JP5358115B2 - Polymer having alicyclic structure and perfluorocyclobutyl ether structure - Google Patents

Polymer having alicyclic structure and perfluorocyclobutyl ether structure Download PDF

Info

Publication number
JP5358115B2
JP5358115B2 JP2008098504A JP2008098504A JP5358115B2 JP 5358115 B2 JP5358115 B2 JP 5358115B2 JP 2008098504 A JP2008098504 A JP 2008098504A JP 2008098504 A JP2008098504 A JP 2008098504A JP 5358115 B2 JP5358115 B2 JP 5358115B2
Authority
JP
Japan
Prior art keywords
polymer
substituted
group
carbon atoms
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008098504A
Other languages
Japanese (ja)
Other versions
JP2009249487A (en
Inventor
宏寿 石井
好行 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008098504A priority Critical patent/JP5358115B2/en
Publication of JP2009249487A publication Critical patent/JP2009249487A/en
Application granted granted Critical
Publication of JP5358115B2 publication Critical patent/JP5358115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent material capable of canceling various problems generated when being used in a part accompanying heat generation and a part to which a stress load is intermittently or continuously applied and improving transparency and heat resistance especially in a UV region. <P>SOLUTION: A polymer has an alicyclic structure and a perfluoro cyclobutyl ether structure and is represented by formula (1) (in the formula, R denotes a bivalent group by which an alicyclic group is formed). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、脂環式構造及びペルフルオロシクロブチルエーテル構造を有するポリマーに関する。さらに詳しくは透明性、成形性に優れたポリマー、及びそれからなる透明材料並びにその成形体に関する。   The present invention relates to a polymer having an alicyclic structure and a perfluorocyclobutyl ether structure. More specifically, the present invention relates to a polymer excellent in transparency and moldability, a transparent material comprising the polymer, and a molded body thereof.

透明で機械的特性に優れているエンジニアリングプラスチックは、光学材料として広く用いられており、例えばポリメチルメタクリレートやポリカーボネート等はCD、DVD、レンズ等の光学材料として、また、自動車の透明部品等に使用されている。
しかし、ポリメチルメタクリレートは透明性に優れるが、吸湿性が高く、形態安定性が悪いという問題がある。また、ポリカーボネートは耐熱性が高く透明性に優れるが、流動性が悪く成型品の複屈折率が大きくなる等の問題があった。従って、ポリメチルメタクリレート、ポリカーボネートのいずれも光学材料として十分に満足なものとはいえなかった。
Engineering plastics that are transparent and have excellent mechanical properties are widely used as optical materials. For example, polymethyl methacrylate and polycarbonate are used as optical materials for CDs, DVDs, lenses, etc., and for transparent parts of automobiles. Has been.
However, polymethyl methacrylate is excellent in transparency, but has a problem of high hygroscopicity and poor shape stability. Polycarbonate has high heat resistance and excellent transparency, but has problems such as poor flowability and increased birefringence of the molded product. Therefore, neither polymethylmethacrylate nor polycarbonate was sufficiently satisfactory as an optical material.

近年、光学材料は光学レンズ、光ファイバー、光導波路、フォトニック結晶等の種々の光情報処理装置や、フラットパネルディスプレー(FPD)等の表示装置等にも広く用いられている。用途の拡大に伴って、光学材料として最も基本的な透明性の向上、特に光情報処理装置としての情報処理速度の向上の要求から、紫外線領域の透明性のさらなる向上が求められている。また、光学材料は薄膜状、フィルム状、ファイバー状形態で、発熱を伴う部分や、断続的又は連続的に応力負荷がかかる部分に使用されることが多いため、透明性と同時に特に耐熱性、力学的強度が求められていた。   In recent years, optical materials have been widely used in various optical information processing devices such as optical lenses, optical fibers, optical waveguides, and photonic crystals, and display devices such as flat panel displays (FPD). With the expansion of applications, further improvement in transparency in the ultraviolet region has been demanded from the demand for the most basic improvement in transparency as an optical material, particularly the improvement in information processing speed as an optical information processing apparatus. In addition, the optical material is thin film, film, fiber, and is often used in parts that generate heat, or parts that are intermittently or continuously stressed. Mechanical strength was sought.

非特許文献1には、優れた透明性、吸水性、強度及び耐熱性を有する芳香族構造及びペルフルオロシクロブチルエーテル構造を含有するポリマーが開示されている。しかし、薄膜状、フィルム状、ファイバー状形態として、発熱を伴う部分や、断続的、あるいは連続的に応力負荷がかかる部分にこのポリマーを使用する場合に、このポリマーからなる光学材料は、ポリマー中の芳香環構造の含有率が高いため紫外線領域の透明性が十分ではなく、耐熱性も十分とはいえなかった。
透明性に加えて、特に、連続的な高強度光の透過により発生する熱負荷に耐える高耐熱性及び高強度を具備する材料はなかった。
Macromolecules,37,5724(2004)
Non-Patent Document 1 discloses a polymer containing an aromatic structure and a perfluorocyclobutyl ether structure having excellent transparency, water absorption, strength and heat resistance. However, when this polymer is used in thin film, film, or fiber forms where heat generation occurs, or where stress is applied intermittently or continuously, the optical material made of this polymer is Since the content of the aromatic ring structure is high, the transparency in the ultraviolet region is not sufficient, and the heat resistance is not sufficient.
In addition to transparency, there has been no material having particularly high heat resistance and high strength that can withstand the heat load generated by continuous transmission of high-intensity light.
Macromolecules, 37, 5724 (2004)

本発明の目的は、発熱を伴う部分、及び断続的又は連続的に応力負荷がかかる部分に、光学材料を薄膜状、フィルム状、ファイバー状形態で使用する場合に生じる種々の問題点を解消でき、さらに透明性、吸水性、強度、耐熱性等の特性のうち、特に紫外線領域の透明性及び耐熱性を向上させた透明材料を提供することである。   The object of the present invention is to eliminate various problems that occur when optical materials are used in thin film, film, and fiber forms in parts that generate heat and parts that are intermittently or continuously stressed. Furthermore, it is to provide a transparent material having improved transparency and heat resistance, particularly in the ultraviolet region, among properties such as transparency, water absorption, strength and heat resistance.

本発明によれば、以下のポリマー等が提供される。
1.脂環式構造及びペルフルオロシクロブチルエーテル構造を有する下記式(1)で表されるポリマー。

Figure 0005358115
(式中、Rは、炭素数5〜50の置換又は非置換の2価の脂環式基、又は炭素数6〜10の2価の芳香族基、炭素数1〜20の置換又は非置換の2価の直鎖状脂肪族基、炭素数1〜20の置換又は非置換の2価の分岐状脂肪族基、炭素数5〜50の置換又は非置換の2価の脂環式基からなる群から選択される1以上の2価の基及び炭素数5〜50の置換又は非置換の2価の脂環式基が結合して形成される2価の基であり、
nは10以上10000以下の整数である。)
2.前記炭素数5〜50の置換又は非置換の2価の脂環式基が、アダマンタン構造、ビアダマンタン構造、ジアマンタン構造又はトリアマンタン構造を含む1に記載のポリマー。
3.前記式(1)で表されるポリマーが、下記式(2)又は(3)で表されるポリマーである1又は2に記載のポリマー。
Figure 0005358115
(式中、R’は上記アダマンタン部位構造又はアリーレン部位に置換している置換基であって、R’はハロゲン元素、炭素数6〜30の置換又は非置換の芳香族置換基、炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基又は炭素数5〜50の置換又は非置換の脂環式置換基であり、
mは0以上14以下の整数であり、mが2以上の場合、複数のR’はそれぞれ同一でも異なってもよい)
4.下記式(4)で表されるモノマー。
Figure 0005358115
(式中、Rは式(1)のRと同様である。)
5.4に記載の一般式(4)で表されるモノマーを付加環化反応する1〜3のいずれかに記載のポリマーの製造方法。
6.1〜3のいずれかに記載のポリマー、又は5に記載のポリマーの製造方法により得られるポリマーを含む透明材料。
7.1〜3のいずれかに記載のポリマー、又は5に記載のポリマーの製造方法により得られるポリマーを有機溶媒に溶解させた塗料。
8.7に記載の塗料を用いて形成される薄膜。
9.6に記載の透明材料からなる部材。
10.9に記載の部材を備える装置。 According to the present invention, the following polymers and the like are provided.
1. A polymer represented by the following formula (1) having an alicyclic structure and a perfluorocyclobutyl ether structure.
Figure 0005358115
(In the formula, R is a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms, or a divalent aromatic group having 6 to 10 carbon atoms, substituted or unsubstituted having 1 to 20 carbon atoms. A divalent linear aliphatic group, a substituted or unsubstituted divalent branched aliphatic group having 1 to 20 carbon atoms, and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms. A divalent group formed by combining one or more divalent groups selected from the group consisting of and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms;
n is an integer of 10 or more and 10,000 or less. )
2. 2. The polymer according to 1, wherein the substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms includes an adamantane structure, a biadamantane structure, a diamantane structure, or a triamantane structure.
3. The polymer according to 1 or 2, wherein the polymer represented by the formula (1) is a polymer represented by the following formula (2) or (3).
Figure 0005358115
Wherein R ′ is a substituent substituted on the adamantane moiety structure or arylene moiety, and R ′ is a halogen element, a substituted or unsubstituted aromatic substituent having 6 to 30 carbon atoms, or 1 carbon atom. -20 substituted or unsubstituted linear aliphatic substituent, 1 to 20 carbon substituted or unsubstituted branched aliphatic substituent, or 5 to 50 carbon substituted or unsubstituted alicyclic substituent And
m is an integer of 0 or more and 14 or less, and when m is 2 or more, a plurality of R ′ may be the same or different)
4). A monomer represented by the following formula (4).
Figure 0005358115
(In the formula, R is the same as R in formula (1).)
The manufacturing method of the polymer in any one of 1-3 which carries out cycloaddition reaction of the monomer represented by General formula (4) as described in 5.4.
6. A transparent material containing the polymer according to any one of items 1 to 3 or the polymer obtained by the method for producing a polymer according to 5.
7. A paint obtained by dissolving the polymer according to any one of 1 to 3 or the polymer obtained by the method for producing a polymer according to 5 in an organic solvent.
A thin film formed using the paint according to 8.7.
A member made of the transparent material according to 9.6.
An apparatus comprising the member according to 10.9.

