JP2012233644A - Double bellows type heat treatment furnace - Google Patents

Double bellows type heat treatment furnace Download PDF

Info

Publication number
JP2012233644A
JP2012233644A JP2011103427A JP2011103427A JP2012233644A JP 2012233644 A JP2012233644 A JP 2012233644A JP 2011103427 A JP2011103427 A JP 2011103427A JP 2011103427 A JP2011103427 A JP 2011103427A JP 2012233644 A JP2012233644 A JP 2012233644A
Authority
JP
Japan
Prior art keywords
furnace
bellows
peripheral wall
double
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011103427A
Other languages
Japanese (ja)
Inventor
Taiichi Iwamoto
泰一 岩本
Yoshio Furuta
吉雄 古田
Katsuyoshi Kondo
勝義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEURON JAPAN CO Ltd
Original Assignee
NEURON JAPAN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEURON JAPAN CO Ltd filed Critical NEURON JAPAN CO Ltd
Priority to JP2011103427A priority Critical patent/JP2012233644A/en
Publication of JP2012233644A publication Critical patent/JP2012233644A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment furnace which has high pressure resistance, high cooling efficiency, reduced weight, and large baking space and which is usable as a vacuum furnace, a depressurized furnace, or a pressurized furnace and is also usable as an electric furnace, a high-temperature gas-cooled reactor, a gas burner furnace, etc.SOLUTION: The double bellows type heat treatment furnace 2 has a housing 13 composed of a double bellows type peripheral wall part 8 formed by arranging outer bellows 10 and inner bellows 12 respectively having peripheral bellows tops 10a, 12a formed in stages in an axial direction in a double-tube shape so that an annular gap 11 is formed, a floor part 4 supporting the double bellows type peripheral wall part 8, and a ceiling part 6 closing an upper opening part of the double bellows type peripheral wall part 8, and circulates cooling water 16 at least to the annular gap 11 to carry out forcible cooling.

Description

本発明は、被焼成物を炉空間に配置して焼成する熱処理炉に関し、更に詳細には熱処理炉のハウジングの耐圧強度を強靭にして高加圧炉、減圧炉及び高真空炉として利用できる熱処理炉に関する。   The present invention relates to a heat treatment furnace in which an object to be fired is placed in a furnace space and fired, and more specifically, heat treatment that can be used as a high pressure furnace, a reduced pressure furnace, and a high vacuum furnace by strengthening the pressure resistance of the housing of the heat treatment furnace. Related to the furnace.

一般に、熱処理炉は、被焼成物を炉空間に配置し、この被焼成物を炉空間内で高温状態に加熱して焼成する装置である。熱源としては、電気ヒータやガスバーナーや高温ガスを利用し、熱源に応じて電気炉やガスバーナー炉や高温ガス炉などと称されている。また、炉空間を真空状態、減圧状態、加圧状態に保持して熱処理(焼成)する炉は、真空炉、減圧炉、加圧炉と夫々呼称されている。真空炉や減圧炉では、熱処理炉の外壁に大気圧が作用するため、熱処理炉は大気圧に対する耐圧強度を有しているのが通常である。特に、加圧炉では、炉空間を数気圧から数十気圧程度まで加圧するため、熱処理炉に強力な引張力やせん断力や曲げ応力が作用し、熱処理炉には強靭な耐圧強度が要求される。   In general, a heat treatment furnace is an apparatus that places an object to be fired in a furnace space and heats the object to be fired to a high temperature in the furnace space. As a heat source, an electric heater, a gas burner, or a high temperature gas is used, and it is called an electric furnace, a gas burner furnace, a high temperature gas furnace, or the like depending on the heat source. In addition, furnaces that hold the furnace space in a vacuum state, a reduced pressure state, and a pressurized state for heat treatment (firing) are called a vacuum furnace, a reduced pressure furnace, and a pressurized furnace, respectively. In a vacuum furnace or a decompression furnace, since atmospheric pressure acts on the outer wall of the heat treatment furnace, the heat treatment furnace usually has a pressure resistance against atmospheric pressure. In particular, in a pressurized furnace, the furnace space is pressurized from several atmospheres to several tens of atmospheres, so that a strong tensile force, shearing force and bending stress act on the heat treatment furnace, and the heat treatment furnace is required to have a strong pressure resistance. The

真空熱処理炉として特開2002−357389号公報(特許文献1)が知られている。この真空熱処理炉は、その図1から明らかなように、炉殻1と、その内側に配置されたケーシング2と、アルミ・シリカ系セラミックファイバーブランケット3、4と、薄板状のアルミナ系セラミック複合材とによって形成された断熱層と、この断熱層によって囲まれる加熱室内に配置されたヒータ7から構成されている。本願発明の用語で言えば、ハウジングと、ハウジング内部の断熱材と、断熱材内部のヒータと、ヒータで囲まれた炉空間から構成されているものである。真空炉であるため、外圧として大気圧が作用するだけであるから、薄いケーシング2だけで大気圧に対する耐圧強度を有すると考えられる。しかし、この真空熱処理炉を数十気圧の加圧炉として使用する場合には、この薄いケーシング2だけではとても数十気圧の耐圧強度を有するとは考えられない。炉殻1は大気と連通しているから、密閉性を有さず、耐圧性において不十分な構造である。この特許文献1には水冷構造は開示されていない。   JP 2002-357389 A (Patent Document 1) is known as a vacuum heat treatment furnace. As is apparent from FIG. 1, the vacuum heat treatment furnace includes a furnace shell 1, a casing 2 disposed inside the furnace shell 1, aluminum / silica ceramic fiber blankets 3 and 4, and a thin plate-like alumina ceramic composite material. And a heater 7 disposed in a heating chamber surrounded by the heat insulating layer. In terms of the terms of the present invention, it is composed of a housing, a heat insulating material inside the housing, a heater inside the heat insulating material, and a furnace space surrounded by the heater. Since it is a vacuum furnace, only atmospheric pressure acts as an external pressure, so it is considered that only the thin casing 2 has a pressure resistance against atmospheric pressure. However, when this vacuum heat treatment furnace is used as a pressurizing furnace of several tens of atmospheres, it cannot be considered that the thin casing 2 alone has a pressure strength of several tens of atmospheres. Since the furnace shell 1 communicates with the atmosphere, the furnace shell 1 does not have a hermeticity and has an insufficient pressure resistance. This Patent Document 1 does not disclose a water cooling structure.

水冷構造の観点から言えば、特開平10−246578号公報(特許文献2)が知られている。この特許文献2は高純度合金を製造するスカル溶解炉であり、大気に連通しているため特別な耐圧構造は考慮されていない。但し、水冷構造については、その図1及び図2に明示されているように、溶解炉本体の周壁内部に環状間隙を形成し、この環状間隙内に冷却水を通水させて溶解炉本体を強制水冷する構成を採用している。   From the viewpoint of the water cooling structure, Japanese Patent Laid-Open No. 10-246578 (Patent Document 2) is known. This Patent Document 2 is a skull melting furnace for producing a high-purity alloy, and since it communicates with the atmosphere, a special pressure-resistant structure is not considered. However, for the water cooling structure, as clearly shown in FIGS. 1 and 2, an annular gap is formed in the peripheral wall of the melting furnace body, and cooling water is passed through the annular gap to A configuration with forced water cooling is adopted.

特開2002−357389号公報JP 2002-357389 A 特開平10−246578号公報JP 10-246578 A

本願明細書の図7は、水冷構造と耐圧構造を有した従来型電気炉102の縦断端面図である。前述した特許文献2の水冷構造を特許文献1のケーシングに適用し、周壁の厚みを大きくして耐圧構造を付加したものである。前記従来型電気炉102は本願発明と直接対比できる構成であるから、以下に詳説する。   FIG. 7 of the present specification is a longitudinal end view of a conventional electric furnace 102 having a water cooling structure and a pressure resistance structure. The water cooling structure of Patent Document 2 described above is applied to the casing of Patent Document 1, and the pressure resistance structure is added by increasing the thickness of the peripheral wall. Since the conventional electric furnace 102 can be directly compared with the present invention, it will be described in detail below.

