Patents

Flux for hot-dip zinc alloy plating

Info

Publication number
JP2609345B2
JP2609345B2 JP2168242A JP16824290A JP2609345B2 JP 2609345 B2 JP2609345 B2 JP 2609345B2 JP 2168242 A JP2168242 A JP 2168242A JP 16824290 A JP16824290 A JP 16824290A JP 2609345 B2 JP2609345 B2 JP 2609345B2
Authority
JP
Japan
Prior art keywords
flux
hot
zinc alloy
alloy plating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2168242A
Other languages
Japanese (ja)
Other versions
JPH0459957A (en
Inventor
純一 高橋
伸之 紀井
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2168242A priority Critical patent/JP2609345B2/en
Publication of JPH0459957A publication Critical patent/JPH0459957A/en
Application granted granted Critical
Publication of JP2609345B2 publication Critical patent/JP2609345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、鉄鋼材料等の溶融亜鉛合金めっき用フラッ
クスに関し、特にZn−Al合金めっき処理を鉄鋼材料等に
施す際に用いるめっき用フラックスに関する。
The present invention relates to a flux for hot-dip zinc alloy plating of a steel material or the like, and more particularly to a flux for plating used when applying a Zn—Al alloy plating process to a steel material or the like.

【従来の技術】[Prior art]

従来、鉄鋼材料等の腐食を防止することを目的とし
て、その表面に溶融亜鉛めっき並びに電気亜鉛めっきを
施すことが知られている。 また最近では、亜鉛めっき処理を下地として、更にそ
の上に表面処理、例えば塗装・加工等の後処理を加味す
ることによって、付加価値の高い新しい商品が数多く市
場に進出するようになり、これらの商品に対する利用者
の選択もますます多様化してきている。 これらの亜鉛めっき処理多様化の要求を満足させるた
め溶融亜鉛めっき処理品についても、めっき浴組成を構
成する添加元素と添加量の選択により、めっき層の特性
向上を図ることがかなり行なわれてきた。 特に、めっき層の耐食性を確保するためにAlを0.1〜2
0重量%程度添加しためっき浴が知られている。このめ
っき浴を鉄鋼部品等の被処理物に使用するに際しては、
通常はその前に被処理物をZnCl2水溶液中に浸漬するな
どによりフラックス処理をしている。 ところが、このようにして製造されるめっき処理品に
は、めっき層がのらない部分、すなわち不めっき部を生
じ易い。それは、Alが酸素に対して極めて活性な元素で
あるため、選択酸化が生じてしまうこと、さらに、フラ
ックス中にアンモニウム塩が含まれていた場合には、
(1)式に示すような反応により、不めっき部生成の原
因となる塩化アルミニウムが生じてしまうことによると
いわれている。 3NH4Cl+Al→ AlCl3+3NH3+2/3H2 (1) この不めっき部生成の問題を解決するため、(1)式
の反応を生じさせないことを目的として、フッ化物を主
成分としアンモニウム塩を含まないフラックス(特開昭
60−125361号,特公昭61−33071号など)、あるいはAl
より活性なアルカリ金属元素の塩化物等を主成分とする
フラックス(特公昭64−5110号)や有機酸のアンモニウ
ム塩を主成分とするフラックス(特開平1−283353号)
などが提案されている。
BACKGROUND ART Conventionally, to prevent corrosion of steel materials and the like, it has been known to apply hot-dip galvanizing and electrogalvanizing to the surface thereof. In recent years, a number of new products with high added value have begun to enter the market by adding a zinc plating treatment as a base material and further adding a surface treatment such as painting and processing to the base material. User choices for products are also becoming increasingly diversified. In order to satisfy these requirements for diversification of the galvanizing process, it has been considerably attempted to improve the properties of the galvanized layer of the hot-dip galvanized product by selecting the additive elements and the amounts of the components that constitute the plating bath composition. . In particular, to ensure the corrosion resistance of the plating layer, Al
A plating bath to which about 0% by weight is added is known. When using this plating bath for workpieces such as steel parts,
Usually, before that, flux treatment is performed by immersing the object in an aqueous solution of ZnCl 2 . However, in the plated product manufactured in this manner, a portion where the plating layer does not adhere, that is, an unplated portion is easily generated. That is, because Al is an extremely active element for oxygen, selective oxidation occurs, and further, when ammonium salts are contained in the flux,
It is said that the reaction represented by the formula (1) results in the generation of aluminum chloride which causes the formation of an unplated portion. 3NH 4 Cl + Al → AlCl 3 + 3NH 3 + 2 / 3H 2 (1) In order to solve the problem of generation of the non-plated portion, an ammonium salt containing fluoride as a main component is used for the purpose of not causing the reaction of the formula (1). Flux not included (Japanese
No. 60-125361, Japanese Patent Publication No. 61-33071) or Al
Flux mainly composed of more active alkali metal chlorides (JP-B-64-5110) and flux mainly composed of ammonium salts of organic acids (JP-A-1-283353)
And so on.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、フッ化物を添加したフラックスには次
のような欠点がある。即ち、その強い腐蝕性のため、フ
ラックス処理槽の材質に強い腐蝕性に耐える高価なもの
が要求され、設備やその維持にコストがかかるのみなら
ず、非常に有害なガスが発生するので作業環境に対する
対策が必要となる。 また、フッ化物を使用しないフラックスはいずれも、
塩化物とアンモニウム塩がフラックス内で共存している
ため、(1)式の反応を全く生じさせないことはできな
いという欠点があった。 本発明は、上記問題点に鑑み、InCl3を主成分とし、
塩化アルミニウムが生じても不めっきを生じさせず、そ
の結果、高い耐食性を有する合金被膜を形成させる溶融
亜鉛合金めっき用フラックスを提供することを目的とす
る。
However, the flux to which fluoride is added has the following disadvantages. That is, due to its strong corrosiveness, the material of the flux treatment tank is required to be expensive to withstand the strong corrosiveness, and not only costs for equipment and its maintenance are high, but also extremely harmful gas is generated. Measures are needed. In addition, any flux that does not use fluoride,
Since the chloride and the ammonium salt coexist in the flux, there is a drawback that the reaction of the formula (1) cannot be prevented at all. The present invention has been made in view of the above problems, and contains InCl 3 as a main component,
An object of the present invention is to provide a flux for hot-dip zinc alloy plating that does not cause non-plating even when aluminum chloride is generated, and as a result, forms an alloy film having high corrosion resistance.

