JP2012232954A - Styrene derivative and polymer thereof - Google Patents

Styrene derivative and polymer thereof Download PDF

Info

Publication number
JP2012232954A
JP2012232954A JP2011104215A JP2011104215A JP2012232954A JP 2012232954 A JP2012232954 A JP 2012232954A JP 2011104215 A JP2011104215 A JP 2011104215A JP 2011104215 A JP2011104215 A JP 2011104215A JP 2012232954 A JP2012232954 A JP 2012232954A
Authority
JP
Japan
Prior art keywords
polymer
compound
formula
present
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011104215A
Other languages
Japanese (ja)
Inventor
Shigeaki Yonemori
重明 米森
Masashi Watabe
昌司 渡部
Takeshi Endo
剛 遠藤
Kozo Matsumoto
幸三 松本
Takahiro Miyata
高浩 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Seimi Chemical Ltd
Original Assignee
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Seimi Chemical Ltd filed Critical AGC Seimi Chemical Ltd
Priority to JP2011104215A priority Critical patent/JP2012232954A/en
Publication of JP2012232954A publication Critical patent/JP2012232954A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new compound and a polymer applicable to various functional materials, and to provide the polymer excellent especially in heat resistance and chemical resistance.SOLUTION: This invention relates to a compound represented by formula (a). Symbols in the formula (a) indicate following meanings: Qindicates a single-bond or a divalent linking group, and Zand Zmutually independently indicate an oxygen atom or a sulfur atom.

Description

本発明は、機能性材料として有用な5員環カーボナート構造を有するスチレン重合体および新規なその重合原料化合物に関する。   The present invention relates to a styrene polymer having a five-membered carbonate structure useful as a functional material and a novel polymerization raw material compound thereof.

5員環カーボナート構造を側鎖に含有する重合体は、高い誘電率および屈折率を示すことから、高分子電解質およびレジスト材料などの各種機能性材料として有用であることが知られている(非特許文献1〜3参照)。また、該重合体に架橋剤を添加した硬化性樹脂組成物は、離型剤または塗料として有用である(特許文献1〜3参照)。
しかし、これら文献に提案される上記重合体は、主にアクリル酸またはメタクリル酸系重合体であるため、耐熱性があまり高くなく、各種用途への応用が制限されるという問題がある。
A polymer containing a 5-membered carbonate structure in the side chain exhibits high dielectric constant and refractive index, and is known to be useful as various functional materials such as polymer electrolytes and resist materials (non- Patent Literatures 1 to 3). Moreover, the curable resin composition which added the crosslinking agent to this polymer is useful as a mold release agent or a coating material (refer patent documents 1-3).
However, since the polymers proposed in these documents are mainly acrylic acid or methacrylic acid polymers, the heat resistance is not so high, and there is a problem that application to various uses is limited.

また、5員環状カーボナート構造を有する重合体を得る方法として、エポキシ環を有する重合体に二酸化炭素を反応させて、カーボナート構造を形成させることが提案されている(非特許文献4)。しかし、この製造方法ではアクリル酸またはメタクリル酸系重合体については反応性に問題が無いものの、スチレン系重合体の場合はエポキシ環と二酸化炭素の反応性が低く、エポキシ環とカーボナート環が混在する重合体しか得られていない。   Further, as a method for obtaining a polymer having a 5-membered cyclic carbonate structure, it has been proposed to form a carbonate structure by reacting carbon dioxide with a polymer having an epoxy ring (Non-patent Document 4). However, in this production method, there is no problem in reactivity for acrylic acid or methacrylic acid polymer, but in the case of styrene polymer, the reactivity of epoxy ring and carbon dioxide is low, and epoxy ring and carbonate ring are mixed. Only polymers are obtained.

特開2005−36081JP 2005-36081 A 特開2003−327853JP 2003-327853 A 特開2003−327854JP 2003-327854 A

Macromolecures, 1995, 28, 3468-3470Macromolecures, 1995, 28, 3468-3470 Macromolecures, 2007, 40, 7558-7565Macromolecures, 2007, 40, 7558-7565 Optical Materials 21 (2002) 331-335Optical Materials 21 (2002) 331-335 Macromolecures, 1995, 28, 4701-4706Macromolecures, 1995, 28, 4701-4706

本発明は、このような課題を解決するために、各種機能性材料に応用できる重合体および新規なその重合原料化合物を提供することを目的とする。特に、耐熱性が良好である前記5員環カーボナート構造含有重合体を提供することを目的とする。更に耐薬品性も良好である前記重合体を提供することも目的とする。   In order to solve such problems, an object of the present invention is to provide a polymer that can be applied to various functional materials and a novel polymer raw material compound. In particular, it is an object of the present invention to provide a polymer having a 5-membered ring carbonate structure having good heat resistance. It is another object of the present invention to provide the polymer having good chemical resistance.

本発明は、下式(a)で表される化合物を提供する。
式(1)中の記号は以下の意味を示す。
:単結合または2価の連結基。
、Z:相互に独立して、酸素原子または硫黄原子。
The present invention provides a compound represented by the following formula (a).
Symbols in the formula (1) have the following meanings.
Q 1 : A single bond or a divalent linking group.
Z 1 and Z 2 : independently of each other, an oxygen atom or a sulfur atom.

前記式(a)において、Qは、1つ以上の−CH−がエーテル性酸素原子で置換されていてもよい炭素数1〜5の直鎖状または分岐状のアルキレン基である化合物が好ましく、Qが−CH−O−CH−である化合物がより好ましい。 In the formula (a), Q 1 is a compound having a linear or branched alkylene group having 1 to 5 carbon atoms in which one or more —CH 2 — may be substituted with an etheric oxygen atom. A compound in which Q 1 is —CH 2 —O—CH 2 — is more preferable.

前記ZおよびZが、どちらも酸素原子である化合物が好ましい。
また、前記ZおよびZが、どちらも硫黄原子である化合物も好ましい。
A compound in which Z 1 and Z 2 are both oxygen atoms is preferred.
A compound in which Z 1 and Z 2 are both sulfur atoms is also preferred.

また、本発明は前記式(a)で表される化合物から導かれる構成単位を含む重合体を提供する。   The present invention also provides a polymer containing a structural unit derived from the compound represented by the formula (a).

本発明に係る重合体は、スチレン骨格を有することにより、既存の5員環カーボナート構造含有アクリル酸系重合体と比較して耐熱性、耐薬品性等に優れる。また、本発明に係る重合体は、反応性高分子として、特に高分子電解質、レジスト材料、光学材料、塗料、離型剤、接着剤など各種機能性材料に好適に用いることができる。
本発明に係る化合物は、このような重合体の5員環カーボナート構造を導入し得る原料化合物として有用である。
Since the polymer according to the present invention has a styrene skeleton, it is excellent in heat resistance, chemical resistance, and the like as compared with an existing acrylic polymer having a 5-membered ring carbonate structure. In addition, the polymer according to the present invention can be suitably used as a reactive polymer, particularly for various functional materials such as a polymer electrolyte, a resist material, an optical material, a paint, a release agent, and an adhesive.
The compound according to the present invention is useful as a raw material compound capable of introducing such a 5-membered carbonate structure of a polymer.

本明細書において式(a)で表される化合物を化合物(a)とも記す。他の式で表される化合物も同様に表記することがある。また、化合物(a)を「本発明の化合物」とも記す。   In the present specification, the compound represented by the formula (a) is also referred to as a compound (a). The compounds represented by other formulas may be expressed similarly. The compound (a) is also referred to as “the compound of the present invention”.