前記従来型電気炉102の基本構造を与えるハウジング113は、床部104の上面周縁に周壁部108を載置し、周壁部108の上方開口部を天井部106により閉鎖して構成される。周壁部108は、外側円筒管110と内側円筒管112を同軸状に二重管に配置構成され、外側円筒管110と内側円筒管112の間に環状間隙111を設ける構成となっている。外側円筒管110の適所に冷却水入口114と冷却水出口118を配置して、冷却水116は冷却水入口114から矢印a方向に流入し、環状間隙111を周回しながらハウジング113を冷却し、冷却水出口118から矢印b方向に流出する。床部104及び天井部106には図示しない別の冷却水通路が形成され、夫々冷却されている。また、図示していないが、天井部106は開閉構造を有しており、小型電気炉の場合には、ヒンジにより周壁部108の上縁に対し天井部106を開閉できる構造にしても良いし、大型電気炉の場合には、天井部106をクレーンにより吊り上げて開閉できる構造にしても良い。   A housing 113 that provides the basic structure of the conventional electric furnace 102 is configured such that a peripheral wall portion 108 is placed on the periphery of the upper surface of the floor portion 104, and an upper opening of the peripheral wall portion 108 is closed by a ceiling portion 106. The peripheral wall portion 108 is configured such that the outer cylindrical tube 110 and the inner cylindrical tube 112 are coaxially arranged in a double tube, and an annular gap 111 is provided between the outer cylindrical tube 110 and the inner cylindrical tube 112. A cooling water inlet 114 and a cooling water outlet 118 are arranged at appropriate positions on the outer cylindrical pipe 110, and the cooling water 116 flows in the direction of arrow a from the cooling water inlet 114, cools the housing 113 while circling the annular gap 111, It flows out from the cooling water outlet 118 in the direction of arrow b. Separate cooling water passages (not shown) are formed in the floor portion 104 and the ceiling portion 106, and are cooled respectively. Although not shown, the ceiling portion 106 has an opening / closing structure. In the case of a small electric furnace, the ceiling portion 106 may be opened / closed with respect to the upper edge of the peripheral wall portion 108 by a hinge. In the case of a large electric furnace, the ceiling 106 may be lifted and opened by a crane.

床部104の上面には床断熱材120が密着配置され、内側円筒管112の内面側には周壁断熱材122が密着配置され、天井部106の下面には天井断熱材126が密着配置されている。床断熱材120と周壁断熱材122と天井断熱材126により囲繞された炉空間130には、一点鎖線で示す被焼成物132が配置されている。周壁断熱材122の内面には電気ヒータ線128が卷回されており、通電により炉空間130を高温に加熱して、前記被焼成物132を焼成するように構成されている。装置寸法に関しては、図示するように、外側円筒管厚と内側円筒管厚をtとし、環状間隙厚をcとし、周壁断熱材厚をrとし、炉内径をdとする。また、床断熱材厚をr1とし、天井断熱材厚をr2とし、炉高をsとする。   A floor heat insulating material 120 is disposed in close contact with the upper surface of the floor portion 104, a peripheral wall heat insulating material 122 is disposed in close contact with the inner surface of the inner cylindrical tube 112, and a ceiling heat insulating material 126 is disposed in close contact with the lower surface of the ceiling portion 106. Yes. In the furnace space 130 surrounded by the floor heat insulating material 120, the peripheral wall heat insulating material 122, and the ceiling heat insulating material 126, an object to be fired 132 indicated by a one-dot chain line is arranged. An electric heater wire 128 is wound on the inner surface of the peripheral wall heat insulating material 122, and is configured to heat the furnace space 130 to a high temperature by energization and to fire the article 132 to be fired. Regarding the apparatus dimensions, as shown in the figure, the outer cylindrical tube thickness and the inner cylindrical tube thickness are set to t, the annular gap thickness is set to c, the peripheral wall heat insulating material thickness is set to r, and the furnace inner diameter is set to d. Further, the floor heat insulating material thickness is r1, the ceiling heat insulating material thickness is r2, and the furnace height is s.

上記従来型電気炉102には下記のような欠点がある。大型の被焼成物132を焼成するためには、炉空間130を大きく設計する必要がある。その時、天井部126の重量は大きくなり、天井部126を支持する周壁部108の耐圧強度を増大させる必要がある。また、鉄骨重量に対する耐圧強度だけでなく、加圧焼成する場合の耐圧強度も保持しなければならない。炉空間を真空状態にした場合には大気圧に対する耐圧強度で済むが、炉空間を数気圧〜数十気圧まで加圧した場合には、内圧が周壁部108と天井部106に直接作用する。その結果、周壁部108には高引張力、高せん断力及び高曲げ力が作用し、周壁部108の耐圧強度を特に強靭にしなければならない。そのため、周壁部108の断面寸法を決める外側円筒管厚tと内側円筒管厚tを増大させることになる。従って、周壁部108の重量が増大し、この大型大重量の従来電気炉を設置する建屋の地下基礎工事費が高騰する結果を招来していた。また、前記円筒管厚tの増大は炉内径dの縮小を余儀なくする。また、環状間隙111には冷却水が流通しているが、内側円筒管112と外側円筒管110は直線状円筒管であるから、その表面積は比較的小さく、冷却効率が悪いという弱点がある。その結果、周壁断熱材厚rを大きく設計する必要があり、炉内径dを一層縮小することになった。同様の理由で、床断熱材厚r1と天井断熱材厚r2も増大し、炉高sも縮小する結果となった。被焼成物132が配置される炉空間130の容積vは、v=π(d/2)2sで与えられるから、dとsの縮小は炉空間容積vの縮小になり、被焼成物132のサイズが制限されるという結果になる。これらの問題点を解決することが緊急の課題である。 The conventional electric furnace 102 has the following drawbacks. In order to fire the large-sized object 132, it is necessary to design the furnace space 130 to be large. At that time, the weight of the ceiling portion 126 increases, and the pressure resistance of the peripheral wall portion 108 that supports the ceiling portion 126 needs to be increased. Moreover, not only the pressure strength against the weight of the steel frame but also the pressure strength in the case of pressure firing must be maintained. When the furnace space is in a vacuum state, the pressure resistance against atmospheric pressure is sufficient, but when the furnace space is pressurized to several to several tens of atmospheres, the internal pressure directly acts on the peripheral wall portion 108 and the ceiling portion 106. As a result, a high tensile force, a high shearing force, and a high bending force act on the peripheral wall portion 108, and the pressure resistance of the peripheral wall portion 108 must be particularly strong. Therefore, the outer cylindrical tube thickness t and the inner cylindrical tube thickness t that determine the cross-sectional dimension of the peripheral wall portion 108 are increased. Accordingly, the weight of the peripheral wall portion 108 is increased, resulting in an increase in the underground foundation construction cost of the building in which the large and heavy conventional electric furnace is installed. Moreover, the increase in the cylindrical tube thickness t necessitates a reduction in the furnace inner diameter d. Further, although cooling water flows through the annular gap 111, the inner cylindrical tube 112 and the outer cylindrical tube 110 are linear cylindrical tubes, so that their surface areas are relatively small and cooling efficiency is poor. As a result, it is necessary to design the peripheral wall heat insulating material thickness r large, and the furnace inner diameter d is further reduced. For the same reason, the floor heat insulating material thickness r1 and the ceiling heat insulating material thickness r2 also increased, and the furnace height s decreased. Since the volume v of the furnace space 130 in which the object to be fired 132 is disposed is given by v = π (d / 2) 2 s, the reduction of d and s results in a reduction of the furnace space volume v. The result is that the size of is limited. It is an urgent task to solve these problems.