本発明によれば、発熱を伴う部分、及び断続的又は連続的に応力負荷がかかる部分に、光学材料を薄膜状、フィルム状、ファイバー状形態で使用する場合に生じる種々の問題点を解消でき、さらに透明性、吸水性、強度、耐熱性等の特性のうち、特に紫外線領域の透明性及び耐熱性を向上させた透明材料を提供することができる。   According to the present invention, it is possible to eliminate various problems that occur when an optical material is used in the form of a thin film, a film, or a fiber in a part that generates heat and a part that is intermittently or continuously stressed. Furthermore, among the properties such as transparency, water absorption, strength and heat resistance, it is possible to provide a transparent material with improved transparency and heat resistance particularly in the ultraviolet region.

本発明のポリマーは、脂環式構造及びペルフルオロシクロブチルエーテル構造を有し、下記式(1)で表される。

Figure 0005358115
(式中、Rは、炭素数5〜50の置換又は非置換の2価の脂環式基、又は炭素数6〜10の2価の芳香族基、炭素数1〜20の置換又は非置換の2価の直鎖状脂肪族基、炭素数1〜20の置換又は非置換の2価の分岐状脂肪族基、炭素数5〜50の置換又は非置換の2価の脂環式基からなる群から選択される1以上の2価の基及び炭素数5〜50の置換又は非置換の2価の脂環式基が結合して形成される2価の基を表し、
Rには、フッ素、塩素、臭素等のハロゲン元素、炭素数6〜30の置換又は非置換の芳香族置換基、炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基、炭素数5〜50の置換又は非置換の脂環式置換基が置換していてもよく、
前記炭素数5〜50の置換又は非置換の2価の脂環式基は、その一部がエーテル結合、エステル結合、炭酸エステル結合、チオエーテル結合、チオエステル結合からなる群から選択される2価の基にさらにヘテロ原子が含まれる2価の基が存在していてもよい。
nは10以上10000以下の整数である。) The polymer of the present invention has an alicyclic structure and a perfluorocyclobutyl ether structure, and is represented by the following formula (1).
Figure 0005358115
(In the formula, R is a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms, or a divalent aromatic group having 6 to 10 carbon atoms, substituted or unsubstituted having 1 to 20 carbon atoms. A divalent linear aliphatic group, a substituted or unsubstituted divalent branched aliphatic group having 1 to 20 carbon atoms, and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms. Represents a divalent group formed by combining one or more divalent groups selected from the group consisting of and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms;
R includes halogen elements such as fluorine, chlorine and bromine, substituted or unsubstituted aromatic substituents having 6 to 30 carbon atoms, substituted or unsubstituted linear aliphatic substituents having 1 to 20 carbon atoms, carbon A substituted or unsubstituted branched aliphatic substituent having 1 to 20 carbon atoms, a substituted or unsubstituted alicyclic substituent having 5 to 50 carbon atoms may be substituted,
The substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms is a divalent selected from the group consisting of an ether bond, an ester bond, a carbonate ester bond, a thioether bond, and a thioester bond. A divalent group in which a hetero atom is further contained in the group may be present.
n is an integer of 10 or more and 10,000 or less. )

式(1)において、Rは(i)又は(ii)の2価の基である。
(i)炭素数5〜50の置換又は非置換の2価の脂環式基
(ii)炭素数6〜10の2価の芳香族基、炭素数1〜20の置換又は非置換の2価の直鎖状脂肪族基、炭素数1〜20の置換又は非置換の2価の分岐状脂肪族基、炭素数5〜50の置換又は非置換の2価の脂環式基からなる群から選択される1以上の2価の基及び炭素数5〜50の置換又は非置換の2価の脂環式基が結合して形成される2価の基
In the formula (1), R is a divalent group of (i) or (ii).
(I) a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms (ii) a divalent aromatic group having 6 to 10 carbon atoms, a substituted or unsubstituted divalent group having 1 to 20 carbon atoms From a group consisting of a linear aliphatic group, a substituted or unsubstituted divalent branched aliphatic group having 1 to 20 carbon atoms, and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms. A divalent group formed by combining one or more selected divalent groups and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms

炭素数5〜50の置換又は非置換の2価の脂環式基としては、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造又はこれらシクロアルカン構造を構成する1つの炭素の代わりにヘテロ原子を有する環構造を含む炭素数5〜50の置換又は非置換の2価の脂環式基が挙げられ、好ましくはアダマンタン構造、ビアダマンタン構造、ジアマンタン構造又はトリアマンタン構造を含む炭素数5〜50の置換又は非置換の2価の脂環式基であり、より好ましくはアダマンタン構造、ビアダマンタン構造、ジアマンタン構造又はトリアマンタン構造のいずれかである。

Examples of the substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms include a cyclopentane structure , a cyclohexane structure, a cycloheptane structure, or a ring having a hetero atom in place of one carbon constituting the cycloalkane structure. Examples thereof include a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms including a structure, and preferably a substituted or substituted carbon atom having 5 to 50 carbon atoms including an adamantane structure, a biadamantan structure, a diamantane structure, or a triamantane structure. An unsubstituted divalent alicyclic group, more preferably an adamantane structure, a biadamantane structure, a diamantane structure, or a triamantane structure.

炭素数5〜50の置換又は非置換の2価の脂環式基は、その一部がエーテル結合、エステル結合、炭酸エステル結合、チオエーテル結合、チオエステル結合からなる群から選択される2価の基にさらにヘテロ原子が含まれる2価の基が存在していてもよい。   The substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms is a divalent group partially selected from the group consisting of an ether bond, an ester bond, a carbonate ester bond, a thioether bond, and a thioester bond. Further, a divalent group containing a hetero atom may be present.

炭素数6〜10の2価の芳香族基としては、フェニレン基及びナフチレン基が挙げられる。   Examples of the divalent aromatic group having 6 to 10 carbon atoms include a phenylene group and a naphthylene group.

炭素数1〜20の置換又は非置換の2価の直鎖状脂肪族基としては、メチレン基、エチレン基、プロピレン基が挙げられる。   Examples of the substituted or unsubstituted divalent linear aliphatic group having 1 to 20 carbon atoms include a methylene group, an ethylene group, and a propylene group.

炭素数1〜20の置換又は非置換の2価の分岐状脂肪族基としては、メチルメチレン基、トリフルオロメチルメチレン基、ジメチルメチレン基、ビス(トリフルオロメチル)メチレン基が挙げられる。   Examples of the substituted or unsubstituted divalent branched aliphatic group having 1 to 20 carbon atoms include a methylmethylene group, a trifluoromethylmethylene group, a dimethylmethylene group, and a bis (trifluoromethyl) methylene group.

炭素数5〜50の置換又は非置換の2価の脂環式基としては、アダマンタン構造、ビアダマンタン構造、ジアマンタン構造、トリアマンタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造又はノルボルネン構造で構成される2価の脂環式基が挙げられ、好ましくはアダマンタン構造、ビアダマンタン構造、ジアマンタン構造又はトリアマンタン構造で構成される2価の脂環式基である。   The substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms is composed of an adamantane structure, biadamantane structure, diamantane structure, triamantane structure, cyclopentane structure, cyclohexane structure, cycloheptane structure or norbornene structure And a divalent alicyclic group composed of an adamantane structure, a biadamantane structure, a diamantane structure or a triamantane structure is preferable.