前記式(a)において、Qは単結合または2価の連結基である。
2価の連結基としては、炭素数が1〜10の直鎖状もしくは分岐状のアルキレン基もしくは炭素数が2〜10のアルケニレン基、6員環芳香族基、4〜6員環の飽和もしくは不飽和の脂肪族基、5〜6員環の複素環基が挙げられ、これら2価の連結基は組み合わされていても良く、複数の環基は縮合していても良い。また、これらの2価の連結基中の水素原子はハロゲン原子の置換基を有していてもよい。また、アルキレン基中の1以上の−CH−は、エーテル性酸素原子で置換されていてもよい。
In the formula (a), Q 1 is a single bond or a divalent linking group.
Examples of the divalent linking group include a linear or branched alkylene group having 1 to 10 carbon atoms, an alkenylene group having 2 to 10 carbon atoms, a 6-membered aromatic group, a saturated 4- to 6-membered ring, Examples thereof include an unsaturated aliphatic group and a 5- to 6-membered heterocyclic group. These divalent linking groups may be combined, and a plurality of ring groups may be condensed. Further, the hydrogen atom in these divalent linking groups may have a halogen atom substituent. One or more —CH 2 — in the alkylene group may be substituted with an etheric oxygen atom.

は、単結合または2価の連結基であれば適宜選択可能であり、上記例示に限定されるものではないが、これらの中でも、基中の1つ以上の−CH−がエーテル性酸素原子で置換されていてもよい炭素数1〜5の直鎖状のアルキレン基が好ましく、−CH−O−CH−が特に好ましい。Qがこれらの基であると、本発明の重合体の耐熱性や耐薬品性が特に良好になり、安定性が向上するからである。 Q 1 can be appropriately selected as long as it is a single bond or a divalent linking group, and is not limited to the above examples. Among these, one or more —CH 2 — in the group is ethereal. A linear alkylene group having 1 to 5 carbon atoms which may be substituted with an oxygen atom is preferred, and —CH 2 —O—CH 2 — is particularly preferred. This is because when Q 1 is such a group, the heat resistance and chemical resistance of the polymer of the present invention are particularly good and the stability is improved.

式(a)において、ZおよびZは相互に独立して酸素原子または硫黄原子である。どちらも酸素原子である場合は5員環状カーボナート構造となり、どちらも硫黄原子である場合は5員環状ジチオカーボナート構造となる。ZおよびZは用途に応じて適宜選択することができる。なお、加熱をしても硫化物による悪臭が発生する可能性がないという観点からは、ZおよびZがどちらも酸素原子であるものが好ましい。また、屈折率が大きくなりプラスチック性のレンズなどに好適である観点からは、ZおよびZがどちらも硫黄原子であるものが好ましい。また、架橋部位に使用する場合は、ZおよびZがどちらも硫黄原子であるものとアミン化合物との反応速度が、ZおよびZがどちらも酸素原子であるものと比較して極めて速いため、架橋反応速度の制御が可能である。 In the formula (a), Z 1 and Z 2 are each independently an oxygen atom or a sulfur atom. When both are oxygen atoms, a 5-membered cyclic carbonate structure is formed, and when both are sulfur atoms, a 5-membered cyclic dithiocarbonate structure is formed. Z 1 and Z 2 can be appropriately selected depending on the application. In addition, from the viewpoint that no bad odor due to sulfide is generated even when heated, it is preferable that both Z 1 and Z 2 are oxygen atoms. Further, from the viewpoint of increasing the refractive index and being suitable for a plastic lens or the like, it is preferable that both Z 1 and Z 2 are sulfur atoms. In addition, when used in a crosslinking site, the reaction rate between Z 1 and Z 2 both being a sulfur atom and an amine compound is significantly higher than that when both Z 1 and Z 2 are oxygen atoms. Since it is fast, it is possible to control the crosslinking reaction rate.

本発明の化合物の製造方法は、特に限定されないが、エポキシ環を有する化合物と二酸化炭素または二硫化炭素を反応させる方法であれば様々な方法で製造することが可能である。   Although the manufacturing method of the compound of this invention is not specifically limited, If it is the method of making the compound which has an epoxy ring, and carbon dioxide or carbon disulfide react, it is possible to manufacture by various methods.

例えば、スチレン骨格とエポキシ環を併有する化合物と、二酸化炭素または二硫化炭素とを反応させることで本発明の化合物が得られる。以下に反応スキームを示す。
For example, the compound of the present invention can be obtained by reacting a compound having both a styrene skeleton and an epoxy ring with carbon dioxide or carbon disulfide. The reaction scheme is shown below.

より具体的に、前記Qが−CH−O−CH−である式(a)の化合物を例に挙げて説明をすると、ビニルベンジルグリシジルエーテルを、LiBr等のハロゲン化アルカリ金属塩の存在下で二酸化炭素等と反応させることにより、本発明の化合物を得ることができる。なお、ビニルベンジルグリシジルエーテルは、特開平9−227540号公報など公知文献を参考にして合成して得ることができる。 More specifically, the compound of formula (a) in which Q 1 is —CH 2 —O—CH 2 — will be described as an example. Vinyl benzyl glycidyl ether is converted to an alkali metal halide salt such as LiBr. By reacting with carbon dioxide or the like in the presence, the compound of the present invention can be obtained. Vinylbenzyl glycidyl ether can be synthesized by referring to known literature such as JP-A-9-227540.

また、5員環を形成した後でスチレン骨格を導入することも可能である。例えば、エポキシ環を有する化合物であるエピクロルヒドリン(東京化成製など)やグリシドール(アルドリッチ製など)と、二酸化炭素を反応させることにより、5員環を形成し、その後スチレン骨格を有する化合物であるビニルベンジルアルコールやビニルベンジルクロライド(AGCセイミケミカル製クロロメチルスチレンなど)と反応させる方法が挙げられる。以下に反応スキームを示す。
なお、ビニルベンジルアルコールは、ビニルベンジルクロライドを加水分解して得られる。二硫化炭素を用いた場合も同様である。
It is also possible to introduce a styrene skeleton after forming a 5-membered ring. For example, a compound having an epoxy ring such as epichlorohydrin (such as Tokyo Kasei) or glycidol (such as Aldrich) is reacted with carbon dioxide to form a 5-membered ring, and then vinylbenzyl, a compound having a styrene skeleton. Examples thereof include a method of reacting with alcohol or vinyl benzyl chloride (such as chloromethylstyrene manufactured by AGC Seimi Chemical). The reaction scheme is shown below.
Vinylbenzyl alcohol is obtained by hydrolyzing vinylbenzyl chloride. The same applies when carbon disulfide is used.

本発明の重合体は、化合物(a)から導かれる構成単位(以下、構成単位(A)と記す。)を含む重合体である。本発明の重合体は、化合物(a)の単独重合体でもよく、他の重合性の化合物(b)から導かれる構成単位(以下、構成単位(B)と記す)も含む共重合体でもよい。   The polymer of the present invention is a polymer containing a structural unit derived from the compound (a) (hereinafter referred to as the structural unit (A)). The polymer of the present invention may be a homopolymer of the compound (a) or a copolymer containing a structural unit derived from another polymerizable compound (b) (hereinafter referred to as a structural unit (B)). .