従って、本発明は上記欠点を改善するために為されたものであり、電気炉・高温ガス炉・ガスバーナー炉などとして使用でき、真空炉・減圧炉・加圧炉として使用できる熱処理炉を提供するものである。周壁部を構成する外側円筒管と内側円筒管の替わりにベローズ(蛇腹管又は伸縮管とも云う)を使用し、環状間隙を挟んで外側ベローズと内側ベローズを立設して構成されるダブルベローズ型周壁部を採用し、ベローズ厚が薄くて高耐圧強度(高引張強度、高せん断強度及び高曲げ強度)を有するから、真空焼成・減圧焼成及び高加圧焼成を実現でき、ベローズ重量が軽量であるから、高価な地盤基礎工事を不要にすることができる。また、ベローズ厚の薄さと同時に冷却表面積が増大するから冷却効率が格段に増強され、その結果炉内径及び炉高を増大でき、炉空間容積の増大と長寿命を実現する熱処理炉を提供することに成功したものである。   Accordingly, the present invention has been made to remedy the above drawbacks, and provides a heat treatment furnace that can be used as an electric furnace, a high temperature gas furnace, a gas burner furnace, etc., and can be used as a vacuum furnace, a decompression furnace, and a pressure furnace. To do. A double bellows type that uses a bellows (also called a bellows tube or expansion tube) instead of the outer cylindrical tube and inner cylindrical tube that constitute the peripheral wall, and is constructed by standing the outer bellows and the inner bellows across an annular gap. Employing a peripheral wall, thin bellows and high pressure strength (high tensile strength, high shear strength and high bending strength), vacuum firing, reduced pressure firing and high pressure firing can be realized, and the bellows weight is lightweight. Therefore, expensive ground foundation work can be eliminated. In addition, the cooling surface area increases simultaneously with the thinness of the bellows thickness, so that the cooling efficiency is remarkably enhanced. As a result, the furnace inner diameter and the furnace height can be increased, and a heat treatment furnace capable of increasing the furnace space volume and achieving a long life is provided. Is a successful one.

本発明は、上記課題を解決するために提案されたものであって、本発明の第1の形態は、ハウジングの内部に画成された炉空間に被焼成体を配置して前記被焼成物を焼成する熱処理炉において、周回状のベローズ山を軸方向に多段に形成した外側ベローズと内側ベローズを環状間隙を有するように二重管状に配置したダブルベローズ型周壁部と、前記ダブルベローズ型周壁部を支持する床部と、前記ダブルベローズ型周壁部の上方開口部を閉鎖する天井部から前記ハウジングを形成し、少なくとも前記環状間隙に冷却水を流通させて強制水冷するダブルベローズ型熱処理炉である。   The present invention has been proposed in order to solve the above-mentioned problems. The first aspect of the present invention is that the object to be fired is disposed by placing a body to be fired in a furnace space defined inside the housing. A double bellows-type peripheral wall portion in which a double bellows-type peripheral wall portion having an annular bellows disposed between an outer bellows and an inner bellows having an annular bellows formed in multiple stages in the axial direction, and the double bellows-type peripheral wall. A double bellows type heat treatment furnace in which the housing is formed from a floor portion supporting a portion and a ceiling portion that closes an upper opening of the double bellows type peripheral wall portion, and forced water cooling is performed by circulating cooling water through at least the annular gap. is there.

本発明の第2の形態は、天井部をダブルベローズ型周壁部に対し開閉可能構造にし、ダブルベローズ型周壁部の上方開口部を開閉して炉空間に対し被焼成物を出入するダブルベローズ型熱処理炉である。   The second form of the present invention is a double bellows type in which the ceiling part is configured to be openable and closable with respect to the double bellows type peripheral wall part, and the upper opening of the double bellows type peripheral wall part is opened and closed so It is a heat treatment furnace.

本発明の第3の形態は、ハウジングの内部において、床部の上面側に床断熱材を配置し、ダブルベローズ型周壁部の内側ベローズの内面側に周壁断熱材を配置し、天井部の下面側に天井断熱材を配置し、床断熱材と周壁断熱材と天井断熱材で囲繞形成される内部空間を炉空間とするダブルベローズ型熱処理炉である。   According to a third aspect of the present invention, in the housing, a floor heat insulating material is disposed on the upper surface side of the floor portion, a peripheral wall heat insulating material is disposed on the inner surface side of the inner bellows of the double bellows type peripheral wall portion, and the lower surface of the ceiling portion. This is a double bellows type heat treatment furnace in which a ceiling heat insulating material is disposed on the side, and an internal space surrounded by the floor heat insulating material, the peripheral wall heat insulating material, and the ceiling heat insulating material is used as a furnace space.

本発明の第4の形態は、天井断熱材を出入可能に配置して、炉空間に対し被焼成物を出入可能にするダブルベローズ型熱処理炉である。   The 4th form of this invention is a double bellows type heat treatment furnace which arrange | positions a ceiling heat insulating material so that entrance / exit is possible, and enables entrance / exit of a to-be-fired material with respect to a furnace space.

本発明の第5の形態は、床断熱材、周壁断熱材、又は天井断熱材の一つ以上に電気ヒータ線を配置して熱処理炉を電気炉として構成するダブルベローズ型熱処理炉である。   The fifth embodiment of the present invention is a double bellows type heat treatment furnace in which an electric heater wire is arranged on one or more of a floor heat insulating material, a peripheral wall heat insulating material, or a ceiling heat insulating material to constitute the heat treatment furnace as an electric furnace.

本発明の第5の形態は、炉空間を真空状態、減圧状態又は加圧状態にして被焼成物を焼成するダブルベローズ型熱処理炉である。   The fifth embodiment of the present invention is a double bellows type heat treatment furnace that fires an object to be fired with the furnace space in a vacuum state, a reduced pressure state, or a pressurized state.