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するために、本発明者らは種々研究
を重ねた結果、次のことを見出したのである。 a)InCl3をフラックス主成分とすることにより、被処
理物である鉄鋼部品表面でセメンテーションを生じさ
せ、めっき時に鉄鋼部品表面に析出したインジウムが溶
融することで、亜鉛合金の被処理物への密着性を向上さ
せ得ること。 b)従来亜鉛合金めっき浴中のAlと反応して、フラック
ス作用を低減するのみならず、不めっき部を生じ易いと
されていたNH4Clが、鉄鋼部品等の被処理物への亜鉛合
金の密着性を向上させ得ること。 したがって、本発明の溶融亜鉛合金めっき用フラック
スは、15〜60重量%のInCl3及び残部のNH4Clからなる。 また、本発明の溶融亜鉛合金めっき用フラックスは、
15〜60重量%のInCl3及び残部のNH4Clからなるフラック
スを水に溶融して水溶液としたものからなる。この水溶
液中のフラックスの濃度は、好ましくは250〜1200g/
である。尚、この水溶液には、その作成時、易溶性とす
るため、塩酸が適宜添加されてもよい。
The present inventors have conducted various studies to achieve the above object, and as a result, have found the following. a) By using InCl 3 as a main component of flux, cementation occurs on the surface of the steel component as the workpiece, and the indium deposited on the surface of the steel component during plating is melted, so that the zinc alloy can be processed on the workpiece. That can improve the adhesion. b) NH 4 Cl, which has been considered not only to reduce the flux action but also to easily generate a non-plated portion by reacting with Al in the zinc alloy plating bath, has been used for zinc alloy to be processed on steel parts and the like. That can improve the adhesion. Therefore, the flux for hot-dip zinc alloy plating of the present invention is composed of 15 to 60% by weight of InCl 3 and the balance of NH 4 Cl. Further, the flux for hot-dip zinc alloy plating of the present invention,
A flux composed of 15 to 60% by weight of InCl 3 and the balance of NH 4 Cl was dissolved in water to form an aqueous solution. The concentration of the flux in this aqueous solution is preferably 250-1200 g /
It is. Incidentally, hydrochloric acid may be appropriately added to this aqueous solution in order to make the aqueous solution easily soluble.