他の重合性の化合物(b)としては、本発明の化合物および化合物(c)以外のスチレン系化合物(b1)、(メタ)アクリル酸系化合物(b2)などの不飽和基を有する化合物(b)およびさらに他の重合性化合物である化合物(b3)が挙げられる。このような化合物(b)の具体例を以下に示すが、これらに限定されるものではない。   Other polymerizable compounds (b) include compounds having an unsaturated group such as styrene compounds (b1) and (meth) acrylic acid compounds (b2) other than the compound of the present invention and compound (c) (b And a compound (b3) which is another polymerizable compound. Although the specific example of such a compound (b) is shown below, it is not limited to these.

上記(b1)としては、下記式で表わされるスチレン系化合物が挙げられる。
式中、R:−H、CH、−Cl、−CHO、−CHCl、−CHNH、−CHN(CH、−CH(CHCl、−CHCl、−CHCN、−CHN(CHCOOH)、−CHSHまたは−CHOCOCHである。
As said (b1), the styrene-type compound represented by a following formula is mentioned.
Wherein, R 2: -H, CH 3 , -Cl, -CHO, -CH 2 Cl, -CH 2 NH 2, -CH 2 N (CH 3) 2, -CH 2 N + (CH 3) 3 Cl -, -CH 2 N + H 3 Cl -, -CH 2 CN, -CH 2 N (CH 2 COOH) 2, a -CH 2 SH or -CH 2 OCOCH 3.

上記化合物(b2)としては、α−クロロアクリル酸および下記式で表わされる(メタ)アクリラートが挙げられる。
CH=C(R)−COO−Q−R
式中、R:HまたはCH、Q:単結合または2価の連結基、R:−OH、−Si(OAk)3(「Ak」は炭素数1〜3の直鎖状または分岐状のアルキル基)、−CH、−CHCHN(CH、−(CHH(m=2〜20の整数)、−CHCH(CH、−CH−C(CH−OCO−Ph(「Ph」はフェニル基を意味する。以下同様である。)、−CHPh、−CHCHOPh、−CH(CHCl、−(CHCHO)CH(m=2〜20の整数)、−(CH−NCOまたは以下の基である。
また、Qの二価の連結基としては、前記化合物(1)のQ1と同様の構造が挙げられる。Qとしては、単結合、炭素数1〜5の直鎖状または分岐状のアルキレン基が好ましい。
Examples of the compound (b2) include α-chloroacrylic acid and (meth) acrylate represented by the following formula.
CH 2 = C (R 1) -COO-Q 2 -R 3
In the formula, R 1 : H or CH 3 , Q 2 : a single bond or a divalent linking group, R 3 : —OH, —Si (OAk) 3 (“Ak” is a straight chain having 1 to 3 carbon atoms or Branched alkyl group), —CH 3 , —CH 2 CH 2 N (CH 3 ) 2 , — (CH 2 ) m H (m = 2 to 20), —CH 2 CH (CH 3 ) 2 , -CH 2 -C (CH 3) 2 -OCO-Ph, ( "Ph" and so on means a phenyl group..) - CH 2 Ph, -CH 2 CH 2 OPh, -CH 2 N + ( CH 3 ) 3 Cl , — (CH 2 CH 2 O) m CH 3 (m is an integer of 2 to 20), — (CH 2 ) 2 —NCO, or the following group.
As the divalent linking group for Q 2, includes the same structure as that to Q 1 said compound (1). Q 2 is preferably a single bond or a linear or branched alkylene group having 1 to 5 carbon atoms.

化合物(b2)としては、下記式で表わされる(メタ)アクリルアミドも挙げられる。
CH=C(R)−CONH−R
式中、R:HまたはCH、R:−C2m+1(m=2〜20の整数)または−Hである。
Examples of the compound (b2) also include (meth) acrylamide represented by the following formula.
CH 2 = C (R 1) -CONH-R 4
In the formula, R 1 is H or CH 3 , R 4 is —C m H 2m + 1 (m is an integer of 2 to 20) or —H.

化合物(b2)としては、さらに、(メタ)アクリル酸ジエステル、さらに下記各式で示される化合物等の(メタ)アクリル酸ポリエステルなどが挙げられる。
およびRCHCHR。
上記式中のRは、(メタ)アクリロイルオキシ基である。
Examples of the compound (b2) include (meth) acrylic acid diesters, and (meth) acrylic acid polyesters such as compounds represented by the following formulas.
And RCH 2 CH 2 R.
R in the above formula is a (meth) acryloyloxy group.

また、化合物(b3)としては、上記(b1)および(b2)以外のビニル化合物、例えば塩化ビニル(CH=CHCl)またはアクリロニトリル(CH=CHCN)が挙げられる。 In addition, examples of the compound (b3) include vinyl compounds other than the above (b1) and (b2), for example, vinyl chloride (CH 2 ═CHCl) or acrylonitrile (CH 2 ═CHCN).

本発明の重合体に含まれる構成単位(B)は、上記化合物(b)の一種から導かれるものでも、二種以上から導かれるものであってもよい。   The structural unit (B) contained in the polymer of the present invention may be derived from one type of the compound (b) or may be derived from two or more types.

本発明の重合体の分子量は特に限定されないが、重量平均分子量(Mw)で1×10〜1×10であることが好ましく、1×10〜1×10であることがより好ましい。また、数平均分子量(Mn)で1×10〜1×10であることが好ましく、5×10〜1×10であることがより好ましい。 The molecular weight of the polymer of the present invention is not particularly limited, but is preferably 1 × 10 3 to 1 × 10 7 in terms of weight average molecular weight (Mw), and more preferably 1 × 10 4 to 1 × 10 6. . Further, the number average molecular weight (Mn) is preferably 1 × 10 3 to 1 × 10 7 , and more preferably 5 × 10 3 to 1 × 10 5 .

本発明の重合体は、重合形態など特に制限されない。共重合体である場合の重合形態は特に制限されず、ランダム、ブロック、グラフトなどのいずれでもよいがランダム重合体であることが好ましい。   The polymer of the present invention is not particularly limited in the form of polymerization. The form of polymerization in the case of a copolymer is not particularly limited and may be any of random, block, graft and the like, but is preferably a random polymer.

重合体の製造方法も、化合物(a)の5員環カーボナート構造が保持される限り特に限定されず、各種の公知の方法を採用し得る。例えば、各化合物中の不飽和基に基づき付加重合させることができる。重合に際しては、公知の不飽和化合物の付加重合条件を適宜に採択して行うことができる。例えば重合開始源として有機過酸化物、アゾ化合物、過硫酸塩等の通常の開始剤が利用できる。   The method for producing the polymer is not particularly limited as long as the 5-membered carbonate structure of the compound (a) is maintained, and various known methods can be adopted. For example, addition polymerization can be performed based on an unsaturated group in each compound. The polymerization can be carried out by appropriately adopting known addition polymerization conditions for unsaturated compounds. For example, a normal initiator such as an organic peroxide, an azo compound, or a persulfate can be used as a polymerization initiation source.

本発明の重合体は、アルコールやカルボン酸とは反応せず、アミンとは反応するという高い選択性を有している。また、アミンとの高い反応性により、重合体にジアミンを添加することにより、容易に架橋反応が形成し、ネットワークポリマーが合成できるという特徴を有している。このことから、塗料などとしても有用であることがわかる。   The polymer of the present invention has high selectivity that it does not react with alcohol or carboxylic acid but reacts with amine. Further, due to the high reactivity with amines, the addition of diamine to the polymer makes it possible to easily form a crosslinking reaction and synthesize a network polymer. This shows that it is useful also as a paint.