本発明の第1の形態によれば、周回状のベローズ山を軸方向に多段に形成した外側ベローズと内側ベローズを環状間隙を有するように二重管状に配置したダブルベローズ型周壁部を採用しているから、ベローズ(蛇腹管又は伸縮管とも呼ぶ)の高耐圧強度、即ち高圧縮強度・高引張強度・高座屈強度・高せん断強度・高曲げ強度により本発明熱処理炉は0〜10MPa(真空〜100気圧)の高耐久性を有し、炉空間を真空状態・減圧状態・高加圧状態に設定することが可能であり、真空炉・減圧炉・加圧炉・高加圧炉として使用することができる。また、ベローズ厚が薄くても前記高耐圧強度を有しており、ダブルベローズ型周壁部の厚さを短縮化でき、その短縮量だけ炉内径を大きくすることができる。更に、ベローズ山を多段に形成したベローズの表面積は円筒管の表面積よりかなり大きくて冷却効率が格段に良くなるから、周壁断熱材の厚さを小さくでき、その厚さの短縮分だけ炉内径を増大することができる。この冷却効率の増大は床断熱材と天井断熱材の厚さも薄くでき炉高を大きく設計することが可能になる。炉内径及び炉高の増大により炉空間容積の増大化を実現でき、小型から大型の被焼成物を焼成できる熱処理炉を提供することができる。また、軽量なベローズにより構成されるダブルベローズ型周壁部の重量は、従来型周壁部の重量より格段に軽量化され、熱処理炉の地盤基礎工事を不要にでき、熱処理炉の設置費用の低減を実現できる。また、本形態のダブルベローズ型周壁部は電気炉だけでなく、高温ガス炉やガスバーナー炉などにも適用でき、広範囲の各種の熱処理炉に利用することが可能である。その意味で、本発明の名称をダブルベローズ型熱処理炉と呼ぶ。冷却効率を上げるために、床部と天井部にも独自の強制水冷構造を付加することができる。   According to the first aspect of the present invention, the double bellows type peripheral wall portion in which the outer bellows formed in a multistage in the axial direction and the inner bellows are arranged in a double tubular shape so as to have an annular gap is adopted. Therefore, the heat treatment furnace of the present invention has a high pressure strength of the bellows (also called a bellows tube or an expansion tube), that is, a high compressive strength, a high tensile strength, a high buckling strength, a high shear strength, and a high bending strength. High durability (up to 100 atmospheres), and it is possible to set the furnace space in a vacuum, reduced pressure, and high pressure state, and it can be used as a vacuum furnace, a reduced pressure furnace, a pressurized furnace, and a high pressure furnace can do. Moreover, even if the bellows thickness is thin, it has the above-mentioned high pressure strength, and the thickness of the double bellows type peripheral wall portion can be shortened, and the furnace inner diameter can be increased by the shortening amount. Furthermore, since the surface area of the bellows formed with multiple steps of the bellows is much larger than the surface area of the cylindrical tube and the cooling efficiency is markedly improved, the thickness of the peripheral wall insulation can be reduced, and the inner diameter of the furnace is reduced by the shortened thickness. Can be increased. This increase in cooling efficiency allows the floor insulation and ceiling insulation to be made thinner, and the furnace height can be designed larger. By increasing the furnace inner diameter and the furnace height, the furnace space volume can be increased, and a heat treatment furnace capable of firing small-sized and large-sized objects to be fired can be provided. In addition, the weight of the double bellows type peripheral wall composed of lightweight bellows is much lighter than the weight of the conventional type peripheral wall, eliminating the need for ground foundation work for the heat treatment furnace and reducing the installation cost of the heat treatment furnace. realizable. Further, the double bellows type peripheral wall portion of the present embodiment can be applied not only to an electric furnace but also to a high temperature gas furnace, a gas burner furnace, and the like, and can be used in a wide variety of heat treatment furnaces. In that sense, the name of the present invention is called a double bellows type heat treatment furnace. In order to increase cooling efficiency, a unique forced water cooling structure can be added to the floor and ceiling.

本発明の第2の形態によれば、天井部をダブルベローズ型周壁部に対し開閉可能構造にするから、ダブルベローズ型周壁部の上方開口部を開閉して炉空間に対し被焼成物を出入することが可能になる。開閉可能構造に関しては、大型熱処理炉の場合には、天井部をクレーンで吊り下げ及び吊り上げすれば良いし、小型及び中型熱処理炉では天井部をダブルベローズ型周壁部の上端周縁にヒンジにより開閉可能にすればよく、また天井部を手で持ち上げ及び持ち下げしてダブルベローズ型周壁部の上端周縁にロックできるようにすることもできる。   According to the second aspect of the present invention, since the ceiling part is configured to be openable / closable with respect to the double bellows type peripheral wall part, the upper opening of the double bellows type peripheral wall part is opened and closed to allow the material to be fired to enter and exit the furnace space. It becomes possible to do. As for the structure that can be opened and closed, in the case of a large heat treatment furnace, the ceiling can be suspended and lifted by a crane. In addition, the ceiling can be lifted and lowered by hand so that it can be locked to the upper peripheral edge of the double bellows type peripheral wall.

本発明の第3の形態によれば、ダブルベローズ構造により冷却効率が格段に増大するから、床断熱材と周壁断熱材と天井断熱材を極力薄くすることが可能になり、床断熱材と周壁断熱材と天井断熱材で囲繞形成される炉空間を従来よりも増大化することが可能になる。従って、大型被焼成物を炉空間に配置して焼成することができる。従来であれば、大型熱処理炉と中型熱処理炉と小型熱処理炉を用意しなければならなかったが、本発明の熱処理炉であれば、小型被焼成物から大型被焼成物を一台で焼成することが可能になり、熱処理炉の設置コストを大幅に低減できるようになる。   According to the third aspect of the present invention, the cooling efficiency is remarkably increased by the double bellows structure. Therefore, the floor heat insulating material, the peripheral wall heat insulating material, and the ceiling heat insulating material can be made as thin as possible. The furnace space surrounded by the heat insulating material and the ceiling heat insulating material can be increased as compared with the prior art. Therefore, a large-scale object to be fired can be placed in the furnace space and fired. Conventionally, a large heat treatment furnace, a medium heat treatment furnace, and a small heat treatment furnace had to be prepared. However, with the heat treatment furnace of the present invention, a large-scale fired article is fired from a small-scale fired article. This makes it possible to significantly reduce the installation cost of the heat treatment furnace.

本発明の第4の形態によれば、天井断熱材を出入可能に配置するから、天井部を開放し、天井断熱材を取り出すことにより、炉空間に対し被焼成物を出入可能にでき、熱処理炉内部に被焼成物を搬入・搬出することが容易になるダブルベローズ型熱処理炉を提供することができる。   According to the fourth aspect of the present invention, since the ceiling heat insulating material is disposed so as to be able to enter and exit, by opening the ceiling part and taking out the ceiling heat insulating material, the material to be fired can be made to enter and leave the furnace space, and heat treatment can be performed. It is possible to provide a double bellows type heat treatment furnace that facilitates carrying in / out of a material to be fired into the furnace.

本発明の第5の形態によれば、床断熱材、周壁断熱材、又は天井断熱材の一つ以上に電気ヒータ線を配置して本発明熱処理炉を電気炉として構成することが可能になる。通常は、周壁断熱材の内面側に電気ヒータ線を卷回するだけでよいが、加熱効率を上げるために床断熱材及び/又は天井断熱材にも電気ヒータ線を配置することが可能である。本発明のダブルベローズ型熱処理炉を電気炉として提供するものである。   According to the fifth aspect of the present invention, it becomes possible to configure the heat treatment furnace of the present invention as an electric furnace by disposing an electric heater wire on one or more of a floor heat insulating material, a peripheral wall heat insulating material, or a ceiling heat insulating material. . Normally, it is only necessary to wind the electric heater wire on the inner surface side of the peripheral wall heat insulating material, but it is possible to arrange the electric heater wire also on the floor heat insulating material and / or the ceiling heat insulating material in order to increase the heating efficiency. . The double bellows type heat treatment furnace of the present invention is provided as an electric furnace.

本発明の第6の形態によれば、炉空間を真空状態、減圧状態又は加圧状態にして被焼成物を焼成することができ、本発明のダブルベローズ型熱処理炉を真空炉、減圧炉又は加圧炉として提供するものである。本発明のダブルベローズ型周壁部を使用すれば、その耐圧強度を格段に増強できるから、真空炉、減圧炉、加圧炉のいずれの形態にも使用することができる。   According to the sixth aspect of the present invention, the object to be fired can be fired with the furnace space in a vacuum state, a reduced pressure state or a pressurized state, and the double bellows type heat treatment furnace of the present invention is a vacuum furnace, a reduced pressure furnace or It is provided as a pressurized furnace. If the double bellows type peripheral wall portion of the present invention is used, the pressure strength can be remarkably increased, and therefore it can be used in any form of a vacuum furnace, a decompression furnace, and a pressure furnace.