【作用】[Action]

本発明のフラックスの中にInCl3とNH4Clを含有せしめ
ることにより、これらの作用が相まってZn−Al合金めっ
き層と鉄鋼部品等の被処理物との密着性が改善せしめ
る。 InCl3とNH4Clの挙動を以下に説明する。 InCl3は非処理物表面上で(2)式の反応を起し、非
処理物表面に析出して該表面上を覆ったインジウム層が
Zn−Alめっき浴の非処理物への濡れ性を向上させるもの
と考えられる。 2In3++3Fe→2In+3Fe2+ (2) 従って、InCl3の含有量が15重量%未満では、上記作
用が十分利用できず、これに対して、InCl3の含有量が6
0重量%を超えると、共存するH4Clの量が少量になり過
ぎて、NH4Cl添加による被処理物表面におけるめっきぬ
れ性改善効果を十分利用できない。 また、NH4Clは被処理物表面で(3)式の反応で分解
したり、被処理物上に生じる生成酸化物との(4)、
(5)による反応で、低沸点の錯塩が生成するなどによ
り起きる沸騰と発泡、および、不めっき部を生じさせて
いた生成酸化物の分解により、Zn−Al合金めっき浴と非
処理物との接触が良好になると考えられる。 NH4Cl→NH3+HCl (3) Fe3O4+8NH4Cl+Fe→ 4FeNH3Cl2+4NH3+H2O (4) FeCl2・FeO+2NH4Cl→ 2FeNH3Cl2+H2O (5) したがって、NH4Clの含有量が40重量%未満では、上
記作用が十分利用できず、一方、85重量%を超えると、
共存するInCl3の量が少量になり過ぎて、InCl3の前記め
っき濡れ性の改善作用を十分に利用できない。 以上のように、InCl3およびNH4Clからなるフラックス
により、フッ化物を添加することなく、亜鉛合金めっき
層と被処理物との密着性を改善して、不めっき部を生ぜ
させないようすることができる。
By incorporating InCl 3 and NH 4 Cl into the flux of the present invention, these effects are combined to improve the adhesion between the Zn—Al alloy plating layer and the workpiece such as a steel part. The behavior of InCl 3 and NH 4 Cl will be described below. InCl 3 causes the reaction of the formula (2) on the surface of the non-processed material, and precipitates on the surface of the non-processed material to form an indium layer covering the surface.
It is considered that the wettability of the Zn-Al plating bath to an untreated material is improved. 2In 3+ + 3Fe → 2In + 3Fe 2+ (2) Thus, in less than 15% by weight content of InCl 3, the effect can not be sufficiently utilized, whereas, the content of InCl 3 6
If it exceeds 0% by weight, the amount of coexisting H 4 Cl becomes too small, and the effect of improving the wettability of the plating on the surface of the workpiece by the addition of NH 4 Cl cannot be sufficiently utilized. NH 4 Cl is decomposed on the surface of the object by the reaction of the formula (3),
In the reaction according to (5), the boiling and foaming caused by the formation of a complex salt having a low boiling point, and the decomposition of the generated oxide that has caused the non-plated portion, cause the Zn-Al alloy plating bath to be untreated. It is believed that the contact is better. NH 4 Cl → NH 3 + HCl (3) Fe 3 O 4 + 8NH 4 Cl + Fe → 4FeNH 3 Cl 2 + 4NH 3 + H 2 O (4) FeCl 2 .FeO + 2NH 4 Cl → 2FeNH 3 Cl 2 + H 2 O (5) Therefore, NH If the content of 4 Cl is less than 40% by weight, the above effect cannot be sufficiently utilized, while if it exceeds 85% by weight,
Since the amount of coexisting InCl 3 is too small, the effect of improving the wettability of plating by InCl 3 cannot be sufficiently utilized. As described above, the flux composed of InCl 3 and NH 4 Cl is used to improve the adhesion between the zinc alloy plating layer and the object to be processed without adding a fluoride so as not to generate a non-plated portion. Can be.

