JP2012234716A - Cylindrical secondary battery - Google Patents

Cylindrical secondary battery Download PDF

Info

Publication number
JP2012234716A
JP2012234716A JP2011102740A JP2011102740A JP2012234716A JP 2012234716 A JP2012234716 A JP 2012234716A JP 2011102740 A JP2011102740 A JP 2011102740A JP 2011102740 A JP2011102740 A JP 2011102740A JP 2012234716 A JP2012234716 A JP 2012234716A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
cylindrical secondary
opening
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102740A
Other languages
Japanese (ja)
Other versions
JP5613618B2 (en
Inventor
Takeshi Toizono
武 樋園
Yuto Oguchi
勇人 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2011102740A priority Critical patent/JP5613618B2/en
Publication of JP2012234716A publication Critical patent/JP2012234716A/en
Application granted granted Critical
Publication of JP5613618B2 publication Critical patent/JP5613618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent impairment of airtightness in a battery container due to waving occurred by swaging a battery lid and a lid member integrally.SOLUTION: A plurality of notches 55 are formed along an edge 52 on an upper end 51 that is bent toward an axis core side of a battery can 2. When the upper end 51 of the battery can 2 and a lid member 30 are swaged via a gasket 43, the upper end 51 of the battery can 2 is deformed so that a portion on an edge side of the notch 55 becomes narrow. As a result, the waving on the upper end 51 of the battery can 2 bent toward the axis core side is absorbed and the airtightness of the battery container is secured.

Description

この発明は、円筒形二次電池に関し、より詳細には、電池缶と、電池缶を密閉する蓋部材とがかしめにより固定されて電池缶が外部から密封された円筒形二次電池に関する。   The present invention relates to a cylindrical secondary battery, and more particularly to a cylindrical secondary battery in which a battery can and a lid member that seals the battery can are fixed by caulking and the battery can is sealed from the outside.

リチウムイオン二次電池等に代表される円筒形二次電池は、円筒形の電池容器内に、正極板と負極板とがセパレータを介して軸芯の周囲に捲回された発電要素が収容され、電解液が注入されて構成される。
電池容器は、上部に開口部有する筒状の電池缶と、この電池缶の上部開口部を塞ぎ、ガスケットといわれる絶縁部材を介して電池缶にかしめにより固定される蓋部材とを備えている。
A cylindrical secondary battery represented by a lithium ion secondary battery or the like contains a power generation element in which a positive electrode plate and a negative electrode plate are wound around a shaft core via a separator in a cylindrical battery container. The electrolyte is injected and configured.
The battery container includes a cylindrical battery can having an opening at the top, and a lid member that closes the upper opening of the battery can and is fixed to the battery can by caulking via an insulating member called a gasket.

電池缶は、開口部近傍の周壁に軸芯側に陥没する溝部を有し、次の工程を経て密閉される。電池缶の開口部も受けた溝部上にリング状の絶縁部材を介在させて蓋部材を配置し、電池缶の溝部より上部側の部分を円筒形の外周側面に対して直交する方向に屈曲させる。次いで、この電池缶の屈曲された部分と蓋部材とが絶縁部材を介装してかしめられる。このようにして、外部から密封された電池容器が形成される(例えば、特許文献1参照)。   The battery can has a groove that is recessed toward the axial center on the peripheral wall near the opening, and is sealed through the following steps. A lid member is disposed on the groove that also receives the opening of the battery can with a ring-shaped insulating member interposed therebetween, and a portion on the upper side of the groove of the battery can is bent in a direction perpendicular to the cylindrical outer peripheral side surface. . Next, the bent portion of the battery can and the lid member are caulked with an insulating member interposed therebetween. In this way, a battery container sealed from the outside is formed (see, for example, Patent Document 1).

特開2007−213819号公報JP 2007-213819 A

特許文献1に記載された円筒形二次電池では、以上の工程を経て、電池缶と蓋部材とがかしめられる。すなわち、電池缶の開口部の周縁側が内側に屈曲されてかしめられる。そのために、電池缶の屈曲された部分には波打ちが生じる。電池缶のかしめ部分に波打ちが生じると、絶縁部材および蓋部材との圧接力にばらつきが生じ、気密性が損なわれる恐れがある。   In the cylindrical secondary battery described in Patent Document 1, the battery can and the lid member are caulked through the above steps. That is, the peripheral edge side of the opening of the battery can is bent inward and caulked. Therefore, undulation occurs in the bent portion of the battery can. When undulation occurs in the caulking portion of the battery can, the pressure contact force between the insulating member and the lid member may vary, and airtightness may be impaired.

本発明の円筒形二次電池は、正極板と負極板とがセパレータを介して軸芯の周囲に捲回された発電要素と、上部側に開口部が形成された円筒形状を有し、内部に発電要素が収容され、電解液が注入された電池缶と、絶縁部材を介して電池缶にかしめにより固定されて電池缶の開口部を塞ぐ蓋部材とを具備し、電池缶の開口部の所定領域には、平面視でリング形状となるように缶内側に折り曲げられたかしめ部が設けられ、かしめ部には、その内縁から電池缶の外周に向けて周方向に切り欠きが複数個形成されていることを特徴とする。   The cylindrical secondary battery of the present invention has a power generating element in which a positive electrode plate and a negative electrode plate are wound around a shaft core via a separator, and a cylindrical shape in which an opening is formed on the upper side. A battery can in which a power generation element is housed and an electrolyte is injected, and a lid member that is fixed to the battery can by caulking via an insulating member and closes the opening of the battery can. The predetermined area is provided with a caulking portion that is bent inside the can so as to have a ring shape in plan view, and the caulking portion is formed with a plurality of notches in the circumferential direction from the inner edge toward the outer periphery of the battery can. It is characterized by being.

この発明の円筒形二次電池によれば、電池缶の開口部の周縁部に形成された切り欠きがかしめの際、開口部側の幅が外周側の幅よりも小さくなるように変形する。これにより、電池缶の開口部の周縁部の波打ちが緩和され、以って、円筒形二次電池の気密性を確保することが可能となる。   According to the cylindrical secondary battery of the present invention, when the notch formed in the peripheral portion of the opening of the battery can is caulked, the opening is deformed so that the width on the opening side becomes smaller than the width on the outer peripheral side. As a result, the undulation at the peripheral edge of the opening of the battery can is alleviated, so that the airtightness of the cylindrical secondary battery can be ensured.

本発明に係る円筒形二次電池の一実施の形態の断面図。1 is a cross-sectional view of an embodiment of a cylindrical secondary battery according to the present invention. 図1に図示された円筒形二次電池の分解斜視図。FIG. 2 is an exploded perspective view of the cylindrical secondary battery illustrated in FIG. 1. 図1に示された円筒形二次電池における発電要素の詳細を示し、一部を切断した状態の斜視図。The perspective view of the state which showed the detail of the electric power generation element in the cylindrical secondary battery shown by FIG. 1, and cut | disconnected a part. 図1に図示された電池缶と蓋部材との固定構造を示す拡大断面図。The expanded sectional view which shows the fixation structure of the battery can shown in FIG. 1 and a cover member. 図1に図示された円筒形二次電池における蓋部材側の外観斜視図。FIG. 2 is an external perspective view of a lid member side in the cylindrical secondary battery illustrated in FIG. 1. 蓋部材にかしめる前における電池缶の上部側の外観斜視図。The external appearance perspective view of the upper part side of a battery can before caulking to a lid member. 図6に図示された電池缶の切り欠きの形状を示す拡大側面図。FIG. 7 is an enlarged side view showing a shape of a notch in the battery can shown in FIG. 6. 図6に図示された電池缶の上部側の正面図。The front view of the upper part side of the battery can illustrated in FIG. 蓋部材にかしめた状態の電池缶の一部を示す平面図。The top view which shows a part of battery can in the state crimped to the cover member. 電池缶の作製方法の一例を説明するための図であり、電池缶素材の斜視図。It is a figure for demonstrating an example of the manufacturing method of a battery can, and is a perspective view of a battery can raw material. 図10に続く工程を説明するための斜視図。The perspective view for demonstrating the process following FIG. 図11に続く工程を説明するための斜視図。The perspective view for demonstrating the process following FIG. 電池缶の他の作製方法を説明するための図であり、図10に続く工程を示す斜視図。It is a figure for demonstrating the other manufacturing methods of a battery can, and is a perspective view which shows the process following FIG. 図13に続く工程を説明するための電池缶の斜視図。The perspective view of the battery can for demonstrating the process following FIG. 図14に続く工程を説明するための電池缶の側面図。The side view of the battery can for demonstrating the process following FIG. 本発明の円筒形二次電池の実施形態2を示し、円筒形二次電池の蓋部材側の外観斜視図。The external appearance perspective view by the side of the cover member of the cylindrical secondary battery which shows Embodiment 2 of the cylindrical secondary battery of this invention. 図16に図示された電池缶の作製工程における一状態を示す外観斜視図。FIG. 17 is an external perspective view showing one state in a manufacturing process of the battery can illustrated in FIG. 16. 図16に図示された電池缶の切り欠きの形状を示す拡大側面図。FIG. 17 is an enlarged side view showing a shape of a notch in the battery can shown in FIG. 16. 蓋部材にかしめる前における電池缶の上部側の側面図。The side view of the upper part side of a battery can before caulking to a lid member. 蓋部材にかしめた状態の電池缶の上部側の一部を示す平面図。The top view which shows a part of the upper part side of the battery can of the state crimped to the cover member. 図16に図示された実施形態2の円筒形二次電池の作製方法を説明するための斜視図。FIG. 17 is a perspective view for explaining a manufacturing method of the cylindrical secondary battery of Embodiment 2 illustrated in FIG. 16. 図16に図示された実施形態2の円筒形二次電池の他の作成方法を説明するための電池缶素材の斜視図。The perspective view of the battery can raw material for demonstrating the other preparation methods of the cylindrical secondary battery of Embodiment 2 illustrated in FIG.