本発明に係るダブルベローズ型電気炉の断面斜視図である。It is a section perspective view of the double bellows type electric furnace concerning the present invention. 本発明に係るダブルベローズ型電気炉の縦断端面図で、図1のA−A線切断端面図である。FIG. 2 is a longitudinal end view of the double bellows electric furnace according to the present invention, and is an AA cut end view of FIG. 1. 本発明に使用するベローズの斜視図及び本発明に係るダブルベローズ型電気炉を用いた熱処理工程図である。It is the perspective view of the bellows used for this invention, and the heat processing process figure using the double bellows type | mold electric furnace which concerns on this invention. 本発明ベローズと通常円筒管の座屈圧力を計算したコンピュータ計算結果図である。It is a computer calculation result figure which computed buckling pressure of the present invention bellows and a normal cylindrical pipe. 本発明に係るダブルベローズ型電気炉を真空炉として使用したときの圧力関係を示す縦断端面図である。It is a vertical end view which shows the pressure relationship when the double bellows type electric furnace which concerns on this invention is used as a vacuum furnace. 本発明に係るダブルベローズ型電気炉を加圧炉として使用したときの圧力関係を示す縦断端面図である。It is a vertical end view which shows the pressure relationship when the double bellows type | mold electric furnace which concerns on this invention is used as a pressurization furnace. 従来型電気炉の縦断端面図である。It is a vertical end view of a conventional electric furnace.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。本発明のダブルベローズ型熱処理炉は電気炉、ガスバーナ炉、高温ガス炉など各種の熱処理炉に適用できるが、以下の図面では電気炉として応用した場合のダブルベローズ型電気炉を説明する。ガスバーナ炉では電気ヒータ線がガスバーナに置換され、また高温ガス炉では電気ヒータ線が高温ガスの供給ノズルに置換されるだけであり、本発明の中核概念であるダブルベローズ型周壁部を利用する点では全て共通する。従って、電気炉で説明するダブルベローズ型周壁部の作用効果の全てはガスバーナ炉や高温ガス炉などでも共通するから、実施形態としては電気炉に絞って説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The double bellows type heat treatment furnace of the present invention can be applied to various heat treatment furnaces such as an electric furnace, a gas burner furnace, and a high temperature gas furnace. In the following drawings, a double bellows type electric furnace when applied as an electric furnace will be described. In the gas burner furnace, the electric heater wire is replaced with a gas burner, and in the high temperature gas furnace, the electric heater wire is simply replaced with a hot gas supply nozzle, and the double bellows type peripheral wall portion which is the core concept of the present invention is used. All are common. Therefore, since all the effects of the double bellows type peripheral wall portion described in the electric furnace are common to the gas burner furnace, the high temperature gas furnace, and the like, the embodiment will be described focusing on the electric furnace.

図1は、本発明に係るダブルベローズ型電気炉の断面斜視図である。ダブルベローズ型電気炉2の基本骨格を与えるハウジング13は、床部4の上面周縁にダブルベローズ型周壁部8を載置し、ダブルベローズ型周壁部8の上方開口部を天井部6により閉鎖して構成される。この天井部6はダブルベローズ型周壁部8の上端周縁に設けられたヒンジ(図示せず)により開閉自在に設けられ、前記上方開口部を開閉することが可能である。前記ダブルベローズ型周壁部8は、外側ベローズ10と内側ベローズ12を同軸に二重管状に配置構成され、外側ベローズ10と内側ベローズ12の間に環状間隙11を設ける構成となっている。外側ベローズ10の下方には冷却水入口14が設けられ、上方には冷却水出口18が配置されている。図示しないポンプにより冷却水16は冷却水入口14から矢印a方向に流入し、環状間隙11を周回しながらハウジング13を冷却し、冷却水出口18から矢印b方向に流出する。前記環状間隙11の幅長は環状間隙厚Cであり、環状間隙11の内部は冷却水16により充満し、ポンプにより冷却水を循環させて、炉内の熱を冷却する構成になっている。   FIG. 1 is a cross-sectional perspective view of a double bellows electric furnace according to the present invention. The housing 13 that provides the basic skeleton of the double bellows type electric furnace 2 has the double bellows type peripheral wall portion 8 placed on the periphery of the upper surface of the floor portion 4, and the upper opening of the double bellows type peripheral wall portion 8 is closed by the ceiling portion 6. Configured. The ceiling portion 6 is provided so as to be freely opened and closed by a hinge (not shown) provided at the upper end periphery of the double bellows type peripheral wall portion 8, and can open and close the upper opening portion. The double bellows-type peripheral wall portion 8 is configured so that the outer bellows 10 and the inner bellows 12 are coaxially arranged in a double tubular shape, and an annular gap 11 is provided between the outer bellows 10 and the inner bellows 12. A cooling water inlet 14 is provided below the outer bellows 10, and a cooling water outlet 18 is disposed above. Cooling water 16 flows from the cooling water inlet 14 in the direction of arrow a by a pump (not shown), cools the housing 13 while circling the annular gap 11, and flows out of the cooling water outlet 18 in the direction of arrow b. The width of the annular gap 11 is an annular gap thickness C, and the inside of the annular gap 11 is filled with cooling water 16, and the cooling water is circulated by a pump to cool the heat in the furnace.

外側ベローズ10は多段のベローズ山10aを有しており、同様に内側ベローズ12も多段のベローズ山12aを有している。ベローズ山10a、12aは、山幅w、山高h及びピッチpを持って形成されており、山幅w、山高h及びピッチpはバローズ管径及びベローズ長に依存しながら任意に調整することができる。ベwローズは多段のベローズ山から構成されるため、ベローズの表面積は直円筒管の表面積より格段に大きくなり、山幅w、山高h及びピッチpを調整することによりベローズ表面積を自在に変化させることができる。ベローズ表面積が大きいため、冷却効率は直円筒管より格段に高く、本ダブルベローズ型電気炉2の冷却効率は従来型電気炉と比較しても格段に優れていることが分かる。また、床部4及び天井部6には図示しない別の冷却水通路が形成され、夫々個別に冷却されている。   The outer bellows 10 has a multi-stage bellows mountain 10a. Similarly, the inner bellows 12 has a multi-stage bellows mountain 12a. The bellows peaks 10a and 12a are formed with a peak width w, a peak height h, and a pitch p, and the peak width w, peak height h, and pitch p can be arbitrarily adjusted depending on the bellows tube diameter and bellows length. it can. Since the bellows is composed of multi-level bellows, the surface area of the bellows is much larger than the surface area of the straight cylindrical tube, and the bellows surface area can be changed freely by adjusting the peak width w, peak height h and pitch p. be able to. Since the bellows surface area is large, the cooling efficiency is remarkably higher than that of the straight cylindrical tube, and it can be seen that the cooling efficiency of the double bellows type electric furnace 2 is remarkably superior to that of the conventional electric furnace. In addition, other cooling water passages (not shown) are formed in the floor 4 and the ceiling 6 and are individually cooled.

外側ベローズ10及び内側ベローズ12のベローズ厚Tが薄くても、ベローズは高耐圧強度、即ち高圧縮強度・高引張強度・高座屈強度・高せん断強度・高曲げ強度を有している。従って、大型の電気炉の場合に、天井部6は大重量になるが、軽量なダブルベローズ型周壁部8により十分に支持することができ、小型電気炉から大型電気炉までダブルベローズ型周壁部8により構成することができる。ダブルベローズ型周壁部8の厚さは環状間隙厚Cと外側ベローズ厚Tと内側ベローズ厚Tの合計C+2Tになる。ベローズ厚Tが小さいから、ダブルベローズ型周壁部8の厚さC+2Tも従来型電気炉と比較して格段に小さくなる。これは炉内径Dを相対的に大きくできることを意味しており、炉空間30の炉容積Vを増大できる効果がある。   Even if the bellows thickness T of the outer bellows 10 and the inner bellows 12 is small, the bellows has high pressure strength, that is, high compressive strength, high tensile strength, high buckling strength, high shear strength, and high bending strength. Therefore, in the case of a large electric furnace, the ceiling portion 6 becomes heavy, but it can be sufficiently supported by the lightweight double bellows type peripheral wall portion 8, and the double bellows type peripheral wall portion from the small electric furnace to the large electric furnace. 8 can be configured. The thickness of the double bellows type peripheral wall portion 8 is a total C + 2T of the annular gap thickness C, the outer bellows thickness T, and the inner bellows thickness T. Since the bellows thickness T is small, the thickness C + 2T of the double bellows type peripheral wall 8 is also significantly smaller than that of the conventional electric furnace. This means that the furnace inner diameter D can be relatively increased, and the furnace volume V of the furnace space 30 can be increased.