【実施例】【Example】

JIS H2107の規定による蒸溜亜鉛地金(一種)および
純度99.9重量%以上のアルミニウム地金を用いて、第1
表に示す量のAlを含有し、残部Znおよび不可避不純物か
らなる組成の溶融亜鉛めっき浴を20番黒鉛坩堝中で電気
炉を用いて520℃にて溶製した。 一方、板厚3.2mmの一般構造用圧延鋼板より板幅75m
m、板長150mmの試験片を切り出し、その試験片の表面を
加熱した水酸化ナトリウムの10重量%水溶液で脱脂した
後、12重量%の塩酸溶液中に30分間浸漬することにより
試験片の表面を酸洗し、更に、70℃に加熱した第1表に
示す組成、濃度のフラックス水溶液中に第1表の時間だ
け浸漬して引き上げることによってフラックス処理を施
し、最後に150℃に保持された恒温槽中で5分乾燥する
ことによって、溶融亜鉛めっき処理品に対する不めっき
部の生成度合を評価するための試験片を準備した。 次いで、上記のようにあらかじめ溶製された溶融亜鉛
めっき浴の温度を第1表の浴温度に調整し、めっき浴表
面のドロスを除去し、上記のように調整された試験片を
めっき浴中に浸漬し、再びめっき浴表面のドロスを除去
して、上記試験片をめっき浴より引き上げた後空冷する
ことにより、めっき処理の施された試験片を採取した。 これらの試験片の不めっき部の生成度合を目視により
観察した。その結果、本実施例の試験片(試験No.1〜
8)にはすべて不めっき部が認められなかったのに対し
て、比較例の試験片(試験No.9〜12)にはすべて不めっ
き部が認められた。 また、実施例の試験片(試験No.1〜8)の耐食性をJI
SZ2371の規定による塩水噴霧試験により確認した。その
結果を第1表に示すが、これらの試験片のすべてにおい
て、1000時間を経ても赤錆びの発生が認められず、非常
に高い耐食性を示すことが確認された。
Using distilled zinc ingot (one kind) according to JIS H2107 and aluminum ingot with a purity of 99.9% by weight or more,
A hot dip galvanizing bath containing Al in the amount shown in the table and having a balance of Zn and unavoidable impurities was melted in a No. 20 graphite crucible at 520 ° C. using an electric furnace. On the other hand, a width of 75m from a rolled steel sheet for general structure with a thickness of 3.2mm
m, a test piece with a plate length of 150 mm was cut out, the surface of the test piece was degreased with a heated 10% by weight aqueous solution of sodium hydroxide, and then immersed in a 12% by weight hydrochloric acid solution for 30 minutes. Was subjected to a flux treatment by dipping in an aqueous flux solution having the composition and concentration shown in Table 1 heated to 70 ° C. for the time shown in Table 1 and pulling it up, and finally kept at 150 ° C. By drying in a constant temperature bath for 5 minutes, a test piece for evaluating the degree of generation of a non-plated portion with respect to the hot-dip galvanized product was prepared. Next, the temperature of the hot-dip galvanizing bath previously melted as described above was adjusted to the bath temperature shown in Table 1, dross on the surface of the plating bath was removed, and the test piece adjusted as above was placed in the plating bath. Then, the dross on the surface of the plating bath was removed again, and the test piece was pulled up from the plating bath and then air-cooled to collect a plated test piece. The degree of formation of the non-plated portions of these test pieces was visually observed. As a result, the test pieces of this example (test Nos. 1 to
In 8), no unplated portions were observed, whereas in the test specimens of the comparative examples (Test Nos. 9 to 12), all unplated portions were observed. In addition, the corrosion resistance of the test pieces of the examples (test Nos. 1 to 8) was measured by JI.
It was confirmed by a salt spray test according to SZ2371. The results are shown in Table 1. In all of these test pieces, generation of red rust was not observed even after 1000 hours, and it was confirmed that very high corrosion resistance was exhibited.