本発明の重合体は、前記のとおり様々な機能性材料に応用できる。例えば、非水電解質二次電池で電解液としてLiPFなどを用いた場合に、本発明の重合体を高分子支持体として用いることにより、Liと5員環部分で配位構造が形成され、安定なゲル状になると考えられる。これにより、液状の電解液と比較して漏液や蒸発といった問題を発生させず安全性が向上することが考えられる。また、本発明の重合体は耐熱性が良好であり、また耐アルカリ性などの耐薬品性も良好であるため、高い安全性を必要とする用途に好適である。また、本発明の重合体は、カーボナート構造またやジチオカーボナート構造を有するため高い極性を有している。そのため、樹脂に内添したり、塗料として表面に塗布することにより、基材の濡れ性改善を図ることができる。 As described above, the polymer of the present invention can be applied to various functional materials. For example, when LiPF 6 or the like is used as an electrolyte in a non-aqueous electrolyte secondary battery, a coordination structure is formed with Li and a 5-membered ring portion by using the polymer of the present invention as a polymer support, It is considered to be a stable gel. As a result, it is conceivable that safety is improved without causing problems such as leakage and evaporation as compared with a liquid electrolyte. In addition, the polymer of the present invention has good heat resistance and good chemical resistance such as alkali resistance, and is therefore suitable for applications requiring high safety. The polymer of the present invention has a high polarity because it has a carbonate structure or a dithiocarbonate structure. Therefore, the wettability of the base material can be improved by adding it internally to the resin or by applying it to the surface as a paint.

以下に本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例で使用した試薬等および測定条件を以下に示す。   The present invention will be specifically described below, but the present invention is not limited to the following examples. The reagents used in the examples and the measurement conditions are shown below.

<試薬等>
ビニルベンジルグリシジルエーテル(VBGE)は公知の方法で合成し、3,5−ジニトロトルエンを重合禁止剤として用いて減圧蒸留した。
臭化リチウム(LiBr)は、市販の無水LiBr(関東化学)を、使用前に120℃で真空乾燥して用いた。
二酸化炭素は、液化炭酸ガス(福豊帝酸)を大気圧で集気バルーン内に充填して使用した。
二硫化炭素は市販品(和光純薬工業)を使用した。
2,2’−アゾビス(イソブイロニトリエル)(AIBN)は、市販品(和光純薬工業)をメタノールで再結晶して用いた。
スチレン(St)は、市販品(和光純薬工業)を1mol/Lの水酸化ナトリウム水溶液および純水で洗浄後、硫酸ナトリウムで乾燥し減圧蒸留して使用した。
メチルメタクリラート(MMA)は、市販品(和光純薬工業)を1mol/Lの水酸化ナトリウム水溶液および純水で洗浄後、硫酸ナトリウムで乾燥し蒸留して使用した。
1,2−ビス(2−アミノエトキシ)エタンは、市販品(東京化成工業)を使用した。
N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)およびテトラヒドロフラン(THF)は、市販品(和光純薬工業)を常法により蒸留精製して用いた。
<Reagents>
Vinylbenzyl glycidyl ether (VBGE) was synthesized by a known method and distilled under reduced pressure using 3,5-dinitrotoluene as a polymerization inhibitor.
As lithium bromide (LiBr), commercially available anhydrous LiBr (Kanto Chemical) was vacuum-dried at 120 ° C. before use.
Carbon dioxide was used by filling the air-collecting balloon with liquefied carbon dioxide gas (Fukutoei acid) at atmospheric pressure.
A commercially available product (Wako Pure Chemical Industries) was used for carbon disulfide.
2,2′-Azobis (isobunitronitrile) (AIBN) was used by recrystallizing a commercial product (Wako Pure Chemical Industries) with methanol.
Styrene (St) was used after washing a commercially available product (Wako Pure Chemical Industries) with 1 mol / L sodium hydroxide aqueous solution and pure water, drying over sodium sulfate, and distillation under reduced pressure.
For methyl methacrylate (MMA), a commercially available product (Wako Pure Chemical Industries) was washed with 1 mol / L sodium hydroxide aqueous solution and pure water, dried over sodium sulfate and distilled.
As 1,2-bis (2-aminoethoxy) ethane, a commercially available product (Tokyo Chemical Industry) was used.
N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK) and tetrahydrofuran (THF) are commercially available products (Wako Pure Chemical Industries) distilled by conventional methods. Used after purification.

<測定条件>
H−NMR(300MHz)、13C−NMR(100MHz)スペクトルは、JEOL−AL300核磁気共鳴分光光度計を用いて測定した。化学シフトはテトラメチルシランを基準として求めた。
IRスペクトルは、Nicolet iS10(Thermo Scientific)に、Smart iTRサンプルアクセサリーを装着してATR法で測定した。
熱重量分析(TGA)は、TG−DTA 6200(Seiko Instruments Inc.)を用いて窒素(50mL/min)気流中でアルミ製容器にサンプル約4mgを入れ10℃/minで500℃まで昇温して測定した。
示差走査熱量分析(DSC)は、DSC−6200(Seiko Instruments Inc.)を用いて窒素(20mL/min)気流中でアルミ製容器にサンプル約4mgを封入して5C/minで160℃まで昇温を繰り返し、二度目の昇温データを記録した。
<Measurement conditions>
1 H-NMR (300 MHz) and 13 C-NMR (100 MHz) spectra were measured using a JEOL-AL300 nuclear magnetic resonance spectrophotometer. The chemical shift was determined based on tetramethylsilane.
The IR spectrum was measured by the ATR method with a Smart iTR sample accessory attached to Nicolet iS10 (Thermo Scientific).
In thermogravimetric analysis (TGA), TG-DTA 6200 (Seiko Instruments Inc.) was used, and about 4 mg of a sample was placed in an aluminum container in a nitrogen (50 mL / min) stream and the temperature was raised to 500 ° C. at 10 ° C./min. Measured.
Differential scanning calorimetry (DSC), until 160 ° C. at 5 o C / min by sealing the sample about 4mg an aluminum container with nitrogen (20 mL / min) in a stream with a DSC-6200 (Seiko Instruments Inc.) The temperature increase was repeated and the second temperature increase data was recorded.

数平均分子量(Mn)、重量平均分子量(Mw)、および分子量分布(Mw/Mn)は、TSKgel super AW2500、AW3000、AW4000カラムを装着したHLC−8220 GPC(東ソー)で0.01mol/L−LiBrのDMF溶液を溶離液として測定し、ポリスチレン基準で求めた。
各モノマーおよびポリマーの密度は、マイクロメリティックス乾式自動密度計AccuPyc 1340(島津製作所)を用いて測定した。
上記各測定において、固体試料は、測定前に陶器製の乳鉢で細かく粉砕して用いた。
Number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) are 0.01 mol / L-LiBr for HLC-8220 GPC (Tosoh) equipped with TSKgel super AW2500, AW3000, and AW4000 columns. The DMF solution of was measured as an eluent and was determined on a polystyrene basis.
The density of each monomer and polymer was measured using a micromeritic dry automatic density meter AccuPyc 1340 (Shimadzu Corporation).
In each of the above measurements, the solid sample was finely ground in a ceramic mortar before measurement.

