JP2012240084A - Pipe material manufacturing device, pipe material manufacturing method, and pipe material - Google Patents

Pipe material manufacturing device, pipe material manufacturing method, and pipe material Download PDF

Info

Publication number
JP2012240084A
JP2012240084A JP2011112537A JP2011112537A JP2012240084A JP 2012240084 A JP2012240084 A JP 2012240084A JP 2011112537 A JP2011112537 A JP 2011112537A JP 2011112537 A JP2011112537 A JP 2011112537A JP 2012240084 A JP2012240084 A JP 2012240084A
Authority
JP
Japan
Prior art keywords
pipe material
hole
gap
die
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011112537A
Other languages
Japanese (ja)
Inventor
Makoto Murata
眞 村田
Takashi Kuboki
孝 久保木
Tsutomu Moroi
努 諸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Lixil Corp
Original Assignee
University of Electro Communications NUC
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC, Lixil Corp filed Critical University of Electro Communications NUC
Priority to JP2011112537A priority Critical patent/JP2012240084A/en
Priority to CN201280022916.6A priority patent/CN103596708A/en
Priority to PCT/JP2012/062860 priority patent/WO2012157768A1/en
Publication of JP2012240084A publication Critical patent/JP2012240084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/10Making finned tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • B21C23/147Making drill blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/10Winding-up or coiling by means of a moving guide
    • B21C47/12Winding-up or coiling by means of a moving guide the guide moving parallel to the axis of the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipe material manufacturing device that can carry out extrusion with a high extrusion force by a simple mechanism and can make the torsion angle of a spiral shaped protruding part formed on the inside surface of a pipe larger and also to provide a pipe material manufacturing method and pipe material.SOLUTION: A pipe material manufacturing device 10 is provided with a die 16, which is provided on the extrusion direction F side of a billet 12 and in which a through-hole 22 is formed, and an insertion part 34, which passes through the through-hole 22 so that the tip of which extends more on the extrusion direction side than the through-hole 22. The insertion part 34 is provided on a floating die 30 placed inside a billet accommodating space S, and a gap is formed between the inner circumference of the through-hole 22 and the outer circumference of the insertion part 34. A spiral groove 40 is formed in the side surface side of the insertion part 34, and when a pipe material P formed by the billet 12 being extruded from this gap is formed, a spiral shaped protruding part is formed on the inside surface side of the pipe material.

Description

本発明は、特に熱媒体を流す管材を製造するのに最適な管材製造装置、管材製造方法、および、管材に関する。   The present invention relates to a pipe material manufacturing apparatus, a pipe material manufacturing method, and a pipe material that are particularly suitable for manufacturing a pipe material through which a heat medium flows.

熱交換器では、一般的に、熱媒体と熱媒体を流す管材との熱交換率を高めるために管の内側に螺旋溝を付けている。このような内面螺旋溝付の管では、真直ぐな溝を持つ管材に比べ、熱交換の性能が優れている。この管材の材質としては、通常、銅が選定されており、管材の引抜きや溝付平板の電縫成形等によって製造されている(例えば、特許文献1〜4、非特許文献1参照)。   Generally, in a heat exchanger, a spiral groove is provided on the inside of a tube in order to increase the heat exchange rate between the heat medium and the pipe material through which the heat medium flows. Such a tube with an inner spiral groove is superior in heat exchange performance as compared with a tube material having a straight groove. As the material of the tube material, copper is usually selected, and the tube material is manufactured by drawing the tube material or electro-sealing a grooved flat plate (for example, see Patent Documents 1 to 4 and Non-Patent Document 1).

ところで、銅は比重が高く、しかも高価格である。一方、アルミニウムは比重が軽く低価格であるため、内面螺旋溝付の管の製造が可能となれば、工業的にも大きな利点がある。例えば、非特許文献2や特許文献5では、管の内面に螺旋溝を形成するために、周方向に自助回転するプラグを用いることが開示されている。   By the way, copper has a high specific gravity and is expensive. On the other hand, since aluminum has a low specific gravity and a low price, if it is possible to manufacture a tube with an inner spiral groove, there is a great industrial advantage. For example, Non-Patent Document 2 and Patent Document 5 disclose the use of a plug that self-rotates in the circumferential direction in order to form a spiral groove on the inner surface of the tube.

特開平10−166085号公報Japanese Patent Laid-Open No. 10-166085 特開平10−166034号公報JP-A-10-166034 特開平10−166036号公報Japanese Patent Laid-Open No. 10-166036 特開平10−166086号公報JP-A-10-166086 特開2009−220153号公報JP 2009-220153 A

古河電工時報、第120号(平成19年9月)、pp93-94Furukawa Electric Times, No. 120 (September 2007), pp93-94 高辻則夫他5名、塑性と加工、vol.49,578,(2008),pp58-62Norio Takamine and 5 others, Plasticity and processing, vol.49,578, (2008), pp58-62

しかし、非特許文献2や特許文献5に開示されたプラグを用いる場合、押出し加工する際にプラグを自助回転可能な状態で軸方向に留めておく必要がある。このため、押し出し方向に高い力がプラグに加えられるとプラグを自助回転可能に保持する機構が損傷する懸念があり、しかも、管内面に形成する螺旋溝の最大捩れ角は約8度で留まっている。   However, when the plug disclosed in Non-Patent Document 2 or Patent Document 5 is used, it is necessary to keep the plug in the axial direction in a state where the plug can be self-rotated during extrusion. For this reason, when a high force is applied to the plug in the push-out direction, there is a concern that the mechanism for holding the plug so as to be able to rotate in a self-supporting manner may be damaged. Yes.

本発明は上記課題に鑑みてなされたものであり、簡単な機構で高い押し出し力で押し出し成形することができ、しかも、管内面に形成する螺旋状の凸部のねじれ角を大きくすることができる管材製造装置、管材製造方法、および、管材を提供することを課題とする。   The present invention has been made in view of the above problems, and can be extruded with a simple mechanism with a high extrusion force, and the helix angle of the spiral projection formed on the inner surface of the tube can be increased. An object is to provide a pipe material manufacturing apparatus, a pipe material manufacturing method, and a pipe material.

