JP2012241011A - Production method of 1,3-dimethyl-2-imidazolidinone - Google Patents

Production method of 1,3-dimethyl-2-imidazolidinone Download PDF

Info

Publication number
JP2012241011A
JP2012241011A JP2011124654A JP2011124654A JP2012241011A JP 2012241011 A JP2012241011 A JP 2012241011A JP 2011124654 A JP2011124654 A JP 2011124654A JP 2011124654 A JP2011124654 A JP 2011124654A JP 2012241011 A JP2012241011 A JP 2012241011A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
dmi
reaction kettle
cock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011124654A
Other languages
Japanese (ja)
Inventor
Atsushi Nakada
篤志 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKEN KK
Original Assignee
YUKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKEN KK filed Critical YUKEN KK
Priority to JP2011124654A priority Critical patent/JP2012241011A/en
Publication of JP2012241011A publication Critical patent/JP2012241011A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a method by which 1,3-dimethyl-2-imidazolidinone (denoted by DMI hereinafter) can be continuously produced by an easy means.SOLUTION: In the method, N,N-dimethylethylenediamine (denoted by DED hereinafter) is made to react with urea by using DMI as a solvent. Specifically, a raw material mixture comprising DED and urea is gradually added to a reaction vessel 1 to which DMI as a solvent is preliminarily introduced, to carry out the reaction and to allow the solution to overflow; the overflow solution is introduced to a reaction vessel 2 to fill the vessel, followed by stopping introduction of the overflow solution to complete the reaction; the overflow solution from the reaction vessel 1 is then introduced to another reaction vessel 3 and subjected to the same process as in the reaction vessel 2; the overflow solution from the first reaction vessel 1 is introduced to a newly replaced reaction vessel 2; and these processes are successively repeated to continue the reaction.

Description

本発明は、1,3‐ジメチルー2−イミダゾリジノン(以下DMIという)の製造方法に関し、更に詳しくは、簡易な方法でしかも連続的にDMIを製造しうる方法を提供せんとするものである。  The present invention relates to a method for producing 1,3-dimethyl-2-imidazolidinone (hereinafter referred to as DMI), and more specifically, to provide a simple method and a method capable of continuously producing DMI. .

DMIは、極性非プロトン溶媒として広く使用されている極めて有用な物質である。特にポリアミド類、ポリ塩化ビニル、ポリビニルアルコール、ポリスチレン、ポリウレタン、フエノール樹脂などの高分子化合物の優れた溶媒であり、また無機塩類の多くのものと錯塩を形成して溶解し、多くの有機反応の溶媒としても用いられる有用な物質である。  DMI is a very useful substance that is widely used as a polar aprotic solvent. In particular, it is an excellent solvent for polymer compounds such as polyamides, polyvinyl chloride, polyvinyl alcohol, polystyrene, polyurethane, phenol resin, etc. Also, it forms complex salts with many inorganic salts and dissolves, and it is capable of many organic reactions. It is a useful substance that can also be used as a solvent.

従来、DMIの製造方法は多数提案されている。たとえば、N,N’−ジメチルエチレンジアミンと二酸化炭素とを反応させる方法(特許文献1)や、エチレンジアミンと尿素を反応させて2−イミダゾリジノンを得、これにホルマリンを付加させた反応生成物をトリクロロ酢酸、ギ酸などで還元してN,N′−ジメチル化させる方法、またこの還元方法を改良して貴金属触媒を使用し、酸性下に水素添加する方法、さらにN,N′−ジメチルエチレンジアミンから、これとホスゲンもしくはトリクロロメチルクロロホーメートをホスゲンに分解しながら反応させる方法などが知られている。  Conventionally, many manufacturing methods of DMI have been proposed. For example, a method of reacting N, N′-dimethylethylenediamine and carbon dioxide (Patent Document 1) or a reaction product obtained by reacting ethylenediamine and urea to obtain 2-imidazolidinone and adding formalin thereto. Reduction with trichloroacetic acid, formic acid, etc. to N, N'-dimethylation, improvement of this reduction method using a noble metal catalyst, hydrogenation under acidic conditions, and further from N, N'-dimethylethylenediamine A method of reacting phosgene or trichloromethyl chloroformate while decomposing it into phosgene is known.