(実施例1)化合物(a−1)の合成

100mLナスフラスコに、LiBr(220mg,2.5mmol)とVBGE(9.45g,50mmol)とDMF(30mL)を加え、二酸化炭素を充填した5L集気バルーンを接続して減圧し反応容器内を二酸化炭素置換した。
二酸化炭素雰囲気下でこの混合物を100℃で24時間加熱した。室温まで冷却後、反応溶液を純水に注ぎ、有機物を酢酸エチルで抽出して、得られた有機相を純水で5回洗浄後、硫酸ナトリウムで乾燥し、減圧濃縮して化合物(a−1)の粗生成物(10.6g)を粗収率91%で得た。
粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン/酢酸エチル=5:1(v/v))により精製し、収率81%で化合物(a−1)を単離した。
Example 1 Synthesis of Compound (a-1)

LiBr (220 mg, 2.5 mmol), VBGE (9.45 g, 50 mmol), and DMF (30 mL) are added to a 100 mL eggplant flask, and a 5 L air collection balloon filled with carbon dioxide is connected to reduce the pressure and the inside of the reaction vessel is oxidized. Carbon substitution.
The mixture was heated at 100 ° C. for 24 hours under a carbon dioxide atmosphere. After cooling to room temperature, the reaction solution is poured into pure water, the organic matter is extracted with ethyl acetate, the obtained organic phase is washed five times with pure water, dried over sodium sulfate, and concentrated under reduced pressure to give compound (a- The crude product of 1) (10.6 g) was obtained with a crude yield of 91%.
The crude product was purified by silica gel column chromatography (developing solvent hexane / ethyl acetate = 5: 1 (v / v)), and the compound (a-1) was isolated in a yield of 81%.

IR(ATR):712,765,824,904,984,1038,1100,1160,1510,1625,1781,2836cm−1
H−NMR(CDCl):3.68(dd,J=3.7,11.0Hz,1H),3.75(dd,J=3.7,11.0Hz,1H),4.34(dd,J=6.3,8.5Hz,1H),4.44(dd,J=8.4,8.5Hz,1H),4.52(d,J=11.8Hz,1H),4.75(d,J=11.8Hz,1H),4.78(dddd,J=3.7,3.7,6.3,8.4Hz,1H),5.25(d,J=10.8Hz,1H),5.75(d,J=17.2Hz,1H),6.70(dd,J=10.8,17.2Hz,1H),7.26(d,J=8.2Hz,2H),7.39(d,J=8.2Hz,2H)。
13C−NMR(CDCl):67.33,68.86,73.35,75.15,114.3,126.4,127.2,128.0,136.4,137.4,155.1。
IR (ATR): 712, 765, 824, 904, 984, 1038, 1100, 1160, 1510, 1625, 1781, 2836 cm −1 .
1 H-NMR (CDCl 3 ): 3.68 (dd, J = 3.7, 11.0 Hz, 1H), 3.75 (dd, J = 3.7, 11.0 Hz, 1H), 4.34 (Dd, J = 6.3, 8.5 Hz, 1H), 4.44 (dd, J = 8.4, 8.5 Hz, 1H), 4.52 (d, J = 11.8 Hz, 1H), 4.75 (d, J = 11.8 Hz, 1H), 4.78 (dddd, J = 3.7, 3.7, 6.3, 8.4 Hz, 1H), 5.25 (d, J = 10.8 Hz, 1 H), 5.75 (d, J = 17.2 Hz, 1 H), 6.70 (dd, J = 10.8, 17.2 Hz, 1 H), 7.26 (d, J = 8 .2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H).
13 C-NMR (CDCl 3 ): 67.33, 68.86, 73.35, 75.15, 114.3, 126.4, 127.2, 128.0, 136.4, 137.4, 155 .1.

(実施例2)化合物(a−2)の合成

100mLナスフラスコに、LiBr(220mg,2.5mmol)とVBGE(9.45g,50mmol)を加え窒素置換後THF(30mL)を加え0℃に冷却し、二硫化炭素(4.67g,62.5mmol)を加え2時間撹拌後、室温で3時間撹拌した。この反応溶液を純水に注ぎ、有機物をジエチルエーテルで抽出して、得られた有機相を純水で5回洗浄後、硫酸ナトリウムで乾燥し、減圧濃縮して化合物(a−2)の粗生成物(11.6g)を粗収率86%で得た。
粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン/酢酸エチル=3:1(v/v))により精製し、収率78%で化合物(a−2)を単離した。
Example 2 Synthesis of Compound (a-2)

To a 100 mL eggplant flask, LiBr (220 mg, 2.5 mmol) and VBGE (9.45 g, 50 mmol) were added, and after nitrogen substitution, THF (30 mL) was added and cooled to 0 ° C., and carbon disulfide (4.67 g, 62.5 mmol) was added. ) Was added and stirred for 2 hours, followed by stirring at room temperature for 3 hours. The reaction solution was poured into pure water, the organic matter was extracted with diethyl ether, and the resulting organic phase was washed five times with pure water, dried over sodium sulfate, and concentrated under reduced pressure to give crude compound (a-2). The product (11.6 g) was obtained with a crude yield of 86%.
The crude product was purified by silica gel column chromatography (developing solvent hexane / ethyl acetate = 3: 1 (v / v)) to isolate compound (a-2) in a yield of 78%.

IR(ATR):822,905,984,1031,1181,1225,1510,1624,2859cm−1
H−NMR(CDCl):3.61(dd,J=7.3,11.1Hz,1H),3.70(dd,J=8.2,11.1Hz,1H),3.78(dd,J=4.4,10.6Hz,1H),3.85(dd,5.1,10.6Hz,1H),4.59(d,J=11.9Hz,1H),4.64(d,J=11.9Hz,1H),5.25(dddd,J=4.4,5.1,7.3,8.2Hz,1H),5.26(d,J=11.0Hz,1H),5.77(d,J=17.7Hz,1H),6.73(dd,J=11.0Hz,1H),7.31(d,J=8.1Hz,2H),7.43(d,J=8.1Hz,2H)。
13C−NMR(CDCl):36.13,68.57,73.46,89.20,114.2,126.4,128.1,136.4,136.7,137.4,212.0。
IR (ATR): 822, 905, 984, 1031, 1181, 1225, 1510, 1624, 2859 cm −1 .
1 H-NMR (CDCl 3 ): 3.61 (dd, J = 7.3, 11.1 Hz, 1H), 3.70 (dd, J = 8.2, 11.1 Hz, 1H), 3.78 (Dd, J = 4.4, 10.6 Hz, 1H), 3.85 (dd, 5.1, 10.6 Hz, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4. 64 (d, J = 11.9 Hz, 1H), 5.25 (dddd, J = 4.4, 5.1, 7.3, 8.2 Hz, 1H), 5.26 (d, J = 1.11. 0 Hz, 1H), 5.77 (d, J = 17.7 Hz, 1H), 6.73 (dd, J = 11.0 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H).
13 C-NMR (CDCl 3 ): 36.13, 68.57, 73.46, 89.20, 114.2, 126.4, 128.1, 136.4, 136.7, 137.4, 212 0.0.