床部4の上面には床断熱材20が密着配置され、内側ベローズ12の内面側には周壁断熱材22が密着配置され、天井部6の下面には天井断熱材26が密着配置されている。床断熱材20と周壁断熱材22と天井断熱材26により囲繞されて炉空間30が形成されている。周壁断熱材22の内面には電気ヒータ線28が卷回して形成されており、この電気ヒータ線28に通電して焼成を行う。ダブルベローズ型周壁部8の冷却効率が極めて高いから、周壁断熱材厚Rは薄くすることが可能であり、炉内径Dを大きく設計することが容易になる。また、同様に、ダブルベローズ型周壁部8の冷却効率が極めて高いから、床断熱材厚R1と天井断熱材厚R2も薄くでき、その結果炉高Sも大きく設計することができる。   A floor heat insulating material 20 is disposed in close contact with the upper surface of the floor portion 4, a peripheral wall heat insulating material 22 is disposed in close contact with the inner surface side of the inner bellows 12, and a ceiling heat insulating material 26 is disposed in close contact with the lower surface of the ceiling portion 6. . A furnace space 30 is formed by being surrounded by the floor heat insulating material 20, the peripheral wall heat insulating material 22, and the ceiling heat insulating material 26. An electric heater wire 28 is formed by winding on the inner surface of the peripheral wall heat insulating material 22. The electric heater wire 28 is energized and fired. Since the cooling efficiency of the double bellows type peripheral wall portion 8 is extremely high, the peripheral wall heat insulating material thickness R can be reduced, and it becomes easy to design a large furnace inner diameter D. Similarly, since the cooling efficiency of the double bellows type peripheral wall portion 8 is extremely high, the floor heat insulating material thickness R1 and the ceiling heat insulating material thickness R2 can be reduced, and as a result, the furnace height S can be designed to be large.

図2は、本発明に係るダブルベローズ型電気炉の縦断端面図で、図1のA−A線切断端面図である。図1で説明した内容は同様であるから、異なる部分を説明する。炉空間30には、一点鎖線で示された被焼成物32が配置されて所定温度で焼成される。炉空間30の炉容積VはV=π(D/2)2Sで与えられる。本発明では、炉内径D及び炉高Sを増大できるから、炉容積Vは従来装置に比較して格段に大きく設けることができる。従って、被焼成物32も炉容積Vより小さければ炉空間30に配置することが可能であり、大型の被焼成物32を焼成することもできる。 FIG. 2 is a longitudinal end view of the double bellows electric furnace according to the present invention, and is an end view taken along line AA of FIG. Since the contents described with reference to FIG. 1 are the same, different portions will be described. In the furnace space 30, an object to be fired 32 indicated by a one-dot chain line is arranged and fired at a predetermined temperature. The furnace volume V of the furnace space 30 is given by V = π (D / 2) 2 S. In the present invention, since the furnace inner diameter D and the furnace height S can be increased, the furnace volume V can be provided much larger than that of the conventional apparatus. Accordingly, if the object to be fired 32 is also smaller than the furnace volume V, it can be disposed in the furnace space 30, and the large object to be fired 32 can be fired.

図3の(3A)は本発明に使用するベローズの斜視図であり、(3B)は本発明に係るダブルベローズ型電気炉を用いた熱処理工程図である。図(3A)において、ベローズ24は外側ベローズ10と内側ベローズ12を代表しており、ベローズ山24aはベローズ山10a、12aを代表している。山高h、山幅w及びピッチpは自在に変更できる。山高hを大きくすると、ベローズ表面積は急激に増大し、同様にピッチpを小さくするほどベローズ表面積は急増する。ベローズ表面積が増大すると、強制水冷による冷却効率が増大することは当然である。 (3B)には具体的な熱処理工程が示されている。例えば、被焼成物32を加熱焼成するには、1時間の昇温過程と1時間の高温焼成過程が必要であるが、本実施形態の電気炉では冷却効率が高いため1時間で室温まで冷却することができる。しかし、従来型電気炉では、冷却効率が悪いため室温まで冷却するのに4時間を要している。この具体例では、本発明炉の冷却速度は従来型電気炉の4倍である。本発明炉の焼成時間が3時間であるのに対し、従来型電気炉では焼成時間が6時間を要し、本発明炉の方が生産効率が2倍に増大し、本発明炉の量産性能は従来炉と比較して格段に優れていることが明白である。   3 (3A) is a perspective view of the bellows used in the present invention, and (3B) is a heat treatment process diagram using the double bellows type electric furnace according to the present invention. In FIG. 3A, the bellows 24 represents the outer bellows 10 and the inner bellows 12, and the bellows mountain 24a represents the bellows mountains 10a and 12a. The mountain height h, the mountain width w, and the pitch p can be freely changed. When the height h is increased, the bellows surface area increases rapidly. Similarly, the bellows surface area increases rapidly as the pitch p is decreased. Naturally, if the bellows surface area increases, the cooling efficiency by forced water cooling increases. (3B) shows a specific heat treatment step. For example, in order to heat and fire the object to be fired 32, a heating process for 1 hour and a high-temperature baking process for 1 hour are required. However, the electric furnace of this embodiment has a high cooling efficiency, and thus cools to room temperature in 1 hour. can do. However, since the conventional electric furnace has poor cooling efficiency, it takes 4 hours to cool to room temperature. In this specific example, the cooling rate of the inventive furnace is four times that of the conventional electric furnace. The firing time of the furnace of the present invention is 3 hours, whereas the firing time of the conventional electric furnace is 6 hours, the production efficiency of the furnace of the present invention is doubled, and the mass production performance of the furnace of the present invention It is clear that is significantly superior to conventional furnaces.

図4は、本発明ベローズと通常円筒管の座屈圧力を計算したコンピュータ計算結果図である。本発明者等は応力解析システム「AUTO−PIPE」及び非線形有限要素法解析システム「ANSYS」を用いて、ベローズ構造パイプ(ベローズのこと)と通常の管状パイプ(円筒管のこと)の座屈圧力を計算した。両管とも材料はニッケル合金であるインコネル625を用いた。インコネル625の縦弾性係数は1.91×105(N/mm2)であり、降伏応力は328(N/mm2)である。(4A)はベローズ構造パイプの計算結果を示している。ベローズ構造パイプの板厚は5mm、外径は710mm、全長は1998mm、山高は30mm、山数は6個である。その座屈圧力は1.79MPaである。(4B)は通常の管状パイプの計算結果を示している。管状パイプの板厚は5mm、外径は710mm、全長は2000mmであり、ほぼベローズ構造パイプと同じである。その座屈圧力は0.9MPaである。管状パイプをベローズに変更するだけで、座屈圧力が0.9MPaから1.79MPaへと約2倍に増大していることが分かった。また、ベローズでは、板厚を薄くするほど座屈圧力が増大することが分かった。従って、本発明のダブルベローズ型周壁部を採用することによって、高強度化と同時に軽量化が実現できることが証明された。 FIG. 4 is a computer calculation result diagram in which the buckling pressures of the present invention bellows and the normal cylindrical tube are calculated. The present inventors have used a stress analysis system “AUTO-PIPE” and a nonlinear finite element method analysis system “ANSYS” to buckle the bellows pressure of a bellows structure pipe (a bellows) and a normal tubular pipe (a cylinder pipe). Was calculated. Both tubes used Inconel 625, which is a nickel alloy. Inconel 625 has a longitudinal elastic modulus of 1.91 × 10 5 (N / mm 2 ) and a yield stress of 328 (N / mm 2 ). (4A) shows the calculation result of the bellows structure pipe. The plate thickness of the bellows structure pipe is 5 mm, the outer diameter is 710 mm, the total length is 1998 mm, the mountain height is 30 mm, and the number of peaks is 6. The buckling pressure is 1.79 MPa. (4B) shows the calculation result of a normal tubular pipe. The plate thickness of the tubular pipe is 5 mm, the outer diameter is 710 mm, and the total length is 2000 mm, which is almost the same as the bellows structure pipe. The buckling pressure is 0.9 MPa. It was found that the buckling pressure was increased approximately twice from 0.9 MPa to 1.79 MPa simply by changing the tubular pipe to the bellows. In addition, it was found that the buckling pressure increases in the bellows as the plate thickness is reduced. Therefore, it has been proved that by using the double bellows type peripheral wall portion of the present invention, high strength and light weight can be realized at the same time.