また、Rにはフッ素、塩素、臭素等のハロゲン元素、炭素数6〜30の置換又は非置換の芳香族置換基、炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基、炭素数5〜50の置換又は非置換の脂環式置換基が置換していてもよい。   R is a halogen element such as fluorine, chlorine or bromine, a substituted or unsubstituted aromatic substituent having 6 to 30 carbon atoms, a substituted or unsubstituted linear aliphatic substituent having 1 to 20 carbon atoms, A substituted or unsubstituted branched aliphatic substituent having 1 to 20 carbon atoms and a substituted or unsubstituted alicyclic substituent having 5 to 50 carbon atoms may be substituted.

炭素数6〜30の置換又は非置換の芳香族置換基としては、フェニル基、ナフチル基、アントラセニル基、ビフェニル基、ターフェニル基が挙げられる。   Examples of the substituted or unsubstituted aromatic substituent having 6 to 30 carbon atoms include a phenyl group, a naphthyl group, an anthracenyl group, a biphenyl group, and a terphenyl group.

炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基及び炭素数5〜50の置換又は非置換の脂環式置換基は、例えば、Rで説明したそれぞれの2価の基を1価にした置換基である。   A substituted or unsubstituted linear aliphatic substituent having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic substituent having 1 to 20 carbon atoms, and a substituted or unsubstituted alicyclic ring having 5 to 50 carbon atoms The formula substituent is, for example, a substituent in which each divalent group described in R is monovalent.

式(1)において、nは重合度を表し、nは10以上10000以下の整数である。nが10未満の場合、ポリマーとしての特性が得られないおそれがある。一方、nが10000超の場合、ポリマーの溶解度が低下し、重合反応時の重合度の上昇が抑制され、薄膜形成用のポリマー溶液が調製できないおそれがある。   In the formula (1), n represents the degree of polymerization, and n is an integer of 10 or more and 10,000 or less. When n is less than 10, the polymer characteristics may not be obtained. On the other hand, when n is more than 10,000, the solubility of the polymer decreases, the increase in the polymerization degree during the polymerization reaction is suppressed, and there is a possibility that a polymer solution for forming a thin film cannot be prepared.

式(1)で表されるポリマーは、好ましくは下記式(2)又は(3)で表されるポリマーである。

Figure 0005358115
(式中、R’は上記アダマンタン部位構造又はアリーレン部位に置換している置換基であって、R’はハロゲン元素、炭素数6〜30の置換又は非置換の芳香族置換基、炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基又は炭素数5〜50の置換又は非置換の脂環式置換基であり、
mは0以上14以下の整数である。) The polymer represented by the formula (1) is preferably a polymer represented by the following formula (2) or (3).
Figure 0005358115
Wherein R ′ is a substituent substituted on the adamantane moiety structure or arylene moiety, and R ′ is a halogen element, a substituted or unsubstituted aromatic substituent having 6 to 30 carbon atoms, or 1 carbon atom. -20 substituted or unsubstituted linear aliphatic substituent, 1 to 20 carbon substituted or unsubstituted branched aliphatic substituent, or 5 to 50 carbon substituted or unsubstituted alicyclic substituent And
m is an integer of 0 or more and 14 or less. )

R’の特に好ましい具体例としては、フッ素、フェニル基、ナフチル基、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロペンチル基、シクロブチル基、シクロヘキシル基、ノルボニル基、アダマンチル基、ビアダマンチル基、ジメチルビアダマンチル基、ジブチルビアダマンチル基、ジアマンチル基、トリアマンチル基、及びこれら置換基のうち2以上を組み合わせてなる置換基が挙げられる。
R’が上述した置換基以外の場合、置換基自身の分子運動又は熱分解によって、ポリマーの耐熱性及び強度が低下するおそれがある。
Particularly preferred specific examples of R ′ include fluorine, phenyl group, naphthyl group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group. , Heptyl group, octyl group, nonyl group, decyl group, cyclopentyl group, cyclobutyl group, cyclohexyl group, norbornyl group, adamantyl group, biadamantyl group, dimethylbiadamantyl group, dibutylbiadamantyl group, diamantyl group, triamantyl group, and these The substituent which combines 2 or more among substituents is mentioned.
When R ′ is other than the above-described substituents, the heat resistance and strength of the polymer may be reduced due to molecular motion or thermal decomposition of the substituents themselves.

以下に本発明のポリマーの具体例を示す。

Figure 0005358115
Specific examples of the polymer of the present invention are shown below.
Figure 0005358115

本発明の脂環式構造及びペルフルオロシクロブチルエーテル構造を有するポリマーは、例えば下記式(4)で表されるモノマーを熱、紫外線、電子線、プラズマ等を用いた付加環化反応をすることにより選択率及び収率よく製造することができる。また、複数の式(4)で表されるモノマーを混在させて共重合させることによっても製造することができる。

Figure 0005358115
(式中、Rは式(1)のRと同様である。) The polymer having an alicyclic structure and a perfluorocyclobutyl ether structure of the present invention is selected, for example, by subjecting a monomer represented by the following formula (4) to a cycloaddition reaction using heat, ultraviolet rays, electron beams, plasma, or the like. It can be manufactured with good rate and yield. Moreover, it can manufacture also by making it mix and copolymerize the monomer represented by several Formula (4).
Figure 0005358115
(In the formula, R is the same as R in formula (1).)

好ましい重合条件は、用いるモノマー及び得られるポリマーの所望する物性により異なるが、熱による付加環化反応の場合は、50℃〜300℃の範囲の温度で加熱することによりモノマーを付加環化反応させることができる。

Figure 0005358115
The preferred polymerization conditions vary depending on the monomer used and the desired physical properties of the resulting polymer, but in the case of a cycloaddition reaction by heat, the monomer is cycloadditionally reacted by heating at a temperature in the range of 50 ° C to 300 ° C. be able to.
Figure 0005358115

式(4)で表されるモノマーは従来公知の方法により製造することができる(例えばMacromolecules,37,5724(2004))。
具体的な製造条件は、モノマーの所望の構造により異なるが、反応剤、触媒、原料の濃度や添加比率、溶媒の添加量、反応温度、反応時間、反応後処理方法等により制御することが可能である。
The monomer represented by the formula (4) can be produced by a conventionally known method (for example, Macromolecules, 37, 5724 (2004)).
Specific production conditions vary depending on the desired structure of the monomer, but can be controlled by the reactants, catalyst, concentration and addition ratio of raw materials, amount of solvent added, reaction temperature, reaction time, post-reaction treatment method, etc. It is.

尚、製造したモノマーは、好ましくは精製して用いる。精製したモノマーを用いることにより、本発明のポリマーの透明性、耐熱性及び強度に加えて安定性を向上させることができる。
モノマーの精製方法としては、イオン交換樹脂処理、再沈殿、再結晶、精密ろ過、乾燥等が挙げられ、これら精製方法によりモノマーに含まれるFe3+、Cl、Na、K、Ca2+等のイオン性不純物、反応溶媒、後処理溶媒、水分等を取り除くことができる。
The produced monomer is preferably used after purification. By using the purified monomer, stability can be improved in addition to the transparency, heat resistance and strength of the polymer of the present invention.
Examples of monomer purification methods include ion exchange resin treatment, reprecipitation, recrystallization, microfiltration, drying, and the like. Fe 3+ , Cl , Na + , K + , Ca 2+ and the like contained in the monomer by these purification methods. Ionic impurities, reaction solvent, post-treatment solvent, moisture and the like can be removed.

また、触媒又は反応剤を添加して本発明のポリマーを製造する場合、得られたポリマーを上述の精製方法を用いて精製することにより、本発明のポリマーの透明性、耐熱性及び強度に加えて安定性を向上させることができる。   In addition, when the polymer of the present invention is produced by adding a catalyst or a reactant, the obtained polymer is purified using the above-described purification method, thereby adding to the transparency, heat resistance and strength of the polymer of the present invention. Stability can be improved.

従来の芳香環構造及びペルフルオロシクロブチルエーテル構造を含有するポリマーは、芳香環構造の含有率が高く紫外線領域の透明性が十分ではないため、脂肪族構造に置換することにより向上させる。一方、本発明においては脂肪族構造を脂環式構造、特に、炭素からなる化合物のうち、地球上で最も高強度かつ高安定性であるダイヤモンドと共通のアダマンタン等の構造とすることにより、ポリマー中のエーテル結合の自由回転を拘束することが可能となり、ポリマーの耐熱性及び強度を飛躍的に向上できる。   A conventional polymer containing an aromatic ring structure and a perfluorocyclobutyl ether structure has a high content of the aromatic ring structure and is not sufficiently transparent in the ultraviolet region. Therefore, the polymer is improved by substitution with an aliphatic structure. On the other hand, in the present invention, the aliphatic structure is a cycloaliphatic structure, in particular, among the compounds composed of carbon, a structure such as adamantane common to diamond having the highest strength and high stability on the earth. The free rotation of the ether bond in the inside can be restricted, and the heat resistance and strength of the polymer can be dramatically improved.