(実施形態1)
[円筒形二次電池の全体構造]
以下、この発明の円筒形二次電池の一実施の形態を図面と共に説明する。
図1は、この発明の円筒形二次電池の一実施の形態を示す拡大断面図であり、図2は、図1に示された円筒形二次電池の分解斜視図である。
円筒形二次電池1は、例えば、リチウムイオン二次電池であり、底部2cを有し、上部に開口部2bを有する円筒形の電池缶2および電池缶2の開口部2bを封口するハット型の電池蓋3で構成される電池容器を有する。電池容器の内部には、以下に説明する発電用の各構成部材が収容され、非水電解液5が注入されている。
(Embodiment 1)
[Overall structure of cylindrical secondary battery]
Hereinafter, an embodiment of a cylindrical secondary battery of the present invention will be described with reference to the drawings.
FIG. 1 is an enlarged cross-sectional view showing an embodiment of a cylindrical secondary battery of the present invention, and FIG. 2 is an exploded perspective view of the cylindrical secondary battery shown in FIG.
The cylindrical secondary battery 1 is, for example, a lithium ion secondary battery, and has a bottom portion 2c and a cylindrical battery can 2 having an opening 2b at the top, and a hat type that seals the opening 2b of the battery can 2. A battery container composed of the battery lid 3. Inside the battery container, each component for power generation described below is accommodated, and a non-aqueous electrolyte 5 is injected.

円筒形の電池缶2は、例えば、鉄(SPCC)製であり、内外両面にはニッケルめっきが施されている。電池缶2には、上端側に設けられた開口部2b側に電池缶2の内側に突き出した溝2aが形成されている。
電池缶2の中央部には、発電要素10が配置されている。発電要素10は、軸方向に沿う中空部を有する細長い円筒形の軸芯15と、軸芯15の周囲にセパレータを介して捲回された正極板および負極板とを備える。
The cylindrical battery can 2 is made of, for example, iron (SPCC), and nickel plating is applied to both the inner and outer surfaces. In the battery can 2, a groove 2 a protruding to the inside of the battery can 2 is formed on the opening 2 b provided on the upper end side.
A power generation element 10 is disposed at the center of the battery can 2. The power generation element 10 includes an elongated cylindrical shaft core 15 having a hollow portion along the axial direction, and a positive electrode plate and a negative electrode plate wound around the shaft core 15 via a separator.

軸芯15は、軸に沿って形成された中空部を有する中空円筒状を有する。軸芯15の軸方向(図面の上下方向)の上端部の内面には中空部よりも径大の溝15aが形成されている。   The shaft core 15 has a hollow cylindrical shape having a hollow portion formed along the axis. A groove 15a having a diameter larger than that of the hollow portion is formed on the inner surface of the upper end portion of the shaft core 15 in the axial direction (vertical direction in the drawing).

[発電要素]
図3は、発電要素10の構造の詳細を示し、一部を切断した状態の斜視図である。
図3に図示されるように、発電要素10は、軸芯15の周囲に、正極板11、負極板12、および第1、第2のセパレータ13、14が捲回された構造を有する。
[Power generation element]
FIG. 3 is a perspective view showing the details of the structure of the power generation element 10, with a part cut away.
As shown in FIG. 3, the power generation element 10 has a structure in which a positive electrode plate 11, a negative electrode plate 12, and first and second separators 13 and 14 are wound around an axis 15.

軸芯15は、例えば、PP(ポリプロピレン)により形成され、軸に沿って形成された中空部を有する中空円筒形状を有する。軸芯15には、第1のセパレータ13、負極板12、第2のセパレータ14および正極板11が、順に積層され、捲回されている。図3では図示を省略するが、最内周の負極板12の内側には第1のセパレータ13および第2のセパレータ14が数周捲回されている。   The shaft core 15 is formed of, for example, PP (polypropylene), and has a hollow cylindrical shape having a hollow portion formed along the axis. A first separator 13, a negative electrode plate 12, a second separator 14, and a positive electrode plate 11 are sequentially stacked on the shaft core 15 and wound. Although not shown in FIG. 3, the first separator 13 and the second separator 14 are wound several times inside the innermost negative electrode plate 12.

内周(軸芯)側では、負極板12が正極板11よりも軸芯側に延出されている。また、外周側では負極板12が正極板11よりも外周側に延出されている。最外周の負極板12の外周に第2のセパレータ14が延出されている。最外周の第2のセパレータ14が、PP等により形成された接着テープ19で止められる(図2参照)。   On the inner circumference (axial core) side, the negative electrode plate 12 extends from the positive electrode plate 11 to the axial core side. On the outer peripheral side, the negative electrode plate 12 extends to the outer peripheral side from the positive electrode plate 11. A second separator 14 extends on the outer periphery of the outermost negative electrode plate 12. The second separator 14 at the outermost periphery is stopped with an adhesive tape 19 formed of PP or the like (see FIG. 2).

正極板11は、アルミニウム箔により形成され長尺な形状を有し、正極金属箔11aと、この正極金属箔11aの両面に正極合剤が塗布された正極処理部11bを有する。正極金属箔11aの長手方向に延在する上方側の側縁は、正極合剤が塗布されず正極金属箔11aが露出した正極合剤未処理部11cとされている。この正極合剤未処理部11cには、軸芯15の軸に沿って上方に突き出す多数の正極リード16が等間隔に一体的に形成されている。   The positive electrode plate 11 is formed of an aluminum foil and has a long shape. The positive electrode plate 11 includes a positive electrode metal foil 11a and a positive electrode processing portion 11b in which a positive electrode mixture is applied to both surfaces of the positive electrode metal foil 11a. The upper side edge extending in the longitudinal direction of the positive electrode metal foil 11a is a positive electrode mixture untreated portion 11c where the positive electrode mixture is not applied and the positive electrode metal foil 11a is exposed. In the positive electrode mixture untreated portion 11c, a large number of positive electrode leads 16 protruding upward along the axis of the shaft core 15 are integrally formed at equal intervals.

正極合剤はリチウム酸化物等の正極活物質と、正極導電材と、ポリフッ化ビニリデン(PVDF)等により形成された正極バインダとからなる。
正極合剤は、厚さ20μm程度のアルミニウム箔からなる正極金属箔11aの両面に、片側の厚さ40μm程度に塗布される。正極金属箔11aを裁断する際、正極リード16を一体的に形成する。
The positive electrode mixture includes a positive electrode active material such as lithium oxide, a positive electrode conductive material, and a positive electrode binder formed of polyvinylidene fluoride (PVDF) or the like.
The positive electrode mixture is applied to both sides of the positive electrode metal foil 11a made of an aluminum foil having a thickness of about 20 μm so as to have a thickness of about 40 μm on one side. When cutting the positive electrode metal foil 11a, the positive electrode lead 16 is integrally formed.

負極板12は、銅箔により形成され長尺な形状を有し、負極金属箔12aと、この負極金属箔12aの両面に負極合剤が塗布された負極処理部12bを有する。負極金属箔12aの長手方向に延在する下方側の側縁は、負極合剤が塗布されず銅箔が露出した負極合剤未処理部12cとされている。負極合剤未処理部12cには、軸芯15の軸に沿って正極リード16とは反対方向に延出された、多数の負極リード17が等間隔に一体的に形成されている。   The negative electrode plate 12 is formed of a copper foil and has a long shape. The negative electrode plate 12 includes a negative electrode metal foil 12a and a negative electrode processing portion 12b in which a negative electrode mixture is applied to both surfaces of the negative electrode metal foil 12a. The lower side edge extending in the longitudinal direction of the negative electrode metal foil 12a is a negative electrode mixture untreated portion 12c in which the negative electrode mixture is not applied and the copper foil is exposed. A large number of negative electrode leads 17 extending in the direction opposite to the positive electrode lead 16 along the axis of the shaft core 15 are integrally formed at equal intervals in the negative electrode mixture untreated portion 12c.

負極合剤は、黒鉛炭素等の負極活物質と、負極バインダと、増粘剤とからなる。
負極合剤は、厚さ10μm程度の圧延銅箔からなる負極金属箔12aの両面に、片側の厚さ40μm程度に塗布される。負極金属箔12aをプレスにより裁断する際、負極リード17を一体的に形成する。
The negative electrode mixture is composed of a negative electrode active material such as graphite carbon, a negative electrode binder, and a thickener.
The negative electrode mixture is applied to both sides of a negative electrode metal foil 12a made of a rolled copper foil having a thickness of about 10 μm so as to have a thickness of about 40 μm on one side. When the negative electrode metal foil 12a is cut by pressing, the negative electrode lead 17 is integrally formed.

第1、第2のセパレータ13、14の幅は、正極板11および負極板12の幅よりも大きい。
負極板12の負極処理部12bの幅は、正極板11の正極処理部11bの幅よりも大きい。負極処理部12bの幅および長さを正極処理部11bの幅および長さよりも大きくして、正極処理部11bの全領域を負極処理部12bで覆う構造とされている。リチウムイオン二次電池の場合、負極側に負極活物質が形成されておらず負極金属箔12aが表出していると正極側のリチウムイオンが負極金属箔12aに析出し、内部短絡を発生する原因となる。上記の如く、正極処理部11bの全領域を負極処理部12bで覆うことにより、このようなリチウム析出に伴う内部短絡を防止することができる。
The widths of the first and second separators 13 and 14 are larger than the widths of the positive electrode plate 11 and the negative electrode plate 12.
The width of the negative electrode processing part 12 b of the negative electrode plate 12 is larger than the width of the positive electrode processing part 11 b of the positive electrode plate 11. The width and length of the negative electrode processing unit 12b are made larger than the width and length of the positive electrode processing unit 11b, and the entire region of the positive electrode processing unit 11b is covered with the negative electrode processing unit 12b. In the case of a lithium ion secondary battery, if the negative electrode active material is not formed on the negative electrode side and the negative electrode metal foil 12a is exposed, the lithium ions on the positive electrode side are deposited on the negative electrode metal foil 12a and cause an internal short circuit It becomes. As described above, by covering the entire region of the positive electrode processing unit 11b with the negative electrode processing unit 12b, it is possible to prevent such an internal short circuit due to lithium deposition.