図5は、本発明に係るダブルベローズ型電気炉を真空炉として使用したときの圧力関係を示す縦断端面図である。図符号が同一部分については、図1及び図2と同一であるから説明を省略する。異なる図符号を説明する。本形態では、ダブルベローズ型電気炉2を真空炉として利用している。炉空間30の内部は図示しない真空装置により真空状態に置かれている。従って、炉空間30の内圧は0MPaであり、ダブルベローズ型電気炉2には大気圧P0、即ち0.1MPaの外圧が作用している。ダブルベローズ型周壁部8の外側ベローズ10は大気圧P0に対して十分なる耐圧強度を有しているから、安ダブルベローズ型電気炉2は安定且つ安全に動作できる。   FIG. 5 is a longitudinal end view showing a pressure relationship when the double bellows electric furnace according to the present invention is used as a vacuum furnace. Parts having the same reference numerals are the same as those in FIGS. 1 and 2 and will not be described. Different figure symbols will be described. In this embodiment, the double bellows type electric furnace 2 is used as a vacuum furnace. The interior of the furnace space 30 is placed in a vacuum state by a vacuum device (not shown). Accordingly, the internal pressure of the furnace space 30 is 0 MPa, and the double bellows electric furnace 2 is subjected to an atmospheric pressure P0, that is, an external pressure of 0.1 MPa. Since the outer bellows 10 of the double bellows type peripheral wall portion 8 has sufficient pressure resistance against the atmospheric pressure P0, the cheap double bellows type electric furnace 2 can operate stably and safely.

図6は、本発明に係るダブルベローズ型電気炉2を加圧炉として使用したときの圧力関係を示す縦断端面図である。図符号が同一部分については、図1及び図2と同一であるから説明を省略し、異なる図符号を説明する。本形態では、ダブルベローズ型電気炉2を加圧炉として利用している。炉空間30の内部には高圧ガスが導入され、内圧Pが炉空間30の内部に作用している。内圧Pの大きさは0.1MPa〜10MPaまでに対応でき、好適には0.1MPa〜5MPaである。他方、ダブルベローズ型電気炉2の外表面には大気圧P0、即ち0.1MPaの外圧が作用している。従って、ダブルベローズ型周壁部8の外側ベローズ10には大気圧P0が作用し、内側ベローズ12には内圧Pが作用することになる。前述したように、ベローズの耐圧強度は極めて高く、上述したような内圧に対して十分な耐力を有しており、本発明のダブルベローズ型電気炉2は安定且つ安全に動作できる環境にある。   FIG. 6 is a longitudinal end view showing a pressure relationship when the double bellows electric furnace 2 according to the present invention is used as a pressure furnace. The parts having the same reference numerals are the same as those in FIGS. In this embodiment, the double bellows type electric furnace 2 is used as a pressure furnace. A high pressure gas is introduced into the furnace space 30, and an internal pressure P acts on the inside of the furnace space 30. The size of the internal pressure P can correspond to 0.1 MPa to 10 MPa, and is preferably 0.1 MPa to 5 MPa. On the other hand, an atmospheric pressure P0, that is, an external pressure of 0.1 MPa acts on the outer surface of the double bellows type electric furnace 2. Accordingly, the atmospheric pressure P0 acts on the outer bellows 10 of the double bellows-type peripheral wall portion 8, and the inner pressure P acts on the inner bellows 12. As described above, the pressure resistance of the bellows is extremely high and has a sufficient strength against the internal pressure as described above, and the double bellows electric furnace 2 of the present invention is in an environment where it can operate stably and safely.

以上詳述したように、本発明に係るダブルベローズ型熱処理炉は、ベローズの高耐圧強度、即ち高圧縮強度・高引張強度・高座屈強度・高せん断強度・高曲げ強度により、0〜10MPa(真空〜100気圧)の高耐久性を有し、真空炉・減圧炉・加圧炉・高加圧炉として利用することができる。また電気炉だけでなく、高温ガス炉やガスバーナー炉などにも適用でき、広範囲の各種の熱処理炉に利用することが可能である。発明の中心概念がダブルベローズ型周壁部にあり、熱処理炉業界とベローズ業界に新製品を導入でき、業界の活性化を図ることができる。熱処理炉を利用する業界は、半導体、誘電体などの電子部品業界、自動車業界、航空機業界など広範囲に及び、広範な産業界に新風を巻き起こすことができる。   As described above in detail, the double bellows type heat treatment furnace according to the present invention has a high compressive strength, that is, a high compressive strength, a high tensile strength, a high buckling strength, a high shear strength, and a high bending strength. It has high durability (vacuum to 100 atm) and can be used as a vacuum furnace, a decompression furnace, a pressure furnace, and a high pressure furnace. Moreover, it can be applied not only to an electric furnace but also to a high temperature gas furnace, a gas burner furnace, etc., and can be used for a wide variety of heat treatment furnaces. The central concept of the invention lies in the double bellows type peripheral wall, and new products can be introduced into the heat treatment furnace industry and the bellows industry, thereby activating the industry. The industry that uses heat treatment furnaces can generate a new wind in a wide range of industries such as semiconductors, dielectrics and other electronic parts, automobiles, and aircraft industries.

2 ダブルベローズ型電気炉(ダブルベローズ型熱処理炉)
4 床部
6 天井部
8 ダブルベローズ型周壁部
10 外側ベローズ
10a ベローズ山
11 環状間隙
12 内側ベローズ
12a ベローズ山
13 ハウジング
14 冷却水入口
16 冷却水
18 冷却水出口
20 床断熱材
22 周壁断熱材
24 ベローズ
24a ベローズ山
26 天井断熱材
28 電気ヒータ線
30 炉空間
32 被焼成物
C 環状間隙厚
D 炉内径
h 山高
p ピッチ
R 周壁断熱材厚
R1 床断熱材厚
R2 天井断熱材厚
S 炉高
T ベローズ厚
w 山幅
102 従来型電気炉
104 床部
106 天井部
108 従来型周壁部
110 外側円筒管
111 環状間隙
112 内側円筒管
113 ハウジング
114 冷却水入口
116 冷却水
118 冷却水出口
120 床断熱材
122 周壁断熱材
126 天井断熱材
128 電気ヒータ線
130 炉空間
132 被焼成物
d 炉内径
r 周壁断熱材厚
r1 床断熱材厚
r2 天井断熱材厚
s 炉高
t 円筒管厚(内側円筒管厚、外側円筒管厚)
c 環状間隙厚
2 Double bellows type electric furnace (double bellows type heat treatment furnace)
DESCRIPTION OF SYMBOLS 4 Floor part 6 Ceiling part 8 Double bellows type peripheral wall part 10 Outer bellows 10a Bellows mountain 11 Annular gap 12 Inner bellows 12a Bellows mountain 13 Housing 14 Cooling water inlet 16 Cooling water 18 Cooling water outlet 20 Floor heat insulating material 22 Peripheral wall heat insulating material 24 Bellows 24a Mt. Bellows 26 Ceiling insulation 28 Electric heater wire 30 Furnace space 32 Firing material C Annular gap thickness D Furnace inside diameter h Mountain height p Pitch R Perimeter wall insulation thickness R1 Floor insulation thickness R2 Ceiling insulation thickness S Furnace height T Bellows thickness w Mountain width 102 Conventional electric furnace 104 Floor portion 106 Ceiling portion 108 Conventional peripheral wall portion 110 Outer cylindrical tube 111 Annular gap 112 Inner cylindrical tube 113 Housing 114 Cooling water inlet 116 Cooling water 118 Cooling water outlet 120 Floor heat insulating material 122 Surrounding wall heat insulating material Material 126 Ceiling insulation 128 Electric heater wire 13 Furnace space 132 of the baked product d furnace inside diameter r wall insulation material thickness r1 Floor insulation material thickness r2 ceiling insulation material thickness s furnace height t cylindrical pipe thickness (the inner cylindrical tube thickness, the outer cylindrical tube thickness)
c Annular gap thickness