さらに特許文献2には、N,N′−ジメチルエチレンジアミンと尿素を加熱反応させた場合、中間体として1,1’−ジメチル−1,1’−ジメチレンビスウレアが生成することに着目し、極性非プロトン溶媒の存在下に、N,N′‐ジメチルエチレンジアミンに対し尿素を約2モル倍仕込み、初期反応の1,1’−ジメチル−1,1’−ジメチレンビスウレアの生成が完結するまでは140℃以下で反応させ、引き続き180℃以上でN,N′‐ジメチルエチレンジアミンを添加しながら反応させることを特徴とする2段階法が提案されている。
特公平1−15505号 特公平6−65666号
Furthermore, Patent Document 2 focuses on the fact that 1,1′-dimethyl-1,1′-dimethylenebisurea is produced as an intermediate when N, N′-dimethylethylenediamine and urea are reacted by heating. In the presence of a polar aprotic solvent, about 2 moles of urea is added to N, N'-dimethylethylenediamine to complete the formation of 1,1'-dimethyl-1,1'-dimethylenebisurea in the initial reaction. Until now, a two-step method characterized by reacting at 140 ° C. or lower and subsequently adding N, N′-dimethylethylenediamine at 180 ° C. or higher has been proposed.
JP 1-15505 No. 6-65666

発明が解決しようとする課題Problems to be solved by the invention

DMIを製造する方法は、このように従来から各種の方法が知られているが、いずれの方法によっても収率が極めて低く、工業的方法としては到底満足できるものではなかった。
したがって、本発明が解決しようとする課題は、工業的に有用なDMIを簡易な方法で、連続的に製造し得る方法を提供せんとすることである。
As described above, various methods for producing DMI are conventionally known. However, the yield is extremely low by any of the methods, and the industrial method is not completely satisfactory.
Therefore, the problem to be solved by the present invention is to provide a method capable of continuously producing industrially useful DMI by a simple method.

課題を解決するための手段Means for solving the problem

本発明のこの課題は、DMIを溶媒として、N,N′‐ジメチルエチレンジアミン(以下DEDという)と尿素とを反応せしめて、DMIを製造することにより、解決される
そして特に溶媒としてのDMIを予め導入した反応釜1に、DEDと尿素とからなる原料混合物を徐々に添加して反応を行いつつ溢流せしめ、この溢流液を反応釜2に導入して充満後、該溢流液の導入を中止して反応を完結させると共に、他方反応釜3に反応釜1からの溢流液を導入移動し、以後反応釜2と同じ処理をすると共に、新たに取り替えた反応釜2に反応釜1からの溢流液を導入して、これを順次繰返して連続的に行うことによって好ましく達成される。
This problem of the present invention is solved by producing DMI by reacting N, N'-dimethylethylenediamine (hereinafter referred to as DED) with urea using DMI as a solvent. The raw material mixture consisting of DED and urea is gradually added to the introduced reaction vessel 1 to cause the overflow while reacting, and this overflow solution is introduced into the reaction vessel 2 and filled, and then the overflow solution is introduced. Is terminated to complete the reaction, and the overflow liquid from the reaction vessel 1 is introduced and transferred to the other reaction vessel 3, and thereafter the same treatment as the reaction vessel 2 is performed, and the reaction vessel 1 is replaced with the newly replaced reaction vessel 2. This is preferably achieved by introducing an overflow liquid from and continuously repeating the process.

発明の効果Effect of the invention

上記の如く、本発明は、目的物DMIを、DEDと尿素との反応に際し、その溶媒として、使用することを最大の特徴としており、これ自体従来行われたことの全く無い新しい方法であって、この方法を採用することにより、簡単にしかも連続的に反応を続行することが出来るという優れた効果を得ることができる。
その結果簡単に極めて高収率で目的物DMIを製造することが出来、工業的に極めて優れた製造方法として、利用できるに至るものである。
As described above, the present invention is characterized by the use of the target product DMI as a solvent in the reaction of DED and urea, and this is a new method which has never been performed in the past. By adopting this method, it is possible to obtain an excellent effect that the reaction can be continued easily and continuously.
As a result, the target product DMI can be easily produced at an extremely high yield, and can be used as an industrially excellent production method.