第1のセパレータ13および第2のセパレータ14は、それぞれ、例えば、厚さ40μm程度のポリエチレン製多孔膜で形成されている。   The first separator 13 and the second separator 14 are each formed of, for example, a polyethylene porous film having a thickness of about 40 μm.

[発電ユニット]
図1において、中空な円筒形状の軸芯15には、軸方向(図面の上下方向)の上端部の内面に中空部よりも径大の溝15aが形成され、この溝15aに大略薄い円筒状の正極集電板27が圧入されている。
[Power generation unit]
In FIG. 1, a hollow cylindrical shaft core 15 is provided with a groove 15a having a diameter larger than that of the hollow portion on the inner surface of the upper end portion in the axial direction (vertical direction in the drawing). The positive electrode current collector plate 27 is press-fitted.

正極集電板27は、例えば、アルミニウム系金属により形成されている。
正極集電板27は、円盤状の基部27a、基部27aの内周部において軸芯15側に向かって突出し、軸芯15の内面に圧入される下部筒部27b、および外周縁において電池蓋3側に突き出す上部筒部27cを有する。正極集電板27の基部27aには、電池内部で発生するガスを放出するための開口部27d(図2参照)が形成されている。
The positive electrode current collector plate 27 is made of, for example, an aluminum metal.
The positive electrode current collecting plate 27 protrudes toward the shaft core 15 at the disc-shaped base portion 27a, the inner peripheral portion of the base portion 27a, and is pressed into the inner surface of the shaft core 15, and the battery lid 3 at the outer peripheral edge. It has the upper cylinder part 27c which protrudes to the side. An opening 27d (see FIG. 2) for releasing gas generated inside the battery is formed in the base 27a of the positive electrode current collector plate 27.

正極集電板27の上部筒部27cの外周には、正極金属箔11aの正極リード16および押え部材28が接合されている。多数の正極リード16を、正極集電板27の上部筒部27cの外周に密着させておき、正極リード16の外周に押え部材28をリング状に巻き付けて仮固定し、この状態で超音波波溶接により接合される。   The positive electrode lead 16 and the pressing member 28 of the positive electrode metal foil 11 a are joined to the outer periphery of the upper cylindrical portion 27 c of the positive electrode current collector plate 27. A number of positive leads 16 are brought into close contact with the outer periphery of the upper cylindrical portion 27c of the positive current collector plate 27, and a pressing member 28 is wound around the outer periphery of the positive lead 16 in a ring shape and temporarily fixed. Joined by welding.

軸芯15の下端部には、負極集電板21が圧入されて取り付けられている。負極集電板21は、例えば、銅により形成され、円盤状の基部21aに軸芯15の段部15bに圧入される開口部21bが形成され、外周縁に、電池缶2の底部側に向かって突き出す外周筒部21cが形成されている。   A negative electrode current collector plate 21 is press-fitted and attached to the lower end portion of the shaft core 15. The negative electrode current collector plate 21 is made of, for example, copper, and an opening 21b that is press-fitted into the step portion 15b of the shaft core 15 is formed in a disk-shaped base portion 21a. An outer peripheral cylindrical portion 21c that protrudes out is formed.

負極集電板21の外周筒部21cの外周には、負極金属箔12aの負極リード17および押え部材22が接合されている。多数の負極リード17を、負極集電板21の外周筒部21cの外周に密着させておき、負極リード17の外周に押え部材22をリング状に巻き付けて仮固定し、この状態で超音波溶接により接合される。
負極集電板21の下面には、ニッケルからなる負極通電リード23が溶接されている。負極通電リード23は、鉄製の電池缶2の底部2cにおいて、電池缶2に溶接されている。
The negative electrode lead 17 and the pressing member 22 of the negative electrode metal foil 12 a are joined to the outer periphery of the outer peripheral cylindrical portion 21 c of the negative electrode current collector plate 21. A number of negative electrode leads 17 are brought into close contact with the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collector plate 21, and the holding member 22 is wound around the outer periphery of the negative electrode lead 17 in a ring shape and temporarily fixed. In this state, ultrasonic welding is performed. Are joined together.
A negative electrode conducting lead 23 made of nickel is welded to the lower surface of the negative electrode current collecting plate 21. The negative electrode conducting lead 23 is welded to the battery can 2 at the bottom 2 c of the iron battery can 2.

正極集電板27には、負極通電リード23を電池缶2に溶接するための電極棒を挿通するための開口部27e(図2参照)が形成されている。電極棒(図示せず)を正極集電板27に形成された開口部27eから軸芯15の中空部に差し込み、その先端部で負極通電リード23を電池缶2の底部2cの内面に押し付けて抵抗溶接を行う。負極集電板21に接続されている電池缶2の底部2cは一方の出力端子として用いられる。   The positive electrode current collector plate 27 is formed with an opening 27 e (see FIG. 2) for inserting an electrode rod for welding the negative electrode energizing lead 23 to the battery can 2. An electrode rod (not shown) is inserted into the hollow portion of the shaft core 15 through the opening 27e formed in the positive electrode current collector plate 27, and the negative electrode energizing lead 23 is pressed against the inner surface of the bottom 2c of the battery can 2 at the tip. Resistance welding is performed. The bottom 2c of the battery can 2 connected to the negative electrode current collector plate 21 is used as one output terminal.

多数の正極リード16が正極集電板27に溶接され、多数の負極リード17が負極集電板21に溶接されることにより、正極集電板27、負極集電板21および発電要素10が一体的にユニット化された発電ユニット20が構成される(図2参照)。但し、図2においては、図示の都合上、負極集電板21、押え部材22および負極通電リード23は発電ユニット20から分離して図示されている。   A large number of positive electrode leads 16 are welded to the positive electrode current collector plate 27, and a large number of negative electrode leads 17 are welded to the negative electrode current collector plate 21, whereby the positive electrode current collector plate 27, the negative electrode current collector plate 21 and the power generation element 10 are integrated. A unitized power generation unit 20 is configured (see FIG. 2). However, in FIG. 2, for convenience of illustration, the negative electrode current collector plate 21, the pressing member 22, and the negative electrode conducting lead 23 are illustrated separately from the power generation unit 20.

正極集電板27の基部27aの上面には、複数のアルミニウム箔が積層されて構成されたフレキシブルな接続リード33が、その一端部を溶接されて接合されている。接続リード33は、複数枚のアルミニウム箔を積層して一体化することにより、大電流を流すことが可能とされ、且つ、フレキシブル性を付与されている。   On the upper surface of the base portion 27a of the positive electrode current collector plate 27, a flexible connection lead 33 constituted by laminating a plurality of aluminum foils is joined by welding one end thereof. The connection lead 33 can flow a large current by laminating and integrating a plurality of aluminum foils, and is provided with flexibility.

[電池蓋ユニット]
正極集電板27の上部筒部27c上には、電池蓋ユニット40が配置されている。電池蓋ユニット40は、リング形状をした絶縁板34、絶縁板34に設けられた開口部34a(図2参照)に嵌入された接続板35、接続板35に溶接されたダイアフラム構造の蓋体37および蓋体37に、かしめにより固定された電池蓋3により構成される。
[Battery cover unit]
A battery lid unit 40 is disposed on the upper cylindrical portion 27 c of the positive electrode current collector plate 27. The battery lid unit 40 includes a ring-shaped insulating plate 34, a connection plate 35 fitted in an opening 34 a (see FIG. 2) provided in the insulating plate 34, and a diaphragm structure lid 37 welded to the connection plate 35. The battery lid 3 is fixed to the lid 37 by caulking.

絶縁板34は、例えば、PP等の絶縁性樹脂材料からなり、円形の開口部34aを有するリング形状を有し、正極集電板27の上部筒部27c上に載置されている。
絶縁板34は、下方に延出され開口部側に突出する筒部34bを有している。絶縁板34の筒部34bには接続板35が嵌合されている。接続板35の下面には、接続リード33の他端部がレーザ溶接等により接合されている。接続リード33は他端部側において湾曲状に折り返されて、正極集電板27に溶接された面と同じ面が接続板35に接合されている。
The insulating plate 34 is made of, for example, an insulating resin material such as PP, has a ring shape having a circular opening 34 a, and is placed on the upper cylindrical portion 27 c of the positive electrode current collector plate 27.
The insulating plate 34 has a cylindrical portion 34b that extends downward and protrudes toward the opening. A connecting plate 35 is fitted to the cylindrical portion 34 b of the insulating plate 34. The other end of the connection lead 33 is joined to the lower surface of the connection plate 35 by laser welding or the like. The connection lead 33 is folded back at the other end side, and the same surface as the surface welded to the positive electrode current collector plate 27 is joined to the connection plate 35.

接続板35は、アルミニウム系金属により形成され、中央部を除くほぼ全体が均一で、かつ、ほぼ円盤形状を有している。接続板35の中央部には突起35aが形成され、蓋体37の中央部の底面に抵抗溶接または摩擦攪拌接合により接合されている。蓋体37はアルミニウム系金属により形成され、蓋体37の基部37aに円形の切込み37b(図2参照)を有する。切込み37bはプレスにより上面側をV字形状に押し潰して、残部を薄肉にしたものである。蓋体37は、電池の安全性確保のために設けられており、電池の内圧が上昇すると、上方に反り、切込み37bを起点として開裂し、電池内部のガスを放出する機能を有する。   The connection plate 35 is made of an aluminum-based metal, is substantially uniform except for the central portion, and has a substantially disk shape. A protrusion 35a is formed at the center of the connection plate 35, and is joined to the bottom surface of the center of the lid 37 by resistance welding or friction stir welding. The lid body 37 is made of an aluminum-based metal, and has a circular cut 37b (see FIG. 2) in a base portion 37a of the lid body 37. The notch 37b is formed by crushing the upper surface side into a V shape by pressing and thinning the remaining portion. The lid 37 is provided for ensuring the safety of the battery, and when the internal pressure of the battery rises, the lid 37 warps upward and cleaves from the notch 37b as a starting point to release the gas inside the battery.