Claims (6)

ハウジングの内部に画成された炉空間に被焼成体を配置して前記被焼成物を焼成する熱処理炉において、周回状のベローズ山を軸方向に多段に形成した外側ベローズと内側ベローズを環状間隙を有するように二重管状に配置したダブルベローズ型周壁部と、前記ダブルベローズ型周壁部を支持する床部と、前記ダブルベローズ型周壁部の上方開口部を閉鎖する天井部から前記ハウジングを形成し、少なくとも前記環状間隙に冷却水を流通させて強制水冷することを特徴とするダブルベローズ型熱処理炉。 In a heat treatment furnace in which an object to be fired is placed in a furnace space defined inside a housing and the object to be fired is fired, an outer bellows having a plurality of circumferential bellows peaks formed in multiple stages in an axial direction and an inner bellows are annular gaps. Forming the housing from a double bellows type peripheral wall portion arranged in a double tubular shape so as to have a floor, a floor portion supporting the double bellows type peripheral wall portion, and a ceiling portion closing an upper opening of the double bellows type peripheral wall portion A double bellows type heat treatment furnace characterized in that cooling water is circulated through at least the annular gap and forced water cooling is performed. 前記天井部を前記ダブルベローズ型周壁部に対し開閉可能構造にし、前記ダブルベローズ型周壁部の上方開口部を開閉して前記炉空間に対し前記被焼成物を出入する請求項1に記載のダブルベローズ型熱処理炉。 2. The double according to claim 1, wherein the ceiling portion is configured to be openable and closable with respect to the double bellows type peripheral wall portion, and an upper opening portion of the double bellows type peripheral wall portion is opened and closed to allow the firing object to enter and exit the furnace space. Bellows type heat treatment furnace. 前記ハウジングの内部において、前記床部の上面側に床断熱材を配置し、前記ダブルベローズ型周壁部の前記内側ベローズの内面側に周壁断熱材を配置し、前記天井部の下面側に天井断熱材を配置し、前記床断熱材と前記周壁断熱材と前記天井断熱材で囲繞形成される内部空間を前記炉空間とする請求項1又は2に記載のダブルベローズ型熱処理炉。 Inside the housing, a floor heat insulating material is disposed on the upper surface side of the floor portion, a peripheral wall heat insulating material is disposed on the inner surface side of the inner bellows of the double bellows type peripheral wall portion, and a ceiling heat insulating material is disposed on the lower surface side of the ceiling portion. The double bellows type heat treatment furnace according to claim 1 or 2, wherein a material is disposed and an internal space surrounded by the floor heat insulating material, the peripheral wall heat insulating material, and the ceiling heat insulating material is the furnace space. 前記天井断熱材を出入可能に配置して、前記炉空間に対し前記被焼成物を出入可能にする請求項3に記載のダブルベローズ型熱処理炉。 The double bellows-type heat treatment furnace according to claim 3, wherein the ceiling heat insulating material is disposed so as to be able to enter and exit, so that the object to be fired can enter and exit the furnace space. 前記床断熱材、前記周壁断熱材、又は前記天井断熱材の一つ以上に電気ヒータ線を配置して前記熱処理炉を電気炉として構成する請求項1〜4のいずれか一つに記載のダブルベローズ型熱処理炉。 The double according to any one of claims 1 to 4, wherein an electric heater wire is arranged on one or more of the floor heat insulating material, the peripheral wall heat insulating material, or the ceiling heat insulating material to constitute the heat treatment furnace as an electric furnace. Bellows type heat treatment furnace. 前記炉空間を真空状態、減圧状態又は加圧状態にして前記被焼成物を焼成する請求項1〜5のいずれか一つに記載のダブルベローズ型熱処理炉。 The double bellows-type heat treatment furnace according to any one of claims 1 to 5, wherein the firing object is fired while the furnace space is in a vacuum state, a reduced pressure state, or a pressurized state.
JP2011103427A 2011-05-06 2011-05-06 Double bellows type heat treatment furnace Withdrawn JP2012233644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103427A JP2012233644A (en) 2011-05-06 2011-05-06 Double bellows type heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103427A JP2012233644A (en) 2011-05-06 2011-05-06 Double bellows type heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2012233644A true JP2012233644A (en) 2012-11-29

Family

ID=47434123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103427A Withdrawn JP2012233644A (en) 2011-05-06 2011-05-06 Double bellows type heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2012233644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017093A (en) * 2016-05-30 2016-10-12 内蒙古科技大学 Roasting device used for preparing rare-earth oxides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017093A (en) * 2016-05-30 2016-10-12 内蒙古科技大学 Roasting device used for preparing rare-earth oxides
CN106017093B (en) * 2016-05-30 2018-02-27 内蒙古科技大学 For preparing the calciner of rare earth oxide

Similar Documents

Publication Publication Date Title
JP5990338B2 (en) Far-infrared multi-stage heating furnace for hot-press steel sheets
CN106574313B (en) The far infrared wire type multi-layered type heating furnace of hot pressing steel plate
JP6139289B2 (en) Sintering apparatus, method for producing sintered body, and method for producing target material
US20060175316A1 (en) Vacuum muffle quench furnace
JP6395725B2 (en) Fuel assembly
CN106536763B (en) The far infrared wire type heating furnace of hot pressing steel plate
US3427011A (en) High pressure furnace
JP2012233644A (en) Double bellows type heat treatment furnace
JP5274275B2 (en) Heat treatment device
JP6017246B2 (en) Heat treatment furnace
ITMI971420A1 (en) GETTER PUMP PARTICULARLY SUITABLE FOR UPSTREAM USE IN PROXIMITY AND COAXIALLY TO A TURBOMOLECULAR PUMP
JP2015230152A (en) Far-infrared heating furnace of steel sheet for hot press
JP2010171206A5 (en)
JP2015229797A (en) Far infrared ray type multi-stage type heating furnace for steel plate for hot pressing
KR102430820B1 (en) high temperature heat shield assembly
US4283172A (en) Hot isostatic pressure furnace with enhanced insulation properties
JP4384518B2 (en) Furnace structure of heat treatment equipment
KR101904456B1 (en) Power cooling water device for tube buried furnace regarding the development of the high temperature furnace firing the electric power semiconductor
JP2007309540A (en) Heating plate, combined heating plate and heating furnace comprising the same
US8561432B2 (en) Apparatus for fabricating porous glass preform
JP5050513B2 (en) Metal wire heat treatment equipment
JP7382800B2 (en) Far-infrared multistage heating furnace for hot pressing steel plates
RU71651U1 (en) MICROCHANNEL BLOCK SINTER
RU163062U1 (en) VERTICAL ELECTRIC VACUUM RESISTANCE FURNACE FOR HIGH-TEMPERATURE ANNEALING OF LONG-DIMENSIONAL PRODUCTS
RU1785809C (en) Temperature control arrangement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805