【発明の効果】【The invention's effect】

以上から明らかなように、本発明の溶融亜鉛合金めっ
き用フラックスを使用する場合、アンモニウム塩が存在
しても不めっき部を生じない。その結果、高い耐食性を
有する合金被膜を形成させる作用を持つ溶融亜鉛合金め
っきに用いるのに好適なフラックスを提供することがで
きる。
As is clear from the above, when the flux for hot-dip zinc alloy plating of the present invention is used, no unplated portion is produced even when an ammonium salt is present. As a result, it is possible to provide a flux suitable for use in hot-dip zinc alloy plating having an action of forming an alloy film having high corrosion resistance.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】15〜60重量%のInCl3および残部のNH4Clか
らなる溶融亜鉛合金めっき用フラックス。
1. A flux for hot-dip zinc alloy plating comprising 15 to 60% by weight of InCl 3 and the balance of NH 4 Cl.
【請求項2】請求項1記載のフラックスを溶解した水溶
液である溶融亜鉛合金めっき用フラックス。
2. A flux for hot-dip zinc alloy plating, which is an aqueous solution in which the flux according to claim 1 is dissolved.
JP2168242A 1990-06-28 1990-06-28 Flux for hot-dip zinc alloy plating Expired - Lifetime JP2609345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168242A JP2609345B2 (en) 1990-06-28 1990-06-28 Flux for hot-dip zinc alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168242A JP2609345B2 (en) 1990-06-28 1990-06-28 Flux for hot-dip zinc alloy plating

Publications (2)

Publication Number Publication Date
JPH0459957A JPH0459957A (en) 1992-02-26
JP2609345B2 true JP2609345B2 (en) 1997-05-14

Family

ID=15864397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168242A Expired - Lifetime JP2609345B2 (en) 1990-06-28 1990-06-28 Flux for hot-dip zinc alloy plating

Country Status (1)

Country Link
JP (1) JP2609345B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136759A (en) * 1982-02-05 1983-08-13 Mitsui Mining & Smelting Co Ltd Flux for coating with zinc-aluminum alloy by hot dipping
JPH01283353A (en) * 1988-05-09 1989-11-14 Nippon Kagaku Sangyo Kk Flux composition for zinc-aluminum alloy hot dipping

Also Published As

Publication number Publication date
JPH0459957A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
JP5824868B2 (en) Method for producing zinc-based plated steel material or zinc-based plated steel molded product
JP2015045090A (en) Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
KR100392565B1 (en) Molten metal plating flux by dry flux method and manufacturing method of molten metal plating steel using this flux
US3712826A (en) Method of improving the surface of galvanized steel material
JP2609345B2 (en) Flux for hot-dip zinc alloy plating
JP2609344B2 (en) Flux for hot-dip zinc alloy plating
JPH0670269B2 (en) Aluminum / zinc alloy hot-dip flux
JP2580366B2 (en) Flux for hot-dip Zn-Al alloy plating
JPH0426749A (en) Flux for hot dip zn-al alloy plating
JP5979186B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JPH03146651A (en) Flux for hot dip zn-al alloy coating
JPH0394050A (en) Flux for galvanizing zn-al alloy
JPH03146650A (en) Flux for hot dip zn-al alloy coating
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JP2756318B2 (en) Flux for hot-dip Zn-Al alloy plating
JPH09209108A (en) Dip plating method for steel worked product
JPH06279968A (en) Aluminum-zinc alloy plating method for iron and steel products
JPH0426748A (en) Flux for hot dip zn-al alloy plating
JP4899030B2 (en) Flux and hot dip zinc-aluminum alloy plating method.
JPH0421755A (en) Flux for hot dip zn-al alloy-coating
JP3383186B2 (en) Immersion plating method for steel products
JP2003082447A (en) Hot-dip zinc-aluminum coating method
JPH0353051A (en) Plating bath for galvanizing treatment
JPH04280952A (en) Zn-al alloy plating bath and plating method
JPH04157147A (en) Flux for hot-dip zn-al alloy coating