蓋体37はフランジ37cにおいて電池蓋3の周縁部3aにかしめにより固定されている(図1参照)。蓋体37と電池蓋3とをかしめる方法については後述するが、蓋体37のフランジ37cは、かしめる前は、図2に図示されるように、基部37aに対しほぼ垂直に立ち上げられている。蓋体37には、4つの溶接用突出部37dが形成されている。溶接用突出部37dも、かしめる前は、フランジ37cと同様に、基部37aに対しほぼ垂直に立ち上げられている。   The lid 37 is fixed by caulking to the peripheral edge 3a of the battery lid 3 at the flange 37c (see FIG. 1). A method for caulking the lid 37 and the battery lid 3 will be described later. Before the caulking, the flange 37c of the lid 37 is raised substantially perpendicular to the base portion 37a as shown in FIG. ing. The lid body 37 is formed with four welding projections 37d. Similarly to the flange 37c, the welding projection 37d is also raised substantially perpendicular to the base portion 37a before the caulking.

電池蓋3は、冷間圧延鋼板(SPCC)により形成されており、内外両面にニッケルめっきが施されている。電池蓋3は、蓋体37にかしめられる円盤状の周縁部3aと、この周縁部3aから上方に突出す筒部3bを有するハット型を有する。   The battery lid 3 is formed of a cold rolled steel plate (SPCC), and nickel plating is applied to both the inside and outside. The battery lid 3 has a hat shape having a disc-shaped peripheral edge portion 3a caulked on the lid body 37 and a cylindrical portion 3b protruding upward from the peripheral edge portion 3a.

[電池容器の密封構造]
図1を参照して、蓋体37のフランジ部37bの外周にリング形状のガスケット43が設けられている。ガスケット43は、例えば、ペルフルオロアルコキシフッ素樹脂(PFA)等により形成されている。ガスケット43は、当初、図2に図示されるように、基部43aに対し垂直に立ち上げられた周縁部43bを有する。
[Battery container sealing structure]
Referring to FIG. 1, a ring-shaped gasket 43 is provided on the outer periphery of the flange portion 37 b of the lid body 37. The gasket 43 is made of, for example, perfluoroalkoxy fluororesin (PFA). As shown in FIG. 2, the gasket 43 initially has a peripheral portion 43 b that rises perpendicular to the base portion 43 a.

図4は、図1に図示された電池缶と蓋部材との固定構造を示す拡大断面図である。
電池缶2の開口部2bの周縁部と蓋部材30とは、ガスケット43を間に介在してかしめにより固定されている。
FIG. 4 is an enlarged cross-sectional view illustrating a fixing structure between the battery can and the lid member illustrated in FIG. 1.
The peripheral edge of the opening 2b of the battery can 2 and the lid member 30 are fixed by caulking with a gasket 43 interposed therebetween.

電池缶2の開口部2bの周縁部と蓋部材30とを、かしめる方法ついて説明する。
ガスケット43を電池缶2の溝2aの上部に載置し、ガスケット43の開口部内に蓋部材30を収容する。上述した如く、この状態では、ガスケット43は、図2に図示されるように基部43aの外周部の周縁部43bは、基部43aに対して垂直方向に立ち上がっている。
電池缶2の溝2aより上部側における部分を、円筒形状の外周から軸芯側に向けて大略直角に屈曲する。これには、電池缶2の開口部2bの周縁部に、プレス治具の傾斜部を当接して、一旦、電池缶2の開口部2bの周縁部を傾斜状に屈曲する。次に、平坦なプレス治具を用いて、電池缶2の開口部2bの周縁部を、ガスケット43を介在して電池缶2の溝2a側に屈曲する。これにより、電池缶2の開口部2bの周縁部と蓋部材30の周縁部とが、ガスケット43の周縁部43bを介在して屈曲され固定される。こうして、電池缶2の開口部2bの周縁部、ガスケット43の周縁部43bおよび蓋部材30の周縁部が、かしめられて一体化される。
A method for caulking the peripheral edge of the opening 2b of the battery can 2 and the lid member 30 will be described.
The gasket 43 is placed on the upper part of the groove 2 a of the battery can 2, and the lid member 30 is accommodated in the opening of the gasket 43. As described above, in this state, as shown in FIG. 2, the peripheral portion 43b of the outer peripheral portion of the base portion 43a rises in the vertical direction with respect to the base portion 43a.
A portion on the upper side of the groove 2a of the battery can 2 is bent at a substantially right angle from the outer periphery of the cylindrical shape toward the axis. For this purpose, the inclined portion of the pressing jig is brought into contact with the peripheral portion of the opening 2b of the battery can 2 and the peripheral portion of the opening 2b of the battery can 2 is once bent in an inclined manner. Next, using a flat pressing jig, the peripheral edge of the opening 2b of the battery can 2 is bent toward the groove 2a of the battery can 2 with the gasket 43 interposed therebetween. Thereby, the peripheral edge of the opening 2 b of the battery can 2 and the peripheral edge of the lid member 30 are bent and fixed via the peripheral edge 43 b of the gasket 43. Thus, the peripheral edge of the opening 2b of the battery can 2, the peripheral edge 43b of the gasket 43, and the peripheral edge of the lid member 30 are caulked and integrated.

上記において、蓋部材30は、予め、電池蓋3の周縁部3aと蓋体37のフランジ部37cとが、かしめられて一体化されている。電池缶2と蓋部材30とをかしめる方法は、電池蓋3と蓋体37をかしめる方法と同様である。蓋体37は、かしめる前は、図2に図示されるように、フランジ37cおよび溶接用突出部37dが、基部37aにほぼ垂直に起立している。このフランジ37cの内側に電池蓋3を配置し、蓋体37のフランジ37cおよび溶接用突出部37dを軸芯側に屈曲して電池蓋3をかしめる。これには、電池缶2と蓋部材30とをかしめる場合と同様に、蓋体37のフランジ37cおよび溶接用突出部37dを、プレスにより、一端、傾斜状に屈曲し、次に、軸方向に屈曲する。蓋体37のフランジ37cおよび溶接用突出部37dを電池蓋3の周縁部3aにかしめた後、蓋体37の溶接用突出部37dを電池蓋3の周縁部3aに、抵抗溶接または摩擦拡販接合等により接合する。   In the above, the lid member 30 is integrated in advance by caulking the peripheral edge portion 3 a of the battery lid 3 and the flange portion 37 c of the lid body 37. The method for caulking the battery can 2 and the lid member 30 is the same as the method for caulking the battery lid 3 and the lid 37. Prior to caulking, as shown in FIG. 2, the lid 37 has a flange 37 c and a welding projection 37 d erected substantially perpendicular to the base 37 a. The battery lid 3 is disposed inside the flange 37c, and the battery lid 3 is caulked by bending the flange 37c of the lid body 37 and the welding projection 37d toward the axial center side. For this purpose, as in the case where the battery can 2 and the lid member 30 are caulked, the flange 37c and the welding projection 37d of the lid 37 are bent at one end in an inclined manner by pressing, and then axially Bend to. After caulking the flange 37c and the welding protrusion 37d of the lid 37 to the peripheral edge 3a of the battery lid 3, the welding protrusion 37d of the lid 37 is connected to the peripheral edge 3a of the battery lid 3 by resistance welding or friction sales expansion joining. Join by etc.

電池缶2の内部には、非水電解液5が所定量注入されている。非水電解液5の一例としては、リチウム塩がカーボネート系溶媒に溶解した溶液をあげることができる。   A predetermined amount of non-aqueous electrolyte 5 is injected into the battery can 2. As an example of the nonaqueous electrolytic solution 5, a solution in which a lithium salt is dissolved in a carbonate solvent can be cited.

[蓋部材の構造]
図5は、図1に図示された円筒形二次電池における蓋部材側の外観斜視図である。
上述した如く、電池缶2の開口部2bの周縁部は、円筒形の外周部から軸芯側に屈曲され、ガスケット43の周縁部43bを介在して蓋部材30の周縁部にかしめられ、蓋部材30が電池缶2に一体化されている。
[Structure of lid member]
5 is an external perspective view of the lid member side of the cylindrical secondary battery illustrated in FIG.
As described above, the peripheral edge portion of the opening 2b of the battery can 2 is bent from the cylindrical outer peripheral portion toward the axial core, and is caulked to the peripheral edge portion of the lid member 30 with the peripheral edge portion 43b of the gasket 43 interposed therebetween. The member 30 is integrated with the battery can 2.

図6は、蓋部材30にかしめる前における電池缶2の上部側の外観斜視図である。また、図7は、図6に図示された電池缶2の切り欠きの形状を示す拡大側面図であり、図8は、図6に図示された電池缶2の上部側の正面図である。
電池缶2の切り欠き55は、図6および図8に図示されるように、かしめる前の電池缶2の上側端部51の領域に、開口部2bの周縁部に沿って、ほぼ等間隔に形成されている。各切り欠き55は、図7に図示されているように、半円弧形状の一端55aを有するU字形形状に形成されている。切り欠き55の幅は、一端55aを除き、ほぼ均一である。各切り欠き55は、一端55aが上側端部51の内方に位置し、他端が上側端部51の縁部52に開通している。換言すれば、切り欠き55の他端は、電池缶2の開口部2bに連通している。
FIG. 6 is an external perspective view of the upper side of the battery can 2 before caulking to the lid member 30. 7 is an enlarged side view showing the shape of the notch of the battery can 2 shown in FIG. 6, and FIG. 8 is a front view of the upper side of the battery can 2 shown in FIG.
As shown in FIGS. 6 and 8, the notches 55 of the battery can 2 are substantially equidistant along the peripheral edge of the opening 2 b in the region of the upper end 51 of the battery can 2 before caulking. Is formed. As shown in FIG. 7, each notch 55 is formed in a U-shape having a semicircular arc-shaped end 55 a. The width of the notch 55 is substantially uniform except for one end 55a. Each notch 55 has one end 55 a located inside the upper end 51 and the other end opened to the edge 52 of the upper end 51. In other words, the other end of the notch 55 communicates with the opening 2 b of the battery can 2.