本発明は、DMIを反応溶媒として、DEDと尿素とを反応せしめることを、特徴としている。これを化学式で示せば以下の通りである

Figure 2012241011
The present invention is characterized by reacting DED with urea using DMI as a reaction solvent. This can be expressed in chemical formula as follows:
Figure 2012241011

この反応に於いて、原料DEDと尿素とをDMIに加え、通常180〜230℃、好ましくは200〜220℃程度で、3〜5時間程度加熱する。DEDと尿素との割合は、1:1でもよいが、一方が過剰になってもよい。溶媒として使用するDMIは、DEDに対して通常1〜5倍程度である。尚原料の一つとして使用するDEDは、例えばエチレンジアミンとヨードメタンとから、通常の方法で製造することが出来る。  In this reaction, the raw materials DED and urea are added to DMI, and the mixture is heated usually at 180 to 230 ° C., preferably about 200 to 220 ° C. for about 3 to 5 hours. The ratio of DED to urea may be 1: 1, but one may be excessive. The DMI used as a solvent is usually about 1 to 5 times that of DED. The DED used as one of the raw materials can be produced by, for example, an ordinary method from ethylenediamine and iodomethane.

本発明のもう一つの大きな特徴は、DMIを溶媒として使用することにより、この反応を連続的に行うことが出来ることである。この連続的な方法を図面を参照しつつ以下に説明する。  Another major feature of the present invention is that this reaction can be carried out continuously by using DMI as a solvent. This continuous method will be described below with reference to the drawings.

撹拌モーター、冷却管、熱電対、ならびに滴下漏斗を取り付けた、反応釜1のコック4には反応釜2を、そしてコック5は同じ容量の反応釜3を接続し、それぞれの反応釜2及び3には撹拌モーター、冷却管、熱電対を取り付ける。
次いでコック4及び5を閉鎖した反応釜1にDMIを充填し、油浴に入れ、釜内部の温度を所定の温度に維持する。反応釜2及び3には各々DMIを充填し、同じく油浴に入れ、釜内部の温度を所定の温度に維持する。
The reaction vessel 2 is connected to the cock 4 of the reaction kettle 1, and the cock 5 is connected to the reaction kettle 3 having the same capacity. The reaction kettles 2 and 3 are each equipped with a stirring motor, a cooling pipe, a thermocouple, and a dropping funnel. A stirrer motor, cooling pipe, and thermocouple are attached to.
Next, the reaction kettle 1 with the cocks 4 and 5 closed is filled with DMI, put in an oil bath, and the temperature inside the kettle is maintained at a predetermined temperature. Each of the reaction kettles 2 and 3 is filled with DMI and similarly put in an oil bath, and the temperature inside the kettle is maintained at a predetermined temperature.

一方、 原料混合物としてDED、尿素及び溶剤のDMIを所定量混合し、撹拌しながら加熱して全体を液状化する。  On the other hand, a predetermined amount of DED, urea, and solvent DMI are mixed as a raw material mixture, and heated with stirring to liquefy the whole.

この原料混合物を反応釜1に取り付けた滴下漏斗に入れ、反応釜1へ滴下し、反応釜1中のDMIを溶剤として原料混合物中のDEDと尿素との反応を開始せしめる。同時に反応釜1中の反応液の液面が上昇し、液面が上昇してコックの部分まで到達したところで、コック4を開放する。反応液がコック4から溢れ、反応釜2の方へ滴下される。原料混合物を反応釜1に同じ速度にて滴下し続けると、反応釜2への滴下も続行され、反応釜1及び2で反応が進行していく。  This raw material mixture is put into a dropping funnel attached to the reaction kettle 1 and dropped into the reaction kettle 1, and the reaction of DED and urea in the raw material mixture is started using DMI in the reaction kettle 1 as a solvent. At the same time, the level of the reaction liquid in the reaction vessel 1 rises, and when the liquid level rises and reaches the cock portion, the cock 4 is opened. The reaction liquid overflows from the cock 4 and is dropped toward the reaction kettle 2. If the raw material mixture is continuously dropped into the reaction kettle 1 at the same speed, the dropping into the reaction kettle 2 is also continued, and the reaction proceeds in the reaction kettles 1 and 2.