上記目的を達成するために、請求項1に係る発明は、ビレットの押し出し方向側に設けられ、貫通孔が形成されているダイスと、先端が前記貫通孔よりも前記押し出し方向側に延び出すように前記貫通孔を挿通し、前記ダイスとの間に隙間を形成する挿通部材と、を備え、前記挿通部材の側面側には、前記隙間から管材が押し出し成形される際に管材内面側に螺旋状の凸部を成形する溝が形成されていることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is provided on the side of the billet in the extrusion direction and has a die in which a through hole is formed, and the tip extends beyond the through hole in the extrusion direction. An insertion member that passes through the through hole and forms a gap with the die, and the side surface of the insertion member is spirally formed on the inner surface side of the tube material when the tube material is extruded from the gap. A groove for forming a convex portion is formed.

請求項2に係る発明は、前記溝として、複数本の螺旋溝が形成されていることを特徴とする。   The invention according to claim 2 is characterized in that a plurality of spiral grooves are formed as the grooves.

請求項3に係る発明は、前記挿通部材として、前記貫通孔を挿通する挿通部を一体的に有するフローティングダイを備えたことを特徴とする。   The invention according to claim 3 is characterized in that the insertion member is provided with a floating die that integrally has an insertion portion for inserting the through hole.

請求項4に係る発明は、前記隙間から押し出された前記管材を巻き取る巻き取り手段を更に備え、前記巻き取り手段は、前記管材を巻き取る巻き取りドラムと、前記巻き取りドラムを、ドラム軸回りに回転させつつ、前記管材の回転数と同じ回転数でドラム軸と直交する軸まわりに回転させる二軸回り回転機構と、を有することを特徴とする。   The invention according to claim 4 further includes winding means for winding up the tube material pushed out from the gap, and the winding means includes a winding drum that winds up the tube material, and the winding drum as a drum shaft. And a biaxial rotation mechanism that rotates around an axis orthogonal to the drum axis at the same rotation speed as that of the tube material while rotating around.

請求項5に係る発明は、前記隙間から押し出された管材の径を矯正する矯正手段を更に備え、前記矯正手段は、前記管材を通過させることで前記管材の外径を矯正する矯正用貫通孔が形成された矯正用ダイスと、前記矯正用ダイスを前記矯正用貫通孔の中心軸まわりに回転可能に保持する保持機構と、を有することを特徴とする。   The invention according to claim 5 further includes a correction means for correcting the diameter of the tube material pushed out from the gap, and the correction means corrects the outer diameter of the tube material by allowing the tube material to pass therethrough. And a holding mechanism for holding the correction die so as to be rotatable about the central axis of the correction through-hole.

請求項6に係る発明は、請求項1に記載の管材製造装置を用い、前記ビレットを加熱して前記隙間から押し出して前記凸部を内面側に有する管材を成形することを特徴とする。   The invention according to claim 6 is characterized in that the pipe material manufacturing apparatus according to claim 1 is used, and the billet is heated and extruded from the gap to form a tube material having the convex portion on the inner surface side.

請求項7に係る発明は、請求項1に記載の管材製造装置で押し出し成形されることで、管材内面側に前記凸部が成形されていることを特徴とする。   The invention according to claim 7 is characterized in that the convex portion is formed on the inner surface side of the tube material by extrusion molding with the tube material manufacturing apparatus according to claim 1.

請求項1に係る発明によれば、高い押圧力が挿通部材に加えられても、挿通部材が損傷する可能性が大幅に低い。従って、螺旋状の凸部のねじれ角が大きくなるように、挿通部材の溝部のねじれ角を大きくすることが可能になり、熱伝達率を高めた管材を押し出し成形で製造することが可能になる。   According to the first aspect of the present invention, even when a high pressing force is applied to the insertion member, the possibility that the insertion member is damaged is significantly low. Therefore, it is possible to increase the twist angle of the groove portion of the insertion member so that the twist angle of the spiral convex portion is increased, and it is possible to manufacture a tube material with an increased heat transfer coefficient by extrusion molding. .

請求項2に係る発明によれば、螺旋状の凸部を複数本形成することができる。   According to the invention of claim 2, a plurality of spiral convex portions can be formed.

請求項3に係る発明によれば、簡単な構造のフローティングダイを用い、設定したねじれ角の凸部が内面側に形成された管材を容易に製造することができる。   According to the third aspect of the present invention, it is possible to easily manufacture a tube material in which a convex portion having a set twist angle is formed on the inner surface side using a floating die having a simple structure.

請求項4に係る発明によれば、隙間から押し出された管材を巻き取る際に管材を逆方向に捩じらなくて済むので、巻き取る際に凸部のねじれ角が小さくなることを回避できる。   According to the invention of claim 4, since it is not necessary to twist the tube material in the reverse direction when winding the tube material pushed out from the gap, it is possible to avoid a reduction in the twist angle of the convex portion during winding. .

請求項5に係る発明によれば、隙間から押し出された後に管材の外形状に意図しない凹凸が形成されていても、この外形状を矯正することが可能である。   According to the invention which concerns on Claim 5, even if the unevenness | corrugation which is not intended is formed in the outer shape of a pipe material after being extruded from a clearance gap, it is possible to correct this outer shape.

請求項6に係る発明によれば、螺旋状の凸部のねじれ角を大きくして熱伝達率を高めた管材を押し出し成形で容易に製造することができる。   According to the invention which concerns on Claim 6, the pipe material which enlarged the helix angle of the helical convex part and improved the heat transfer rate can be easily manufactured by extrusion molding.

請求項7に係る発明によれば、押し出し成形で製造される管材で、螺旋状の凸部のねじれ角を大きくして熱伝達率を高めた管材とすることができる。   According to the invention which concerns on Claim 7, it can be set as the pipe material which increased the heat transfer rate by enlarging the helix angle of a helical convex part with the pipe material manufactured by extrusion molding.