次に、本発明の重合体の製造例を示す。これら実施例の重合では、各重合原料化合物(a−1)〜(b−2)から、以下に示す構成単位(A−1)〜(B−2)が導かれるものとしている。
Next, production examples of the polymer of the present invention are shown. In the polymerization of these examples, the structural units (A-1) to (B-2) shown below are derived from the respective polymerization raw material compounds (a-1) to (b-2).

(実施例3)化合物(a−1)の単独重合体(1−1)の製造
三方コック付きの20mLシュレンク管を用いて、窒素雰囲気下、実施例1で得られた化合物(a−1)の粗生成物(699mg,3mmol)とAIBN(14.7mg,0.09mmol)のDMF(3mL)溶液を60℃で24時間加熱後、室温に冷却した。
一部を抜き取りH−NMR測定を行い、5.8ppmのビニル基CHのピークと4.9ppmの5員環カーボナートのCHのピークの積分強度比からモノマー転化率を求めた。反応混合物をメタノールに注ぎ遠心分離により固体を回収し、得られた固体を少量のアセトンに溶解させて、メタノールで再沈殿させ遠心分離により固体を回収し、真空乾燥することで重合体(1−1)の白色固体(433mg)を収率62%で得た。
(Example 3) Production of homopolymer (1-1) of compound (a-1) Compound (a-1) obtained in Example 1 under a nitrogen atmosphere using a 20 mL Schlenk tube with a three-way cock A solution of the crude product (699 mg, 3 mmol) and AIBN (14.7 mg, 0.09 mmol) in DMF (3 mL) was heated at 60 ° C. for 24 hours and then cooled to room temperature.
A portion was sampled and subjected to 1 H-NMR measurement, and the monomer conversion rate was determined from the integrated intensity ratio of the 5.8 ppm vinyl group CH peak and the 4.9 ppm 5-membered carbonate CH peak. The reaction mixture is poured into methanol, and the solid is recovered by centrifugation. The obtained solid is dissolved in a small amount of acetone, reprecipitated with methanol, recovered by centrifugation, and vacuum-dried to give a polymer (1- A white solid (433 mg) of 1) was obtained in a yield of 62%.

重合体(1−1)について測定したスペクトルデータを以下に示す。
IR(ATR):710,767,809,832,1035,1100,1160,1511,1781,2901,2845cm−1
H−NMR(DMSO−d)0.70−2.15(m,3H),3.40−4.00(m,4H),4.25−4.65(m,2H),5.35−5.55(m,1H),6.10−6.80(m,2H),6.80−7.35(m,2H)。
The spectral data measured for the polymer (1-1) are shown below.
IR (ATR): 710, 767, 809, 832, 1035, 1100, 1160, 1511, 1781, 2901, 2845 cm −1 .
1 H-NMR (DMSO-d 6 ) 0.70-2.15 (m, 3H), 3.40-4.00 (m, 4H), 4.25-4.65 (m, 2H), 5 .35-5.55 (m, 1H), 6.10-6.80 (m, 2H), 6.80-7.35 (m, 2H).

上記において、溶媒をDMFに代えてDMAC、DMSO、MEKを用いた以外は同様の条件で化合物(a−1)の重合を行った。各溶媒での転化率、収率、M、M、M/Mを、まとめて表1に示す。 In the above, the compound (a-1) was polymerized under the same conditions except that DMAC, DMSO, and MEK were used instead of DMF. Table 1 shows the conversion, yield, M n , M w , and M w / M n for each solvent.

(実施例4)化合物(a−2)の単独重合体(1−2)の製造
<開始剤1mol%の場合>
三方コック付きの20mLシュレンク管を用いて、窒素雰囲気下、実施例2で得られた化合物(a−2)の粗生成物(810mg,3mmol)と、AIBN(4.9mg,0.03mmol)のDMSO(3mL)溶液とを60℃に加熱し6時間後に室温に冷却したところゲル状の反応混合物が得られた。
このゲル状の反応混合物をメタノール中に入れ遠心分離により固体を回収し、真空乾燥することで、白色固体を、収率47%(380mg)で得た。
上記において、DMSOをDMFまたはMEKに代えた以外は同様にして得られたゲル状の反応混合物を同様に遠心分離・乾燥して、白色固体をそれぞれ収率26%(211mg)、収率31%(251mg)で得た。
上記で得られた固体はいずれも、DMSO、DMFに溶解しなかった。結果を表2に示す。
(Example 4) Production of homopolymer (1-2) of compound (a-2) <In the case of 1 mol% of initiator>
Using a 20 mL Schlenk tube with a three-way cock, in a nitrogen atmosphere, the crude product of compound (a-2) obtained in Example 2 (810 mg, 3 mmol) and AIBN (4.9 mg, 0.03 mmol) When the DMSO (3 mL) solution was heated to 60 ° C. and cooled to room temperature after 6 hours, a gel-like reaction mixture was obtained.
The gel-like reaction mixture was placed in methanol, and the solid was collected by centrifugation and vacuum dried to obtain a white solid with a yield of 47% (380 mg).
In the above, the gel-like reaction mixture obtained in the same manner except that DMSO was replaced with DMF or MEK was similarly centrifuged and dried to obtain white solids in a yield of 26% (211 mg) and a yield of 31%, respectively. (251 mg).
None of the solids obtained above was dissolved in DMSO or DMF. The results are shown in Table 2.

<開始剤3mol%の場合>
上記において、開始剤溶液として、AIBN(14.7mg,0.09mmol)のDMSO(6mL)溶液を用いた以外は同様に行った。60℃で6時間加熱後の反応混合物の一部を抜き取りH−NMR測定を行い5.8ppmのビニル基のCHピークと5.6ppmの5員環ジチオカーボナートのCHピークの積分強度比からモノマー転化率を求めたところ、38%であった。
反応混合物は、メタノールに注ぎ遠心分離により固体を回収し、得られた固体を少量のTHFに溶解させて、メタノールに再沈殿させ遠心分離により固体を回収し、真空乾燥することで重合体(1−2)の白色固体(259mg)を収率32%で得た。
上記において、60℃での加熱時間を、12時間、24時間とした以外は同様に行った。結果を表2に示す。
<In the case of initiator 3 mol%>
In the above, it carried out similarly except having used the solution of AIBN (14.7 mg, 0.09 mmol) in DMSO (6 mL) as the initiator solution. A part of the reaction mixture after heating at 60 ° C. for 6 hours was extracted and subjected to 1 H-NMR measurement. From the integrated intensity ratio of CH peak of 5.8 ppm vinyl group and CH peak of 5.6 ppm 5-membered ring dithiocarbonate. The monomer conversion was determined to be 38%.
The reaction mixture is poured into methanol, and the solid is recovered by centrifugation. The obtained solid is dissolved in a small amount of THF, re-precipitated in methanol, and the solid is recovered by centrifugation. -2) white solid (259 mg) was obtained in a yield of 32%.
In the above, it carried out similarly except having made the heating time in 60 degreeC into 12 hours and 24 hours. The results are shown in Table 2.