反応釜2の反応液が所定量に達したときにコック4を閉鎖し、同時にコック5を開放する。反応釜1中の反応液は、今度はコック5から溢れて反応釜3の方へ滴下される。原料混合物を反応釜1に同じ速度にて滴下し続けると反応釜3への滴下も続行され、反応釜1及び3で反応が進行していく。  When the reaction liquid in the reaction vessel 2 reaches a predetermined amount, the cock 4 is closed and at the same time the cock 5 is opened. The reaction liquid in the reaction vessel 1 overflows from the cock 5 and is dropped to the reaction vessel 3 this time. If the raw material mixture is continuously dropped into the reaction vessel 1 at the same speed, the addition to the reaction vessel 3 is also continued, and the reaction proceeds in the reaction vessels 1 and 3.

コック4を閉鎖された反応器2はそのまま所定時間加熱撹拌を続けた後、加熱を停止し、反応釜2をコック4から取り外し、そのまま蒸留して釜残の着色成分や高沸点物を除去して、高純度DMIを得る。  The reactor 2 with the cock 4 closed is kept heated and stirred as it is for a predetermined time, and then the heating is stopped, the reaction kettle 2 is removed from the cock 4 and distilled as it is to remove the remaining colored components and high-boiling substances. To obtain high purity DMI.

反応釜2を取り外したコック4には、先に説明した反応釜2と同じものを新たに接続する。  The same cock as the reaction kettle 2 described above is newly connected to the cock 4 from which the reaction kettle 2 has been removed.

一方、反応釜3の反応液が所定量に達したときにコック5を閉鎖し、同時にコック4を開放し、反応釜1中の反応液を、今度はコック1から溢れて新たに取り付けた反応釜2の方へ滴下させる。原料混合物を反応釜1に同じ速度にて滴下し続けると反応釜2への滴下も続行され、反応釜1及び2で反応が進行していく。  On the other hand, when the reaction liquid in the reaction kettle 3 reaches a predetermined amount, the cock 5 is closed, and at the same time, the cock 4 is opened, and the reaction liquid in the reaction kettle 1 overflows from the cock 1 and is newly attached. Drip toward the pot 2. If the raw material mixture is continuously dropped into the reaction vessel 1 at the same speed, the addition to the reaction vessel 2 is also continued, and the reaction proceeds in the reaction vessels 1 and 2.

コック2を閉鎖された反応器3はそのまま所定時間加熱撹拌を続けた後、加熱を停止し、反応釜3をコック5から取り外し、そのままで弱減圧状態にて蒸留して釜残の着色成分や高沸点物を除去して、高純度DMIを得る。反応釜3を取り外したコック2には、先に説明した反応釜2と同じものを新たに接続する。  The reactor 3 with the cock 2 closed is kept heated and stirred for a predetermined time, and then the heating is stopped, the reaction kettle 3 is removed from the cock 5 and distilled in a slightly reduced pressure state as it is. High boilers are removed to obtain high purity DMI. The same cock as the reaction kettle 2 described above is newly connected to the cock 2 from which the reaction kettle 3 has been removed.

反応釜1に滴下する原料混合物は、先と同様な方法にて随時作り、必要に応じて滴下装置に追加する。
この操作を繰り返して、高純度のDMIを連続的に合成することができる。
以下に実施例を示して本発明を詳しく説明する。
The raw material mixture dropped into the reaction kettle 1 is made at any time by the same method as described above, and added to the dropping device as necessary.
By repeating this operation, high-purity DMI can be synthesized continuously.
Hereinafter, the present invention will be described in detail with reference to examples.