第1実施形態の管材製造装置の構成を示す正面断面図である。It is front sectional drawing which shows the structure of the pipe material manufacturing apparatus of 1st Embodiment. 第1実施形態の管材製造装置を構成するフローティングダイの斜視図である。It is a perspective view of the floating die which comprises the pipe material manufacturing apparatus of 1st Embodiment. 図1の部分拡大図である(管材の図示を省略)。It is the elements on larger scale of FIG. 1 (illustration of a pipe material is abbreviate | omitted). 第1実施形態で製造された管材の斜視断面図である。It is a perspective sectional view of the pipe material manufactured by a 1st embodiment. 第1実施形態で製造された管材の別の例を示す部分平面図である。It is a fragmentary top view which shows another example of the pipe material manufactured by 1st Embodiment. 第2実施形態の巻き取り装置の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of the winding apparatus of 2nd Embodiment. 第3実施形態の矯正装置の構成を示す斜視図である。It is a perspective view which shows the structure of the correction apparatus of 3rd Embodiment. 第3実施形態の矯正装置で、(A)は側面図、(b)は正面断面図である。In the correction apparatus of 3rd Embodiment, (A) is a side view, (b) is front sectional drawing. 実験例で得られたグラフ図である。It is the graph obtained by the experiment example. (a)は実験例で製造された管材Pの側面断面図であり、(b)は実験例で製造された管材Pの断面斜視図である。(A) is side surface sectional drawing of the pipe material P manufactured by the experiment example, (b) is a cross-sectional perspective view of the pipe material P manufactured by the experiment example.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法比率等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and dimensional ratios and the like are different from actual ones. Accordingly, specific dimensional ratios and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, The layout is not specified as follows. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

なお、第2実施形態以下では、すでに説明したものと同様の構成要素には同じ符号を付してその説明を省略する。   In the second and subsequent embodiments, the same components as those already described are denoted by the same reference numerals and description thereof is omitted.

[第1実施形態]
まず、第1実施形態について説明する。図1は、本実施形態の管材製造装置の構成を示す正面断面図であり、図2は、管材製造装置を構成するフローティングダイの斜視図である。図3は図1の部分拡大図である。なお、図3では、説明の都合上、管材を省略して描いている。
[First Embodiment]
First, the first embodiment will be described. FIG. 1 is a front cross-sectional view showing a configuration of a pipe material manufacturing apparatus according to the present embodiment, and FIG. 2 is a perspective view of a floating die constituting the pipe material manufacturing apparatus. FIG. 3 is a partially enlarged view of FIG. In FIG. 3, the pipe material is omitted for convenience of explanation.

本実施形態で説明する管材製造装置(押し出し成形装置)10は、収容された押し出し成形用のビレット12を加熱可能なコンテナ14と、コンテナ14の押し出し方向側に設けられたダイス16と、コンテナ14のビレット収容空間Sに収容されたビレット12に上方から当接するダミーブロック18と、ダミーブロック18をF側(ダイス側)に向けて押圧するラム20と、を備えている。ビレット収容空間Sは円筒内側空間状である。   A pipe manufacturing apparatus (extrusion molding apparatus) 10 described in the present embodiment includes a container 14 capable of heating a billet 12 for extrusion molding accommodated therein, a die 16 provided on the side of the container 14 in the extrusion direction, and a container 14. A dummy block 18 that comes into contact with the billet 12 accommodated in the billet accommodating space S from above and a ram 20 that presses the dummy block 18 toward the F side (die side). The billet accommodation space S has a cylindrical inner space shape.

ダイス16の中央には、ダイス中心軸Cに沿ってダイス16の押し出し方向端から押し出し方向Fとは反対方向(図1では紙面上方向)に筒状空間を形成する凹部20と、この凹部20とビレット収容空間Sとを連通させる円孔状の貫通孔22と、が形成されている。貫通孔22の中心軸およびビレット収容空間Sの中心軸はダイス中心軸Cと同じにされている。凹部20の内径は、後述の隙間24から押し出される管材Pがスムーズに押し出されることを妨げない程度に、貫通孔22の外径よりも大きくされている。   In the center of the die 16, a concave portion 20 that forms a cylindrical space in the direction opposite to the extrusion direction F (upward in FIG. 1) from the extrusion direction end of the die 16 along the die center axis C, and the concave portion 20. And a through-hole 22 in the form of a hole that allows the billet accommodating space S to communicate with each other. The central axis of the through hole 22 and the central axis of the billet accommodating space S are the same as the die central axis C. The inner diameter of the recess 20 is set to be larger than the outer diameter of the through hole 22 so as not to prevent the tube material P pushed out from the gap 24 described later from being pushed out smoothly.

また、管材製造装置10は、コンテナ14内に入れられたフローティングダイ30を備えている。このフローティングダイ30は、本体部32と、本体部32の中央から押し出し方向側(以下、F側という)に延び出す挿通部34と、で構成される。本体部32は円盤状であり、本体部32には中心軸まわりに均等に配置された複数のビレット流動用孔36が形成されている。フローティングダイ30の位置については、予め設定された位置とされている。   Moreover, the pipe material manufacturing apparatus 10 includes a floating die 30 placed in the container 14. The floating die 30 includes a main body portion 32 and an insertion portion 34 that extends from the center of the main body portion 32 to the pushing direction side (hereinafter referred to as F side). The main body 32 has a disk shape, and a plurality of billet flow holes 36 are formed in the main body 32 so as to be evenly arranged around the central axis. The position of the floating die 30 is a preset position.

挿通部34は円柱状であり、先端34Tが貫通孔22よりもF側(図1では下側)に延び出すように貫通孔22を挿通している。そして、挿通部34は、ダイス16との間に隙間24を形成するとともに、側面側(外周側)に溝部38を有する。コンテナ14内のビレット12が隙間24から押し出されてなる管材P(図1、図4参照)が成形される際に、管材内面側に螺旋状の凸部42(図4参照)が成形されるように、この溝部38には複数本の螺旋溝40(螺旋状の溝)が形成されている。   The insertion portion 34 has a columnar shape, and the through hole 22 is inserted so that the tip 34T extends to the F side (lower side in FIG. 1) from the through hole 22. And the insertion part 34 has the groove part 38 in the side surface side (outer peripheral side) while forming the clearance gap 24 between the dice | dies 16. FIG. When the pipe material P (see FIGS. 1 and 4) formed by the billet 12 in the container 14 being pushed out from the gap 24 is formed, a spiral convex portion 42 (see FIG. 4) is formed on the inner surface side of the pipe material. As described above, a plurality of spiral grooves 40 (spiral grooves) are formed in the groove portion 38.

この螺旋溝40のねじれ角θ(図2参照)は、10〜40°の範囲であることが好ましく、その中でも15°以上であることが好ましい。10°未満であると、管材Pと管材P内を流動する熱媒体との間の熱伝達率があまり高くない。   The twist angle θ (see FIG. 2) of the spiral groove 40 is preferably in the range of 10 to 40 °, and more preferably 15 ° or more. If it is less than 10 °, the heat transfer coefficient between the pipe P and the heat medium flowing in the pipe P is not so high.

本実施形態では、隙間24の間隔G、すなわち、挿通部34の外周と貫通孔22の内周との間隔Gは、押し出し成形で製造する管材Pの肉厚に応じて設定されている。また、貫通孔22のF側の縁部22E(図1および図3参照)からの挿通部34の延び出し長さL、および、貫通孔22の軸方向長さ(F方向長さ)Mは、ビレット12の材質や温度、隙間24の間隔G、ラム20の押圧力、螺旋溝40のねじれ角θ、凸部42のねじれ角α(図10、図11参照)などに応じて設定されている。   In the present embodiment, the gap G of the gap 24, that is, the gap G between the outer periphery of the insertion portion 34 and the inner periphery of the through hole 22 is set according to the thickness of the tube material P manufactured by extrusion molding. Further, the extension length L of the insertion portion 34 from the F-side edge 22E (see FIGS. 1 and 3) of the through hole 22 and the axial length (F direction length) M of the through hole 22 are as follows. , The material and temperature of the billet 12, the gap G of the gap 24, the pressing force of the ram 20, the twist angle θ of the spiral groove 40, the twist angle α of the convex portion 42 (see FIGS. 10 and 11), etc. Yes.

(作用、効果)
以下、本実施形態の作用、効果について説明する。本実施形態では、ビレットとしてアルミニウムを用いる例で説明するが、アルミニウム以外でも適用可能である。
(Function, effect)
Hereinafter, the operation and effect of the present embodiment will be described. In this embodiment, an example in which aluminum is used as a billet will be described. However, other than aluminum can be applied.

まず、フローティングダイ30をコンテナ14内の設定位置に配置し、ビレット12をコンテナ14に入れて所定温度にまで加熱する。ビレット12としてアルミニウムを用いる場合、500℃程度に加熱することが、押し出し成形する観点で好ましい。   First, the floating die 30 is placed at a set position in the container 14, and the billet 12 is placed in the container 14 and heated to a predetermined temperature. When aluminum is used as the billet 12, heating to about 500 ° C. is preferable from the viewpoint of extrusion molding.

そして、ビレット12が所定温度となった状態で、ラム20に押し出し方向への押圧力を加える。この結果、ビレット12が塑性変形してビレット流動用孔36を通過して本体部32のF側に流動し隙間24に到達する。そして、塑性変形して隙間24から図4に示すような管材Pとなって押し出される。その際、螺旋溝40によって管材Pの内面側(内周側)に螺旋状の凸部42が形成される。凸部42のねじれ角αは、主に螺旋溝40のねじれ角θによって決まる。   Then, with the billet 12 at a predetermined temperature, a pressing force in the pushing direction is applied to the ram 20. As a result, the billet 12 is plastically deformed, passes through the billet flow hole 36, flows to the F side of the main body 32, and reaches the gap 24. Then, it is plastically deformed and extruded from the gap 24 as a tube material P as shown in FIG. At that time, a spiral convex portion 42 is formed on the inner surface side (inner peripheral side) of the tube material P by the spiral groove 40. The twist angle α of the convex portion 42 is mainly determined by the twist angle θ of the spiral groove 40.

このように、本実施形態では、フローティングダイ30が一体物であり、本体部32に対して相対移動するフローティングダイ部分は形成されていない。従って、高い押圧力が挿通部34に加えられても、挿通部34が損傷する可能性は、従来に比べて大幅に低下する。よって、凸部42のねじれ角αが従来よりも大幅に大きくなるように螺旋溝40のねじれ角θを大幅に大きくすることが可能になる。従って、熱交換器などで熱伝達率を格段に高めた管材Pを押し出し成形で製造することができる。また、挿通部34および貫通孔22の径を小さくして内径の小さい管材Pを容易に成形することができる。   Thus, in the present embodiment, the floating die 30 is an integral object, and no floating die portion that moves relative to the main body portion 32 is formed. Therefore, even if a high pressing force is applied to the insertion portion 34, the possibility that the insertion portion 34 is damaged is greatly reduced compared to the conventional case. Therefore, it becomes possible to greatly increase the twist angle θ of the spiral groove 40 so that the twist angle α of the convex portion 42 is significantly larger than the conventional one. Therefore, it is possible to manufacture the tube material P having a significantly increased heat transfer coefficient by a heat exchanger or the like by extrusion molding. Moreover, the diameter of the insertion part 34 and the through-hole 22 can be made small, and the pipe material P with a small internal diameter can be shape | molded easily.

また、ビレット12としてアルミニウムを用いることにより、押し出し成形がし易く、しかも管材Pを軽量にすることができる。   Further, by using aluminum as the billet 12, extrusion molding is easy and the tube material P can be reduced in weight.

また、挿通部34の側面側に螺旋溝40を複数本形成しておくことで、螺旋状の凸部42を複数本成形することができる。   Further, by forming a plurality of spiral grooves 40 on the side surface side of the insertion portion 34, a plurality of spiral convex portions 42 can be formed.

また、簡単な構造のフローティングダイ30を用い、設定したねじれ角αの凸部42を内面側に有する管材Pを容易に製造することができる。   Further, it is possible to easily manufacture the pipe member P having the convex portion 42 having the set twist angle α on the inner surface side by using the floating die 30 having a simple structure.

なお、本実施形態では、コンテナ14からのビレット12の押し出し方向Fを下方向に描いた図で説明したが、本発明では押し出し方向は下方には限定されない。水平方向や斜め下方に押し出しても良いし、更には上方向に押し出して管材を成形することも可能である。   In the present embodiment, the drawing direction F of the billet 12 from the container 14 is drawn downward, but in the present invention, the pushing direction is not limited to the downward direction. It is possible to extrude in the horizontal direction or obliquely downward, and further to extrude upward to form a tube material.

また、管材Pは、円管状に限らず、例えば角状とすることも可能である。この場合、挿通部34を角柱状にして、その側面側に溝部を形成する。   Moreover, the pipe material P is not limited to a circular tube shape, and may be a square shape, for example. In this case, the insertion part 34 is formed in a prismatic shape, and a groove part is formed on the side surface side.

また、本実施形態では、ダイス16の貫通孔22を挿通する挿通部材として、フローティングダイ30の挿通部34が貫通孔22を挿通する例で説明したが、本発明はこれに限らず、挿通部材として、マンドレルなどの他の部材を用いて挿通させてもよい。   Moreover, although this embodiment demonstrated the example which the penetration part 34 of the floating die 30 penetrates the through-hole 22 as an insertion member which penetrates the through-hole 22 of the die | dye 16, this invention is not limited to this, An insertion member As an alternative, it may be inserted using another member such as a mandrel.

また、本実施形態では、溝として螺旋溝40が挿通部34に形成されている例で説明したが、螺旋状の凸部42を形成することができる溝であれば、螺旋溝40に限らず他の形状の溝とすることが可能である。   In the present embodiment, the spiral groove 40 is formed in the insertion portion 34 as a groove. However, the groove is not limited to the spiral groove 40 as long as the spiral convex portion 42 can be formed. Other groove shapes are possible.

また、本実施形態では、ダイス16の中央に凹部20が形成され、その凹部20よりも径が小さい貫通孔22を形成した例で説明したが、特に凹部20を設けない構成にすることが可能であり、貫通孔22のF側の縁部22Eから挿通部34が延び出していれば本実施形態の効果が奏される。   In the present embodiment, the example in which the concave portion 20 is formed in the center of the die 16 and the through hole 22 having a smaller diameter than the concave portion 20 is formed has been described. However, a configuration in which the concave portion 20 is not particularly provided is possible. If the insertion part 34 extends from the edge 22E on the F side of the through hole 22, the effect of the present embodiment is achieved.

また、図4では、螺旋状の凸部42が8本形成されている例を描いており、これを成形できるように、図2では挿通部34に8本の螺旋溝40が形成されているが、凸部および螺旋溝の本数は特に限定せず、図5に示すようにもっと多く(例えば24本)の螺旋溝41を形成してもっと多くの凸部を成形してもよい。また、逆に凸部の本数がもっと少なくても(例えば1本)、凸部を成形したことによるこれらの効果が奏される。   FIG. 4 shows an example in which eight spiral convex portions 42 are formed. In FIG. 2, eight spiral grooves 40 are formed in the insertion portion 34 so that the convex portions 42 can be formed. However, the number of protrusions and spiral grooves is not particularly limited, and more protrusions may be formed by forming more (for example, 24) spiral grooves 41 as shown in FIG. On the other hand, even if the number of convex portions is smaller (for example, one), these effects are achieved by forming the convex portions.

また、アルミニウムのビレット12の押し出し成形ではなくプラスチックの押し出し成形によって、内面側に螺旋溝を有するプラスチック管を製造することも可能である。   It is also possible to manufacture a plastic tube having a spiral groove on the inner surface side by plastic extrusion rather than extrusion of the aluminum billet 12.

また、貫通孔22の孔壁に螺旋溝を形成することで、管材Pの外周側にも螺旋状の凸部を形成するように成形することも可能である。   In addition, by forming a spiral groove in the hole wall of the through hole 22, it is possible to form a spiral convex portion on the outer peripheral side of the tube material P.

[第2実施形態]
次に、第2実施形態について説明する。本実施形態の管材製造装置は、第1実施形態に比べ、管材製造装置10から押し出された管材Pを、図6に示すような巻き取り装置50を更に備えている。以下の説明では、管材製造装置10が水平方向に配置されて隙間24から管材Pが水平方向に押し出され、この管材Pが巻き取り装置50に直線状に案内されて巻き取られることで説明する。
[Second Embodiment]
Next, a second embodiment will be described. Compared with the first embodiment, the pipe material manufacturing apparatus of the present embodiment further includes a winding device 50 as shown in FIG. 6 for the pipe material P extruded from the pipe material manufacturing apparatus 10. In the following description, the pipe material manufacturing apparatus 10 is arranged in the horizontal direction, the pipe material P is pushed out from the gap 24 in the horizontal direction, and this pipe material P is linearly guided to the winding device 50 and wound up. .

この巻き取り装置50は、管材Pを巻き取る巻き取りドラム52と、巻き取りドラム52を、ドラム軸52Xの回りに回転させつつ、ドラム軸52Xと直交し貫通孔22の方向を向く直交軸52Yの回りにこの巻き取りドラム52を回転させる二軸回り回転機構54と、を備えている。   The winding device 50 includes a winding drum 52 that winds up the tube material P, and an orthogonal shaft 52Y that is orthogonal to the drum shaft 52X and faces the through hole 22 while rotating the winding drum 52 around the drum shaft 52X. And a biaxial rotation mechanism 54 for rotating the take-up drum 52 around the axis.

二軸回り回転機構54は、円輪状でその中心軸まわりに回転自在となるように保持された回転体56と、回転体56に回転力を与える駆動ローラ58と、を備えている。駆動ローラ58は回転体56の外周に当接しており、駆動ローラ58と回転体56との摩擦力により駆動ローラ58からの回転力が回転体56に伝達される構造になっている。そして、回転体56には、巻き取りドラム52のドラム軸両端部を回転可能に保持するドラム軸端保持部60が設けられている。この構成により、ドラム軸52Xがドラム軸端保持部60に回動可能に保持されて外部からドラム軸52Xの回りに回転する力が付与されることによって、巻き取りドラム52が回転して管材Pを巻き取るようになっている。   The biaxial rotation mechanism 54 includes a rotary body 56 that is in the shape of a ring and is held so as to be rotatable about its central axis, and a drive roller 58 that applies a rotational force to the rotary body 56. The drive roller 58 is in contact with the outer periphery of the rotator 56, and the rotational force from the drive roller 58 is transmitted to the rotator 56 by the frictional force between the drive roller 58 and the rotator 56. The rotating body 56 is provided with a drum shaft end holding portion 60 that rotatably holds both end portions of the drum shaft of the take-up drum 52. With this configuration, the drum shaft 52X is rotatably held by the drum shaft end holding portion 60, and a force to rotate around the drum shaft 52X is applied from the outside, whereby the take-up drum 52 rotates and the tube material P is rotated. Is supposed to wind up.

また、本実施形態では、駆動ローラ58の回転数を制御する制御部62が設けられている。この制御部62は、隙間24から押し出されてくる管材Pの回転数と回転体56の回転数とが同じになるように、回転体56および駆動ローラ58の半径を考慮して駆動ローラ58の回転数を制御する。   In the present embodiment, a control unit 62 that controls the rotational speed of the drive roller 58 is provided. The control unit 62 considers the radii of the rotating body 56 and the driving roller 58 in consideration of the radii of the rotating body 56 and the driving roller 58 so that the rotational speed of the tube P pushed out of the gap 24 and the rotational speed of the rotating body 56 are the same. Control the number of revolutions.

本実施形態では、隙間24から回転しながら押し出されてくる管材Pを、管材Pと同じ回転数で巻き取りドラム52を直交軸52Yの回りに回転させつつ、この巻き取りドラム52で巻き取っていく。従って、管材Pの回転を妨げることなく管材Pを巻き取ることができる。すなわち、巻き取る際に管材Pを逆方向に捩じらなくて済むので、巻き取る際に凸部42のねじれ角αが小さくなることを回避できる。このことは、成形する管材Pが長い場合(例えば数百メートル程度)、巻き取りにかかる時間を短縮する上で特に大きな効果を奏する。   In the present embodiment, the tubular material P pushed out while rotating from the gap 24 is wound around the winding drum 52 while rotating the winding drum 52 around the orthogonal axis 52Y at the same rotational speed as the tubular material P. Go. Therefore, the pipe material P can be wound up without hindering the rotation of the pipe material P. That is, since it is not necessary to twist the tube material P in the reverse direction when winding, it is possible to avoid the twist angle α of the convex portion 42 from becoming small when winding. This is particularly effective for shortening the winding time when the pipe P to be formed is long (for example, about several hundred meters).

また、管材Pの回転数を強制的に回転体56の回転数とすることになるので、隙間24から送り出された管材Pの回転数が設定回転数からずれても、このずれを解消させることができる。   Moreover, since the rotation speed of the pipe material P is forcibly set to the rotation speed of the rotating body 56, even if the rotation speed of the pipe material P sent out from the gap 24 deviates from the set rotation speed, this deviation can be eliminated. Can do.

なお、貫通孔22に向く直交軸52Yの回りに回転体56を回転させることで説明したが、途中で管材Pがカーブを描いて巻き取りドラム52に巻き取られる場合など、巻き取り装置50に巻き取られる直前の管材長手方向が貫通孔22の方向を向いていないときには、上記の直交軸52Yではなく、巻き取られる直前の管材長手方向の軸回りに回転体56を回転させる。   In addition, although it demonstrated by rotating the rotary body 56 around the orthogonal axis | shaft 52Y which faces the through-hole 22, when the pipe material P draws a curve in the middle and is wound up by the winding drum 52, the winding apparatus 50 is used. When the longitudinal direction of the tube material just before being wound does not face the direction of the through hole 22, the rotating body 56 is rotated around the axis in the longitudinal direction of the tube material just before being wound, instead of the orthogonal axis 52Y.

[第3実施形態]
次に、第3実施形態について説明する。本実施形態の管材製造装置は、第2実施形態に比べ、隙間24から押し出された管材Pの径を矯正する矯正装置72(図7、図8参照)を隙間24と巻き取り装置50との間に更に備えている。
[Third Embodiment]
Next, a third embodiment will be described. Compared to the second embodiment, the pipe material manufacturing apparatus according to the present embodiment includes a straightening device 72 (see FIGS. 7 and 8) that corrects the diameter of the pipe material P pushed out from the gap 24 between the gap 24 and the winding device 50. It has more in between.

矯正装置72は、管材Pを通過させることで管材Pの外径を矯正する矯正用貫通孔74が形成された矯正用ダイス76と、矯正用ダイス76を矯正用貫通孔74の中心軸まわりに回転可能に保持する筒状の保持部80と、を有する。   The straightening device 72 includes a straightening die 76 in which a straightening through hole 74 for straightening the outer diameter of the tubular material P by allowing the tubular material P to pass therethrough, and the straightening die 76 around the central axis of the straightening through hole 74. And a cylindrical holding portion 80 that is rotatably held.

保持部80の内周側には、図8(b)に示すように、ボール状のベアリング部材82が配置され得るように収容凹部84が形成されており、この収容凹部84に配置されたベアリング部材82によって、保持部80に挿通された矯正用ダイス76が回転可能にされている。   As shown in FIG. 8 (b), an accommodation recess 84 is formed on the inner peripheral side of the holding portion 80 so that a ball-shaped bearing member 82 can be arranged, and the bearing disposed in the accommodation recess 84. The correction die 76 inserted through the holding portion 80 is rotatable by the member 82.

本実施形態では、隙間24から送り出された管材Pを矯正用貫通孔74に挿通させることで、隙間24から押し出された後に管材Pの外形状に意図しない凹凸が形成されていても、この外形状を矯正することが可能である。例えば、隙間24から押し出された後に管材Pが膨らんで外径が設定値に比べて大きくなっても、この外径を矯正することができる。また、矯正用貫通孔74に管材Pを挿通させる際に矯正用ダイス76から管材Pを引き抜く力が必要となるが、この力を巻き取り装置50から管材Pに及ぼすことができ、新たに引き抜き装置を設けることなく効率的に管材Pの外径を矯正することができる。   In the present embodiment, the pipe material P sent out from the gap 24 is inserted into the correction through-hole 74, so that even if unintended irregularities are formed on the outer shape of the pipe material P after being pushed out from the gap 24, It is possible to correct the shape. For example, even if the tube material P expands after being pushed out from the gap 24 and the outer diameter becomes larger than the set value, the outer diameter can be corrected. Further, when inserting the pipe material P through the straightening through-hole 74, a force is required to pull out the pipe material P from the straightening die 76. This force can be applied to the pipe material P from the winding device 50, and a new pull-out is performed. The outer diameter of the pipe P can be corrected efficiently without providing a device.

なお、この矯正用ダイス76は、管材Pを巻き取り装置50で巻き取る途中に限らず、隙間24から押し出された直後の管材Pに使用することが可能であり、また、巻き取った後の管材Pに対しても、例えば巻き出しする際に使用することが可能である。更には、管材Pを所定長さに切断した後に使用することも可能である。   The straightening die 76 can be used not only in the middle of winding the pipe P with the winding device 50 but also in the pipe P immediately after being pushed out from the gap 24. For example, the pipe P can be used when unwinding. Furthermore, it is also possible to use the pipe P after cutting it into a predetermined length.

<実験例>
本発明者は、第1実施形態で、1つのフローティングダイ30を用い、貫通孔22からの挿通部34の延び出し長さL(図3参照)をパラメータとして変化させ、各延び出し長さLで成形された管材Pについて、螺旋状の凸部42のねじれ角αを測定した。本実験例では凸部42の本数を20本とし、Mを4mmとした。測定結果を図9に示す。なお、図9で、Lが負の場合では凸部42の下端が縁部22Eよりも上方に位置しており、縁部22Eを形成する下面よりも凸部42が引っ込んでいることを意味する。
<Experimental example>
The inventor uses one floating die 30 in the first embodiment, changes the extension length L (see FIG. 3) of the insertion portion 34 from the through hole 22 as a parameter, and sets each extension length L. The twist angle α of the spiral convex portion 42 was measured for the pipe material P formed in step (1). In this experimental example, the number of convex portions 42 was 20 and M was 4 mm. The measurement results are shown in FIG. In FIG. 9, when L is negative, it means that the lower end of the convex portion 42 is positioned above the edge portion 22E, and the convex portion 42 is retracted from the lower surface forming the edge portion 22E. .

図9から判るように、延び出し長さLが長いほど、凸部42のねじれ角αが大きいという結果になっており、しかも30°以上の高いねじれ角αの凸部42を形成できた管材もあった。なお、螺旋溝40のねじれ角θを更に大きくすることや、挿通部34の延び出し長さLを更に長くすることなどで、ねじれ角αを更に大きくすることが可能である。   As can be seen from FIG. 9, the longer the extended length L, the larger the twist angle α of the convex portion 42, and the tube material in which the convex portion 42 having a high twist angle α of 30 ° or more could be formed. There was also. Note that the twist angle α can be further increased by further increasing the twist angle θ of the spiral groove 40 or by further increasing the extension length L of the insertion portion 34.

また、図10で、(a)は本実験例で成形された管材Pの側面断面図であり、(b)は本実験例で成形された管材Pの断面斜視図である。管材Pの内周側に螺旋状の凸部42が形成されていることが確認された。   10A is a side cross-sectional view of the tube material P formed in this experimental example, and FIG. 10B is a cross-sectional perspective view of the tube material P formed in this experimental example. It was confirmed that the spiral convex portion 42 was formed on the inner peripheral side of the tube material P.

なお、隙間24から管材Pが押し出される際、管材Pは回転しながら押し出されるので、管材Pの外周側にはねじれ線の模様が形成される。このねじれ線のねじれ角αは、凸部42のねじれ角αと同じ角度となる。   Note that, when the pipe material P is pushed out from the gap 24, the pipe material P is pushed out while being rotated, so that a twisted line pattern is formed on the outer peripheral side of the pipe material P. The twist angle α of the twist line is the same as the twist angle α of the convex portion 42.

10 管材製造装置
16 ダイス
12 ビレット
22 貫通孔
30 フローティングダイ
34 挿通部
34T 先端
24 隙間
42 凸部
40 螺旋溝
41 螺旋溝
42 凸部
50 巻き取り装置(巻き取り手段)
52 巻き取りドラム
54 二軸回り回転機構
72 矯正装置(矯正手段)
74 矯正用貫通孔
76 矯正用ダイス
80 保持部(保持機構)
F 押し出し方向
P 管材
DESCRIPTION OF SYMBOLS 10 Pipe material manufacturing apparatus 16 Dice 12 Billet 22 Through-hole 30 Floating die 34 Insertion part 34T Tip 24 Clearance 42 Protrusion 40 Spiral groove 41 Spiral groove 42 Convex part 50 Winding device (winding means)
52 Winding drum 54 Two-axis rotation mechanism 72 Correction device (correction means)
74 Straightening through hole 76 Straightening die 80 Holding part (holding mechanism)
F Extrusion direction P Tube material

Claims (7)

ビレットの押し出し方向側に設けられ、貫通孔が形成されているダイスと、
先端が前記貫通孔よりも前記押し出し方向側に延び出すように前記貫通孔を挿通し、前記ダイスとの間に隙間を形成する挿通部材と、
を備え、
前記挿通部材の側面側には、前記隙間から管材が押し出し成形される際に管材内面側に螺旋状の凸部を成形する溝が形成されていることを特徴とする管材製造装置。
A die provided on the extrusion side of the billet and having a through hole;
An insertion member that passes through the through-hole so that the tip extends to the side of the extrusion direction from the through-hole, and forms a gap between the die,
With
An apparatus for manufacturing a pipe material, wherein a groove for forming a spiral convex part is formed on the inner surface side of the pipe material when the pipe material is extruded from the gap on the side surface side of the insertion member.
前記溝として、複数本の螺旋溝が形成されていることを特徴とする請求項1に記載の管材製造装置。   The pipe material manufacturing apparatus according to claim 1, wherein a plurality of spiral grooves are formed as the grooves. 前記挿通部材として、前記貫通孔を挿通する挿通部を一体的に有するフローティングダイを備えたことを特徴とする請求項1または2に記載の管材製造装置。   The pipe material manufacturing apparatus according to claim 1, wherein the insertion member includes a floating die that integrally includes an insertion portion through which the through hole is inserted. 前記隙間から押し出された前記管材を巻き取る巻き取り手段を更に備え、
前記巻き取り手段は、
前記管材を巻き取る巻き取りドラムと、
前記巻き取りドラムを、ドラム軸回りに回転させつつ、前記管材の回転数と同じ回転数でドラム軸と直交する軸まわりに回転させる二軸回り回転機構と、
を有することを特徴とする請求項1〜3のうちいずれか1項に記載の管材製造装置。
A winding means for winding up the tube material pushed out from the gap;
The winding means includes
A take-up drum for winding the tube material;
A biaxial rotation mechanism that rotates the winding drum around the axis of the drum while rotating around the axis perpendicular to the drum axis at the same rotational speed as that of the tube material;
The pipe material manufacturing apparatus according to any one of claims 1 to 3, wherein:
前記隙間から押し出された管材の径を矯正する矯正手段を更に備え、
前記矯正手段は、
前記管材を通過させることで前記管材の外径を矯正する矯正用貫通孔が形成された矯正用ダイスと、
前記矯正用ダイスを前記矯正用貫通孔の中心軸まわりに回転可能に保持する保持機構と、
を有することを特徴とする請求項1〜4のうちいずれか1項に記載の管材製造装置。
Further comprising a correction means for correcting the diameter of the tube extruded from the gap,
The correction means includes
A straightening die in which a straightening through hole for straightening the outer diameter of the tubular material by passing the tubular material;
A holding mechanism for holding the correcting die so as to be rotatable around a central axis of the correcting through hole;
The pipe material manufacturing apparatus according to any one of claims 1 to 4, wherein:
請求項1に記載の管材製造装置を用い、前記ビレットを加熱して前記隙間から押し出して前記凸部を内面側に有する管材を成形することを特徴とする管材製造方法。   A pipe material manufacturing method, comprising: using the pipe material manufacturing apparatus according to claim 1 to form a pipe material having the convex portion on an inner surface side by heating the billet and extruding the billet from the gap. 請求項1に記載の管材製造装置で押し出し成形されることで、管材内面側に前記凸部が成形されていることを特徴とする管材。   The tubular material, wherein the convex portion is formed on the inner surface side of the tubular material by extrusion molding with the tubular material manufacturing apparatus according to claim 1.
JP2011112537A 2011-05-19 2011-05-19 Pipe material manufacturing device, pipe material manufacturing method, and pipe material Pending JP2012240084A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011112537A JP2012240084A (en) 2011-05-19 2011-05-19 Pipe material manufacturing device, pipe material manufacturing method, and pipe material
CN201280022916.6A CN103596708A (en) 2011-05-19 2012-05-18 Pipe material manufacturing device, pipe material manufacturing method, and pipe material
PCT/JP2012/062860 WO2012157768A1 (en) 2011-05-19 2012-05-18 Pipe material manufacturing device, pipe material manufacturing method, and pipe material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112537A JP2012240084A (en) 2011-05-19 2011-05-19 Pipe material manufacturing device, pipe material manufacturing method, and pipe material

Publications (1)

Publication Number Publication Date
JP2012240084A true JP2012240084A (en) 2012-12-10

Family

ID=47177082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112537A Pending JP2012240084A (en) 2011-05-19 2011-05-19 Pipe material manufacturing device, pipe material manufacturing method, and pipe material

Country Status (3)

Country Link
JP (1) JP2012240084A (en)
CN (1) CN103596708A (en)
WO (1) WO2012157768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186695A1 (en) * 2014-06-04 2015-12-10 眞 村田 Apparatus for manufacturing pipe, method for manufacturing pipe, and pipe

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193259A1 (en) * 2013-05-29 2014-12-04 Gubenko Lev Anatolyevich Method and device for forming long hollow articles (variants)
US9533343B2 (en) * 2014-06-12 2017-01-03 Ford Global Technologies, Llc Aluminum porthole extruded tubing with locating feature
CN105033597B (en) * 2015-08-03 2017-07-11 重庆鸿全兴业金属制品股份有限公司 The technique that stainless steel removes stretching material line
US10906080B2 (en) 2018-04-16 2021-02-02 Ford Motor Company System and methods to radially orient extruded tubing for vehicle body component
CN112620376B (en) * 2020-12-14 2022-06-28 北方材料科学与工程研究院有限公司 Self-rotation forward extrusion forming die and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209430A (en) * 1983-05-11 1984-11-28 Kobe Steel Ltd Manufacture of spiral grooved tube
JPH10166036A (en) * 1996-12-11 1998-06-23 Hitachi Cable Ltd Manufacture of tube having groove on internal surface, and its device
JP2000005809A (en) * 1998-06-25 2000-01-11 Shimomura Tokushu Kako Kk Continuous reduction machine
JP2009220153A (en) * 2008-03-17 2009-10-01 Aisin Keikinzoku Co Ltd Method of manufacturing tube with spirally grooved inside surface and its device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130669A (en) * 1975-05-10 1976-11-13 Hitachi Cable Method of hydraulically extruding tube and tubular material of different section and hydraulically extruding combination dies therefor
CN1313793C (en) * 2003-02-28 2007-05-02 日立电线株式会社 Spiral internal-recessing metal pipe and method for manufacturing the same
CN101633009A (en) * 2009-07-16 2010-01-27 上海交通大学 Helical tube hot-extrusion die in porous magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209430A (en) * 1983-05-11 1984-11-28 Kobe Steel Ltd Manufacture of spiral grooved tube
JPH10166036A (en) * 1996-12-11 1998-06-23 Hitachi Cable Ltd Manufacture of tube having groove on internal surface, and its device
JP2000005809A (en) * 1998-06-25 2000-01-11 Shimomura Tokushu Kako Kk Continuous reduction machine
JP2009220153A (en) * 2008-03-17 2009-10-01 Aisin Keikinzoku Co Ltd Method of manufacturing tube with spirally grooved inside surface and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186695A1 (en) * 2014-06-04 2015-12-10 眞 村田 Apparatus for manufacturing pipe, method for manufacturing pipe, and pipe

Also Published As

Publication number Publication date
WO2012157768A1 (en) 2012-11-22
CN103596708A (en) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2012157768A1 (en) Pipe material manufacturing device, pipe material manufacturing method, and pipe material
CN102711860B (en) Flexible axis structure
US9517500B2 (en) Method and appraratus for forming a helical tube bundle
JP2012236225A (en) Method and device for manufacturing inner helically grooved pipe
JP2009220153A (en) Method of manufacturing tube with spirally grooved inside surface and its device
JP2011133217A (en) Heat transfer pipe and method for manufacturing the same
US9636733B2 (en) Method and apparatus for forming a helical tube bundle
JP2011088689A (en) Manufacturing device of winding body
WO2015186695A1 (en) Apparatus for manufacturing pipe, method for manufacturing pipe, and pipe
JP6681205B2 (en) Winding body manufacturing apparatus and manufacturing method
JP4999468B2 (en) Spiral tube manufacturing method and spiral tube manufacturing apparatus
JP5871269B2 (en) Spiral tube extrusion molding method and spiral tube extrusion molding machine
JP5794901B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP4822505B2 (en) Glass tube spiral processing apparatus and method for manufacturing spiral glass tube
JP2006304525A (en) Winding apparatus
JP2015024471A (en) Processing tool and processing method for nut for ball screw
CN109791029B (en) Method for manufacturing tube with built-in fin and method for manufacturing double-layer tube
JP2005297062A (en) Method and apparatus for manufacturing tube with spiral groove on inside surface
TWI581936B (en) Roller for forming heat transfer elements of heat exchangers
JP3332052B2 (en) Method of manufacturing spiral heat transfer tube
JP6502913B2 (en) Fin built-in tube
JP2013202615A (en) Tube expanding billet, tube expanding device, and heat exchanger
JP6502914B2 (en) Method and apparatus for manufacturing double pipe
JP6502912B2 (en) Method and apparatus for manufacturing fin-incorporated tube
JP6116405B2 (en) Forming method of rolled taper screw for metal pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721