重合体(1−2)について測定したスペクトルデータを以下に示す。
IR(ATR):808,831,1034,1088,1184,1223,1337,1507,2845,2909cm−1
H−NMR(DMSO−d):0.60−2.30(m,3H),3.42−3.78(m,2H),4.10−4.35(m,1H),4.35−4.65(m,3H),4.82−5.05(m,1H),6.18−6.80(m,2H),6.80−7.25(m,2H)。
The spectral data measured for the polymer (1-2) are shown below.
IR (ATR): 808, 831, 1034, 1088, 1184, 1223, 1337, 1507, 2845, 2909 cm −1 .
1 H-NMR (DMSO-d 6 ): 0.62 to 2.30 (m, 3H), 3.42 to 3.78 (m, 2H), 4.10 to 4.35 (m, 1H), 4.35-4.65 (m, 3H), 4.82-5.05 (m, 1H), 6.18-6.80 (m, 2H), 6.80-7.25 (m, 2H) ).

(実施例5)化合物(a−1)の共重合
三方コック付きの20mLシュレンク管を用いて、窒素雰囲気下、実施例1で得られた化合物(a−1)の粗生成物(545mg,2.25mmol)、St(78mg,0.75mmol)およびAIBN(14.4mg,0.09mmol)のDMF(3mL)溶液を60℃で72時間加熱後、室温に冷却した。
反応混合物をメタノールに注ぎ遠心分離により固体を回収し、得られた固体を少量のアセトンに溶解させて、メタノールに再沈殿させ遠心分離により固体を回収し、真空乾燥することで重合体(1−3)の白色固体(480mg)を収率81%で得た。
Example 5 Copolymerization of Compound (a-1) Using a 20 mL Schlenk tube with a three-way cock, under a nitrogen atmosphere, a crude product (545 mg, 2) of compound (a-1) obtained in Example 1 .25 mmol), St (78 mg, 0.75 mmol) and AIBN (14.4 mg, 0.09 mmol) in DMF (3 mL) were heated at 60 ° C. for 72 hours and then cooled to room temperature.
The reaction mixture is poured into methanol, and the solid is recovered by centrifugation. The obtained solid is dissolved in a small amount of acetone, re-precipitated in methanol, and the solid is recovered by centrifugation. A white solid (480 mg) of 3) was obtained in a yield of 81%.

上記において、化合物(a−1)とStの比率を表3に示す仕込み比に変えた以外は同様にして重合体(1−4)、重合体(1−5)を得た。これらの結果を表3に示す。   Polymer (1-4) and polymer (1-5) were obtained in the same manner except that the ratio of compound (a-1) to St was changed to the charge ratio shown in Table 3. These results are shown in Table 3.

得られた重合体における共重合組成は、H−NMRスペクトルの4.9ppmの構成単位(A−1)の5員環カーボナートCHのピークと、6.2−7.4ppmの構成単位(B−1)の芳香環CHのピークとの積分強度比から求めた。
The copolymer composition in the polymer obtained was that the peak of the 5-membered carbonate CH of the 4.9 ppm constituent unit (A-1) of the 1 H-NMR spectrum and the 6.2-7.4 ppm constituent unit (B It was calculated | required from the integral intensity ratio with the peak of aromatic ring CH of -1).

(実施例6)化合物(a−2)の共重合
実施例5の重合体(1−3)の製造において、化合物(a−1)の粗生成物に代えて実施例2で得られた化合物(a−2)の粗生成物(599mg,2.25mmol)を用いた以外は同様にして、化合物(a−2)とStとを共重合させ、重合体(1−6)の白色固体(568mg)を収率84%で得た。
化合物(a−2)とStの比率を表4に示す仕込み比に変えた以外は同様にして重合体(1−7)、重合体(1−8)を得た。これらの結果を表4に示す。
Example 6 Copolymerization of Compound (a-2) In the production of the polymer (1-3) of Example 5, the compound obtained in Example 2 instead of the crude product of compound (a-1) Compound (a-2) and St were copolymerized in the same manner except that the crude product of (a-2) (599 mg, 2.25 mmol) was used, and the polymer (1-6) white solid ( 568 mg) was obtained in a yield of 84%.
A polymer (1-7) and a polymer (1-8) were obtained in the same manner except that the ratio of the compound (a-2) and St was changed to the charging ratio shown in Table 4. These results are shown in Table 4.

得られた重合体における共重合組成は、H−NMRスペクトルの5.4ppmの構成単位(A−2)の5員環状ジチオカーボナートのCHピークと、6.2−7.3ppmの構成単位(B−1)の芳香環CHのピークの積分強度比から求めた。
The copolymer composition in the polymer obtained was as follows: the CH peak of the 5-membered cyclic dithiocarbonate of the 5.4 ppm constituent unit (A-2) of the 1 H-NMR spectrum, and the 6.2-7.3 ppm constituent unit. It calculated | required from the integral intensity ratio of the peak of aromatic ring CH of (B-1).

(実施例7)
三方コック付きの20mLシュレンク管を用いて、窒素雰囲気下、実施例1の化合物(a−1)の粗生成物(350mg,1.50mmol)とMMA(151mg,1.50mmol)とAIBN(14.4mg,0.09mmol)のDMF(3mL)溶液を60℃で24時間加熱後、室温に冷却した。反応混合物をメタノールに注ぎ遠心分離により固体を回収し、得られた固体を少量のアセトンに溶解させて、メタノールに再沈殿させ遠心分離により固体を回収し、真空乾燥することで、共重合比50:50(モル比)の重合体(1−9)の白色固体(243mg)を収率48%で得た。
この重合体(1−9)における共重合組成は、H−NMRスペクトル(溶媒acetone−d)の6.5−7.4ppmの構成単位(A−1)の芳香環のCHピークと0.3−3.9ppmの構成単位(A−1)中の対応プロトンとMMAユニットの対応プロトンのピークの積分強度比から求めた。
(Example 7)
Using a 20 mL Schlenk tube equipped with a three-way cock, under a nitrogen atmosphere, the crude product (350 mg, 1.50 mmol), MMA (151 mg, 1.50 mmol) and AIBN (14. A solution of 4 mg, 0.09 mmol) in DMF (3 mL) was heated at 60 ° C. for 24 hours, and then cooled to room temperature. The reaction mixture is poured into methanol, and the solid is recovered by centrifugation. The obtained solid is dissolved in a small amount of acetone, re-precipitated in methanol, and the solid is recovered by centrifugation, followed by vacuum drying. : A white solid (243 mg) of the polymer (1-9) of 50 (molar ratio) was obtained in a yield of 48%.
The copolymer composition in this polymer (1-9) is such that the CH peak of the aromatic ring of 6.5 to 7.4 ppm of the structural unit (A-1) of the 1 H-NMR spectrum (solvent acetone-d 6 ) and 0 It calculated | required from the integral intensity ratio of the peak of the corresponding proton of a structural unit (A-1) of .3-3.9 ppm, and the corresponding proton of a MMA unit.

(実施例8)架橋反応
5mLのサンプル管内で、重合体(1−1)(466mg,2.0mmol/構成単位換算)のDMSO(2mL)溶液に、1,2−ビス(2−アミノエトキシ)エタン(30mg,0.2mmol)を加え70℃で14時間加熱したところ、混合物の流動性が消失し無色透明のゲル化が得られた。
同様に、5mLサンプル管内で重合体(1−2)(541mg,2.0mmol/構成単位換算)のDMSO(2mL)溶液に、1,2−ビス(2−アミノエトキシ)エタン(30mg,0.2mmol)を室温で加え1分後経過すると、混合物の流動性が消失し黄色透明のゲル化が得られた。
この結果から、ZおよびZの構造を適宜選択することにより、架橋反応速度を制御できることが分った。
Example 8 Crosslinking Reaction Into a DMSO (2 mL) solution of the polymer (1-1) (466 mg, 2.0 mmol / in terms of structural unit) in a 5 mL sample tube, 1,2-bis (2-aminoethoxy) When ethane (30 mg, 0.2 mmol) was added and heated at 70 ° C. for 14 hours, the fluidity of the mixture disappeared and colorless and transparent gelation was obtained.
Similarly, in a 5 mL sample tube, a DMSO (2 mL) solution of the polymer (1-2) (541 mg, 2.0 mmol / constitutional unit) was added to 1,2-bis (2-aminoethoxy) ethane (30 mg, 0.00 mg). 2 mmol) was added at room temperature and after 1 minute, the fluidity of the mixture disappeared and a yellow transparent gel was obtained.
From this result, it was found that the crosslinking reaction rate can be controlled by appropriately selecting the structures of Z 1 and Z 2 .