本発明の脂環式構造及びペルフルオロシクロブチルエーテル構造を有するポリマーを含む透明材料は、光学レンズ、光ファイバー、光導波路、フォトニック結晶等の種々の光情報処理装置や、フラットパネルディスプレー等の表示装置の性能及び耐久性を飛躍的に向上させることができる。また、本発明のポリマーを含む透明材料は、特に紫外線光領域の高透明性、低吸水性、高強度、高耐熱性等が向上した特性を有する。
尚、本発明の透明材料には、本発明のポリマーのほかに樹脂成形分野で使用される各種添加剤を含んでもよい。
The transparent material containing a polymer having an alicyclic structure and a perfluorocyclobutyl ether structure according to the present invention is used in various optical information processing devices such as optical lenses, optical fibers, optical waveguides, photonic crystals, and display devices such as flat panel displays. Performance and durability can be dramatically improved. In addition, the transparent material containing the polymer of the present invention has characteristics such as high transparency in the ultraviolet light region, low water absorption, high strength, high heat resistance and the like.
The transparent material of the present invention may contain various additives used in the resin molding field in addition to the polymer of the present invention.

本発明の透明材料は公知の成形方法によって各種成形品(シリコンウェハ等の基板に形成した薄膜、フィルム、薄板、ファイバー等)を製造することができる。
成形方法としては、射出成型法、射出圧縮成型法、押出成型法、ブロー成型法、加圧成型法、トランスファー成型法、スピンコーティング法、スプレーコーティング法、キャスト法、CVD法等が挙げられ、これら成形方法を所望の製品の形態、性能に応じて適宜選択できる。
また、モノマー又は上述の方法で予備重合したnが2〜25の低分子量ポリマー(オリゴマー)を用いて成型し、得られた成形体を熱、紫外線、電子線、プラズマ等により硬化(環化付加反応)させてもよい。
The transparent material of the present invention can produce various molded products (thin films, films, thin plates, fibers, etc. formed on a substrate such as a silicon wafer) by a known molding method.
Examples of the molding method include injection molding method, injection compression molding method, extrusion molding method, blow molding method, pressure molding method, transfer molding method, spin coating method, spray coating method, casting method, CVD method, etc. A molding method can be appropriately selected according to the form and performance of a desired product.
In addition, molding is performed using a monomer or a low molecular weight polymer (oligomer) having a prepolymerization of n to 2 to 25, and the resulting molded body is cured by heat, ultraviolet light, electron beam, plasma, etc. (cyclization addition) Reaction).

スピンコーティング法等により本発明の透明材料を薄膜状に成形する場合、本発明の透明材料を有機溶媒に溶解させた塗料を使用することができる。
有機溶媒としては、クロロホルム、ジクロロメタン、1,1,2,2−テトラクロロエタン、ジクロロエタン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、DMF、NMP、ジメチルアセトアミド、DMSO、アニソール、アセトフェノン、ベンゾニトリル、ニトロベンゼン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、THF、シクロヘキサノン、メチルエチルケトン、アセトン等が挙げられる。
When the transparent material of the present invention is formed into a thin film by a spin coating method or the like, a paint in which the transparent material of the present invention is dissolved in an organic solvent can be used.
Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, DMF, NMP, dimethylacetamide, DMSO, anisole, acetophenone, benzonitrile, nitrobenzene, propylene Examples include glycol methyl ether acetate, propylene glycol monomethyl ether, THF, cyclohexanone, methyl ethyl ketone, and acetone.

塗料中における本発明の透明材料の濃度は、塗料の粘度や成形方法等を考慮して適宜調製すればよい。
薄膜の厚さは特に限定されないが、一般に10nm〜10μm程度のものが好適に使用される。
The concentration of the transparent material of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint and the molding method.
The thickness of the thin film is not particularly limited, but generally a thickness of about 10 nm to 10 μm is preferably used.

尚、本発明の透明材料からなるフィルムの厚さは1μm〜1mm程度であり、薄板の厚さは1mm〜1cm程度である。   The film made of the transparent material of the present invention has a thickness of about 1 μm to 1 mm, and the thin plate has a thickness of about 1 mm to 1 cm.

本発明の透明材料は、公知の透明材料が利用されている部材として使用することができる。具体的には、FPD保護膜等の透明フィルム、光拡散板、光反射板等の透明薄板、光ファイバー、光導波路等の線状透明部材、フォトニック結晶等の光情報処理用部材が挙げられる。上記部材は、装置の構成部材として用いることができ、例えば、光情報処理装置、FPD等の表示装置の構成部材として使用できる。   The transparent material of the present invention can be used as a member using a known transparent material. Specific examples include a transparent film such as an FPD protective film, a transparent thin plate such as a light diffusing plate and a light reflecting plate, a linear transparent member such as an optical fiber and an optical waveguide, and an optical information processing member such as a photonic crystal. The above-described member can be used as a constituent member of the device, and for example, can be used as a constituent member of a display device such as an optical information processing device or FPD.

本発明の透明材料は、特に紫外領域における透明性が高い。尚、透明性を有するとは、光の一部又は全部を吸収せずに透過することを意味する。
本発明の透明材料では、透明性の指標である最大非透過光波長(λcutoff)が150nm以上325nm以下の範囲であることが好ましい。最大非透過光波長が325nmを超えると黄色を帯びるおそれがある。
本発明の透明材料では、また透明性の指標である透過率80%の波長(λ80)が、380nm未満であることが好ましい。透過率80%波長が可視光領域になった場合には、着色が認められる可能性があるからである。好適には、360nm未満である。透明性の観点からは、透過率80%波長は短い程よい。最も短い波長としては、例えば、最大非透過光波長の下限値が挙げられる。
最大非透過光波長及び透過率80%波長は、例えば上記式(2)又は(3)の置換数mを調整することにより調整できる。
尚、最大非透過光波長及び透過率80%波長はフィルム状試料の透過スペクトルを紫外可視分光装置にて測定して決定できる。
The transparent material of the present invention has high transparency particularly in the ultraviolet region. In addition, having transparency means that it transmits without absorbing part or all of light.
In the transparent material of the present invention, the maximum non-transmission light wavelength (λ cutoff ) that is an index of transparency is preferably in the range of 150 nm or more and 325 nm or less. If the maximum non-transmission light wavelength exceeds 325 nm, there is a risk of yellowing.
The transparent material of the present invention, also the index a is the transmittance of 80% at a wavelength of transparency (lambda 80) is preferably less than 380 nm. This is because coloring may be observed when the wavelength of 80% transmittance is in the visible light region. Preferably, it is less than 360 nm. From the viewpoint of transparency, the shorter the transmittance 80% wavelength, the better. Examples of the shortest wavelength include a lower limit value of the maximum non-transmitted light wavelength.
The maximum non-transmission light wavelength and the transmittance of 80% wavelength can be adjusted by adjusting the number m of substitutions in the above formula (2) or (3), for example.
The maximum non-transmitted light wavelength and the transmittance of 80% wavelength can be determined by measuring the transmission spectrum of the film-like sample with an ultraviolet-visible spectrometer.

耐熱性の指標であるガラス転移温度(T)は150℃以上400℃以下の範囲であることが好ましい。また、10%重量減少温度(Td10)が400℃以上600℃以下の範囲であることが好ましい。
尚、ガラス転移温度は示差走査熱量計にて測定でき、10%重量減少温度は、窒素雰囲気下、示差熱熱重量同時測定装置にて測定できる。
The glass transition temperature (T g ), which is an index of heat resistance, is preferably in the range of 150 ° C. or higher and 400 ° C. or lower. The 10% weight loss temperature (T d10 ) is preferably in the range of 400 ° C. or more and 600 ° C. or less.
The glass transition temperature can be measured with a differential scanning calorimeter, and the 10% weight loss temperature can be measured with a differential thermothermal gravimetric simultaneous measurement apparatus in a nitrogen atmosphere.

以下、本発明を実施例を用いて具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、以下の合成例及び実施例で用いている出発原料、試薬等は全て市販品又は公知の方法で調製した化合物である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. The starting materials and reagents used in the following synthesis examples and examples are all commercially available compounds or compounds prepared by known methods.