図9は、蓋部材30にかしめた状態の電池缶2の一部を示す平面図である。
電池缶2の上側端部51に形成された切り欠き55は、かしめる前はほぼ均一であった幅が、かしめた後では、縁部52側において一端55a側よりも幅狭になっている。あるいは、縁部52側において閉塞されている。
FIG. 9 is a plan view showing a part of the battery can 2 in a state crimped to the lid member 30.
The notch 55 formed in the upper end 51 of the battery can 2 has a substantially uniform width before caulking, but after caulking, the notch 55 is narrower on the edge 52 side than the one end 55a side. . Or it is obstruct | occluded in the edge part 52 side.

電池缶2の開口部2b側を缶内に屈曲すると、平面視で、円筒形の電池缶2の外周に対して、上側端部51の縁部52側が円の内径側となる。つまり、平面視でリンク状に屈曲された上側端部51を屈曲することにより、外周の周長と内周の周長との周長の差の分だけ、上側端部51の縁部52側の円周の長さが余る。このため、従来技術である切り欠き55がない電池缶を使用する場合は、電池缶2の上側端部51に変形が生じ、波打った状態となる。
電池缶2が周縁部において波打っていると、電池缶2の周縁部とガスケット43の周縁部43bとの間に隙間が生じるため、円筒形二次電池1の気密性が損なわれる恐れがある。
When the opening 2b side of the battery can 2 is bent into the can, the edge 52 side of the upper end 51 becomes the inner diameter side of the circle with respect to the outer periphery of the cylindrical battery can 2 in plan view. That is, by bending the upper end 51 bent in a link shape in plan view, the edge 52 side of the upper end 51 is equal to the difference between the circumference of the outer circumference and the circumference of the inner circumference. The length of the circumference is left. For this reason, when using the battery can without the notch 55 which is a prior art, the upper end 51 of the battery can 2 is deformed and becomes wavy.
If the battery can 2 is undulating at the peripheral edge, a gap is formed between the peripheral edge of the battery can 2 and the peripheral edge 43b of the gasket 43, so that the airtightness of the cylindrical secondary battery 1 may be impaired. .

しかし、本実施形態における円筒形二次電池1においては、電池缶2の上側端部51に、縁部52から電池缶2の外周側に向かって延出された複数の切り欠き55が形成されている。かしめの際、電池缶2の上側端部51は、切り欠き55が縁部52側において幅狭になるように変形して、平面視でリン状の上側端部51の外周の周長と内周の周長との周長の差が吸収される。これより、電池缶2の上側端部51の波打ちは抑えられる。このため、本実施形態では、電池缶2の上側端部51とガスケット43との間には、波打ちに起因する隙間が抑えられ、円筒形二次電池1の気密性が向上する。   However, in the cylindrical secondary battery 1 according to the present embodiment, a plurality of notches 55 extending from the edge 52 toward the outer peripheral side of the battery can 2 are formed at the upper end 51 of the battery can 2. ing. During caulking, the upper end 51 of the battery can 2 is deformed so that the notch 55 becomes narrower on the edge 52 side, and the outer circumference and inner circumference of the phosphorus-like upper end 51 are viewed in plan view. The difference between the circumference and the circumference is absorbed. Thus, the undulation of the upper end 51 of the battery can 2 is suppressed. For this reason, in this embodiment, the space | gap resulting from a wave is suppressed between the upper side edge part 51 of the battery can 2, and the gasket 43, and the airtightness of the cylindrical secondary battery 1 improves.

電池缶2の上側端部51における外周と内周との長さの差を完全に吸収するには、切り欠き55の幅は、その合計が、外周の周長と内周の周長との周長の差に等しいか、それよりも大きくすることが好ましい。しかしながら、切り欠き55が形成されていれば、その分、波打ちの程度が低減されるので、切り欠き55の幅の合計が、外周の周長と内周の周長との周長の差の差よりも小さくても差し支えはない。   In order to completely absorb the difference in length between the outer periphery and the inner periphery of the upper end 51 of the battery can 2, the width of the notch 55 is the sum of the outer periphery and the inner periphery. It is preferable to make it equal to or larger than the difference in circumference. However, if the notch 55 is formed, the degree of undulation is reduced by that amount. Therefore, the total width of the notch 55 is the difference between the circumference of the outer circumference and the inner circumference. It can be smaller than the difference.

[電池容器の作製方法1]
次に、蓋部材30に電池缶2をかしめにより一体化して外部から密封された電池容器を作製する方法を図10〜12を参照して説明する。
まず、図10に図示されるように、冷間圧延鋼板(SPCC)を、プレスにより円形に切り出して、電池缶素材2’を作製する。
次に、電池缶素材2’を絞り加工して、図11に図示されるように、底部2cを有し、上部に開口部2bを有する円筒形状の筒体を形成する。
[Production Method 1 of Battery Container]
Next, a method for producing a battery container in which the battery can 2 is integrated with the lid member 30 by caulking and sealed from the outside will be described with reference to FIGS.
First, as illustrated in FIG. 10, a cold-rolled steel plate (SPCC) is cut into a circle by pressing to produce a battery can material 2 ′.
Next, the battery can material 2 ′ is drawn to form a cylindrical tube having a bottom 2c and an opening 2b at the top, as shown in FIG.

次に、図11に図示された状態の電池缶素材2’を、パンチ60を用いて加工して、上部側における開口部2bの周縁部に切り欠き55を形成する。
図12に図示されるように、パンチ60は、前面部61が、電池缶2の外周面と同一の半径の円弧形状に形成されている。また、パンチ60の底部には、電池缶2に形成される切り欠き55に対応するU字形状の突起部62が複数個、形成されている。
突起部62の間隔は、円周に沿う長さがほぼ同一とされている。換言すれば、幅方向における直線的な間隔は、円周に沿って等間隔に配列された切り欠き55を、平面に投影した間隔となっている。
Next, the battery can material 2 ′ in the state shown in FIG. 11 is processed using the punch 60 to form a notch 55 at the peripheral edge of the opening 2b on the upper side.
As shown in FIG. 12, the punch 60 has a front surface portion 61 formed in an arc shape having the same radius as the outer peripheral surface of the battery can 2. A plurality of U-shaped protrusions 62 corresponding to the notches 55 formed in the battery can 2 are formed on the bottom of the punch 60.
The distance between the protrusions 62 is substantially the same along the circumference. In other words, the linear interval in the width direction is an interval obtained by projecting the notches 55 arranged at equal intervals along the circumference on a plane.

図示はしないが、円筒形状の電池缶素材2’の内側には、外面が電池缶素材2’の内面に接する外径を有する円筒形のダイが挿通される。ダイには、パンチ60の各突起部62に対応するスリットが形成されている。
パンチ60を、ダイのスリットに位置合わせして、電池缶素材2’を打抜き加工をする。打抜き加工の際、パンチ60を、幅方向における中心軸が電池缶素材2’の軸芯を通過するようパンチ60の向きを位置合わせして、図12の矢印方向に向かって移動する。これにより、電池缶素材2’に、パンチ60の突起部62に対応する数の切り欠き55が形成される。
Although not shown, a cylindrical die having an outer diameter whose outer surface is in contact with the inner surface of the battery can material 2 ′ is inserted inside the cylindrical battery can material 2 ′. In the die, slits corresponding to the protrusions 62 of the punch 60 are formed.
The punch 60 is aligned with the slit of the die, and the battery can blank 2 'is punched. At the time of punching, the punch 60 is moved in the direction of the arrow in FIG. 12 with the orientation of the punch 60 aligned so that the central axis in the width direction passes through the axis of the battery can material 2 ′. As a result, the number of notches 55 corresponding to the protrusions 62 of the punch 60 is formed in the battery can material 2 ′.

次に、電池缶素材2’を所定角度回転し、打抜き加工される領域を割り出し、パンチ60による打抜き加工を行うことにより、被加工領域に切り欠き55を形成する。電池缶素材2’の回転割り出しおよび打抜き加工を複数回行うことにより、図12に図示されるように、電池缶素材2’の開口部2bの周縁部全周に切り欠き55が形成される。
なお、図12においては、説明の都合上、電池缶素材2’は、パンチ60による打抜き加工が完了し、上側端部51側の全周に切り欠き55が形成された状態を示している。
Next, the battery can blank 2 'is rotated by a predetermined angle, the area to be punched is determined, and the punching process is performed by the punch 60, whereby the notch 55 is formed in the processed area. By performing rotation indexing and punching of the battery can material 2 ′ a plurality of times, a notch 55 is formed around the entire periphery of the opening 2b of the battery can material 2 ′ as shown in FIG.
In FIG. 12, for convenience of explanation, the battery can material 2 ′ shows a state in which the punching process using the punch 60 has been completed and the cutout 55 has been formed on the entire circumference on the upper end 51 side.