(実施例9)密度と収縮率の測定
化合物の密度、重合時の収縮率および重合体の密度を測定した結果を表5に示す。
表5に示すとおり、本発明の化合物は、スチレンと比較して高い密度を有し、重合時の収縮率が低いとともに、本発明の重合体は、ポリスチレンよりも高い密度を有するという特徴を有する。
(Example 9) Measurement of density and shrinkage rate Table 5 shows the results of measuring the density of the compound, the shrinkage rate during polymerization, and the density of the polymer.
As shown in Table 5, the compound of the present invention has a high density compared to styrene, and the shrinkage rate during polymerization is low, and the polymer of the present invention has the characteristics that it has a higher density than polystyrene. .

(実施例10)熱物性測定
重合体(1−1)および重合体(1−2)の熱分解温度温度Tdとガラス転移温度Tgを測定した。結果を表6に示す。
(Example 10) Thermophysical property measurement The thermal decomposition temperature Td and the glass transition temperature Tg of the polymer (1-1) and the polymer (1-2) were measured. The results are shown in Table 6.

表6中、PDOAは、非特許文献2に記載された5員環状カーボナート構造を有するアクリル酸誘導体の重合体である。
表6に示すとおり、本発明の重合体は高い耐熱性を有することが分かった。
In Table 6, PDOA is a polymer of an acrylic acid derivative having a 5-membered cyclic carbonate structure described in Non-Patent Document 2.
As shown in Table 6, it was found that the polymer of the present invention has high heat resistance.

これらの結果から、本発明の重合体は、耐熱性が高く、収縮率が低いことから、耐熱性接着剤、光学材料として好適に用いることができると考えられる。   From these results, since the polymer of the present invention has high heat resistance and low shrinkage, it can be considered that it can be suitably used as a heat resistant adhesive and an optical material.

Claims (6)

下式(a)で表される化合物。
式(a)中の記号は以下の意味を示す。
:単結合または2価の連結基。
、Z:相互に独立して、酸素原子または硫黄原子。
A compound represented by the following formula (a).
Symbols in the formula (a) have the following meanings.
Q 1 : A single bond or a divalent linking group.
Z 1 and Z 2 : independently of each other, an oxygen atom or a sulfur atom.
前記Qが、1つ以上の−CH−がエーテル性酸素原子で置換されていてもよい炭素数1〜5の直鎖状のアルキレン基である、請求項1に記載の化合物。 The compound according to claim 1 , wherein Q 1 is a linear alkylene group having 1 to 5 carbon atoms in which one or more —CH 2 — may be substituted with an etheric oxygen atom. 前記Qが−CH−O−CH−である、請求項1また2に記載の化合物。 Wherein Q 1 is -CH 2 -O-CH 2 - A compound according to claim 1 or 2. 前記ZおよびZが、どちらも酸素原子である、請求項1〜3のいずれかに記載の化合物。 The compound according to any one of claims 1 to 3, wherein Z 1 and Z 2 are both oxygen atoms. 前記ZおよびZが、どちらも硫黄原子である、請求項1〜3のいずれかに記載の化合物。 The compound according to any one of claims 1 to 3, wherein Z 1 and Z 2 are both sulfur atoms. 請求項1に記載の化合物から導かれる構成単位を含む重合体。   A polymer comprising a structural unit derived from the compound according to claim 1.
JP2011104215A 2011-05-09 2011-05-09 Styrene derivative and polymer thereof Withdrawn JP2012232954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104215A JP2012232954A (en) 2011-05-09 2011-05-09 Styrene derivative and polymer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104215A JP2012232954A (en) 2011-05-09 2011-05-09 Styrene derivative and polymer thereof

Publications (1)

Publication Number Publication Date
JP2012232954A true JP2012232954A (en) 2012-11-29

Family

ID=47433656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104215A Withdrawn JP2012232954A (en) 2011-05-09 2011-05-09 Styrene derivative and polymer thereof

Country Status (1)

Country Link
JP (1) JP2012232954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467417B2 (en) 2018-08-28 2024-04-15 ビーエーエスエフ ソシエタス・ヨーロピア Polymers of compounds containing monothiocarbonate groups and ethylenically unsaturated groups

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467417B2 (en) 2018-08-28 2024-04-15 ビーエーエスエフ ソシエタス・ヨーロピア Polymers of compounds containing monothiocarbonate groups and ethylenically unsaturated groups

Similar Documents

Publication Publication Date Title
JP5358115B2 (en) Polymer having alicyclic structure and perfluorocyclobutyl ether structure
JP4776303B2 (en) Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer
JP2008138219A (en) Method for producing fluorinated allyl ether polymer
WO2002064648A1 (en) Fluorine-containing compounds and polymers and processes for producing the same
CN107108797A (en) New brominated polymer and its manufacture method
KR20160009620A (en) Sugar containing, amphiphilic copolymers
JP4822751B2 (en) Copolymer and process for producing the same
JP2008274239A (en) Hyper branched polycarbonate and its manufacturing method
JP2012232954A (en) Styrene derivative and polymer thereof
JP4399608B2 (en) NOVEL FLUORINE-CONTAINING POLYMER, METHOD FOR PRODUCING THE POLYMER AND METHOD FOR PRODUCING 1,6-DIENE ETHER
JP2006016342A (en) Calyx-resorcinarene derivative and method for producing the same
JP4977099B2 (en) Radical polymerizable group-containing cyclic polysulfide, process for producing the same, and polymer thereof
JP2007022991A (en) Phenol derivative and method for producing the same
JP2007131683A (en) Acrylic acid ester-based polymer having excellent thermal characteristic and optical characteristic and monomer for the same
JP4937515B2 (en) Sulfur atom-containing cyclic compound, method for producing the same, and crosslinkable composition
JP4794930B2 (en) Thiacalixarene derivative and method for producing the same
JP2011148713A (en) New compound and synthesis method of the compound, and antioxidant, resin composition and resin molded body each comprising the compound
JP2007231227A (en) Vinyl ether copolymer
Ueda et al. Radical‐Initiated homopolymerization and copolymerization of methylthiomethyl methacrylate
JP2005225799A (en) Calixarene derivative and method for producing the same
JP7440684B1 (en) Thermosetting resin, its cured product and thermosetting composition
JP2008031394A (en) Novolac phenolic resin derivative and process for its production
JP3649477B2 (en) Transparent heat resistant resin
WO2019116798A1 (en) (meth)acrylate compound having fluorene skeleton
TWI838455B (en) (Meth)acrylate monomers and polymers containing cyclic carbonate groups

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805