容量0.5Lの反応釜1に撹拌モーター、冷却管、熱電対、ならびに滴下漏斗を取り付けた。反応釜1のコック4には容量0.5Lの反応釜2を、そしてコック5は同じく容量0.5Lの反応釜3を接続し、それぞれの反応釜に撹拌モーター、冷却管、熱電対を取り付けた。次いでコック4及び5を閉鎖した反応釜1にDMI(1,3−ジメチル−2−イミダゾリジノン、ネオス)0.5Lを充填し、油浴に入れ、釜内部の温度を210〜220℃に維持した。反応釜2及び3には各々0.15LのDMIを充填し、同じく油浴に入れ、釜内部の温度を210〜220℃に維持した。A stirring motor, a condenser tube, a thermocouple, and a dropping funnel were attached to the reaction kettle 1 having a capacity of 0.5 L. A reaction kettle 2 with a capacity of 0.5 L is connected to the cock 4 of the reaction kettle 1, and a reaction kettle 3 with a capacity of 0.5 L is also connected to the cock 5, and a stirring motor, a cooling pipe and a thermocouple are attached to each reaction kettle. It was. Next, 0.5 L of DMI (1,3-dimethyl-2-imidazolidinone, Neos) is charged in the reaction kettle 1 with the cocks 4 and 5 closed, and the temperature inside the kettle is adjusted to 210 to 220 ° C. Maintained. The reaction kettles 2 and 3 were each filled with 0.15 L of DMI, put in the oil bath, and the temperature inside the kettle was maintained at 210-220 ° C.

原料混合物としてDED100g、尿素(特級、関東化学)72g及び溶剤のDMI100gを混合し、撹拌しながら90℃に加熱し、全体を液状化させた。この原料混合物を反応釜1に取り付けた滴下漏斗に入れ、反応釜1への滴下を開始した。  As a raw material mixture, 100 g of DED, 72 g of urea (special grade, Kanto Chemical) and 100 g of DMI as a solvent were mixed and heated to 90 ° C. with stirring to liquefy the whole. This raw material mixture was put into a dropping funnel attached to the reaction kettle 1 and dripping into the reaction kettle 1 was started.

原料混合物を1時間あたり約50gの速度で滴下した。反応釜1中のDMIを溶剤として原料混合物中のDEDと尿素とが反応を開始し、同時に反応釜1中の反応液の液面が上昇した。液面が上昇してコックの部分まで到達したところで、コック1を開放した。反応液がコック1から溢れ、反応釜2の方へ滴下された。原料混合物を反応釜1に同じ速度にて滴下し続けると、反応釜2への滴下も続行され、反応釜1及び2で反応が進行していった。  The raw material mixture was added dropwise at a rate of about 50 g per hour. Using DMI in the reaction vessel 1 as a solvent, DED and urea in the raw material mixture started to react, and at the same time, the liquid level of the reaction solution in the reaction vessel 1 rose. When the liquid level rose and reached the cock part, the cock 1 was opened. The reaction liquid overflowed from the cock 1 and dropped into the reaction kettle 2. When the raw material mixture was continuously added dropwise to the reaction vessel 1 at the same speed, the addition to the reaction vessel 2 was also continued, and the reaction proceeded in the reaction vessels 1 and 2.

反応釜2の反応液が約0.5Lに達したときにコック1を閉鎖し、同時にコック2を開放した。反応釜1中の反応液は、今度はコック2から溢れて反応釜3の方へ滴下された。原料混合物を反応釜1に同じ速度にて滴下し続けると反応釜3への滴下も続行され、反応釜1及び3で反応が進行していった。  When the reaction liquid in the reaction vessel 2 reached about 0.5 L, the cock 1 was closed and the cock 2 was opened at the same time. The reaction liquid in the reaction vessel 1 overflowed from the cock 2 and was dropped to the reaction vessel 3 this time. When the raw material mixture was continuously dropped into the reaction kettle 1 at the same speed, the dropping into the reaction kettle 3 was continued, and the reaction proceeded in the reaction kettles 1 and 3.

コック1を閉鎖された反応器2はそのまま約4時間加熱撹拌を続けた。加熱を停止し、反応釜2をコック1から取り外し、そのまま120〜150℃で弱減圧状態にて蒸留して釜残の着色成分や高沸点物を除去して、純度99.8%の高純度DMIを原料に対する収率99%で得た。反応釜2を取り外したコック1には、先に説明した反応釜2と同じものを新たに接続した。  The reactor 2 with the cock 1 closed was continuously heated and stirred for about 4 hours. Stop the heating, remove the reaction kettle 2 from the cock 1, and distill at 120-150 ° C. in a slightly reduced pressure state to remove the remaining colored components and high-boiling substances, resulting in a high purity of 99.8% DMI was obtained with a yield of 99% based on the raw material. The same thing as the reaction kettle 2 demonstrated previously was newly connected to the cock 1 which removed the reaction kettle 2. FIG.

一方、反応釜3の反応液が約0.5Lに達したときにコック2を閉鎖し、同時にコック1を開放した。反応釜1中の反応液は、今度はコック1から溢れて新たに取り付けた反応釜2の方へ滴下された。原料混合物を反応釜1に同じ速度にて滴下し続けると反応釜2への滴下も続行され、反応釜1及び2で反応が進行していった。  On the other hand, when the reaction liquid in the reaction kettle 3 reached about 0.5 L, the cock 2 was closed and at the same time the cock 1 was opened. The reaction liquid in the reaction vessel 1 overflowed from the cock 1 this time and dropped onto the newly attached reaction vessel 2. When the raw material mixture was continuously added dropwise to the reaction vessel 1 at the same speed, the addition to the reaction vessel 2 was also continued, and the reaction proceeded in the reaction vessels 1 and 2.

コック2を閉鎖された反応器3はそのまま約4時間加熱撹拌を続けた。加熱を停止し、反応釜3をコック2から取り外し、そのまま120〜150℃で弱減圧状態にて蒸留して釜残の着色成分や高沸点物を除去して、純度99.8%の高純度DMIを原料に対する収率99%で得た。反応釜3を取り外したコック2には、先に説明した反応釜3と同じものを新たに接続した。  The reactor 3 with the cock 2 closed was heated and stirred for about 4 hours. Heating is stopped, the reaction kettle 3 is removed from the cock 2 and distilled as it is at 120 to 150 ° C. in a slightly reduced pressure state to remove the remaining colored components and high-boiling substances, thereby obtaining a high purity of 99.8%. DMI was obtained with a yield of 99% based on the raw material. The same cock as the reaction kettle 3 described above was newly connected to the cock 2 from which the reaction kettle 3 was removed.

反応釜1に滴下する原料混合物は、先と同様な方法にて随時作り、必要に応じて滴下装置に追加した。
この操作を繰り返して、純度99.8%のDMIを連続的に合成することができた。
The raw material mixture dropped into the reaction kettle 1 was made at any time by the same method as described above, and added to the dropping device as needed.
By repeating this operation, it was possible to continuously synthesize DMI having a purity of 99.8%.

温度計、撹拌装置、還流管を備えた500mlの四ツ口フラスコに、エチレンジアミン(東京化成社製、特級)100gと、尿素(関東化学社製、特級)101gと、エチレングリコール(東京化成社製、特級)108gとを仕込んだ。】
撹拌しながら昇温させて、反応液の温度が約130℃に到達した時点で、撹拌を停止させ、4時間還流を行った。反応液をさらに上昇させて、約210℃として、徐々に減圧しながらエチレングリコールを除去し、中間生成物である2−イミダゾリジノン(90g)を得た。
In a 500 ml four-necked flask equipped with a thermometer, a stirrer, and a reflux tube, 100 g of ethylenediamine (manufactured by Tokyo Chemical Industry, special grade), 101 g of urea (manufactured by Kanto Chemical Co., Ltd., special grade), and ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) , Special grade) 108g. ]
The temperature was raised while stirring, and when the temperature of the reaction solution reached about 130 ° C., stirring was stopped and refluxed for 4 hours. The reaction solution was further raised to about 210 ° C., and ethylene glycol was removed while gradually reducing pressure to obtain 2-imidazolidinone (90 g) as an intermediate product.

次いで、得られた中間生成物に対して、パラホルムアルデヒド(関東化学社製、特級)75gと、ギ酸(関東化学社製、特級)480gとを添加して、撹拌しながら、反応液温度115℃を維持し、16時間反応させた。そのまま、還流管トップから流出させ常圧蒸留を行い、未反応のパラホルムアルデヒド及び二酸化炭素を留去した。次いで圧力39〜67hPa、温度120〜134℃で減圧蒸留し、未反応のギ酸及び水を留去し、約90%純度の粗DMIを60g得た。Subsequently, 75 g of paraformaldehyde (manufactured by Kanto Chemical Co., Ltd., special grade) and 480 g of formic acid (manufactured by Kanto Chemical Co., Ltd., special grade) are added to the obtained intermediate product, and the reaction solution temperature is 115 ° C. while stirring. The reaction was continued for 16 hours. As it was, it was discharged from the top of the reflux tube and subjected to atmospheric distillation to distill off unreacted paraformaldehyde and carbon dioxide. Subsequently, distillation was performed under reduced pressure at a pressure of 39 to 67 hPa and a temperature of 120 to 134 ° C., and unreacted formic acid and water were distilled off to obtain 60 g of crude DMI having a purity of about 90%.

粗DMI中に含まれる、DMIに類似した構造を有する副生物を濾過により除去した。ついで粗DMI中に残るギ酸を圧力22.6hPa、温度105℃で減圧蒸留して留去し、最終生成物である1,3−ジメチル−2−イミダゾリジノン54gを得た。
得られた生成物をGC−FID(ガスクロマトグラフィー水素炎イオン化検出器)を用いて測定したところ、純度は99%以上であった。
この反応を化学式で示せば、以下の通りである。
By-products having a structure similar to DMI contained in the crude DMI were removed by filtration. Subsequently, the formic acid remaining in the crude DMI was distilled off under reduced pressure at a pressure of 22.6 hPa and a temperature of 105 ° C. to obtain 54 g of 1,3-dimethyl-2-imidazolidinone as the final product.
When the obtained product was measured using GC-FID (gas chromatography hydrogen flame ionization detector), the purity was 99% or more.
This reaction can be represented by the chemical formula as follows.

Figure 2012241011
Figure 2012241011
Figure 2012241011
Figure 2012241011

図1は本発明の一実施例を説明するための模擬的な説明図である。  FIG. 1 is a schematic explanatory diagram for explaining an embodiment of the present invention.

1:反応釜
2:同上
3;同上
4:コック
5:同上
1: Reaction kettle 2: Same as above 3; Same as above 4: Cook 5: Same as above

Claims (3)

1,3ー‐ジメチルー2−イミダゾリジノンを溶媒として、N,N‐−ジメチルエチレンジアミンと尿素とを反応させることを特徴とする1,3‐ジメチルー2−イミダゾリジノンの製造法  A process for producing 1,3-dimethyl-2-imidazolidinone, comprising reacting N, N-dimethylethylenediamine and urea using 1,3-dimethyl-2-imidazolidinone as a solvent 溶媒としての1,3ー‐ジメチルー2−イミダゾリジノンを、予め導入した反応釜1に、N,N‐−ジメチルエチレンジアミンと尿素とからなる原料混合物を徐々に添加して反応を行いつつ溢流せしめ、この溢流液を反応釜2に導入して充填後、該溢流液の導入を中止して反応を完結させると共に、他方反応釜3に反応釜1からの溢流液を導入し、以後反応釜2と同じ処理をすると共に、新たに取り替えた反応釜2に反応釜1からの溢流液を導入して、これを順次繰返して連続的に行う請求項1に記載の製造法  Overflow while conducting a reaction by gradually adding a raw material mixture consisting of N, N-dimethylethylenediamine and urea to a reaction vessel 1 in which 1,3-dimethyl-2-imidazolidinone as a solvent was previously introduced. After the overflow liquid is introduced into the reaction kettle 2 and filled, the introduction of the overflow liquid is stopped to complete the reaction, and the overflow liquid from the reaction kettle 1 is introduced into the other reaction kettle 3, 2. The process according to claim 1, wherein the same treatment as in the reaction kettle 2 is performed thereafter, and the overflow liquid from the reaction kettle 1 is introduced into the newly replaced reaction kettle 2 and this is sequentially repeated continuously. 使用するN,N‐−ジメチルエチレンジアミンとして、エチレンジアミンとヨードメタンとの反応により製造されたものを使用する請求項1又は2に記載の製造法    The production method according to claim 1 or 2, wherein the N, N-dimethylethylenediamine used is produced by a reaction of ethylenediamine and iodomethane.
JP2011124654A 2011-05-17 2011-05-17 Production method of 1,3-dimethyl-2-imidazolidinone Withdrawn JP2012241011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124654A JP2012241011A (en) 2011-05-17 2011-05-17 Production method of 1,3-dimethyl-2-imidazolidinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124654A JP2012241011A (en) 2011-05-17 2011-05-17 Production method of 1,3-dimethyl-2-imidazolidinone