電池缶素材2’の開口部2bの周縁部全周に切り欠き55を形成した後は、電池缶素材2’と蓋部材30とを、ガスケット43を介在させてかしめる。
先ず、図12に図示された状態の電池缶素材2’の開口部2b近傍の外周に、グルービング加工により溝2a(図1、図5参照)を形成する。
そして、上述した如く、電池缶2の溝2aより上部側の所定領域、すなわち、上側端部51を、管内側に向けて大略直角に屈曲する。これには、電池缶2の上側端部51を軸芯側に傾斜させ、次に、上側端部51を、ガスケット43を介在して電池缶2の溝2a側に屈曲して蓋部材30の周縁部に圧接する。これにより、電池缶2の上側端部51、ガスケット43の周縁部43bおよび蓋部材30の周縁部が、かしめられて一体化され、外部に対し密封された電池容器が形成される。電池缶2と蓋部材30とをかしめる前に、電池缶2内に発電ユニット20を収容し、非水電解液5を注入しておくことにより円筒形二次電池1が作製される。
After the notch 55 is formed around the entire periphery of the opening 2b of the battery can material 2 ′, the battery can material 2 ′ and the lid member 30 are caulked with the gasket 43 interposed therebetween.
First, a groove 2a (see FIGS. 1 and 5) is formed on the outer periphery in the vicinity of the opening 2b of the battery can material 2 ′ in the state shown in FIG.
Then, as described above, a predetermined region on the upper side from the groove 2a of the battery can 2, that is, the upper end portion 51 is bent substantially at a right angle toward the inside of the tube. To this end, the upper end 51 of the battery can 2 is inclined toward the axis, and then the upper end 51 is bent toward the groove 2a of the battery can 2 with the gasket 43 interposed therebetween. Press contact with the periphery. As a result, the upper end 51 of the battery can 2, the peripheral edge 43b of the gasket 43 and the peripheral edge of the lid member 30 are caulked and integrated to form a battery container that is sealed to the outside. Before the battery can 2 and the lid member 30 are crimped, the power generation unit 20 is accommodated in the battery can 2 and the nonaqueous electrolyte solution 5 is injected, whereby the cylindrical secondary battery 1 is manufactured.

上記実施形態において、パンチ60に形成された突起部62の間隔を、円周に沿う長さが等間隔であるとして例示した。しかし、切り欠き55の間隔は、格別、正確である必要はなく、パンチ60の突起部62の間隔を、直線的に等間隔としてもよい。換言すれば、パンチ60の幅方向における間隔を同一としてもよい。   In the said embodiment, the space | interval of the projection part 62 formed in the punch 60 was illustrated as the length along a circumference is equal intervals. However, the interval between the notches 55 does not have to be exceptionally accurate, and the interval between the protrusions 62 of the punch 60 may be linearly equal. In other words, the intervals in the width direction of the punch 60 may be the same.

上記実施形態において、パンチ60の前面部61は、電池缶素材2’の外周とほぼ同一の半径の円弧状に形成されている。このため、パンチ60の前面部61が、電池缶素材2’の外周に均一に当接し、切り欠き55の形状が均一となり、また、電池缶素材2’の変形を無くすことができる。
しかし、切り欠き55の形状は、格別、正確である必要はなく、パンチ60の前面部61は平坦としてもよい。
In the said embodiment, the front part 61 of the punch 60 is formed in the circular arc shape of substantially the same radius as the outer periphery of battery can raw material 2 '. For this reason, the front surface portion 61 of the punch 60 is uniformly in contact with the outer periphery of the battery can blank 2 ′, the shape of the notch 55 becomes uniform, and the deformation of the battery can blank 2 ′ can be eliminated.
However, the shape of the notch 55 does not have to be exceptional and accurate, and the front surface portion 61 of the punch 60 may be flat.

[電池容器の作製方法2]
次に、電池容器の作製方法の他の例を、図13〜図15を参照して説明する。
図13は、電池缶の他の作製方法を説明するための図であり、図10に続く工程を示す。また、図14は、図13に続く工程を説明するための電池缶の斜視図であり、図15は、図14に続く工程を説明するための電池缶の側面図である。
先ず、図10に図示されるように、冷間圧延鋼板(SPCC)を、プレスにより円形に切り出して、平坦状の電池缶素材2’を作製する。
次に、図13に図示されるように、電池缶素材2’の外周縁の近傍に、切り欠き55を形成する。
[Battery container manufacturing method 2]
Next, another example of the battery container manufacturing method will be described with reference to FIGS.
FIG. 13 is a diagram for explaining another method for manufacturing the battery can, and shows a step subsequent to FIG. 10. 14 is a perspective view of the battery can for explaining the process following FIG. 13, and FIG. 15 is a side view of the battery can for explaining the process following FIG.
First, as illustrated in FIG. 10, a cold-rolled steel plate (SPCC) is cut into a circle by pressing to produce a flat battery can material 2 ′.
Next, as illustrated in FIG. 13, a notch 55 is formed in the vicinity of the outer peripheral edge of the battery can material 2 ′.

U字形状の切り欠き55は、図13に二点鎖線で示す上側端部51の領域内に配置されるように形成する。図13において、U字形状の切り欠き55の他端は二点鎖線で示す縁部52まで延出され、半円形状の一端55aは、縁部52の内側に位置するように形成される。   The U-shaped cutout 55 is formed so as to be disposed in the region of the upper end 51 shown by a two-dot chain line in FIG. In FIG. 13, the other end of the U-shaped cutout 55 extends to the edge portion 52 indicated by a two-dot chain line, and the semicircular one end 55 a is formed to be positioned inside the edge portion 52.

次に、図14に図示されるように、電池缶素材2’を絞り加工して、平坦部58の中央に、底部2cを有する円筒部を形成する。絞り加工は、数回に分けて行い、徐々に、円筒部の高さを高くする。   Next, as shown in FIG. 14, the battery can material 2 ′ is drawn to form a cylindrical portion having a bottom portion 2 c at the center of the flat portion 58. Drawing is performed in several steps, and the height of the cylindrical portion is gradually increased.

そして、図15に図示されるように、上側端部51の縁部52が円筒部と平坦部58との境界となる位置まで絞り加工を行う。
この状態では、切り欠き55の他端部は、平坦部58あるいは縁部52に位置している。
ここで、円筒部の外周に張り出している平坦部58を円筒部の外周側面の位置で切断すると、電池缶素材2’は、図12に図示された上側端部51の全周に亘り切り欠き55が配列された、底部2cを有する円筒体となる。
以下は、電池容器の作製方法1で説明した方法と同様の方法により、電池缶2の上側端部51と蓋部材30とがガスケット43を介在してかしめられた、外部から密封された電池容器を作製することができる。
Then, as shown in FIG. 15, the drawing is performed to a position where the edge 52 of the upper end 51 becomes the boundary between the cylindrical portion and the flat portion 58.
In this state, the other end portion of the notch 55 is located at the flat portion 58 or the edge portion 52.
Here, when the flat portion 58 protruding on the outer periphery of the cylindrical portion is cut at the position of the outer peripheral side surface of the cylindrical portion, the battery can material 2 ′ is cut out over the entire periphery of the upper end 51 shown in FIG. 12. A cylindrical body having a bottom 2c in which 55 is arranged.
The following is a battery container sealed from the outside, in which the upper end 51 of the battery can 2 and the lid member 30 are caulked with a gasket 43 by the same method as described in the battery container manufacturing method 1. Can be produced.

[実施形態1の効果]
上記一実施の形態では、蓋部材30をかしめにより固定する際に内周側に屈曲される電池缶2の上側端部51に、複数の切り欠き55を形成した。かしめの際、電池缶2の上側端部51は、切り欠き55の縁部52側が幅狭となるように変形する。これに伴い、内周側に屈曲される電池缶2の上側端部51は波打ちが吸収または低減される。このため、電池缶2とガスケット43との間に、電池缶2の波打ちに起因する隙間が生じることがなく、円筒形二次電池1の気密性が向上する。
[Effect of Embodiment 1]
In the above-described embodiment, the plurality of notches 55 are formed in the upper end portion 51 of the battery can 2 that is bent toward the inner peripheral side when the lid member 30 is fixed by caulking. During caulking, the upper end 51 of the battery can 2 is deformed so that the edge 52 side of the notch 55 becomes narrow. Along with this, undulation is absorbed or reduced in the upper end 51 of the battery can 2 bent toward the inner peripheral side. For this reason, the clearance resulting from the corrugation of the battery can 2 does not occur between the battery can 2 and the gasket 43, and the airtightness of the cylindrical secondary battery 1 is improved.

(実施形態2)
図16は、本発明の円筒形二次電池の実施形態2を示し、円筒形二次電池の蓋部材側の外観斜視図であり、図17は、図16に図示された電池缶の作製工程における一状態、具体的には、蓋部材にかしめる前における電池缶の上部側を示す外観斜視図である。また、図18は、図17に図示された電池缶の切り欠きの形状を示す拡大側面図である。
実施形態2に示す蓋部材30が実施形態1と異なる点は、図18に図示されるように、かしめる前の電池缶2の上側端部51に形成される切り欠き55’の形状をV字形状とした点である。
その他は、実施形態1と同様であり、対応する部材に同一の参照符号を付して説明を省略する。
(Embodiment 2)
FIG. 16 is a perspective view of the appearance of the cylindrical secondary battery according to the second embodiment of the present invention, and is an external perspective view of the cylindrical secondary battery on the lid member side, and FIG. 1 is an external perspective view showing the upper side of the battery can before it is caulked on the lid member. FIG. 18 is an enlarged side view showing the notch shape of the battery can shown in FIG.
The lid member 30 shown in the second embodiment is different from the first embodiment in that the shape of the notch 55 ′ formed in the upper end 51 of the battery can 2 before caulking is V as shown in FIG. It is the point made the character shape.
Others are the same as those of the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.