実施例1
容量500ミリリットルのフラスコ中で、水素化ナトリウム(3.1g、127ミリモル)及びジメチルスルホキシド(200ミリリットル)の混合物に、窒素雰囲気下で1,3−ビス(4−ヒドロキシフェニル)アダマンタン(20.4g、63.6ミリモル)のジメチルスルホキシド(200ミリリットル)溶液を滴下してから、80℃に加熱し12時間攪拌した。次いで、氷浴を用いて反応液を冷却し30℃以上にならないように、1,2−ジブロモテトラフルオロエタン(49.6g、191ミリモル)を滴下した後、室温で12時間、さらに50℃で12時間攪拌した。この反応液を冷却後、2リットルの蒸留水に投入し、しばらく撹拌した後、析出物をろ別回収した。得られた析出物を100℃で12時間減圧乾燥した後、ヘキサンを用いたシリカゲルカラムクロマトグラフィーによって精製し、下記式(5)で表される合成中間体を白色結晶として得た(19.9g、収率46%)。式(5)で表される化合物の融点は107℃であった。

Figure 0005358115
Example 1
In a 500 ml flask, a mixture of sodium hydride (3.1 g, 127 mmol) and dimethyl sulfoxide (200 ml) was added to 1,3-bis (4-hydroxyphenyl) adamantane (20.4 g) under a nitrogen atmosphere. , 63.6 mmol) in dimethyl sulfoxide (200 ml) was added dropwise, heated to 80 ° C. and stirred for 12 hours. Next, the reaction solution was cooled in an ice bath and 1,2-dibromotetrafluoroethane (49.6 g, 191 mmol) was added dropwise so that the temperature did not exceed 30 ° C., and then at room temperature for 12 hours and further at 50 ° C. Stir for 12 hours. The reaction solution was cooled, poured into 2 liters of distilled water, stirred for a while, and the precipitate was collected by filtration. The obtained precipitate was dried under reduced pressure at 100 ° C. for 12 hours and purified by silica gel column chromatography using hexane to obtain a synthetic intermediate represented by the following formula (5) as white crystals (19.9 g). Yield 46%). The melting point of the compound represented by the formula (5) was 107 ° C.
Figure 0005358115

次いで、容量500ミリリットルのフラスコ中で、得られた式(5)で表される白色結晶(19.9g、29.4ミリモル)のアセトニトリル(100ミリリットル)溶液を調製した後、亜鉛粉末(3.9g、58.8ミリモル)を添加し、窒素雰囲気下で80℃に加熱して30時間攪拌した。その後、反応液を冷却後、アセトニトリルを減圧下に留去し、残った固体をヘキサンによるシリカゲルカラムクロマトグラフィーによって分取した。得られた固体を減圧蒸留(180℃、0.02Torr)により精製し、下記式(6)で表されるモノマーを白色結晶として得た(12.3g、収率87%)。式(6)で表されるモノマーの融点は51℃であった。

Figure 0005358115
Next, after preparing a solution of white crystals (19.9 g, 29.4 mmol) represented by the formula (5) obtained in acetonitrile (100 ml) in a 500 ml flask, zinc powder (3. 9 g, 58.8 mmol) was added, heated to 80 ° C. under a nitrogen atmosphere and stirred for 30 hours. Then, after cooling the reaction solution, acetonitrile was distilled off under reduced pressure, and the remaining solid was fractionated by silica gel column chromatography with hexane. The obtained solid was purified by distillation under reduced pressure (180 ° C., 0.02 Torr) to obtain a monomer represented by the following formula (6) as white crystals (12.3 g, yield 87%). The melting point of the monomer represented by the formula (6) was 51 ° C.
Figure 0005358115

合成した式(6)で表される化合物の構造は、IR測定、NMR測定及び元素分析で確認した。測定結果を以下に示す。
FT-IR(KBr,cm-1):2911(CH2),1833(CF=CF2),1507(CH=CH),1272(C-F),1135(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.78(t,2H,adamantane),1.93(d,8H,adamantane),1.97(s,2H,adamantane),2.32(m,2H,adamantane),7.05(d,4H,o-Ar-H),7.37(d,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ29.4,35.6,37.0,42.3,49.2,115.6,126.4,147.2,153.1
19F-NMR(376MHz,CDCl3):δ-120.9(dd,1F),-127.8(dd,1F),-134.4(dd,1F)
元素分析:C26H22F6O2
理論値(%) C:65.00 H:4.61 N:0.00
実測値(%) C:64.64 H:4.58 N:0.00
The structure of the synthesized compound represented by formula (6) was confirmed by IR measurement, NMR measurement and elemental analysis. The measurement results are shown below.
FT-IR (KBr, cm -1 ): 2911 (CH 2 ), 1833 (CF = CF 2 ), 1507 (CH = CH), 1272 (CF), 1135 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 1.78 (t, 2H, adamantane), 1.93 (d, 8H, adamantane), 1.97 (s, 2H, adamantane), 2.32 (m, 2H, adamantane) , 7.05 (d, 4H, o-Ar-H), 7.37 (d, 4H, m-Ar-H)
13 C-NMR (100 MHz, CDCl 3 ): δ 29.4, 35.6, 37.0, 42.3, 49.2, 115.6, 126.4, 147.2, 153.1
19 F-NMR (376 MHz, CDCl 3 ): δ-120.9 (dd, 1F), -127.8 (dd, 1F), -134.4 (dd, 1F)
Elemental analysis: C 26 H 22 F 6 O 2
Theoretical value (%) C: 65.00 H: 4.61 N: 0.00
Actual value (%) C: 64.64 H: 4.58 N: 0.00

実施例2
実施例1において、1,3−ビス(4−ヒドロキシフェニル)アダマンタンの代わりに2,2−ビス(4−ヒドロキシフェニル)アダマンタンを用いた以外は実施例1と同様にして合成中間体として下記式(7)で表される白色結晶(15.7g、収率36%)を得た。次いで、式(5)で表される合成中間体の代わりに式(7)で表される合成中間体を用い、減圧蒸留を150℃、0.02Torrで行った以外は実施例1と同様にして、下記式(8)で表されるモノマーを白色結晶として得た(8.9g、収率80%)。式(8)で表されるモノマーの融点は128℃であった。

Figure 0005358115
Example 2
In Example 1, except that 2,2-bis (4-hydroxyphenyl) adamantane was used in place of 1,3-bis (4-hydroxyphenyl) adamantane, the same as the synthesis intermediate as in Example 1, the following formula White crystals (15.7 g, yield 36%) represented by (7) were obtained. Next, the same procedure as in Example 1 was performed except that the synthetic intermediate represented by formula (7) was used instead of the synthetic intermediate represented by formula (5) and vacuum distillation was performed at 150 ° C. and 0.02 Torr. Thus, a monomer represented by the following formula (8) was obtained as white crystals (8.9 g, yield 80%). The melting point of the monomer represented by the formula (8) was 128 ° C.
Figure 0005358115

合成した式(8)で表される化合物の構造は、IR測定、NMR測定及び元素分析で確認した。測定結果を以下に示す。
FT-IR(KBr,cm-1):2909(CH2),1833(CF=CF2),1504(CH=CH),1272(C-F),1139(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.71-1.73(4H,adamantane),1.76(2H,adamantane),1.82(2H,adamantane),1.97-2.00(4H,adamantane),3.19(2H,adamantane),6.96(d,4H,o-Ar-H),7.37(d,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ27.4,32.2,33.2,37.8,49.9,116.0,127.3,144.9,152.3
19F-NMR(376MHz,CDCl3):δ-120.9(dd,1F),-127.6(dd,1F),-134.3(dd,1F)
元素分析:C26H22F6O2
理論値(%) C:65.00 H:4.61 N:0.00
実測値(%) C:64.79 H:4.68 N:0.00
The structure of the synthesized compound represented by the formula (8) was confirmed by IR measurement, NMR measurement and elemental analysis. The measurement results are shown below.
FT-IR (KBr, cm -1 ): 2909 (CH 2 ), 1833 (CF = CF 2 ), 1504 (CH = CH), 1272 (CF), 1139 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ1.71-1.73 (4H, adamantane), 1.76 (2H, adamantane), 1.82 (2H, adamantane), 1.97-2.00 (4H, adamantane), 3.19 (2H , Adamantane), 6.96 (d, 4H, o-Ar-H), 7.37 (d, 4H, m-Ar-H)
13 C-NMR (100 MHz, CDCl 3 ): δ 27.4, 32.2, 33.2, 37.8, 49.9, 116.0, 127.3, 144.9, 152.3
19 F-NMR (376 MHz, CDCl 3 ): δ-120.9 (dd, 1F), -127.6 (dd, 1F), -134.3 (dd, 1F)
Elemental analysis: C 26 H 22 F 6 O 2
Theoretical value (%) C: 65.00 H: 4.61 N: 0.00
Actual value (%) C: 64.79 H: 4.68 N: 0.00

実施例3
容量100ミリリットルのフラスコ中で、実施例1で合成したモノマー(6)(0.50g)を窒素雰囲気下180℃で9時間加熱した後、220℃で3時間さらに加熱し、固体状のポリマーを得た。得られたポリマーをテトラヒドロフランに溶解させ、メタノール中に再沈殿させて、下記式(9)の脂環式構造及びペルフルオロシクロブチルエーテル構造を含有するポリマーを白色固体として得た(0.46g、収率92%)。

Figure 0005358115
Example 3
In a 100 ml flask, the monomer (6) synthesized in Example 1 (0.50 g) was heated at 180 ° C. for 9 hours under a nitrogen atmosphere, and further heated at 220 ° C. for 3 hours to obtain a solid polymer. Obtained. The obtained polymer was dissolved in tetrahydrofuran and reprecipitated in methanol to obtain a polymer containing an alicyclic structure and a perfluorocyclobutyl ether structure of the following formula (9) as a white solid (0.46 g, yield). 92%).
Figure 0005358115

得られた式(9)で表されるポリマーの対数粘度、IR及びNMRを測定した。測定結果を以下に示す。
対数粘度(ηinh):0.36dL/g(0.5g/デシリットル濃度のクロロホルム溶液、30℃で測定)
FT-IR(film,cm-1):2905(CH2),1509(CH=CH),1317(C-F),1204(C-F),963(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.75(t,2H,adamantane),1.89(d,8H,adamantane),1.93(s,2H,adamantane),2.28(m,2H,adamantane),7.04(d,2H,o-Ar-H),7.11(d,2H,o-Ar-H),7.31(dd,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ29.4,35.6,36.9,42.2,49.1,117.8,126.1,147.3,150.4
19F-NMR(376MHz,CDCl3):δ-127.7,-128.8,-129.2,-129.4,-129.8,-130.6,-131.2,-131.8,-132.1,-132.6
The logarithmic viscosity, IR and NMR of the polymer represented by the formula (9) thus obtained were measured. The measurement results are shown below.
Logarithmic viscosity (η inh ): 0.36 dL / g (measured at 0.5 ° C / deciliter chloroform solution at 30 ° C)
FT-IR (film, cm -1 ): 2905 (CH 2 ), 1509 (CH = CH), 1317 (CF), 1204 (CF), 963 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 1.75 (t, 2H, adamantane), 1.89 (d, 8H, adamantane), 1.93 (s, 2H, adamantane), 2.28 (m, 2H, adamantane) , 7.04 (d, 2H, o-Ar-H), 7.11 (d, 2H, o-Ar-H), 7.31 (dd, 4H, m-Ar-H)
13 C-NMR (100 MHz, CDCl 3 ): δ 29.4, 35.6, 36.9, 42.2, 49.1, 117.8, 126.1, 147.3, 150.4
19 F-NMR (376 MHz, CDCl 3 ): δ-127.7, -128.8, -129.2, -129.4, -129.8, -130.6, -131.2, -131.8, -132.1, -132.6

実施例4
容量100ミリリットルのフラスコ中で、実施例2で合成したモノマー(8)(0.5g)を窒素雰囲気下180℃で2時間加熱した後、220℃で3時間さらに加熱し、固体状のポリマーを得た。得られたポリマーをテトラヒドロフランに溶解させ、メタノール中に再沈殿させて、下記式(10)の脂環式構造及びペルフルオロシクロブチルエーテル構造を含有するポリマーを白色固体として得た(0.47g、収率94%)。

Figure 0005358115
Example 4
In a flask with a capacity of 100 ml, the monomer (8) (0.5 g) synthesized in Example 2 was heated at 180 ° C. for 2 hours under a nitrogen atmosphere, and further heated at 220 ° C. for 3 hours to obtain a solid polymer. Obtained. The obtained polymer was dissolved in tetrahydrofuran and reprecipitated in methanol to obtain a polymer containing an alicyclic structure and a perfluorocyclobutyl ether structure of the following formula (10) as a white solid (0.47 g, yield). 94%).
Figure 0005358115

得られた式(10)で表されるポリマーの対数粘度、IR及びNMRを測定した。測定結果を以下に示す。
対数粘度(ηinh):0.20dL/g(0.5g/デシリットル濃度のクロロホルム溶液、30℃で測定)
FT-IR(film,cm-1):2917(CH2),1506(CH=CH),1319(C-F),1204(C-F),962(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.69-1.71(6H,adamantane),1.78(2H,adamantane),1.94(4H,adamantane),3.13(2H,adamantane),6.78(d,2H,o-Ar-H),6.99(d,2H,o-Ar-H),7.27(dd,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ27.4,32.1,33.1,37.8,49.9,118.0,127.0,145.2,149.5
19F-NMR(376MHz,CDCl3):δ-127.7,-128.8,-129.1,-129.5,-130.0,-130.7,-131.2,-131.8,-132.7,-133.3
The logarithmic viscosity, IR, and NMR of the polymer represented by the formula (10) thus obtained were measured. The measurement results are shown below.
Logarithmic viscosity (η inh ): 0.20 dL / g (measured at 0.5 ° C / deciliter chloroform solution at 30 ° C)
FT-IR (film, cm -1 ): 2917 (CH 2 ), 1506 (CH = CH), 1319 (CF), 1204 (CF), 962 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 1.69-1.71 (6H, adamantane), 1.78 (2H, adamantane), 1.94 (4H, adamantane), 3.13 (2H, adamantane), 6.78 (d, 2H , O-Ar-H), 6.99 (d, 2H, o-Ar-H), 7.27 (dd, 4H, m-Ar-H)
13 C-NMR (100 MHz, CDCl 3 ): δ 27.4, 32.1, 33.1, 37.8, 49.9, 118.0, 127.0, 145.2, 149.5
19 F-NMR (376 MHz, CDCl 3 ): δ-127.7, -128.8, -129.1, -129.5, -130.0, -130.7, -131.2, -131.8, -132.7, -133.3

合成例1
実施例1において、1,3−ビス(4−ヒドロキシフェニル)アダマンタンの代わりにビスフェノールAを用い、シリカゲルクロマトグラフィーの代わりにジエチルエーテルで抽出した以外は実施例1と同様にして、合成中間体として下記式(11)で表される無色透明油状物(11.2g、収率30%)を得た。次いで、式(5)で表される合成中間体の代わりに式(11)で表される合成中間体を用い、減圧蒸留を150℃、0.02Torrで行った以外は実施例1と同様にして、下記式(12)で表されるモノマーを無色透明油状物(6.2g、収率84%)として得た。

Figure 0005358115
Synthesis example 1
As Example 1, except that bisphenol A was used in place of 1,3-bis (4-hydroxyphenyl) adamantane and extraction was performed with diethyl ether instead of silica gel chromatography, A colorless transparent oily substance (11.2 g, yield 30%) represented by the following formula (11) was obtained. Next, the same procedure as in Example 1 was performed except that the synthetic intermediate represented by formula (11) was used instead of the synthetic intermediate represented by formula (5) and vacuum distillation was performed at 150 ° C. and 0.02 Torr. Thus, a monomer represented by the following formula (12) was obtained as a colorless transparent oil (6.2 g, yield 84%).
Figure 0005358115

合成した式(12)で表される化合物の構造は、IR測定及びNMR測定で確認した。測定結果を以下に示す。
FT-IR(KBr,cm-1):2974(CH3),1833(CF=CF2),1504(CH=CH),1277(C-F),1140(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.65(s,6H,CH3),6.99(d,4H,o-Ar-H),7.20(d,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ30.9,42.3,115.5,128.3,147.0,153.1
19F-NMR(376MHz,CDCl3):δ-120.9(dd,1F),-127.7(dd,1F),-134.5(dd,1F)
The structure of the synthesized compound represented by the formula (12) was confirmed by IR measurement and NMR measurement. The measurement results are shown below.
FT-IR (KBr, cm -1 ): 2974 (CH 3 ), 1833 (CF = CF 2 ), 1504 (CH = CH), 1277 (CF), 1140 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 1.65 (s, 6H, CH 3 ), 6.99 (d, 4H, o-Ar—H), 7.20 (d, 4H, m-Ar—H)
13 C-NMR (100 MHz, CDCl 3 ): δ 30.9, 42.3, 115.5, 128.3, 147.0, 153.1
19 F-NMR (376 MHz, CDCl 3 ): δ-120.9 (dd, 1F), -127.7 (dd, 1F), -134.5 (dd, 1F)

比較例1
容量100ミリリットルのフラスコ中で、合成例1で合成したモノマー(12)(0.50g)を窒素雰囲気下180℃で24時間加熱した後、240℃で8時間加熱し、固体状のポリマーを得た。得られたポリマーをクロロホルムに溶解させメタノール中に再沈殿させて、下記式(13)で表される脂環式構造を含有しないペルフルオロシクロブチルエーテル構造を含有するポリマーを白色固体として得た(0.45g、収率90%)。

Figure 0005358115
Comparative Example 1
In a 100 ml flask, the monomer (12) (0.50 g) synthesized in Synthesis Example 1 was heated at 180 ° C. for 24 hours under a nitrogen atmosphere and then heated at 240 ° C. for 8 hours to obtain a solid polymer. It was. The obtained polymer was dissolved in chloroform and reprecipitated in methanol to obtain a polymer containing a perfluorocyclobutyl ether structure not containing an alicyclic structure represented by the following formula (13) as a white solid (0. 45 g, 90% yield).
Figure 0005358115

得られた式(13)で表されるポリマーの対数粘度、IR及びNMRを測定した。測定結果を以下に示す。
対数粘度(ηinh):0.30dL/g(0.5g/デシリットル濃度のクロロホルム溶液、30℃で測定)
FT-IR(film,cm-1):2972(CH3),1507(CH=CH),1309(C-F),1204(C-F),963(C-F)
1H-NMR(400MHz,CDCl3,TMS):δ1.63(s,6H,CH3),6.98(d,2H,o-Ar-H),7.07(d,2H,o-Ar-H),7.24(m,4H,m-Ar-H)
13C-NMR(100MHz,CDCl3):δ30.7,42.2,117.6,128.0,147.1,150.5
19F-NMR(376MHz,CDCl3):δ-127.7,-128.7,-129.2,-129.3,-129.8,-130.6,-131.1,-131.7,-132.2,-132.9
The logarithmic viscosity, IR and NMR of the polymer represented by the formula (13) thus obtained were measured. The measurement results are shown below.
Logarithmic viscosity (η inh ): 0.30dL / g (measured at 0.5 ° C / deciliter concentration chloroform solution at 30 ° C)
FT-IR (film, cm -1 ): 2972 (CH 3 ), 1507 (CH = CH), 1309 (CF), 1204 (CF), 963 (CF)
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 1.63 (s, 6 H, CH 3 ), 6.98 (d, 2 H, o-Ar—H), 7.07 (d, 2 H, o-Ar—H) , 7.24 (m, 4H, m-Ar-H)
13 C-NMR (100 MHz, CDCl 3 ): δ 30.7, 42.2, 117.6, 128.0, 147.1, 150.5
19 F-NMR (376 MHz, CDCl 3 ): δ-127.7, -128.7, -129.2, -129.3, -129.8, -130.6, -131.1, -131.7, -132.2, -132.9

[ポリマーの評価]
実施例3及び4並びに比較例1で製造したポリマーについて、以下の評価を行った。得られた結果を表1に示す。
(1)数平均分子量及び重量平均分子量
ポリマーを希薄なテトラヒドロフラン溶液とした後、ゲル浸透クロマトグラフィー(GPC)にて数平均分子量及び重量平均分子量(ポリスチレン標準換算)を測定した。
(2)10%重量減少温度(Td10
窒素雰囲気下で示差熱熱重量同時測定装置により10%重量減少温度(Td10)を測定した。
(3)ガラス転移温度(T
示差走査熱量計によりガラス転移温度(T)を測定した。
(4)最大非透過光波長(λcutoff)及び透過率80%の波長(λ80
実施例3及び4並びに比較例1で製造したポリマーを用いて、10〜40μmの厚さのいずれも透明無色のフィルムを作製した。作製したフィルムの紫外可視吸収スペクトル(図1)を測定することにより透過しない光の波長の最大値(λcutoff)及び透過率80%の波長(λ80)を測定した。
[Polymer evaluation]
The polymers produced in Examples 3 and 4 and Comparative Example 1 were evaluated as follows. The obtained results are shown in Table 1.
(1) Number average molecular weight and weight average molecular weight After making the polymer a dilute tetrahydrofuran solution, the number average molecular weight and the weight average molecular weight (polystyrene standard conversion) were measured by gel permeation chromatography (GPC).
(2) 10% weight loss temperature (T d10 )
Under a nitrogen atmosphere, a 10% weight loss temperature (T d10 ) was measured with a differential thermothermal gravimetric simultaneous measurement apparatus.
(3) Glass transition temperature (T g )
The glass transition temperature (T g ) was measured with a differential scanning calorimeter.
(4) Maximum non-transmission light wavelength (λ cutoff ) and wavelength of transmittance 80% (λ 80 )
Using the polymers produced in Examples 3 and 4 and Comparative Example 1, a transparent and colorless film having a thickness of 10 to 40 μm was produced. By measuring the ultraviolet-visible absorption spectrum (FIG. 1) of the produced film, the maximum wavelength (λ cutoff ) of light that does not pass through and the wavelength (λ 80 ) with a transmittance of 80% were measured.

Figure 0005358115
Figure 0005358115

表1の結果より、本発明の脂環式構造及びペルフルオロシクロブチルエーテル構造を含有するポリマーは、特に紫外光に対する透明性が高い上、高耐熱性を具備し、透明性材料として極めて有用であることがわかる。   From the results in Table 1, the polymer containing the alicyclic structure and the perfluorocyclobutyl ether structure of the present invention is particularly useful as a transparent material because of its high transparency to ultraviolet light and high heat resistance. I understand.

本発明のポリマーは、光ファイバー、光学レンズ等の光学デバイス、フラットパネルディスプレイ等の表示機器の透明材料として好適に使用できる。
本発明の透明材料は、光ファイバー、光導波路等の光情報伝達装置、CMOSイメージセンサ、CCDイメージセンサ、CD、DVD、ブルーレイディスク、光コンピューター等の光情報処理装置、又は液晶ディスプレー、液晶プロジェクター、プラズマディスプレー、ELディスプレー、LEDディスプレー等の表示装置の構成部材の材料として好適である。
The polymer of the present invention can be suitably used as a transparent material for optical devices such as optical fibers and optical lenses, and display devices such as flat panel displays.
The transparent material of the present invention is an optical information transmission device such as an optical fiber or an optical waveguide, a CMOS image sensor, a CCD image sensor, an optical information processing device such as a CD, a DVD, a Blu-ray disc, an optical computer, a liquid crystal display, a liquid crystal projector, or a plasma. It is suitable as a material for constituent members of display devices such as a display, an EL display, and an LED display.

実施例3及び4並びに比較例1で製造したポリマーからなるフィルムの紫外可視吸収スペクトルを示す図である。It is a figure which shows the ultraviolet visible absorption spectrum of the film which consists of a polymer manufactured in Example 3 and 4 and the comparative example 1. FIG.

Claims (10)

脂環式構造及びペルフルオロシクロブチルエーテル構造を有する下記式(1)で表され
るポリマー。
Figure 0005358115
(式中、Rは、炭素数5〜50の置換又は非置換の2価の脂環式基、又は炭素数6〜10の2価の芳香族基、炭素数1〜20の置換又は非置換の2価の直鎖状脂肪族基、炭素数1〜20の置換又は非置換の2価の分岐状脂肪族基、炭素数5〜50の置換又は非置換の2価の脂環式基からなる群から選択される1以上の2価の基及び炭素数5〜50の置換又は非置換の2価の脂環式基が結合して形成される2価の基であり、
nは10以上10000以下の整数である。)
A polymer represented by the following formula (1) having an alicyclic structure and a perfluorocyclobutyl ether structure.
Figure 0005358115
(In the formula, R is a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms, or a divalent aromatic group having 6 to 10 carbon atoms, substituted or unsubstituted having 1 to 20 carbon atoms. A divalent linear aliphatic group, a substituted or unsubstituted divalent branched aliphatic group having 1 to 20 carbon atoms, and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms. A divalent group formed by combining one or more divalent groups selected from the group consisting of and a substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms;
n is an integer of 10 or more and 10,000 or less. )
前記炭素数5〜50の置換又は非置換の2価の脂環式基が、アダマンタン構造、ビアダマンタン構造、ジアマンタン構造又はトリアマンタン構造を含む請求項1に記載のポリマー。   The polymer according to claim 1, wherein the substituted or unsubstituted divalent alicyclic group having 5 to 50 carbon atoms includes an adamantane structure, a biadamantane structure, a diamantane structure, or a triamantane structure. 前記式(1)で表されるポリマーが、下記式(2)又は(3)で表されるポリマーである請求項1又は2に記載のポリマー。
Figure 0005358115
(式中、R’は上記アダマンタン部位構造又はアリーレン部位に置換している置換基であって、R’はハロゲン元素、炭素数6〜30の置換又は非置換の芳香族置換基、炭素数1〜20の置換又は非置換の直鎖状脂肪族置換基、炭素数1〜20の置換又は非置換の分岐状脂肪族置換基又は炭素数5〜50の置換又は非置換の脂環式置換基であり、
mは0以上14以下の整数であり、mが2以上の場合、複数のR’はそれぞれ同一でも異なってもよい)
The polymer according to claim 1 or 2, wherein the polymer represented by the formula (1) is a polymer represented by the following formula (2) or (3).
Figure 0005358115
Wherein R ′ is a substituent substituted on the adamantane moiety structure or arylene moiety, and R ′ is a halogen element, a substituted or unsubstituted aromatic substituent having 6 to 30 carbon atoms, or 1 carbon atom. -20 substituted or unsubstituted linear aliphatic substituent, 1 to 20 carbon substituted or unsubstituted branched aliphatic substituent, or 5 to 50 carbon substituted or unsubstituted alicyclic substituent And
m is an integer of 0 or more and 14 or less, and when m is 2 or more, a plurality of R ′ may be the same or different)
下記式(4)で表されるモノマー。
Figure 0005358115
(式中、請求項1に記載のRと同様である。)
A monomer represented by the following formula (4).
Figure 0005358115
(In formula, it is the same as R of Claim 1. )
請求項4に記載の一般式(4)で表されるモノマーを付加環化反応する請求項1〜3のいずれかに記載のポリマーの製造方法。   The method for producing a polymer according to any one of claims 1 to 3, wherein the monomer represented by the general formula (4) according to claim 4 is subjected to cycloaddition reaction. 請求項1〜3のいずれかに記載のポリマー、又は請求項5に記載のポリマーの製造方法により得られるポリマーを含む透明材料。   The transparent material containing the polymer in any one of Claims 1-3, or the polymer obtained by the manufacturing method of the polymer of Claim 5. 請求項1〜3のいずれかに記載のポリマー、又は請求項5に記載のポリマーの製造方法により得られるポリマーを有機溶媒に溶解させた塗料。   The coating material which dissolved the polymer in any one of Claims 1-3, or the polymer obtained by the manufacturing method of the polymer of Claim 5 in the organic solvent. 請求項7に記載の塗料を用いて形成される薄膜。   A thin film formed using the paint according to claim 7. 請求項6に記載の透明材料からなる部材。   A member made of the transparent material according to claim 6. 請求項9に記載の部材を備える装置。
An apparatus comprising the member according to claim 9.
JP2008098504A 2008-04-04 2008-04-04 Polymer having alicyclic structure and perfluorocyclobutyl ether structure Active JP5358115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098504A JP5358115B2 (en) 2008-04-04 2008-04-04 Polymer having alicyclic structure and perfluorocyclobutyl ether structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098504A JP5358115B2 (en) 2008-04-04 2008-04-04 Polymer having alicyclic structure and perfluorocyclobutyl ether structure

Publications (2)

Publication Number Publication Date
JP2009249487A JP2009249487A (en) 2009-10-29
JP5358115B2 true JP5358115B2 (en) 2013-12-04

Family

ID=41310490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098504A Active JP5358115B2 (en) 2008-04-04 2008-04-04 Polymer having alicyclic structure and perfluorocyclobutyl ether structure

Country Status (1)

Country Link
JP (1) JP5358115B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897692B2 (en) 2008-05-09 2011-03-01 Gm Global Technology Operations, Inc. Sulfonated perfluorocyclobutane block copolymers and proton conductive polymer membranes
US7897691B2 (en) 2008-05-09 2011-03-01 Gm Global Technology Operations, Inc. Proton exchange membranes for fuel cell applications
US8030405B2 (en) 2008-05-09 2011-10-04 GM Global Technology Operations LLC Blended PEM's with elastomers for improved mechanical durability
US7985805B2 (en) 2008-05-09 2011-07-26 GM Global Technology Operations LLC Polyelectrolyte membranes comprised of blends of PFSA and sulfonated PFCB polymers
US8008404B2 (en) 2008-05-09 2011-08-30 GM Global Technology Operations LLC Composite membrane
US7888433B2 (en) 2008-05-09 2011-02-15 Gm Global Technology Operations, Inc. Sulfonated-polyperfluoro-cyclobutane-polyphenylene polymers for PEM fuel cell applications
US7897693B2 (en) 2008-05-09 2011-03-01 Gm Global Technology Operations, Inc. Proton conductive polymer electrolytes and fuel cells
US8003732B2 (en) 2008-08-25 2011-08-23 GM Global Technology Operations LLC Gradient reinforced proton exchange membrane
US7976730B2 (en) 2008-08-25 2011-07-12 GM Global Technology Operations LLC Blends of low equivalent molecular weight PFSA ionomers with Kynar 2751
US8053530B2 (en) 2009-08-26 2011-11-08 GM Global Technology Operations LLC Polyelectrolyte membranes made of poly(perfluorocyclobutanes) with pendant perfluorosulfonic acid groups and blends with poly(vinylidene fluoride)
US8852823B2 (en) 2009-08-26 2014-10-07 GM Global Technology Operations LLC Sodium stannate additive to improve the durability of PEMS for H2/air fuel cells
US8354201B2 (en) 2009-08-28 2013-01-15 GM Global Technology Operations LLC Fuel cell with spatially non-homogeneous ionic membrane
US8058352B2 (en) 2009-08-28 2011-11-15 GM Global Technology Operations LLC Perfluorocyclobutane based water vapor transfer membranes
US7972732B2 (en) 2009-08-28 2011-07-05 GM Global Technology Operations LLC Perfluorocyclobutane based water vapor transfer membranes with side chain perfluorosulfonic acid moieties
US8048963B2 (en) 2009-08-31 2011-11-01 GM Global Technology Operations LLC Ion exchange membrane having lamellar morphology and process of making the same
US8409765B2 (en) 2009-08-31 2013-04-02 GM Global Technology Operations LLC Co(II)tetramethoxyphenylporphyrin additive to PFSA PEMS for improved fuel cell durability
US8252712B2 (en) 2009-11-13 2012-08-28 GM Global Technology Operations LLC Polymer dispersant addition to fuel cell electrode inks for improved manufacturability
US7989512B1 (en) 2010-03-17 2011-08-02 GM Global Technology Operations LLC Polyelectrolyte membranes derived from soluble perfluorocyclobutane polymers with sulfonyl chloride groups
US8044146B1 (en) 2010-04-16 2011-10-25 GM Global Technology Operations LLC Combination of main-chain and side-chain sulfonation of PFCB-6F high-temperature fuel cell membranes
US8735021B2 (en) 2010-04-16 2014-05-27 GM Global Technology Operations LLC Cobalt(II) tetramethoxyphenylporphyrin (CoTMPP) ionomer stabilization to prevent electrode degradation
US8609739B2 (en) 2011-02-17 2013-12-17 GM Global Technology Operations LLC Poly(perfluorocyclobutane) ionomer with phosphonic acid groups for high temperature fuel cells
JP2013035994A (en) * 2011-08-10 2013-02-21 Idemitsu Kosan Co Ltd Copolymer having alicyclic structure and perfluorocyclobutyl ether structure
JP6218059B2 (en) * 2011-09-01 2017-10-25 国立大学法人山形大学 Process for producing aromatic polyketone and aromatic polyketone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023380A (en) * 1989-06-09 1991-06-11 The Dow Chemical Company Perfluorovinyl compounds
US5364547A (en) * 1989-06-09 1994-11-15 The Dow Chemical Company Lubricants containing perfluorocyclobutane rings
JP2004157321A (en) * 2002-11-06 2004-06-03 Fuji Photo Film Co Ltd Positive resist composition
JP4456901B2 (en) * 2004-03-23 2010-04-28 出光興産株式会社 Resin coating liquid, and optical component and electronic component using the same
JP2007211138A (en) * 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd Alicyclic polyether, its production method, and its use
JP4866634B2 (en) * 2006-03-14 2012-02-01 富士フイルム株式会社 Process for producing fluorine-containing 3,5-oxo-1,6-heptadiene derivative

Also Published As

Publication number Publication date
JP2009249487A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5358115B2 (en) Polymer having alicyclic structure and perfluorocyclobutyl ether structure
JP6820646B2 (en) Bisphenols having a fluorene skeleton and methods for producing them, and polyarylate resins, (meth) acrylate compounds and epoxy resins derived from the bisphenols.
JP7082872B2 (en) High heat resistant polycarbonate resin and molded product
TWI791799B (en) Polycarbonate and moldings
WO2007125829A1 (en) Fluorine-containing adamantane derivative, fluorine-containing adamantane derivative having polymerizable group, resin composition containing the same, and antireflection film
KR100866817B1 (en) Fluorine-containing compound
KR101820220B1 (en) Compound containing structural unit derived from vinyl ether compound
TW202134224A (en) Polycarbonate resin, polycarbonate resin composition, optical molded product containing the same, and cyclic carbonate
JP2008274239A (en) Hyper branched polycarbonate and its manufacturing method
JP2014101425A (en) Cage silsesquioxane, crosslinked cage silsesquioxane, and optical element having the same
JP6319805B2 (en) Diol compound having spirobifluorene skeleton and method for producing the same
US20230123182A1 (en) Optical polymer and lens including same
JP7455190B2 (en) Polycyclic aromatic hydrocarbon compound, its crystal and its manufacturing method
WO2017183549A1 (en) Novel tetrathiaspiro compound, optical composition including same, and method for producing same
JP2013035994A (en) Copolymer having alicyclic structure and perfluorocyclobutyl ether structure
JP5759302B2 (en) Polymer comprising alicyclic structure and triazine structure, and transparent material comprising said polymer
JP7457318B2 (en) Fluorene compounds and polymers thereof, and methods for producing them
JP2008184503A (en) Polyester having adamantane structure
TWI834822B (en) optical lens
CN114702655B (en) Polycarbonate and preparation method and application thereof
WO2023074471A1 (en) Thermoplastic resin and optical member
WO2022190800A1 (en) Thermoplastic resin and optical member
WO2024024607A1 (en) Cyclic diol compound, resin modifier, resin using said resin modifier, and use application of said resin
JP3904473B2 (en) Fluorine-containing arylamide ether polymer and process for producing the same
TW202239754A (en) Cyclic diol compound, method for producing said compound, and use of said compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150