Publications (1)

Publication Number Publication Date
JP2012241011A true JP2012241011A (en) 2012-12-10

Family

ID=47463082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124654A Withdrawn JP2012241011A (en) 2011-05-17 2011-05-17 Production method of 1,3-dimethyl-2-imidazolidinone

Country Status (1)

Country Link
JP (1) JP2012241011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410633A (en) * 2020-03-30 2020-07-14 迈奇化学股份有限公司 Continuous production method of 1, 3-dimethyl-2-imidazolidinone
CN114394936A (en) * 2022-02-19 2022-04-26 河北康壮环保科技股份有限公司 Method for synthesizing 1, 3-dimethyl-2-imidazole by continuous hydrogenation based on series-connected microreactors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410633A (en) * 2020-03-30 2020-07-14 迈奇化学股份有限公司 Continuous production method of 1, 3-dimethyl-2-imidazolidinone
CN111410633B (en) * 2020-03-30 2021-08-20 迈奇化学股份有限公司 Continuous production method of 1, 3-dimethyl-2-imidazolidinone
CN114394936A (en) * 2022-02-19 2022-04-26 河北康壮环保科技股份有限公司 Method for synthesizing 1, 3-dimethyl-2-imidazole by continuous hydrogenation based on series-connected microreactors
CN114394936B (en) * 2022-02-19 2023-11-24 河北康壮环保科技股份有限公司 Method for synthesizing 1, 3-dimethyl-2-imidazolone based on continuous hydrogenation of series microreactors

Similar Documents

Publication Publication Date Title
CN106414385B (en) γ, δ-unsaturated alcohol manufacturing method
JP6364029B2 (en) Method for producing 1,1,2,3-tetrachloropropene
KR101665735B1 (en) Manufacture of gamma-delta-unsaturated ketones
JP6687281B2 (en) Method for producing conjugated diene
JP2012241011A (en) Production method of 1,3-dimethyl-2-imidazolidinone
US9487460B2 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
CN113227043B (en) Composition for producing N-vinylcarboxylic acid amide
JP6086163B2 (en) Method for producing 2'-trifluoromethyl group-substituted aromatic ketone
JP2008137974A (en) 1-indanyl vinyl ether
JP2015172036A (en) Method of producing 1,4-cyclohexane dicarboxylic acid dichloride
JP5068964B2 (en) Continuous production method and production apparatus for 1,3-dimethyl-2-imidazolidinone
JP4890107B2 (en) Process for producing 2-hydroxy-4-methyltetrahydropyran
CN108238875B (en) Synthesis method of bromoisobutenyl methyl ether and application of bromoisobutenyl methyl ether in preparation of C14 aldehyde
JP2019069922A (en) Method of producing high-purity trifluoromethyl group-substituted aromatic ketone
US8278472B2 (en) Method of preparing allylchlorosilane derivative
CN111574327A (en) Process for the preparation of 3-heptanol from a mixture comprising 2-ethylhexanol and 3-heptanoate formate
JP7088025B2 (en) Method for producing 3-chloro-1,1,2,2-tetrafluoropropane
JP6807695B2 (en) Method for producing 2-methoxyethyl vinyl ether
JP6620142B2 (en) Synthesis of 2,2,2-trifluoroethanethiol
PL215800B1 (en) Method for glycerol chloro-hydrogenation
CN113105492B (en) Preparation method of trifluoromethyl trimethylsilane
JP2013166723A (en) Method of producing 2,2-difluorobutane
JP2016069299A (en) Method for producing 2-trifluoromethyl benzoic acid ester
JP2012167020A (en) Method for producing brominated lactone compound
JP2005289988A (en) Method of manufacturing amino compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805