図18に図示されるように、電池缶2の上側端部51に形成される切り欠き55’は、一端55aが先鋭な形状とされたV字形状に形成されている。
図20は、蓋部材にかしめた状態の電池缶の上部側の一部を示す平面図である。
かしめる前に、電池缶2の上側端部51に形成された切り欠き55’は、その幅が、一端55aから縁部52側に向かって直線的に増大している。このため、かしめ後における切り欠き55’の幅は、全長に亘り、ほぼ均一となる。切り欠き55’の縁部52側の幅が適切であれば、かしめ後における切り欠き55’の幅を、切り欠き55’の長さ全体に亘り殆ど0とすることも可能である。
実施形態2における、他の構成は実施形態1と同様であり、対応する部材に同一の参照番号を付して説明を省略する。
As illustrated in FIG. 18, the cutout 55 ′ formed in the upper end 51 of the battery can 2 is formed in a V shape in which one end 55 a is sharp.
FIG. 20 is a plan view showing a part of the upper side of the battery can in a state crimped to the lid member.
Prior to caulking, the width of the notch 55 ′ formed in the upper end 51 of the battery can 2 increases linearly from the one end 55 a toward the edge 52. For this reason, the width of the notch 55 ′ after caulking is substantially uniform over the entire length. If the width on the edge 52 side of the cutout 55 ′ is appropriate, the width of the cutout 55 ′ after caulking can be made almost zero over the entire length of the cutout 55 ′.
Other configurations in the second embodiment are the same as those in the first embodiment, and corresponding members are denoted by the same reference numerals and description thereof is omitted.

図21は、実施形態2に示された電池缶2を作製する第1の方法を説明するための図である。
この方法は、基本的に、実施形態1に関して説明した電池缶2の作製方法1と同じである。
図10に図示されるように、円形の電池缶素材2’を切り出し、電池缶素材2’を絞り加工して、図11に図示されるように底部2cを有する円筒形状の筒体を作製する。
FIG. 21 is a diagram for explaining a first method for producing the battery can 2 shown in the second embodiment.
This method is basically the same as the manufacturing method 1 of the battery can 2 described in regard to the first embodiment.
As shown in FIG. 10, a circular battery can material 2 ′ is cut out and the battery can material 2 ′ is drawn to produce a cylindrical tube having a bottom 2c as shown in FIG. .

そして、図11に図示された円筒形状の電池缶素材2’を、パンチ60を用いて加工して、電池缶2を形成する。
パンチ60の底部に形成された突起部62’が、図21に図示されるように、V字形状を有している点が実施形態1における電池缶素材2’の作製方法1と相違する点である。
Then, the cylindrical battery can material 2 ′ illustrated in FIG. 11 is processed using the punch 60 to form the battery can 2.
The protrusion 62 ′ formed on the bottom of the punch 60 is different from the method 1 for producing the battery can material 2 ′ in Embodiment 1 in that the protrusion 62 ′ has a V shape as illustrated in FIG. 21. It is.

図22は、実施形態2に示された電池缶2を作製する第2の方法を説明するための図である。
この方法は、基本的に、実施形態1に関して説明した電池容器の作製方法2と同じである。
図10に図示されるように、円形の電池缶素材2’を切り出し、図22に図示されるように、電池缶素材2’の外周縁の近傍に、切り欠き55’を形成する。
電池缶素材2’に形成される切り欠き55’がV字形状を有する点が実施形態1の電池容器の作製方法2と相違する点である。
FIG. 22 is a view for explaining a second method of manufacturing the battery can 2 shown in the second embodiment.
This method is basically the same as the battery container manufacturing method 2 described in connection with the first embodiment.
As shown in FIG. 10, a circular battery can material 2 ′ is cut out, and as shown in FIG. 22, a cutout 55 ′ is formed in the vicinity of the outer peripheral edge of the battery can material 2 ′.
The point that the notch 55 ′ formed in the battery can material 2 ′ has a V-shape is different from the battery container manufacturing method 2 of the first embodiment.

この後は、実施形態1の場合と同様に、絞り加工により電池缶素材2’を、縁部52まで円筒部にし(図15参照)、平坦部58を切断することにより、切り欠き55’の他端が先端となる円筒体を形成する(図12の電池缶素材2’参照)。そして、上述した如く、電池缶素材2’と蓋部材30とをガスケット43を介在してかしめることにより電池容器を作製する。電池缶2と蓋部材30とをかしめる前に、電池缶2内に発電ユニット20を収容し、非水電解液5を注入しておくことにより円筒形二次電池1が作製される。   Thereafter, as in the case of the first embodiment, the battery can material 2 ′ is made into a cylindrical portion up to the edge portion 52 by drawing (see FIG. 15), and the flat portion 58 is cut, thereby forming the notch 55 ′. A cylindrical body having the other end as a tip is formed (see battery can material 2 ′ in FIG. 12). Then, as described above, a battery container is produced by caulking the battery can material 2 ′ and the lid member 30 with the gasket 43 interposed therebetween. Before the battery can 2 and the lid member 30 are crimped, the power generation unit 20 is accommodated in the battery can 2 and the nonaqueous electrolyte solution 5 is injected, whereby the cylindrical secondary battery 1 is manufactured.

[実施形態の効果]
実施形態2においても、電池缶2の上側端部51に複数の切り欠き55’を形成したので、かしめの際、電池缶2の上側端部51は、切り欠き55’の縁部52側が幅狭となるように変形し、上側端部51の外周の周長と内周の周長との周長の差が吸収される。このため、電池缶2とガスケット43との間に、電池缶2の波打ちに起因する隙間が生じることがなく、円筒形二次電池1の気密性が向上する効果を奏する。
[Effect of the embodiment]
Also in the second embodiment, since the plurality of cutouts 55 ′ are formed in the upper end portion 51 of the battery can 2, the upper end portion 51 of the battery can 2 is wide at the edge 52 side of the cutout 55 ′ when caulking. It deform | transforms so that it may become narrow, and the difference of the circumference of the circumference of the outer periphery of the upper side edge part 51 and the circumference of an inner periphery is absorbed. For this reason, there is no gap due to the undulation of the battery can 2 between the battery can 2 and the gasket 43, and the airtightness of the cylindrical secondary battery 1 is improved.

実施形態2においては、かしめ前の電池缶2の上側端部51に形成される切り欠き55’が、一端55aから内周側の縁部52側に向かって幅広となるV字形状とされている。このため、かしめ後において、切り欠き55の幅が、ほとんど0に近い均一な幅となり、全周に亘り、かしめの強度をほぼ均一とすることができる。   In the second embodiment, the notch 55 ′ formed in the upper end 51 of the battery can 2 before caulking is formed into a V shape that becomes wider from the one end 55 a toward the inner peripheral edge 52. Yes. For this reason, after caulking, the width of the notch 55 becomes a uniform width almost close to 0, and the caulking strength can be made almost uniform over the entire circumference.

なお、上記実施形態1、2において、電池缶2に形成される切り欠き55、55’の形状を、U字形状またはV字形状として例示したが、この形状に限定されるものではない。切り欠き55、55’の形状は、例えば、矩形状、楕円形状、逆台形としたり、あるいは、これらの形状を組み合わせた複合形状としたりしてもよい。   In the first and second embodiments, the shape of the notches 55 and 55 ′ formed in the battery can 2 is exemplified as a U shape or a V shape, but is not limited to this shape. The shape of the notches 55 and 55 'may be, for example, a rectangular shape, an elliptical shape, an inverted trapezoidal shape, or a combined shape obtained by combining these shapes.

電池缶の開口部2bの周縁部に形成する切り欠き55、55’は、等間隔でなくてもよい。また、切り欠き55、55’は周縁部の全周に亘り形成する構造に限られるものではなく、一部の領域にのみ形成するようにしてもよい。   The notches 55 and 55 'formed at the peripheral edge of the opening 2b of the battery can need not be equally spaced. Further, the notches 55 and 55 'are not limited to the structure formed over the entire periphery, and may be formed only in a part of the region.

上記実施形態においては、電池蓋ユニット40は、電池蓋3、蓋体37、絶縁板34、接続板により構成されたものとして例示した。しかし、電池蓋ユニット40は、上記構成に限られるものではなく、本発明は、他の構成部材が追加されたり、上記構成部材の一部を有していない電池蓋ユニット40にも適用が可能である。   In the said embodiment, the battery cover unit 40 was illustrated as what was comprised by the battery cover 3, the cover body 37, the insulating board 34, and the connection board. However, the battery lid unit 40 is not limited to the above configuration, and the present invention can be applied to the battery lid unit 40 to which other components are added or which do not have a part of the components. It is.

上記実施形態においては、蓋部材30は、一方の外部電極端子となる電池蓋3と、ダイヤフラム構造を有する蓋体37により構成されるとして例示した。しかし、本発明は、電池蓋3および蓋体37がかしめにより一体化された構造に限らず、1つの部材で構成された蓋部材に対しても幅広く適用することができる。   In the above-described embodiment, the lid member 30 is exemplified as being configured by the battery lid 3 serving as one external electrode terminal and the lid body 37 having a diaphragm structure. However, the present invention is not limited to the structure in which the battery lid 3 and the lid body 37 are integrated by caulking, but can be widely applied to a lid member constituted by one member.

上記実施形態では、リチウムイオン円筒形二次電池の場合で説明した。しかし、本発明は、ニッケル水素電池またはニッケル・カドミウム電池、鉛蓄電池のように水溶性電解液を用いる円筒形二次電池にも適用が可能である。また、円筒形のリチウムイオンキャパシタにも適用することができる。   In the said embodiment, the case of the lithium ion cylindrical secondary battery was demonstrated. However, the present invention can also be applied to a cylindrical secondary battery using a water-soluble electrolyte such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery. The present invention can also be applied to a cylindrical lithium ion capacitor.

その他、本発明の円筒形二次電池は、発明の趣旨の範囲内において、種々、変形して適用することが可能であり、要は、正極板と負極板とがセパレータを介して軸芯の周囲に捲回された発電要素と、上部側に開口部が形成された円筒形状を有し、内部に発電要素が収容され、電解液が注入された電池缶と、絶縁部材を介して電池缶にかしめにより固定されて電池缶の開口部を塞ぐ蓋部材とを具備し、電池缶の開口部の所定領域には、平面視でリング形状となるように缶内側に折り曲げられたかしめ部が設けられ、かしめ部には、その内縁から電池缶の外周に向けて周方向に切り欠きが複数個形成されているものであればよい。   In addition, the cylindrical secondary battery of the present invention can be applied in various modifications within the scope of the invention. In short, the positive electrode plate and the negative electrode plate have a shaft core through a separator. A power generation element wound around, a cylindrical shape having an opening formed on the upper side, a power generation element accommodated therein, and an electrolyte injected therein, and a battery can through an insulating member A lid member that is fixed by caulking and closes the opening of the battery can, and a predetermined area of the opening of the battery can is provided with a caulking portion that is bent inside the can so as to form a ring shape in plan view. The caulking portion only needs to have a plurality of notches formed in the circumferential direction from the inner edge toward the outer periphery of the battery can.

1 円筒形二次電池
2 電池缶
3 電池蓋
10 発電要素
11 正極板
12 負極板
20 発電ユニット
30 蓋部材
40 電池蓋ユニット
43 ガスケット(絶縁部材)
51 上側端部
52 縁部
55、55’ 切り欠き
55a 一端
DESCRIPTION OF SYMBOLS 1 Cylindrical secondary battery 2 Battery can 3 Battery cover 10 Power generation element 11 Positive electrode plate 12 Negative electrode plate 20 Power generation unit 30 Cover member 40 Battery cover unit 43 Gasket (insulation member)
51 Upper end 52 Edge 55, 55 ′ Notch 55a One end

Claims (6)

正極板と負極板とがセパレータを介して軸芯の周囲に捲回された発電要素と、
上部側に開口部が形成された円筒形状を有し、内部に前記発電要素が収容され、電解液が注入された電池缶と、
絶縁部材を介して前記電池缶にかしめにより固定されて前記電池缶の開口部を塞ぐ蓋部材とを具備し、
前記電池缶の前記開口部の所定領域には、平面視でリング形状となるように缶内側に折り曲げられたかしめ部が設けられ、
前記かしめ部には、その内縁から電池缶の外周に向けて周方向に切り欠きが複数個形成されていることを特徴とする円筒形二次電池。
A power generation element in which a positive electrode plate and a negative electrode plate are wound around a shaft core via a separator;
A battery can having a cylindrical shape with an opening formed on the upper side, containing the power generation element therein, and injected with an electrolyte, and
A lid member fixed by caulking to the battery can via an insulating member and closing the opening of the battery can;
A predetermined area of the opening of the battery can is provided with a crimped portion bent inside the can so as to have a ring shape in plan view,
A cylindrical secondary battery in which a plurality of notches are formed in the caulking portion in the circumferential direction from the inner edge toward the outer periphery of the battery can.
請求項1に記載の円筒形二次電池において、前記電池缶の切り欠きは、それぞれ、U字形状に形成されていることを特徴とする円筒形二次電池。   2. The cylindrical secondary battery according to claim 1, wherein the notches of the battery can are each formed in a U shape. 請求項1に記載の円筒形二次電池において、前記電池缶の切り欠きは、それぞれ、V字形状に形成されていることを特徴とする円筒形二次電池。   2. The cylindrical secondary battery according to claim 1, wherein the notches of the battery can are each formed in a V shape. 請求項1乃至3のいずれか1項に記載の円筒形二次電池において、前記複数個の切り欠きの周方向の幅の合計値は、前記リング形状の前記かしめ部の内縁の周長と、前記電池缶の外周の周長との差と同一、もしくはそれよりも大きいことを特徴とする円筒形二次電池。   The cylindrical secondary battery according to any one of claims 1 to 3, wherein a total value of the circumferential widths of the plurality of notches is a circumferential length of an inner edge of the caulking portion of the ring shape, A cylindrical secondary battery characterized in that it is equal to or larger than the difference between the outer circumference of the battery can. 請求項1乃至4のいずれか1項に記載の円筒形二次電池において、前記切り欠きの周方向の幅は、前記リング形状の前記かしめ部の内縁側が、前記電池缶の周面側よりも大きいことを特徴とする円筒形二次電池。   5. The cylindrical secondary battery according to claim 1, wherein the circumferential width of the notch is such that the inner edge side of the caulking portion of the ring shape is closer to the peripheral surface side of the battery can. Cylindrical secondary battery characterized by being large. 請求項1乃至5のいずれか1項に記載の円筒形二次電池において、前記電池缶の開口部側には、前記かしめ部よりも缶底部側において缶内側に凹設された溝が設けられ、前記電池缶の前記溝と前記開口部との間には、前記電池缶の外周側面から軸芯方向に屈曲され、前記絶縁部材を介して前記蓋部材を圧接する上側端部が形成され、前記切り欠きの一端は、前記上側端部の領域内に形成されていることを特徴とする円筒形二次電池。   The cylindrical secondary battery according to any one of claims 1 to 5, wherein a groove is provided on the opening side of the battery can so as to be recessed on the inner side of the can at the bottom side of the can than the caulking portion. The upper end of the battery can is bent between the groove and the opening of the battery can in the axial direction from the outer peripheral side surface of the battery can and presses the lid member through the insulating member. One end of the notch is formed in a region of the upper end portion.
JP2011102740A 2011-05-02 2011-05-02 Cylindrical secondary battery Expired - Fee Related JP5613618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102740A JP5613618B2 (en) 2011-05-02 2011-05-02 Cylindrical secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102740A JP5613618B2 (en) 2011-05-02 2011-05-02 Cylindrical secondary battery

Publications (2)

Publication Number Publication Date
JP2012234716A true JP2012234716A (en) 2012-11-29
JP5613618B2 JP5613618B2 (en) 2014-10-29

Family

ID=47434841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102740A Expired - Fee Related JP5613618B2 (en) 2011-05-02 2011-05-02 Cylindrical secondary battery

Country Status (1)

Country Link
JP (1) JP5613618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093330A (en) * 2017-02-13 2018-08-22 주식회사 엘지화학 Battery Pack Comprising Electrode Terminal Connecting Plate
CN111602281A (en) * 2018-03-23 2020-08-28 重庆金康新能源汽车有限公司 Battery cell for an electric vehicle battery pack
WO2020241610A1 (en) * 2019-05-31 2020-12-03 三洋電機株式会社 Cylindrical battery
CN113243059A (en) * 2018-12-28 2021-08-10 松下知识产权经营株式会社 Battery with a battery cell
JPWO2022085318A1 (en) * 2020-10-21 2022-04-28
WO2023189790A1 (en) * 2022-03-30 2023-10-05 パナソニックエナジー株式会社 Cylindrical battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134790A (en) * 1996-11-05 1998-05-22 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JP2002175785A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Cylindrical secondary battery
JP2003288862A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Battery
JP2010282824A (en) * 2009-06-04 2010-12-16 Hitachi Vehicle Energy Ltd Sealed battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134790A (en) * 1996-11-05 1998-05-22 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JP2002175785A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Cylindrical secondary battery
JP2003288862A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Battery
JP2010282824A (en) * 2009-06-04 2010-12-16 Hitachi Vehicle Energy Ltd Sealed battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093330A (en) * 2017-02-13 2018-08-22 주식회사 엘지화학 Battery Pack Comprising Electrode Terminal Connecting Plate
KR102265846B1 (en) * 2017-02-13 2021-06-16 주식회사 엘지화학 Battery Pack Comprising Electrode Terminal Connecting Plate
CN111602281A (en) * 2018-03-23 2020-08-28 重庆金康新能源汽车有限公司 Battery cell for an electric vehicle battery pack
CN113243059A (en) * 2018-12-28 2021-08-10 松下知识产权经营株式会社 Battery with a battery cell
CN113243059B (en) * 2018-12-28 2023-10-20 松下知识产权经营株式会社 Battery cell
WO2020241610A1 (en) * 2019-05-31 2020-12-03 三洋電機株式会社 Cylindrical battery
JPWO2022085318A1 (en) * 2020-10-21 2022-04-28
WO2022085318A1 (en) * 2020-10-21 2022-04-28 株式会社村田製作所 Secondary battery
JP7448031B2 (en) 2020-10-21 2024-03-12 株式会社村田製作所 secondary battery
WO2023189790A1 (en) * 2022-03-30 2023-10-05 パナソニックエナジー株式会社 Cylindrical battery

Also Published As

Publication number Publication date
JP5613618B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US10079370B2 (en) Secondary battery
JP5613618B2 (en) Cylindrical secondary battery
JP5856858B2 (en) Method for manufacturing prismatic secondary battery
JPWO2015156270A1 (en) Secondary battery
KR102131171B1 (en) Sealed battery and sealed battery manufacturing method
WO2021153439A1 (en) Power storage device
JP2016189246A (en) Square secondary battery
WO2018124152A1 (en) Coin-type battery and manufacturing method thereof
WO2017119421A1 (en) Electricity storage element
JP2017199652A (en) Energy storage element
JP6436097B2 (en) Capacitors
JP2009110885A (en) Sealed battery and its manufacturing method
JP2008159357A (en) Cylindrical secondary battery
WO2017057324A1 (en) Power storage element and method for manufacturing power storage element
JP2019009045A (en) Power storage element
JP2013026080A (en) Cylindrical secondary battery and manufacturing method thereof
JP6156728B2 (en) Power storage element and power storage device
JP5555665B2 (en) Cylindrical secondary battery
JP2019200859A (en) Sealed battery
JP2016110772A (en) Cylindrical secondary battery
JP2017059345A (en) Cylindrical secondary battery
JPWO2019116914A1 (en) Power storage element
JP2016100236A (en) Cylindrical secondary battery
EP4131632A1 (en) Terminal component and method for manufacturing the same
JP2017199651A (en) Energy storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5613618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees