JP7082872B2 - High heat resistant polycarbonate resin and molded product - Google Patents

High heat resistant polycarbonate resin and molded product Download PDF

Info

Publication number
JP7082872B2
JP7082872B2 JP2017244292A JP2017244292A JP7082872B2 JP 7082872 B2 JP7082872 B2 JP 7082872B2 JP 2017244292 A JP2017244292 A JP 2017244292A JP 2017244292 A JP2017244292 A JP 2017244292A JP 7082872 B2 JP7082872 B2 JP 7082872B2
Authority
JP
Japan
Prior art keywords
group
polycarbonate resin
formula
mol
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017244292A
Other languages
Japanese (ja)
Other versions
JP2018104691A (en
Inventor
善也 大田
克英 沖見
信輔 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Publication of JP2018104691A publication Critical patent/JP2018104691A/en
Application granted granted Critical
Publication of JP7082872B2 publication Critical patent/JP7082872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、9,9-ビス(ヒドロキシ縮合多環式アリール)フルオレンに由来する構成単位を有する新規なポリカーボネート樹脂及びその製造方法、ポリカーボネート樹脂で形成された成形体(例えば、光学フィルム、光学レンズなどの光学用成形体)並びに前記構成単位を導入して耐熱性を向上する方法に関する。 The present invention presents a novel polycarbonate resin having a structural unit derived from 9,9-bis (hydroxyfused polycyclic aryl) fluorene, a method for producing the same, and a molded body (for example, an optical film, an optical lens) formed of the polycarbonate resin. Etc.) and a method of introducing the above-mentioned structural unit to improve heat resistance.

ポリカーボネート樹脂は、透明性や寸法安定性、機械的特性などが優れていることから、光学用成形体材料として利用されている。光学的特性に優れたポリカーボネート樹脂として、特開平10-101787号公報(特許文献1)には、9,9-ビスフェニルフルオレン骨格を有する繰り返し単位を主として含むポリカーボネート樹脂が開示されている。引用文献1の実施例では、重合成分として2,2’-[9H-フルオレン-9-イリデンビス(4,1-フェニレンオキシ)]-ビスエタノール〔9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(略号:BPEF)〕などを用いたポリカーボネート樹脂を調製している。 Polycarbonate resin is used as an optical molded material because of its excellent transparency, dimensional stability, and mechanical properties. As a polycarbonate resin having excellent optical properties, Japanese Patent Application Laid-Open No. 10-101787 (Patent Document 1) discloses a polycarbonate resin mainly containing a repeating unit having a 9,9-bisphenylfluorene skeleton. In the examples of Cited Document 1, 2,2'-[9H-fluorene-9-iridenbis (4,1-phenyleneoxy)]-bisethanol [9,9-bis [4- (2-hydroxyethoxy)] as a polymerization component ) Phenyl] Fluorene (abbreviation: BPEF)] and the like are used to prepare a polycarbonate resin.

特許文献1記載のポリカーボネート樹脂のガラス転移温度は、145℃程度と比較的高い。しかし、高温環境下での製造や使用が想定される用途(例えば、車載用レンズなど)には適用できない場合がある。 The glass transition temperature of the polycarbonate resin described in Patent Document 1 is relatively high, about 145 ° C. However, it may not be applicable to applications that are expected to be manufactured or used in a high temperature environment (for example, an in-vehicle lens).

特開2004-331688号公報(特許文献2)には、耐熱性及び熱安定性が良好で、複屈折が小さく、透明性に優れたポリカーボネート樹脂として、全芳香族ジヒドロキシ成分の50~95モル%が9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)であり、50~5モル%が一般的なビスフェノール類であるポリカーボネート共重合体が開示されている。特許文献2の実施例では、55モル%以上のBCFと、2,2-ビス(4-ヒドロキシフェニル)プロパン(「ビスフェノールA」)や1,3-ビス[2-(4-ヒドロキシフェニル)プロピル]ベンゼン(「ビスフェノールM」)とを用いたポリカーボネート樹脂が調製されている。 Japanese Patent Application Laid-Open No. 2004-331688 (Patent Document 2) describes a polycarbonate resin having good heat resistance and thermal stability, low birefringence, and excellent transparency as 50 to 95 mol% of the total aromatic dihydroxy component. Is 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (BCF), and 50 to 5 mol% is a general bisphenol, and a polycarbonate copolymer is disclosed. In the examples of Patent Document 2, 55 mol% or more of BCF and 2,2-bis (4-hydroxyphenyl) propane (“bisphenol A”) and 1,3-bis [2- (4-hydroxyphenyl) propyl) ] Polycarbonate resin using benzene ("bisphenol M") has been prepared.

特許文献2記載のポリカーボネート樹脂によれば、ガラス転移温度を高く設定することができる。しかし、そのためにはBCF由来の構成単位を多量に導入する必要があり、屈折率の向上には限界がある。 According to the polycarbonate resin described in Patent Document 2, the glass transition temperature can be set high. However, for that purpose, it is necessary to introduce a large amount of BCF-derived structural units, and there is a limit to the improvement of the refractive index.

特開平10-101787号公報Japanese Unexamined Patent Publication No. 10-101787 特開2004-331688号公報Japanese Unexamined Patent Publication No. 2004-331688

本発明の目的は、高温環境下での製造及び使用に耐え得る高い耐熱性と、高い屈折率とを有するポリカーボネート樹脂及びその製造方法、並びに前記ポリカーボネート樹脂を含む成形体(例えば、光学フィルム、光学レンズなど)を提供することにある。 An object of the present invention is a polycarbonate resin having high heat resistance and a high refractive index that can withstand production and use in a high temperature environment, a method for producing the same, and a molded body containing the polycarbonate resin (for example, an optical film, optics). Lens etc.) is to be provided.

本発明の他の目的は、高い耐熱性と低い複屈折とを両立することのできるポリカーボネート樹脂及びその製造方法、並びに前記ポリカーボネート樹脂を含む成形体を提供することにある。 Another object of the present invention is to provide a polycarbonate resin capable of achieving both high heat resistance and low birefringence, a method for producing the same, and a molded product containing the polycarbonate resin.

本発明のさらに他の目的は、耐熱性が高くても、光学部材(レンズなど)を容易に成形可能であり、かつ高い機械的特性を有するポリカーボネート樹脂及びその製造方法、並びに前記ポリカーボネート樹脂を含む成形体を提供することにある。 Still another object of the present invention includes a polycarbonate resin which can easily form an optical member (lens or the like) even if it has high heat resistance and has high mechanical properties, a method for producing the same, and the polycarbonate resin. The purpose is to provide a molded body.

本発明の別の目的は、9,9-ビス(ヒドロキシフェニル)フルオレンに由来する構成単位が少なくても、高い耐熱性を有するポリカーボネート樹脂及びその製造方法、前記ポリカーボネート樹脂を含む成形体(例えば、光学フィルム、光学レンズなど)、並びに前記構成単位を導入して耐熱性を向上する方法を提供することにある。 Another object of the present invention is a polycarbonate resin having high heat resistance even if the number of structural units derived from 9,9-bis (hydroxyphenyl) fluorene is small, a method for producing the same, and a molded product containing the polycarbonate resin (for example, It is an object of the present invention to provide a method for improving heat resistance by introducing an optical film, an optical lens, etc.) and the structural unit.

本発明者らは、前記課題を達成するため鋭意検討した結果、9,9-ビス(ヒドロキシ縮合多環式アリール)フルオレンを重合成分に含む新規なポリカーボネート樹脂が、耐熱性及び屈折率が高いことを見出し、本発明を完成した。さらに、本発明によれば、高耐熱性及び高屈折率と、低い複屈折という相反する特性を両立できる。 As a result of diligent studies to achieve the above problems, the present inventors have found that a novel polycarbonate resin containing 9,9-bis (hydroxycondensation polycyclic aryl) fluorene as a polymerization component has high heat resistance and refractive index. And completed the present invention. Further, according to the present invention, it is possible to achieve both high heat resistance and high refractive index and low birefringence, which are contradictory characteristics.

すなわち、本発明のポリカーボネート樹脂は、少なくとも下記式(1)で表される構成単位を含む。 That is, the polycarbonate resin of the present invention contains at least a structural unit represented by the following formula (1).

Figure 0007082872000001
Figure 0007082872000001

(式中、環Zは縮合多環式アレーン環、R及びRはそれぞれ置換基、k及びmはそれぞれ0以上の整数を示す)。 (In the formula, ring Z 1 is a condensed polycyclic arene ring, R 1 and R 2 are substituents, and k and m are integers of 0 or more, respectively).

前記式(1)において、環Zはナフタレン環、RはC1-6アルキル基又はC6-12アリール基、mは0~2の整数であってもよい。前記式(1)で表される構成単位の割合は、ポリカーボネート樹脂の構成単位全体に対して、1~50モル%程度であってもよい。 In the formula (1), the ring Z 1 may be a naphthalene ring, R 2 may be a C 1-6 alkyl group or a C 6-12 aryl group, and m may be an integer of 0 to 2. The ratio of the structural unit represented by the formula (1) may be about 1 to 50 mol% with respect to the entire structural unit of the polycarbonate resin.

前記ポリカーボネート樹脂は、さらに、下記式(2)及び/又は(3)で表される構成単位を含んでいてもよい。 The polycarbonate resin may further contain a structural unit represented by the following formulas (2) and / or (3).

Figure 0007082872000002
Figure 0007082872000002

(式中、環Zはアレーン環、R及びRはそれぞれ置換基、n及びpはそれぞれ0以上の整数、Aはアルキレン基、qは1以上の整数を示す)。 (In the formula, ring Z 2 is an arene ring, R 3 and R 4 are substituents, n and p are integers of 0 or more, A 1 is an alkylene group, and q is an integer of 1 or more).

Figure 0007082872000003
Figure 0007082872000003

(式中、Xは直接結合又はアルキレン基、R及びRはそれぞれ置換基、Aはアルキレン基、rは0~4の整数、sは0~2の整数、tは0以上の整数を示す)。 (In the formula, X is a direct bond or an alkylene group, R 5 and R 6 are substituents, A 2 is an alkylene group, r is an integer of 0 to 4, s is an integer of 0 to 2, and t is an integer of 0 or more. Shows).

前記式(2)において、環ZはC6-12アレーン環、RはC1-6アルキル基又はC6-12アリール基、pは0~2程度の整数、Aは直鎖状又は分岐鎖状C2-6アルキレン基、qは1~10程度の整数であってもよい。 In the above formula (2), ring Z 2 is a C 6-12 arene ring, R 4 is a C 1-6 alkyl group or C 6-12 aryl group, p is an integer of about 0 to 2, and A 1 is a linear chain. Alternatively, the branched C 2-6 alkylene group and q may be an integer of about 1 to 10.

また、前記式(3)において、Xは直接結合又はアルキレン基、R及びRはそれぞれC1-6アルキル基又はC6-12アリール基、Aは直鎖状又は分岐鎖状C2-6アルキレン基、rは0~2程度の整数、sは0又は1、tは0~10程度の整数であってもよい。 Further, in the above formula (3), X is a direct bond or an alkylene group, R 5 and R 6 are a C 1-6 alkyl group or a C 6-12 aryl group, respectively, and A 2 is a linear or branched C 2 . A -6 alkylene group, r may be an integer of about 0 to 2, s may be 0 or 1, and t may be an integer of about 0 to 10.

前記式(1)で表される構成単位と、前記式(2)及び(3)で表される構成単位の総量との割合は、例えば、前者/後者(モル比)=5/95~25/75程度であってもよい。また、前記式(2)で表される構成単位及び前記式(3)で表される構成単位の双方を含む場合、前記式(2)で表される構成単位と、前記式(3)で表される構成単位との割合は、例えば、前者/後者(モル比)=20/80~70/30程度であってもよい。 The ratio of the structural unit represented by the formula (1) to the total amount of the structural units represented by the formulas (2) and (3) is, for example, the former / the latter (molar ratio) = 5/95 to 25. It may be about / 75. Further, when both the structural unit represented by the formula (2) and the structural unit represented by the formula (3) are included, the structural unit represented by the formula (2) and the structural unit represented by the formula (3) are used. The ratio with the represented structural unit may be, for example, the former / the latter (molar ratio) = about 20/80 to 70/30.

前記ポリカーボネート樹脂は、ガラス転移温度Tgが160~200℃程度であってもよく、重量平均分子量Mwが2×10~10×10程度であってもよく、温度20℃、波長589nmでの屈折率が1.64~1.7程度であってもよく、温度20℃でのアッベ数が17~23程度であってもよく、ガラス転移温度よりも10℃高い温度で3倍に延伸したフィルムにおける温度20℃、波長600nmでの複屈折(3倍複屈折)の絶対値が0.001×10-4~75×10-4程度であってもよい。 The polycarbonate resin may have a glass transition temperature Tg of about 160 to 200 ° C., a weight average molecular weight Mw of about 2 × 10 4 to 10 × 10 4 , and a temperature of 20 ° C. and a wavelength of 589 nm. The refractive index may be about 1.64 to 1.7, the Abbe number at a temperature of 20 ° C. may be about 17 to 23, and the material is stretched three times at a temperature 10 ° C. higher than the glass transition temperature. The absolute value of the double refraction (triple double refraction) at a temperature of 20 ° C. and a wavelength of 600 nm in the film may be about 0.001 × 10 -4 to 75 × 10 -4 .

本発明は、前記式(1)で表される構成単位を形成するための第1のジオール成分を含むジオール成分と、炭酸ジエステルとを反応させて、前記ポリカーボネート樹脂を製造する方法、及び前記ポリカーボネート樹脂を含む成形体(例えば、光学フィルム、光学シート又は光学レンズなど)を包含する。前記成形体は、例えば、車載用光学レンズなどの光学用部材であってもよい。 The present invention comprises a method for producing the polycarbonate resin by reacting a diol component containing a first diol component for forming a structural unit represented by the formula (1) with a carbonic acid diester, and the polycarbonate. It includes a molded body containing a resin (for example, an optical film, an optical sheet, an optical lens, etc.). The molded body may be, for example, an optical member such as an in-vehicle optical lens.

なお、本明細書及び特許請求の範囲において、用語「ポリカーボネート樹脂」は、主鎖の連結基としてカーボネート結合(炭酸エステル結合)を含む樹脂を意味する。すなわち、用語「ポリカーボネート樹脂」は、主鎖の連結基としてカーボネート結合のみで形成されたポリマーのみならず、カーボネート結合に加えてカーボネート結合以外の連結基(例えば、エステル結合など)を含むポリマー(例えば、ポリエステルカーボネートなど)も含む意味で用いる。 In the present specification and claims, the term "polycarbonate resin" means a resin containing a carbonate bond (carbonic acid ester bond) as a linking group of the main chain. That is, the term "polycarbonate resin" is used not only as a polymer formed only by a carbonate bond as a linking group of a main chain, but also as a polymer containing a linking group other than the carbonate bond (for example, an ester bond) in addition to the carbonate bond (for example, an ester bond). , Polyester carbonate, etc.) are also included.

本発明のポリカーボネート樹脂は、9,9-ビス(ヒドロキシ縮合多環式アリール)フルオレンに由来する構成単位を有するため、高い耐熱性及び屈折率を有している。 Since the polycarbonate resin of the present invention has a structural unit derived from 9,9-bis (hydroxyfused polycyclic aryl) fluorene, it has high heat resistance and a refractive index.

一般的に、樹脂の耐熱性や屈折率を向上させるには、例えば縮合多環式アレーン環骨格を導入する方法が知られているが、このような骨格を導入した樹脂はその複屈折の値が大きくなり易い。このように高い耐熱性及び屈折率と、低い複屈折とは、互いにトレードオフな関係にあるため、これらの特性をバランスよく充足するのは極めて困難であった。しかし、本発明のポリカーボネート樹脂によれば、相反するこれらの特性をバランスよく両立することができる。 Generally, in order to improve the heat resistance and the refractive index of a resin, for example, a method of introducing a condensed polycyclic allene ring skeleton is known, but a resin into which such a skeleton is introduced has a birefringence value. Tends to grow. Since such high heat resistance and refractive index and low birefringence have a trade-off relationship with each other, it is extremely difficult to satisfy these characteristics in a well-balanced manner. However, according to the polycarbonate resin of the present invention, these contradictory characteristics can be compatible in a well-balanced manner.

また、ポリカーボネート樹脂は、ガラス転移温度Tgが所定の範囲に調整できるため、耐熱性が高いにもかかわらず、成形性が良好な状態を維持できる。それゆえ、光学部材(レンズなど)を容易に成形可能である。さらに、本発明のポリカーボネート樹脂を含む成形体は、高い機械的特性をも有している。 Further, since the glass transition temperature Tg of the polycarbonate resin can be adjusted within a predetermined range, it is possible to maintain a good formability even though the heat resistance is high. Therefore, the optical member (lens or the like) can be easily molded. Furthermore, the molded product containing the polycarbonate resin of the present invention also has high mechanical properties.

本発明によれば、9,9-ビス(ヒドロキシフェニル)フルオレンに由来する構成単位の割合が少なくても耐熱性を向上できるため、屈折率や複屈折などの光学的特性を損なうことなく(悪影響を与えることなく)耐熱性を向上することもできる。 According to the present invention, the heat resistance can be improved even if the proportion of the structural unit derived from 9,9-bis (hydroxyphenyl) fluorene is small, so that the optical properties such as the refractive index and birefringence are not impaired (adverse effects). It is also possible to improve heat resistance (without giving).

[ポリカーボネート樹脂]
(式(1)で表される構成単位)
本発明のポリカーボネート樹脂は、下記式(1)で表される構成単位(単に、第1の構成単位(1)ともいう)を含んでいる。
[Polycarbonate resin]
(Constituent unit represented by equation (1))
The polycarbonate resin of the present invention contains a structural unit represented by the following formula (1) (simply also referred to as a first structural unit (1)).

Figure 0007082872000004
Figure 0007082872000004

(式中、環Zは縮合多環式アレーン環、R及びRはそれぞれ置換基、k及びmはそれぞれ0以上の整数を示す)。 (In the formula, ring Z 1 is a condensed polycyclic arene ring, R 1 and R 2 are substituents, and k and m are integers of 0 or more, respectively).

前記式(1)において、環Zで表される縮合多環式アレーン環としては、例えば、縮合二環式アレーン環(例えば、ナフタレン環、インデン環などの縮合二環式C10-16アレーン環)、縮合三環式アレーン環(例えば、アントラセン環、フェナントレン環など)などの縮合二乃至四環式アレーン環などが挙げられる。好ましい環Zとしては、ナフタレン環、アントラセン環などの縮合多環式C10-16アレーン環(好ましくは縮合多環式C10-14アレーン環)が挙げられ、特に、ナフタレン環が好ましい。フルオレン環の9位の炭素原子に接続する2つの環Zは、互いに種類が異なっていてもよいが、通常、同一である場合が多い。 In the above formula (1), the fused polycyclic allene ring represented by the ring Z 1 is, for example, a fused bicyclic alley ring (for example, a fused bicyclic allene ring such as a naphthalene ring or an inden ring). Rings), fused bicyclic allene rings such as fused tricyclic allene rings (eg, anthracene rings, phenanthrene rings, etc.) and the like. Preferred ring Z 1 includes fused polycyclic C 10-16 arene rings such as naphthalene ring and anthracene ring (preferably fused polycyclic C 10-14 arene ring), and naphthalene ring is particularly preferable. The two rings Z1 connected to the carbon atom at the 9-position of the fluorene ring may be of different types, but are usually the same.

また、フルオレン環の9位に対する環Zの置換位置は、特に制限されず、例えば、環Zがナフタレン環である場合、フルオレン環の9位に対して、ナフタレン環の1位又は2位のいずれの位置で置換(1-ナフチル又は2-ナフチルの関係で置換)してもよく、2位で置換するのが好ましい。 Further, the substitution position of the ring Z1 with respect to the 9 - position of the fluorene ring is not particularly limited. For example, when the ring Z1 is a naphthalene ring, the 1 -position or the 2-position of the naphthalene ring is relative to the 9-position of the fluorene ring. It may be substituted at any position (replacement in the relationship of 1-naphthyl or 2-naphthyl), and it is preferable to replace it at the 2-position.

基Rで表される置換基としては、炭化水素基[例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基などの直鎖状又は分岐鎖状C1-6アルキル基など)、アリール基(例えば、フェニル基などのC6-10アリール基など)など]、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子など)などが挙げられる。これらの基Rのうち、アルキル基(例えば、直鎖状又は分岐鎖状C1-4アルキル基)、シアノ基、ハロゲン原子が好ましく、特にアルキル基(特に、メチル基などのC1-3アルキル基)が好ましい。 The substituent represented by the group R1 is a hydrocarbon group [for example, a linear group such as an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, etc.) or a linear group. Branched chain C 1-6 alkyl group, etc.), aryl group (eg, C 6-10 aryl group such as phenyl group), etc.], cyano group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.) And so on. Among these groups R 1 , alkyl groups (for example, linear or branched C 1-4 alkyl groups), cyano groups and halogen atoms are preferable, and alkyl groups (particularly, C 1-3 such as methyl groups) are preferable. Alkyl group) is preferable.

基Rの置換数kは、0以上の整数、例えば、0~4程度の整数、好ましくは0~2程度の整数、さらに好ましくは0又は1、特に0である。なお、フルオレン環を構成する2つの異なるベンゼン環において、置換数kは、互いに同一又は異なっていてもよい。また、基Rの種類は、フルオレン環を構成する2つの異なるベンゼン環において、互いに同一又は異なっていてもよく、kが2以上である場合、同一のベンゼン環に置換する2以上の基Rの種類は、互いに同一又は異なっていてもよい。また、基Rの置換位置は、特に制限されず、例えば、フルオレン環の2位乃至7位(2位、3位及び7位など)であってもよい。 The substitution number k of the group R 1 is an integer of 0 or more, for example, an integer of about 0 to 4, preferably an integer of about 0 to 2, more preferably 0 or 1, and particularly 0. In the two different benzene rings constituting the fluorene ring, the substitution number k may be the same or different from each other. Further, the type of the group R1 may be the same or different from each other in two different benzene rings constituting the fluorene ring, and when k is 2 or more, two or more groups R are substituted with the same benzene ring. The types of 1 may be the same or different from each other. Further, the substitution position of the group R1 is not particularly limited, and may be, for example, the 2nd to 7th positions (2nd position, 3rd position, 7th position, etc.) of the fluorene ring.

基Rで表される置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭化水素基{例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基などの直鎖状又は分岐鎖状C1-10アルキル基、好ましくは直鎖状又は分岐鎖状C1-6アルキル基、さらに好ましくは直鎖状又は分岐鎖状C1-4アルキル基など);シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基などのC5-10シクロアルキル基など);アリール基[例えば、フェニル基、アルキルフェニル基(例えば、メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)など)、ビフェニリル基、ナフチル基などのC6-12アリール基など];アラルキル基(例えば、ベンジル基、フェネチル基などのC6-10アリール-C1-4アルキル基など)など};アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基などの直鎖状又は分岐鎖状C1-10アルコキシ基など);シクロアルキルオキシ基(例えば、シクロヘキシルオキシ基などのC5-10シクロアルキルオキシ基など);アリールオキシ基(例えば、フェノキシ基などのC6-10アリールオキシ基など);アラルキルオキシ基(例えば、ベンジルオキシ基などのC6-10アリール-C1-4アルキルオキシ基など);アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、n-ブチルチオ基、t-ブチルチオ基などのC1-10アルキルチオ基など);シクロアルキルチオ基(例えば、シクロヘキシルチオ基などのC5-10シクロアルキルチオ基など);アリールチオ基(例えば、チオフェノキシ基などのC6-10アリールチオ基など);アラルキルチオ基(例えば、ベンジルチオ基などのC6-10アリール-C1-4アルキルチオ基など);アシル基(例えば、アセチル基などのC1-6アシル基など);ニトロ基;シアノ基;置換アミノ基[例えば、ジアルキルアミノ基(例えば、ジメチルアミノ基などのジC1-4アルキルアミノ基など);ビス(アルキルカルボニル)アミノ基(例えば、ジアセチルアミノ基などのビス(C1-4アルキル-カルボニル)アミノ基など)など]などが挙げられる。 Examples of the substituent represented by the group R 2 include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom); a hydrocarbon group {for example, an alkyl group (methyl group, ethyl group, propyl group, etc.). A linear or branched C 1-10 alkyl group such as an isopropyl group, an n-butyl group, an s-butyl group, a t-butyl group, preferably a linear or branched C 1-6 alkyl group, and further. Preferred is a linear or branched C 1-4 alkyl group); cycloalkyl group (eg, C 5-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group); aryl group [eg, phenyl group, alkyl Phenyl group (eg, methylphenyl group (tril group), dimethylphenyl group (chysilyl group), etc.), biphenylyl group, C6-12aryl group such as naphthyl group, etc.]; Aralkyl group (eg, benzyl group, phenethyl group, etc.) C 6-10 aryl-C 1-4 alkyl group, etc.)}; alkoxy group (eg, methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, etc.) Linear or branched C 1-10 alkoxy group); cycloalkyloxy group (eg, C 5-10 cycloalkyloxy group such as cyclohexyloxy group); aryloxy group (eg, phenoxy group, etc.) C 6-10 aryloxy group, etc.); Aralkyloxy group (eg, C 6-10aryl -C 1-4 alkyloxy group, such as benzyloxy group); Alkylthio group (eg, methylthio group, ethylthio group, propylthio group, etc.) , N-butylthio group, C 1-10 alkylthio group such as t-butylthio group); cycloalkylthio group (eg, C 5-10 cycloalkylthio group such as cyclohexylthio group); arylthio group (eg, thiophenoxy group) C 6-10 arylthio groups such as C 6-10 arylthio groups); aralkylthio groups (eg C 6-10 aryl-C 1-4 alkylthio groups such as benzylthio groups); acyl groups (eg C 1-6 acyls such as acetyl groups) Group; nitro group; cyano group; substituted amino group [eg, dialkylamino group (eg, diC 1-4 alkylamino group such as dimethylamino group); bis (alkylcarbonyl) amino group (eg, diacetylamino) Bis (C 1-4 alkyl-carbonyl) amino group such as group) etc.] etc. Will be.

これらの基Rのうち、代表的には、ハロゲン原子、炭化水素基(アルキル基、シクロアルキル基、アリール基、アラルキル基)、アルコキシ基、アシル基、ニトロ基、シアノ基、置換アミノ基などが挙げられる。好ましい基Rとしては、アルキル基(メチル基などの直鎖状又は分岐鎖状C1-6アルキル基など)、アリール基(フェニル基などのC6-12アリール基など)、アルコキシ基(メトキシ基などの直鎖状又は分岐鎖状C1-4アルコキシ基など)、特に、アルキル基(特に、メチル基などの直鎖状又は分岐鎖状C1-4アルキル基)、アリール基(フェニル基などのC6-10アリール基など)が挙げられる。 Among these groups R2 , representatively, a halogen atom, a hydrocarbon group (alkyl group, cycloalkyl group, aryl group, aralkyl group), an alkoxy group, an acyl group, a nitro group, a cyano group, a substituted amino group and the like Can be mentioned. Preferred groups R2 include an alkyl group (such as a linear or branched C 1-6 alkyl group such as a methyl group), an aryl group (such as a C 6-12 aryl group such as a phenyl group), and an alkoxy group (methoxy). Linear or branched C 1-4 alkyl groups such as groups), in particular alkyl groups (particularly linear or branched C 1-4 alkyl groups such as methyl groups), aryl groups (phenyl groups). C 6-10 aryl group, etc.).

基Rの置換数mは、0以上の整数であればよく、環Zの種類に応じて適宜選択できる。例えば、0~8程度であり、好ましくは0~4、より好ましくは0~3、さらに好ましくは0~2、特に好ましくは0又は1であって、なかでも0が好ましい。なお、フルオレン環の9位の炭素に結合する2つの環Zにおいて、それぞれの置換数mは、互いに同一又は異なっていてもよい。また、異なる2つの環Zに置換する基Rの種類は、互いに同一又は異なっていてもよい。置換数mが2以上である場合、同一の環Zに置換する2以上の基Rの種類は、互いに同一又は異なっていてもよい。基Rの置換位置は、特に制限されず、環Zと、酸素原子(-O-)及びフルオレン環の9位との結合位置以外の位置に置換していればよい。 The substitution number m of the group R 2 may be an integer of 0 or more, and can be appropriately selected depending on the type of the ring Z 1 . For example, it is about 0 to 8, preferably 0 to 4, more preferably 0 to 3, still more preferably 0 to 2, particularly preferably 0 or 1, and particularly preferably 0. In the two rings Z1 bonded to the carbon at the 9th position of the fluorene ring, the substitution number m of each may be the same or different from each other. Further, the types of the groups R 2 substituting for the two different rings Z 1 may be the same or different from each other. When the number of substitutions m is 2 or more, the types of the two or more groups R2 substituted with the same ring Z 1 may be the same or different from each other. The substitution position of the group R 2 is not particularly limited, and may be substituted at a position other than the bond position between the ring Z1 and the 9 - position of the oxygen atom (—O—) and the fluorene ring.

9,9-ビス縮合多環式アリールフルオレン骨格を連結するためのカーボネート結合を形成する酸素原子(-O-)及びエステル結合[-O-C(=O)-]の置換位置は、環Zとフルオレン環との結合位置以外の位置であれば、特に限定されず、例えば、環Zがナフタレン環である場合、通常、フルオレン環の9位に1位又は2位で結合するナフチル基の5~8位のいずれかの位置に置換している場合が多く、フルオレン環の9位に対して、ナフタレン環の1位又は2位が置換し(1-ナフチル又は2-ナフチルの関係で置換し)、この置換位置に対して、1,5位、2,6位などの関係で置換しているのが好ましく、特に、2,6位の関係で置換しているのが好ましい。 The substitution position of the oxygen atom (-O-) and the ester bond [-OC (= O)-] forming a carbonate bond for connecting the 9,9-bis condensed polycyclic arylfluorene skeleton is the ring Z. The position is not particularly limited as long as it is a position other than the bonding position between 1 and the fluorene ring. In many cases, it is substituted at any of the 5th to 8th positions of the fluorene ring, and the 1st or 2nd position of the naphthalene ring is substituted with respect to the 9th position of the fluorene ring (in the relationship of 1-naphthyl or 2-naphthyl). Substitution), it is preferable to replace the replacement position with a relationship of 1,5, 2,6, etc., and in particular, it is preferable to replace with a relationship of 2,6.

第1の構成単位(1)として、代表的には、例えば、9,9-ビス(ヒドロキシC10-14縮合多環式アリール)フルオレン[例えば、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレンなどの9,9-ビス(ヒドロキシナフチル)フルオレンなど]などの第1のジオール成分に由来(又は対応)する単位などが挙げられる。 As the first structural unit (1), typically, for example, 9,9-bis (hydroxy C 10-14 fused polycyclic aryl) fluorene [for example, 9,9-bis (6-hydroxy-2-). Units derived (or corresponding) from the first diol component such as naphthyl) fluorene, 9,9-bis (hydroxy-1-naphthyl) fluorene and the like 9,9-bis (hydroxynaphthyl) fluorene, etc. Can be mentioned.

これらの第1の構成単位(1)は、単独で又は2種以上組み合わせて使用することもできる。これらの第1の構成単位(1)のうち、9,9-ビス(ヒドロキシナフチル)フルオレン由来の単位が好ましく、特に、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン由来の単位が好ましい。 These first structural units (1) may be used alone or in combination of two or more. Among these first structural units (1), the unit derived from 9,9-bis (hydroxynaphthyl) fluorene is preferable, and the unit derived from 9,9-bis (6-hydroxy-2-naphthyl) fluorene is particularly preferable. preferable.

第1の構成単位(1)の割合は、特に制限されず、ポリカーボネート樹脂の構成単位全体に対して、例えば、0.01~100モル%程度の広い範囲から選択できる。好ましい範囲としては、以下、段階的に、0.1~90モル%、0.5~70モル%、1~50モル%、3~40モル%、5~30モル%であって、より好ましくは8~25モル%、特に好ましくは10~20モル%である。 The ratio of the first structural unit (1) is not particularly limited, and can be selected from a wide range of, for example, about 0.01 to 100 mol% with respect to the entire structural unit of the polycarbonate resin. The preferred range is as follows, in stages, 0.1 to 90 mol%, 0.5 to 70 mol%, 1 to 50 mol%, 3 to 40 mol%, 5 to 30 mol%, and more preferably. Is 8 to 25 mol%, particularly preferably 10 to 20 mol%.

第1の構成単位(1)の割合が少なすぎると、耐熱性や屈折率を向上できないおそれがあるが、本発明では、第1の構成単位(1)の割合が比較的少なくても(構成単位全体に対して、例えば、50モル%以下、好ましくは30モル%以下、さらに好ましくは15モル%以下であっても)、意外にも耐熱性を大きく向上できる。そのため、第1の構成単位(1)の割合は、ポリカーボネート樹脂の構成単位全体に対して、例えば、2~23モル%、好ましくは4~18モル%、さらに好ましくは7~13モル%程度であってもよい。また、本発明は、第1の構成単位(1)を、ポリカーボネート樹脂に(例えば、前記例示の割合などで)導入して、ポリカーボネート樹脂の耐熱性を向上する方法も包含する。このような方法により、第1の構成単位(1)の割合が少なくても、ポリカーボネート樹脂の耐熱性を向上できることから、ポリカーボネート樹脂の光学的特性などの他の特性のバランス(例えば、屈折率と複屈折とのバランスなど)に大きな影響を与えることなく、耐熱性を向上できる。 If the ratio of the first structural unit (1) is too small, the heat resistance and the refractive index may not be improved. However, in the present invention, even if the ratio of the first structural unit (1) is relatively small (configuration). With respect to the entire unit, for example, 50 mol% or less, preferably 30 mol% or less, more preferably 15 mol% or less), surprisingly, the heat resistance can be greatly improved. Therefore, the ratio of the first structural unit (1) is, for example, 2 to 23 mol%, preferably 4 to 18 mol%, and more preferably 7 to 13 mol% with respect to the entire constituent unit of the polycarbonate resin. There may be. The present invention also includes a method of introducing the first structural unit (1) into the polycarbonate resin (for example, at the ratio of the above-mentioned example) to improve the heat resistance of the polycarbonate resin. By such a method, the heat resistance of the polycarbonate resin can be improved even if the proportion of the first structural unit (1) is small, so that the balance of other properties such as the optical properties of the polycarbonate resin (for example, the refractive index) can be improved. Heat resistance can be improved without significantly affecting the balance with birefringence).

(式(2)で表される構成単位)
ポリカーボネート樹脂は、第1の構成単位(1)に加えて、さらに、下記式(2)で表される構成単位(単に、第2の構成単位(2)ともいう)を含んでいてもよい。第2の構成単位(2)を含むことにより、重合反応性のみならず、得られるポリカーボネート樹脂の耐熱性や光学的特性(高屈折率、低複屈折など)、成形性、機械的特性などの特性を向上できる。
(Constituent unit represented by equation (2))
In addition to the first structural unit (1), the polycarbonate resin may further contain a structural unit represented by the following formula (2) (simply also referred to as a second structural unit (2)). By including the second structural unit (2), not only the polymerization reactivity but also the heat resistance and optical properties (high refractive index, low birefringence, etc.), moldability, mechanical properties, etc. of the obtained polycarbonate resin can be obtained. The characteristics can be improved.

Figure 0007082872000005
Figure 0007082872000005

(式中、環Zはアレーン環、R及びRはそれぞれ置換基、n及びpはそれぞれ0以上の整数、Aはアルキレン基、qは1以上の整数を示す)。 (In the formula, ring Z 2 is an arene ring, R 3 and R 4 are substituents, n and p are integers of 0 or more, A 1 is an alkylene group, and q is an integer of 1 or more).

前記式(2)において、環Zで表されるアレーン環(芳香族炭化水素環)としては、例えば、ベンゼン環などの単環式アレーン環、多環式アレーン環などが挙げられ、多環式アレーン環には、縮合多環式アレーン環(縮合多環式芳香族炭化水素環)、環集合アレーン環(環集合芳香族炭化水素環)などが含まれる。 In the above formula (2), examples of the arene ring (aromatic hydrocarbon ring) represented by ring Z 2 include a monocyclic arene ring such as a benzene ring, a polycyclic arene ring, and the like. The formula arene ring includes a fused polycyclic arene ring (condensed polycyclic aromatic hydrocarbon ring), a ring-assembled arene ring (ring-aggregated aromatic hydrocarbon ring), and the like.

縮合多環式アレーン環としては、例えば、縮合二環式アレーン環(例えば、ナフタレン環、インデン環などの縮合二環式C10-16アレーン環)、縮合三環式アレーン環(例えば、アントラセン環、フェナントレン環など)などの縮合二乃至四環式アレーン環などが挙げられる。好ましい縮合多環式アレーン環としては、ナフタレン環、アントラセン環などの縮合多環式C10-16アレーン環(好ましくは縮合多環式C10-14アレーン環)が挙げられ、特に、ナフタレン環が好ましい。 Examples of the fused polycyclic arene ring include a fused bicyclic arene ring (for example, a fused bicyclic C10-16 arene ring such as a naphthalene ring and an inden ring) and a fused tricyclic arene ring (for example, an anthracene ring). , Phenantren ring, etc.) and other fused two- to four-cyclic arene rings. Preferred fused polycyclic arene rings include fused polycyclic C 10-16 arene rings (preferably fused polycyclic C 10-14 arene rings) such as naphthalene rings and anthracene rings, and naphthalene rings are particularly preferable. preferable.

環集合アレーン環としては、ビアレーン環(例えば、ビフェニル環、ビナフチル環、フェニルナフタレン環(1-フェニルナフタレン環、2-フェニルナフタレン環など)などのビC6-12アレーン環など)、テルアレーン環(例えば、テルフェニレン環などのテルC6-12アレーン環など)などが例示できる。好ましい環集合アレーン環は、ビC6-10アレーン環などが挙げられ、特にビフェニル環が好ましい。 The ring-assembled arene ring includes a bi-C 6-12 arene ring such as a biphenyl ring, a binaphthyl ring, a phenylnaphthalene ring (1-phenylnaphthalene ring, 2-phenylnaphthalene ring, etc.), and a tellarene ring (for example, a biphenyl ring, a bi-C 6-12 arene ring, etc.). For example, a tel C 6-12 arene ring such as a terphenylene ring) can be exemplified. Preferred ring-set arene rings include biC 6-10 arene rings and the like, with biphenyl rings being particularly preferred.

2つの環Zの種類は、互いに同一又は異なっていてもよく、通常、同一であることが多い。環Zのうち、ベンゼン環、ナフタレン環、ビフェニル環などのC6-12アレーン環などが好ましく、なかでもベンゼン環、ナフタレン環などのC6-10アレーン環が好ましく、特に、複屈折をより低減し易い点からはベンゼン環が、よりガラス転移温度を向上し、かつ高屈折率化できる点からはナフタレン環が好ましい。特に、高い耐熱性と低い複屈折とのバランスに優れる点からベンゼン環が好ましい。 The types of the two rings Z 2 may be the same or different from each other and are usually often the same. Of the ring Z2, a C 6-12 arene ring such as a benzene ring, a naphthalene ring, and a biphenyl ring is preferable, and a C 6-10 arene ring such as a benzene ring and a naphthalene ring is preferable. A benzene ring is preferable from the viewpoint of easy reduction, and a naphthalene ring is preferable from the viewpoint of further improving the glass transition temperature and increasing the refractive index. In particular, a benzene ring is preferable because it has an excellent balance between high heat resistance and low birefringence.

なお、フルオレン環の9位に結合する環Zの置換位置は、特に限定されない。例えば、環Zがベンゼン環の場合、1~6位のいずれかの位置であってもよく、環Zがナフタレン環の場合、1位又は2位のいずれかの位置であってもよく、環Zがビフェニル環の場合、2位、3位、4位のいずれかの位置であってもよい。 The substitution position of the ring Z 2 bonded to the 9-position of the fluorene ring is not particularly limited. For example, when the ring Z 2 is a benzene ring, it may be at any of the 1st to 6th positions, and when the ring Z 2 is a naphthalene ring, it may be at either the 1st or 2nd position. , When the ring Z 2 is a biphenyl ring, it may be at any of the 2-position, 3-position, and 4-position.

前記式(2)において、基Rは基Rに、基Rは基Rに、置換数nは置換数kに、pは置換数mに、それぞれ対応して前記式(1)で表される構成単位の項における例示と同様の基及び数値範囲が例示でき、好ましい態様を含めてそれぞれ同様であってもよい。 In the above formula (2), the group R 3 corresponds to the group R 1 , the group R 4 corresponds to the group R 2 , the number of substitutions n corresponds to the number of substitutions k, and p corresponds to the number of substitutions m, respectively. The same groups and numerical ranges as those illustrated in the section of the structural unit represented by the above can be exemplified, and they may be the same including preferred embodiments.

基Aで表されるアルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基、2,2-ジメチル-1,3-プロパンジイル基などの直鎖状又は分岐鎖状C2-6アルキレン基などが挙げられ、光学的特性の観点から、好ましくは直鎖状又は分岐鎖状C2-4アルキレン基、さらに好ましくはエチレン基、プロピレン基などの直鎖状又は分岐鎖状C2-3アルキレン基(特に、エチレン基)などが挙げられる。 Examples of the alkylene group represented by the group A 1 include an ethylene group, a propylene group, a trimethylene group, a 1,2-butanediyl group, a tetramethylene group, and a 2,2-dimethyl-1,3-propanediyl group. Examples thereof include a chain-shaped or branched chain-shaped C 2-6 alkylene group, and from the viewpoint of optical properties, a linear or branched C 2-4 alkylene group is preferable, and an ethylene group, a propylene group and the like are more preferable. Examples thereof include linear or branched C 2-3 alkylene groups (particularly ethylene groups).

オキシアルキレン基OAの繰り返し数(付加モル数)であるq(各基OAの繰り返し数)は、1以上の整数(例えば、1~10の整数など)であればよいが、光学特性及び重合性の点から、例えば1~3、好ましくは1~2、さらに好ましくは1であってもよい。 The q (number of repetitions of each group OA 1 ), which is the number of repetitions (number of addition moles) of the oxyalkylene group OA 1 , may be an integer of 1 or more (for example, an integer of 1 to 10), but the optical characteristics and From the viewpoint of polymerizable property, it may be, for example, 1 to 3, preferably 1 to 2, and more preferably 1.

両側の基Aは、それぞれ同一のアルキレン基であってもよく、異なるアルキレン基であってもよい。また、qが2以上のポリオキシアルキレン基であるとき、ポリオキシアルキレン基を構成する複数の基Aは異なるアルキレン基であってもよく、通常、同一のアルキレン基であってもよい。 The groups A1 on both sides may be the same alkylene group or different alkylene groups. Further, when q is 2 or more polyoxyalkylene groups, the plurality of groups A1 constituting the polyoxyalkylene group may be different alkylene groups, or may be usually the same alkylene group.

ポリカーボネート樹脂の主鎖を形成するためのオキシアルキレン基(OA)含有基の置換位置は、環Zとフルオレン環との結合位置以外の位置であれば、特に限定されず、例えば、環Zがベンゼン環である場合、フルオレン環の9位に結合するフェニル基の2~6位のいずれかの位置に置換していればよく、3~5位(好ましくは4位)に置換している場合が多い。環Zがナフタレン環である場合、通常、フルオレン環の9位に1位又は2位で結合するナフチル基の5~8位のいずれかの位置に置換している場合が多く、フルオレン環の9位に対して、ナフタレン環の1位又は2位が置換し(1-ナフチル又は2-ナフチルの関係で置換し)、この置換位置に対して、1,5位、2,6位(特に、2,6位)などの関係で置換しているのが好ましい。環Zがビフェニル環である場合、通常、フルオレン環の9位に3~5位で結合するビフェニリル基の2位、6位及び3’~5’位のいずれかの位置に置換している場合が多く、フルオレン環の9位に対して、ビフェニル環の3位又は4位が置換し(3-ビフェニリル又は4-ビフェニリルの関係で置換し)、この置換位置に対して、3,6位、2,4位(特に、3,6位)などの関係で置換しているのが好ましい。 The substitution position of the oxyalkylene group (OA 1 ) -containing group for forming the main chain of the polycarbonate resin is not particularly limited as long as it is a position other than the bond position between the ring Z 2 and the fluorene ring, and is not particularly limited, for example, the ring Z. When 2 is a benzene ring, it may be substituted at any position of the 2nd to 6th positions of the phenyl group bonded to the 9th position of the fluorene ring, and it may be replaced with the 3rd to 5th position (preferably the 4th position). In many cases. When the ring Z 2 is a naphthalene ring, it is usually substituted at any position of the 5 to 8 positions of the naphthyl group bonded to the 9-position of the fluorene ring at the 1-position or the 2-position, and the fluorene ring has a fluorene ring. The 1st or 2nd position of the naphthalene ring is substituted for the 9th position (substituted in the relation of 1-naphthyl or 2-naphthyl), and the 1st, 5th and 2nd and 6th positions (particularly) are substituted for this substitution position. , 2nd and 6th positions), etc. are preferable. When ring Z 2 is a biphenyl ring, it is usually substituted at any of the 2-position, 6-position and 3'-5'-position of the biphenylyl group bonded to the 9-position of the fluorene ring at the 3-5-position. In many cases, the 9-position of the fluorene ring is replaced by the 3- or 4-position of the biphenyl ring (replaced by the relationship of 3-biphenylyl or 4-biphenylyl), and the 3rd and 6th positions are substituted with respect to this substitution position. , 2nd and 4th positions (particularly, 3rd and 6th positions) are preferably substituted.

第2の構成単位(2)として、代表的には、例えば、環Zがベンゼン環である9,9-ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類{例えば、9,9-ビス[ヒドロキシ(ポリ)アルコキシフェニル]フルオレン[例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)-フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)-フェニル]フルオレン、9,9-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)-フェニル]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシフェニル]フルオレンなど];9,9-ビス[ヒドロキシ(ポリ)アルコキシ-アルキルフェニル]フルオレン[例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシ-(モノ又はジ)C1-4アルキルフェニル]フルオレンなど];9,9-ビス[ヒドロキシ(ポリ)アルコキシ-アリールフェニル]フルオレン[例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシ-C6-10アリールフェニル]フルオレンなど]など};環Zがナフタレン環である9,9-ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類{例えば、9,9-ビス[ヒドロキシ(ポリ)アルコキシナフチル]フルオレン[例えば、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレン、9,9-ビス[6-(2-(2-ヒドロキシエトキシ)エトキシ)-2-ナフチル]フルオレン、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシナフチル]フルオレンなど]など}などの第2のジオール成分に由来(又は対応)する単位などが挙げられる。 As the second structural unit (2), typically, for example, 9,9-bis (hydroxy (poly) alkoxyphenyl) fluorenes in which ring Z 2 is a benzene ring {for example, 9,9-bis [hydroxyl]. (Poly) alkoxyphenyl] fluorene [eg, 9,9-bis [4- (2-hydroxyethoxy) -phenyl] fluorene, 9,9-bis [4- (2-hydroxypropoxy) -phenyl] fluorene, 9, 9-bis [4- (2- (2-hydroxyethoxy) ethoxy) -phenyl] fluorene, etc. 9,9-bis [hydroxy (poly) C 2-4 alkoxyphenyl] fluorene, etc.]; 9,9-bis [ Hydroxy (poly) alkoxy-alkylphenyl] fluorene [eg, 9,9-bis [4- (2-hydroxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy)- 9,9-bis [hydroxy (poly) C 2-4 alkoxy- (mono or di) C 1-4 alkylphenyl] fluorene, etc., such as 3,5-dimethylphenyl] fluorene; 9,9-bis [hydroxy (hydroxy () Poly) alkoxy-arylphenyl] fluorene [eg, 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene, etc. 9,9-bis [hydroxy (poly) C 2-4 alkoxy- C 6-10 arylphenyl] fluorene, etc.], etc.}; 9,9-bis (hydroxy (poly) alkoxynaphthyl) fluorenes in which ring Z2 is a naphthalene ring { for example, 9,9-bis [hydroxy (poly) alkoxy) Naftil] Fluoren [eg, 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluoren, 9,9-bis [6- (2-hydroxypropoxy) -2-naphthyl] fluoren, 9, 9,9- bis [6- (2- (2-hydroxyethoxy) ethoxy) -2-naphthyl] fluorene, 9,9-bis [5- (2-hydroxyethoxy) -1-naphthyl] fluorene, etc. Units derived (or corresponding to) from the second diol component such as bis [hydroxy (poly) C 2-4 alkoxynaphthyl] fluorene, etc.] and the like can be mentioned.

なお、本明細書及び特許請求の範囲において、「(ポリ)アルコキシ」とは、アルコキシ基及びポリアルコキシ基の双方を含む意味に用いる。 In the present specification and claims, "(poly) alkoxy" is used to mean that both an alkoxy group and a polyalkoxy group are included.

これらの第2の構成単位(2)は、単独で又は2種以上組み合わせて使用することもできる。これらの第2の構成単位(2)のうち、9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシフェニル]フルオレン、9,9-ビス[ヒドロキシ(ポリ)C2-4アルコキシナフチル]フルオレンなどに由来の単位が好ましく、なかでも、複屈折をより低減し易い点からは、9,9-ビス[ヒドロキシ(モノ乃至デカ)C2-3アルコキシフェニル]フルオレン(特に、9,9-ビス[4-(2-ヒドロキシエトキシ)-フェニル]フルオレンなど)由来の単位が好ましく、よりガラス転移温度を向上し、かつ高屈折率化できる点からは、9,9-ビス[ヒドロキシ(モノ乃至デカ)C2-3アルコキシナフチル]フルオレン(特に、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレンなど)由来の単位が好ましい。 These second structural units (2) may be used alone or in combination of two or more. Of these second structural units (2), 9,9-bis [hydroxy (poly) C 2-4 alkoxyphenyl] fluorene and 9,9-bis [hydroxy (poly) C 2-4 alkoxynaphthyl] fluorene. Units derived from such substances are preferable, and in particular, 9,9-bis [hydroxy (mono to deca) C 2-3 alkoxyphenyl] fluorene (particularly 9,9-bis) is preferable because it is easier to reduce double refraction. Units derived from [4- (2-hydroxyethoxy) -phenyl] fluorene, etc.) are preferable, and from the viewpoint of further improving the glass transition temperature and increasing the refractive index, 9,9-bis [hydroxy (mono to deca) ) C 2-3 Alkoxynaphthyl] fluorene (particularly, 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene, etc.)-derived units are preferred.

第2の構成単位(2)を含む場合、第1の構成単位(1)と第2の構成単位(2)との割合は、例えば、前者/後者(モル比)として、0.1/99.9~90/10程度の広い範囲から選択できる。好ましい範囲としては、以下、段階的に、0.5/99.5~70/30、1/99~50/50、2/98~40/60、3/97~30/70、4/96~25/75、5/95~20/80であって、より好ましくは5/95~15/85、さらに好ましくは7/93~13/87である。第1の構成単位(1)が多すぎると、重合反応性が低下するおそれがあり、第2の構成単位(2)が多すぎると、耐熱性や屈折率が低下するおそれがある。 When the second structural unit (2) is included, the ratio of the first structural unit (1) to the second structural unit (2) is, for example, 0.1/99 as the former / latter (molar ratio). You can select from a wide range of about 9.9 to 90/10. The preferred range is as follows, in stages, 0.5 / 99.5 to 70/30, 1/99 to 50/50, 2/98 to 40/60, 3/97 to 30/70, 4/96. It is from 25/75 to 5/95 to 20/80, more preferably 5/95 to 15/85, and even more preferably 7/93 to 13/87. If the number of the first structural unit (1) is too large, the polymerization reactivity may decrease, and if the number of the second structural unit (2) is too large, the heat resistance and the refractive index may decrease.

(式(3)で表される構成単位)
ポリカーボネート樹脂は、本発明の効果を害しない範囲において、さらに、下記式(3)で表される構成単位(単に、第3の構成単位(3)ともいう)を必要に応じて含んでいてもよい。第3の構成単位(3)を含むことにより、得られるポリカーボネート樹脂の光学的特性(高屈折率など)を向上し易くなる。
(Constituent unit represented by equation (3))
The polycarbonate resin may further contain a structural unit represented by the following formula (3) (simply also referred to as a third structural unit (3)) as necessary, as long as the effect of the present invention is not impaired. good. By including the third structural unit (3), it becomes easy to improve the optical characteristics (high refractive index and the like) of the obtained polycarbonate resin.

Figure 0007082872000006
Figure 0007082872000006

(式中、Xは直接結合又はアルキレン基、R及びRはそれぞれ置換基、Aはアルキレン基、rは0~4の整数、sは0~2の整数、tは0以上の整数を示す)。 (In the formula, X is a direct bond or an alkylene group, R 5 and R 6 are substituents, A 2 is an alkylene group, r is an integer of 0 to 4, s is an integer of 0 to 2, and t is an integer of 0 or more. Shows).

前記式(3)において、Xで表されるアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基などの直鎖状又は分岐鎖状C1-4アルキレン基などが挙げられる。Xとしては、光学特性(例えば、高屈折率、低アッベ数、低複屈折など)の点から、直接結合、C1-2アルキレン基(例えば、メチレン基)が好ましく、特に、直接結合が好ましい。 In the above formula (3), examples of the alkylene group represented by X include a linear or branched chain such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a 1,2-butanjiyl group and a tetramethylene group. C 1-4 alkylene group and the like can be mentioned. As X, a direct bond or a C1-2 alkylene group (for example, a methylene group) is preferable, and a direct bond is particularly preferable, from the viewpoint of optical properties (for example, high refractive index, low Abbe number, low birefringence, etc.). ..

置換基R及びRとしては、それぞれ、例えば、前記式(1)で例示の置換基Rと好ましい態様も含めて同様であってもよい。 The substituents R 5 and R 6 may be the same as those of the substituent R 2 exemplified in the above formula (1), respectively, including preferred embodiments.

置換基Rの置換数rは、0~4の整数から選択でき、例えば、0~3、好ましくは0~2、さらに好ましくは0又は1(特に0)であってもよい。置換基Rの置換数sは、0~2の整数から選択でき、例えば、0又は1、好ましくは0であってもよい。 The substitution number r of the substituent R 5 can be selected from an integer of 0 to 4, and may be, for example, 0 to 3, preferably 0 to 2, and more preferably 0 or 1 (particularly 0). The substitution number s of the substituent R 6 can be selected from an integer of 0 to 2, and may be, for example, 0 or 1, preferably 0.

なお、前記式(3)を構成する2つの異なるナフタレン環において、置換数r及び置換数sは、それぞれ互いに同一又は異なっていてもよく、基R及びRの種類は、置換数r、sに応じて互いに同一又は異なっていてもよい。また、同一のナフタレン環に2以上の基R及び/又は2以上の基Rが置換する場合(rが2以上及び/又はsが2である場合)、2以上の基Rの種類及び/又は2つの基Rの種類は、それぞれ互いに同一又は異なっていてもよい。 In the two different naphthalene rings constituting the formula ( 3 ), the substitution number r and the substitution number s may be the same or different from each other, and the types of the groups R5 and R6 are the substitution number r, respectively. They may be the same or different from each other depending on s. Further, when two or more groups R5 and / or two or more groups R6 are substituted in the same naphthalene ring (when r is 2 or more and / or s is 2 ), types of two or more groups R5. And / or the types of the two groups R6 may be the same or different from each other.

また、基Rの置換位置は特に制限されず、ナフタレン環の5位乃至8位(又は5’位乃至8’位)のうち、任意の位置に置換されていてもよい。基Rの置換位置は、オキシアルキレン基(OA)含有基及び連結基Xの置換位置以外の位置である限り、特に制限されない。 Further, the substitution position of the group R5 is not particularly limited, and may be substituted at any position among the 5th to 8th positions (or the 5'to 8'positions) of the naphthalene ring. The substitution position of the group R 6 is not particularly limited as long as it is a position other than the substitution position of the oxyalkylene group (OA 2 ) -containing group and the linking group X.

オキシアルキレン基(OA)を構成する基Aで表されるアルキレン基としては、例えば、前記式(2)で例示のアルキレン基Aと好ましい態様も含めて同一である。 The alkylene group represented by the group A 2 constituting the oxyalkylene group (OA 2 ) is, for example, the same as the alkylene group A 1 exemplified in the above formula (2), including a preferable embodiment.

オキシアルキレン基(OA)の繰り返し数tは、0以上の整数であればよく、好ましい範囲としては、以下、段階的に、0~10、0~3、0~2であって、さらに好ましくは0又は1である。光学特性(高屈折率、低アッベ数、低複屈折など)及び耐熱性の点からは、繰り返し数tが特に0であるのが好ましく、着色を抑制できる点からは、繰り返し数tが特に1であるのが好ましい。 The number of repetitions t of the oxyalkylene group (OA 2 ) may be an integer of 0 or more, and the preferred range is as follows, stepwise, 0 to 10, 0 to 3, 0 to 2, and more preferably. Is 0 or 1. From the viewpoint of optical characteristics (high refractive index, low Abbe number, low birefringence, etc.) and heat resistance, the repetition number t is particularly preferably 0, and from the viewpoint of suppressing coloring, the repetition number t is particularly 1. Is preferable.

ポリカーボネート樹脂の主鎖を形成するオキシアルキレン基(OA)含有基の置換位置は、ナフタレン環の2位乃至4位(又は2’位乃至4’位)のいずれの位置であってもよいが、複屈折を低減できる点から、2位(又は2’位)が特に好ましい。 The substitution position of the oxyalkylene group (OA 2 ) -containing group forming the main chain of the polycarbonate resin may be any of the 2nd to 4th positions (or 2'to 4'positions) of the naphthalene ring. The 2nd position (or 2'position) is particularly preferable from the viewpoint of reducing birefringence.

第3の構成単位(3)として、代表的には、例えば、Xが直接結合であるジヒドロキシ-1,1’-ビナフタレン類{例えば、ジヒドロキシ-1,1’-ビナフタレン(例えば、2,2’-ジヒドロキシ-1,1’-ビナフタレンなど);ビス[ヒドロキシ(ポリ)アルコキシ]-1,1’-ビナフタレン[例えば、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン、2,2’-ビス(2-ヒドロキシプロポキシ)-1,1’-ビナフタレン、2,2’-ビス[2-(2-ヒドロキシエトキシ)エトキシ]-1,1’-ビナフタレンなどの2,2’-ビス[ヒドロキシ(モノ乃至デカ)C2-4アルコキシ]-1,1’-ビナフタレンなど]など}などの第3のジオール成分に由来(又は対応)する単位などが挙げられる。 As the third structural unit (3), typically, for example, dihydroxy-1,1'-vinaphthalenes to which X is directly bonded {for example, dihydroxy-1,1'-vinaphthalene (for example, 2,2'). -Dihydroxy-1,1'-Binaphthalene, etc.); Bis [hydroxy (poly) alkoxy] -1,1'-Binaphthalene [for example, 2,2'-bis (2-hydroxyethoxy) -1,1'-Binaphthalene, 2,2'-Bis (2-hydroxypropoxy) -1,1'-Binaphthalene, 2,2'-Bis [2- (2-hydroxyethoxy) ethoxy] -1,1'-Binaphthalene, etc. 2,2' -Units derived (or corresponding to) from the third diol component such as bis [hydroxy (mono to deca) C 2-4 alkoxy] -1,1'-vinaphthalene, etc.} can be mentioned.

これらの第3の構成単位(3)は、単独で又は2種以上組み合わせて使用することもできる。これらの第3の構成単位(3)のうち、光学特性(高屈折率、低アッベ数など)及び耐熱性を向上し易い観点からは、ジヒドロキシ-1,1’-ビナフタレン(特に、2,2’-ジヒドロキシ-1,1’-ビナフタレンなど)に由来する単位が好ましく、着色を抑制できる観点からは、2,2’-ビス[ヒドロキシ(モノ乃至デカ)C2-4アルコキシ]-1,1’-ビナフタレン(特に、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンなどの2,2’-ビス[ヒドロキシ(モノ乃至トリ)C2-3アルコキシ]-1,1’-ビナフタレンなど)に由来の単位が好ましい。 These third structural units (3) may be used alone or in combination of two or more. Of these third structural units (3), dihydroxy-1,1'-vinaphthalene (particularly 2,2) is used from the viewpoint of easily improving optical characteristics (high refractive index, low Abbe number, etc.) and heat resistance. Units derived from'-dihydroxy-1,1'-vinaphthalene, etc.) are preferable, and from the viewpoint of suppressing coloring, 2,2'-bis [hydroxy (mono to deca) C 2-4 alkoxy] -1,1 '-Vinaphthalene (particularly 2,2'-bis (2-hydroxyethoxy) -1,1'-, such as vinaphthalene, 2,2'-bis [hydroxy (mono to tri) C 2-3 alkoxy] -1,1 '-Units derived from (such as vinaphthalene) are preferred.

第3の構成単位(3)を含む場合、第1の構成単位(1)と第3の構成単位(3)との割合は、例えば、前者/後者(モル比)として、0.1/99.9~90/10程度の広い範囲から選択できる。好ましい範囲としては、以下、段階的に、0.5/99.5~70/30、1/99~50/50、5/95~45/55、10/90~40/60、12/88~35/65、15/85~30/70、8/92~35/65であって、より好ましくは10/90~25/75、さらに好ましくは12/88~20/80である。第3の構成単位(3)の割合が多すぎると、耐熱性が低下するおそれがある。 When the third structural unit (3) is included, the ratio of the first structural unit (1) to the third structural unit (3) is, for example, 0.1/99 as the former / latter (molar ratio). You can select from a wide range of about 9.9 to 90/10. The preferred ranges are as follows, in stages, 0.5 / 99.5 to 70/30, 1/99 to 50/50, 5/95 to 45/55, 10/90 to 40/60, 12/88. It is ~ 35/65, 15/85 to 30/70, 8/92 to 35/65, more preferably 10/90 to 25/75, and even more preferably 12/88 to 20/80. If the ratio of the third structural unit (3) is too large, the heat resistance may decrease.

本発明のポリカーボネート樹脂は、第1の構成単位(1)を少なくとも含んでおり、その他の構成単位としては特に限定されないが、例えば第2の構成単位(2)及び/又は第3の構成単位(3)を含んでいることが好ましい。 The polycarbonate resin of the present invention contains at least the first structural unit (1), and the other structural units are not particularly limited, but for example, the second structural unit (2) and / or the third structural unit ( 3) is preferably contained.

第1の構成単位(1)と、第2の構成単位(2)及び第3の構成単位(3)の総量との割合は、例えば、前者/後者(モル比)として、0.1/99.9~99/1程度の広い範囲から選択できる。好ましい範囲としては、以下、段階的に、0.5/99.5~90/10、1/99~70/20、2/98~50/50、3/97~30/70、5/95~25/75であって、より好ましくは7/93~20/80、さらに好ましくは9/91~15/85である。第1の構成単位(1)が少なすぎると、耐熱性や屈折率が低下するおそれがある。本発明では、第1の構成単位(1)の割合が比較的少なくても耐熱性や屈折率などの特性を向上し易いため、前記割合は、6/94~13/87程度であってもよい。 The ratio of the first constituent unit (1) to the total amount of the second constituent unit (2) and the third constituent unit (3) is, for example, 0.1/99 as the former / latter (molar ratio). You can select from a wide range of about 9.9 to 99/1. The preferred range is as follows, in stages, 0.5 / 99.5 to 90/10, 1/99 to 70/20, 2/98 to 50/50, 3/97 to 30/70, 5/95. It is ~ 25/75, more preferably 7/93 to 20/80, and even more preferably 9/91 to 15/85. If the number of the first structural unit (1) is too small, the heat resistance and the refractive index may decrease. In the present invention, even if the ratio of the first structural unit (1) is relatively small, it is easy to improve the characteristics such as heat resistance and the refractive index. Therefore, even if the ratio is about 6/94 to 13/87. good.

第2の構成単位(2)及び第3の構成単位(3)のうち、いずれか一方のみを含んでいてもよく、双方を含んでいてもよいが、高い耐熱性及び屈折率と、低い複屈折とを高度にバランスよく充足できる点から、特に、第2の構成単位(2)を含むのが好ましい。 Only one of the second structural unit (2) and the third structural unit (3) may be contained, or both may be contained, but the heat resistance and the refractive index are high and the compound is low. It is particularly preferable to include the second structural unit (2) from the viewpoint that the refraction can be satisfied in a highly balanced manner.

なお、第2の構成単位(2)及び第3の構成単位(3)の双方を含む場合、第2の構成単位(2)と第3の構成単位(3)との割合は、例えば、前者/後者(モル比)として、1/99~99/1程度の広い範囲から選択できる。好ましい範囲としては、以下、段階的に、5/95~90/10、10/90~80/20、20/80~70/30、30/70~60/40、35/65~55/45、25/75~45/55であって、より好ましくは28/72~40/60、さらに好ましくは30/70~35/65である。第3の構成単位(3)の割合が多すぎると、耐熱性が低下するおそれがある。第1の構成単位(1)に加えて、前述のような割合で第2の構成単位(2)及び第3の構成単位(3)の双方を含むと、耐熱性、屈折率及び複屈折のバランスを容易に調整できる。 When both the second structural unit (2) and the third structural unit (3) are included, the ratio between the second structural unit (2) and the third structural unit (3) is, for example, the former. / The latter (molar ratio) can be selected from a wide range of about 1/99 to 99/1. The preferred ranges are as follows, step by step, 5/95 to 90/10, 10/90 to 80/20, 20/80 to 70/30, 30/70 to 60/40, 35/65 to 55/45. , 25/75 to 45/55, more preferably 28/72 to 40/60, and even more preferably 30/70 to 35/65. If the ratio of the third structural unit (3) is too large, the heat resistance may decrease. When both the second structural unit (2) and the third structural unit (3) are included in the ratio as described above in addition to the first structural unit (1), the heat resistance, the refractive index and the birefringence are reduced. The balance can be easily adjusted.

(その他の構成単位)
ポリカーボネート樹脂は、本発明の効果を損なわない範囲であれば、前記式(1)~(3)で表される構成単位の範囲に含まれない他の構成単位(単に、第4の構成単位(4)ともいう)を含んでいてもよい。第4の構成単位(4)として代表的には、例えば、前記式(1)において、環Zが縮合多環式アレーン環以外のアレーン環(ベンゼン環などの単環式アレーン環、ビフェニル環などの環集合アレーン環など)である構成単位[9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの9,9-ビス(ヒドロキシフェニル)フルオレン;9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどの9,9-ビス(ヒドロキシ-(モノ又はジ)アルキルフェニル)フルオレン;9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレンなどの9,9-ビス(ヒドロキシ-アリールフェニル)フルオレンなどに由来(又は対応)する構成単位など];ポリカーボネート樹脂として利用される慣用の構成単位[ビフェノール;ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、1,1-ビス(4-ヒドロキシフェニル)エタン(ビスフェノールAD)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)スルホン(ビスフェノールS)などのビスフェノール類などに由来する構成単位など]などであってもよい。
(Other building blocks)
The polycarbonate resin is another structural unit not included in the range of the structural units represented by the above formulas (1) to (3) as long as the effect of the present invention is not impaired (simply, the fourth structural unit (simply, the fourth structural unit (simply)). 4) may also be included. Typically, as the fourth structural unit (4), for example, in the above formula (1), the ring Z 1 is an allene ring other than the fused polycyclic alley ring (monocyclic alley ring such as benzene ring, biphenyl ring). , Etc.), which is a structural unit [9,9-bis (hydroxyphenyl) fluorene such as 9,9-bis (4-hydroxyphenyl) fluorene; 9,9-bis (4-hydroxy-3-). 9,9-bis (hydroxy- (mono or di) alkylphenyl) fluorene such as methylphenyl) fluorene; 9,9-bis (hydroxy-) such as 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene. Arylphenyl) Structural units derived from (or corresponding to) fluorene, etc.]; Conventional structural units used as polycarbonate resins [biphenol; bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis (4) -Constituent units derived from bisphenols such as -hydroxyphenyl) ethane (bisphenol AD), 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) sulfone (bisphenol S), etc. ] And so on.

これらの第4の構成単位(4)(第4のジオール成分に由来する構成単位)は、単独で又は2種以上組み合わせて使用することもできる。第4の構成単位(4)の割合は、ポリカーボネート樹脂の構成単位全体に対して、例えば、50モル%以下(例えば0.1~50モル%)であってもよく、好ましくは30モル%以下、さらに好ましくは10モル%以下(特に5モル%以下)であってもよい。 These fourth structural units (4) (constituent units derived from the fourth diol component) may be used alone or in combination of two or more. The ratio of the fourth structural unit (4) may be, for example, 50 mol% or less (for example, 0.1 to 50 mol%), preferably 30 mol% or less, based on the entire constituent unit of the polycarbonate resin. , More preferably 10 mol% or less (particularly 5 mol% or less).

[ポリカーボネート樹脂の製造方法]
本発明のポリカーボネート樹脂は、慣用の方法、例えば、ホスゲン法(溶剤法)やエステル交換法(溶融法)などにより、ジオール成分と、ホスゲン又は炭酸ジエステル(ジフェニルカーボネートなど)とを反応(重合又は縮合)させることにより製造できる。ジオール成分は、少なくとも前記式(1)で表される構成単位を形成するための第1のジオール成分を含んでいればよく、必要に応じて、さらに、第2~第4のジオール成分を含んでいてもよい。これらの方法のうち、溶媒が不要である点などから、エステル交換法が好ましい。
[Manufacturing method of polycarbonate resin]
The polycarbonate resin of the present invention reacts (polymerizes or condenses) a diol component with a phosgene or a carbonic acid diester (diphenyl carbonate, etc.) by a conventional method, for example, a phosgene method (solvent method) or an ester exchange method (melting method). ) Can be manufactured. The diol component may contain at least the first diol component for forming the structural unit represented by the above formula (1), and further contains the second to fourth diol components, if necessary. You may be. Of these methods, the transesterification method is preferable because it does not require a solvent.

エステル交換法において、炭酸ジエステルの割合は、ジオール成分1モルに対して、例えば、0.8~1.5モル、好ましくは0.9~1.2モル程度であってもよい。 In the transesterification method, the ratio of the carbonic acid diester may be, for example, about 0.8 to 1.5 mol, preferably about 0.9 to 1.2 mol, with respect to 1 mol of the diol component.

エステル交換反応は、触媒の存在下で行ってもよい。触媒としては、エステル交換反応に利用される種々の触媒、例えば、含窒素化合物、金属化合物などが挙げられる。 The transesterification reaction may be carried out in the presence of a catalyst. Examples of the catalyst include various catalysts used in the transesterification reaction, for example, nitrogen-containing compounds and metal compounds.

含窒素化合物としては、例えば、第4級アンモニウムヒドロキシド(例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどのテトラアルキルアンモニウムヒドロキシド;トリメチルベンジルアンモニウムヒドロキシドなどのトリアルキル-アラルキルアンモニウムヒドロキシドなど);第3級アミン(トリメチルアミン、トリエチルアミンなどのトリアルキルアミン;ジメチルベンジルアミンなどのジメチル-アラルキルアミン;トリフェニルアミンなどのトリアリールアミンなど)などが挙げられる。 Examples of the nitrogen-containing compound include quaternary ammonium hydroxides (eg, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; and trialkyls such as trimethylbenzylammonium hydroxide. -Aralkylammonium hydroxide and the like); Tertiary amines (trialkylamines such as trimethylamine and triethylamine; dimethyl-aralkylamines such as dimethylbenzylamine; triarylamines such as triphenylamine) and the like.

金属化合物としては、例えば、アルカリ金属(ナトリウムなど)、アルカリ土類金属(マグネシウム、カルシウム、バリウムなど)、遷移金属(マンガン、亜鉛、カドミウム、鉛、コバルト、チタンなど)、周期表第13族金属(アルミニウムなど)、周期表第14族金属(ゲルマニウムなど)、周期表第15族金属(アンチモンなど)などの金属を含む金属化合物が用いられる。より具体的には、例えば、前記金属のアルコキシド、有機酸塩(酢酸塩、プロピオン酸塩など)、無機酸塩(ホウ酸塩、炭酸塩など)、酸化物、水酸化物などが挙げられる。 Examples of metal compounds include alkali metals (sodium, etc.), alkaline earth metals (magnesium, calcium, barium, etc.), transition metals (manganese, zinc, cadmium, lead, cobalt, titanium, etc.), and periodic table group 13 metals. Metal compounds containing metals such as (aluminum, etc.), periodic table Group 14 metals (germanium, etc.), periodic table Group 15 metals (antimon, etc.) are used. More specifically, for example, the alkoxide of the metal, an organic acid salt (acetate, propionate, etc.), an inorganic acid salt (borate salt, carbonate, etc.), an oxide, a hydroxide, and the like can be mentioned.

これらの触媒は単独で又は2種以上組み合わせて使用できる。これらの触媒のうち、第4級アンモニウムヒドロキシドなどの含窒素化合物が好ましく、なかでも、テトラメチルアンモニウムヒドロキシドなどのテトラアルキルアンモニウムヒドロキシドが好ましい。触媒の使用量は、例えば、ジオール成分1モルに対して0.01×10-4~100×10-4モル、好ましくは0.1×10-4~40×10-4モル程度であってもよい。 These catalysts can be used alone or in combination of two or more. Among these catalysts, nitrogen-containing compounds such as quaternary ammonium hydroxide are preferable, and among them, tetraalkylammonium hydroxide such as tetramethylammonium hydroxide is preferable. The amount of the catalyst used is, for example, about 0.01 × 10 -4 to 100 × 10 -4 mol, preferably about 0.1 × 10 -4 to 40 × 10 -4 mol, per 1 mol of the diol component. May be good.

また、反応は、必要に応じて、安定剤(酸化防止剤、熱安定剤など)などの添加剤の存在下で行ってもよい。 Further, the reaction may be carried out in the presence of additives such as stabilizers (antioxidants, heat stabilizers, etc.), if necessary.

反応は、通常、不活性ガス(窒素;ヘリウム、アルゴンなどの希ガスなど)雰囲気中で行うことができる。また、反応は、減圧下(例えば、1×10~1×10Pa程度)で行うこともできる。反応温度は、重合法に応じて選択でき、例えば、エステル交換法における反応温度は、例えば150~320℃、好ましくは200~310℃、さらに好ましくは250~300℃程度であってもよい。特に、炭酸ジエステルとしてジフェニルカーボネートを使用する場合、高温減圧下でフェノールを留去しながら重縮合するのが有効である。 The reaction can usually be carried out in an atmosphere of an inert gas (nitrogen; noble gas such as helium, argon, etc.). The reaction can also be carried out under reduced pressure (for example, about 1 × 10 2 to 1 × 10 4 Pa). The reaction temperature can be selected according to the polymerization method. For example, the reaction temperature in the transesterification method may be, for example, 150 to 320 ° C, preferably 200 to 310 ° C, and more preferably 250 to 300 ° C. In particular, when diphenyl carbonate is used as the carbonic acid diester, it is effective to carry out polycondensation while distilling off phenol under high temperature and reduced pressure.

[ポリカーボネート樹脂の特性]
本発明のポリカーボネート樹脂は、第1の構成単位を含むため、高い耐熱性及び屈折率を有している。また、第1の構成単位に加えて、さらに、第2の構成単位を含むことにより、相反する特性である高い耐熱性と低い複屈折とを両立でき、成形性や機械的特性も向上できる。さらに、第3の構成単位を含むことにより、耐熱性と光学的特性(高屈折率、低アッベ数、低複屈折など)とをバランスよく有するポリカーボネート樹脂を形成できる。
[Characteristics of polycarbonate resin]
Since the polycarbonate resin of the present invention contains the first structural unit, it has high heat resistance and a refractive index. Further, by including the second structural unit in addition to the first structural unit, it is possible to achieve both high heat resistance and low birefringence, which are contradictory characteristics, and improve moldability and mechanical characteristics. Further, by including the third structural unit, it is possible to form a polycarbonate resin having a good balance between heat resistance and optical properties (high refractive index, low Abbe number, low birefringence, etc.).

本発明のポリカーボネート樹脂は、高いガラス転移温度(Tg)を有しており、耐熱性に優れている。ポリカーボネート樹脂のTgは、通常、130℃以上、例えば、130~250℃程度であってもよい。好ましい範囲としては、以下段階的に、140~230℃、150~220℃、155~210℃程度であって、より好ましくは160~200℃、さらに好ましくは165~190℃程度であってもよい。 The polycarbonate resin of the present invention has a high glass transition temperature (Tg) and is excellent in heat resistance. The Tg of the polycarbonate resin may be usually 130 ° C. or higher, for example, about 130 to 250 ° C. The preferred range may be 140 to 230 ° C., 150 to 220 ° C., 155 to 210 ° C., more preferably 160 to 200 ° C., and even more preferably 165 to 190 ° C. in a stepwise manner. ..

高い耐熱性のみならず良好な成形性も確保できる観点から、ポリカーボネート樹脂のTgは、例えば、155~200℃、好ましくは158~195℃、より好ましくは160~190℃、さらに好ましくは162~185℃、特に165~180℃程度であるのが好ましい。本発明のポリカーボネート樹脂では、第1の構成単位などを上述の範囲で含めることにより、ガラス転移温度を、高い耐熱性と良好な成形性とを両立可能な範囲に容易に調整できる。それゆえ、本発明のポリカーボネート樹脂は、車載用光学レンズなどの高温環境下に晒されることが想定される用途において好適である。 From the viewpoint of ensuring not only high heat resistance but also good moldability, the Tg of the polycarbonate resin is, for example, 155 to 200 ° C, preferably 158 to 195 ° C, more preferably 160 to 190 ° C, still more preferably 162 to 185. The temperature is preferably about 165 to 180 ° C. In the polycarbonate resin of the present invention, the glass transition temperature can be easily adjusted within a range in which high heat resistance and good moldability can be compatible with each other by including the first structural unit and the like in the above range. Therefore, the polycarbonate resin of the present invention is suitable for applications that are expected to be exposed to a high temperature environment such as an in-vehicle optical lens.

本発明のポリカーボネート樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)において、ポリスチレン換算で、例えば、1.5×10~50×10程度の範囲から選択できる。好ましい範囲としては、以下段階的に、例えば、2×10~30×10、2×10~20×10、2×10~15×10、2×10~10×10、2.5×10~8×10程度であってもよく、より好ましくは3×10~8×10、さらに好ましくは3.5×10~7.5×10程度である。 The weight average molecular weight (Mw) of the polycarbonate resin of the present invention can be selected from the range of, for example, about 1.5 × 10 4 to 50 × 10 4 in terms of polystyrene in gel permeation chromatography (GPC). The preferred range is as follows, for example, 2 × 10 4 to 30 × 10 4 , 2 × 10 4 to 20 × 10 4 , 2 × 10 4 to 15 × 10 4 , 2 × 10 4 to 10 × 10. 4 , 2.5 × 10 4 to 8 × 10 4 , more preferably 3 × 10 4 to 8 × 10 4 , still more preferably 3.5 × 10 4 to 7.5 × 10 4 Is.

本発明のポリカーボネート樹脂の温度20℃、波長589nmでの屈折率は、例えば、1.63~1.75程度の範囲から選択できる。好ましい範囲としては、以下段階的に、例えば、1.64~1.7、1.64~1.695程度であって、より好ましくは1.645~1.69程度であってもよい。特に、高屈折率が重要な用途において好ましい範囲としては、以下段階的に、例えば、1.65~1.75、1.66~1.72程度であって、より好ましくは1.67~1.7、さらに好ましくは1.68~1.695程度であってもよい。 The refractive index of the polycarbonate resin of the present invention at a temperature of 20 ° C. and a wavelength of 589 nm can be selected from, for example, in the range of about 1.63 to 1.75. The preferred range may be, for example, 1.64 to 1.7, 1.64 to 1.695, and more preferably 1.645 to 1.69 in a stepwise manner. In particular, the preferable range in the application where high refractive index is important is, for example, 1.65 to 1.75 and 1.66 to 1.72 in a stepwise manner, and more preferably 1.67 to 1. It may be about 0.7, more preferably about 1.68 to 1.695.

本発明のポリカーボネート樹脂の温度20℃でのアッベ数は、例えば23以下(例えば、17~23程度)の範囲から選択でき、例えば、22.5以下(例えば、17~21程度)、好ましくは20以下(例えば、17~20程度)、さらに好ましくは19.5以下(例えば、17.5~19.5程度)、特に19以下(例えば、18~19程度)であってもよい。 The Abbe number of the polycarbonate resin of the present invention at a temperature of 20 ° C. can be selected from the range of, for example, 23 or less (for example, about 17 to 23), for example, 22.5 or less (for example, about 17 to 21), preferably 20. It may be less than or equal to (for example, about 17 to 20), more preferably 19.5 or less (for example, about 17.5 to 19.5), and particularly preferably 19 or less (for example, about 18 to 19).

本発明のポリカーボネート樹脂の温度20℃、波長600nmでの複屈折(ガラス転移点よりも10℃高い温度で3倍に1軸延伸したフィルムにおける複屈折)の絶対値は、例えば、100×10-4以下(例えば、0.001×10-4~75×10-4程度)の範囲から選択でき、例えば、60×10-4以下(例えば、0.005×10-4~50×10-4程度)、好ましくは40×10-4以下(例えば、0.01×10-4~30×10-4程度)、さらに好ましくは20×10-4以下(例えば、0.1×10-4~10×10-4程度)、特に8×10-4以下(例えば、0.5×10-4~5×10-4程度)、なかでも3×10-4以下(例えば、0.7×10-4~2×10-4程度)であってもよい。なお、本明細書及び特許請求の範囲において、この複屈折(3倍複屈折)は、後述する実施例に記載の方法により測定できる。 The absolute value of the birefringence of the polycarbonate resin of the present invention at a temperature of 20 ° C. and a wavelength of 600 nm (birefringence in a film uniaxially stretched three times at a temperature 10 ° C. higher than the glass transition point) is, for example, 100 × 10 . It can be selected from the range of 4 or less (for example, about 0.001 × 10 -4 to 75 × 10 -4 ), and for example, 60 × 10 -4 or less (for example, 0.005 × 10 -4 to 50 × 10 -4 ). Approximately), preferably 40 × 10 -4 or less (for example, about 0.01 × 10 -4 to 30 × 10 -4 ), more preferably 20 × 10 -4 or less (for example, 0.1 × 10 -4 to about). 10 x 10 -4 or less), especially 8 x 10 -4 or less (for example, 0.5 x 10 -4 to 5 x 10 -4 ), especially 3 x 10 -4 or less (for example, 0.7 x 10). It may be about -4 to 2 × 10 -4 ). In the present specification and claims, this birefringence (triple birefringence) can be measured by the method described in Examples described later.

[成形体]
本発明の成形体は、前記ポリカーボネート樹脂を含み、優れた耐熱性及び光学的特性(高屈折率、低複屈折など)を有しているため、光学フィルム、光学レンズ、光学シートなどの光学用部材として利用できる。成形体の形状は、特に限定されず、例えば、一次元的構造(例えば、線状、糸状など)、二次元的構造(例えば、フィルム状、シート状、板状など)、三次元的構造(例えば、凹又は凸レンズ状、棒状、中空状(管状)など)などが挙げられる。
[Molded product]
Since the molded product of the present invention contains the polycarbonate resin and has excellent heat resistance and optical properties (high refraction rate, low birefringence, etc.), it is used for optics such as optical films, optical lenses, and optical sheets. It can be used as a member. The shape of the molded body is not particularly limited, and is, for example, a one-dimensional structure (for example, linear, thread-like, etc.), a two-dimensional structure (for example, film-like, sheet-like, plate-like, etc.), and a three-dimensional structure (for example, a film-like, sheet-like, plate-like, etc.). For example, a concave or convex lens shape, a rod shape, a hollow shape (tubular), etc.) can be mentioned.

本発明の成形体は、各種添加剤[例えば、充填剤又は補強剤、着色剤(例えば、染顔料など)、導電剤、難燃剤、可塑剤、滑剤、安定剤(例えば、酸化防止剤、紫外線吸収剤、熱安定剤など)、離型剤、帯電防止剤、分散剤、流動調整剤、レベリング剤、消泡剤、表面改質剤、低応力化剤(例えば、シリコーンオイル、シリコーンゴム、各種プラスチック粉末、各種エンジニアリングプラスチック粉末など)、炭素材など]を含んでいてもよい。これらの添加剤は、単独で又は2種以上組み合わせて使用してもよい。 The molded product of the present invention contains various additives [for example, fillers or reinforcing agents, coloring agents (for example, dyeing pigments, etc.), conductive agents, flame retardant agents, plasticizers, lubricants, stabilizers (for example, antioxidants, ultraviolet rays, etc.). Absorbents, heat stabilizers, etc.), mold release agents, antistatic agents, dispersants, flow regulators, leveling agents, defoaming agents, surface modifiers, low stress agents (eg, silicone oils, silicone rubbers, etc.) Plastic powder, various engineering plastic powder, etc.), carbon material, etc.] may be included. These additives may be used alone or in combination of two or more.

成形体は、例えば、射出成形法、射出圧縮成形法、押出成形法、トランスファー成形法、ブロー成形法、加圧成形法、キャスティング成形法などを利用して製造することができる。 The molded body can be manufactured by using, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a transfer molding method, a blow molding method, a pressure molding method, a casting molding method, or the like.

特に、本発明のポリカーボネート樹脂は、種々の光学的特性に優れているため、フィルム(特に光学フィルム)を形成するのに有用である。そのため、本発明には、前記ポリカーボネート樹脂で形成されたフィルム(光学フィルム)も含まれる。 In particular, the polycarbonate resin of the present invention is excellent in various optical properties, and is therefore useful for forming a film (particularly an optical film). Therefore, the present invention also includes a film (optical film) formed of the polycarbonate resin.

このようなフィルムの厚み(平均厚み)は1~1000μm程度の範囲から用途に応じて選択でき、例えば1~200μm、好ましくは5~150μm、さらに好ましくは10~120μm程度であってもよい。 The thickness (average thickness) of such a film can be selected from the range of about 1 to 1000 μm depending on the application, and may be, for example, 1 to 200 μm, preferably 5 to 150 μm, and more preferably about 10 to 120 μm.

このようなフィルム(光学フィルム)は、前記ポリカーボネート樹脂を、慣用の成膜方法、キャスティング法(溶剤キャスト法)、溶融押出法、カレンダー法などを用いて成膜(又は成形)することにより製造できる。 Such a film (optical film) can be produced by forming (or molding) the polycarbonate resin by using a conventional film forming method, a casting method (solvent casting method), a melt extrusion method, a calendar method, or the like. ..

フィルムは、延伸フィルムであってもよい。本発明のフィルムは、延伸フィルムであっても、低複屈折を維持できる。なお、このような延伸フィルムは、一軸延伸フィルム又は二軸延伸フィルムのいずれであってもよい。 The film may be a stretched film. The film of the present invention can maintain low birefringence even if it is a stretched film. In addition, such a stretched film may be either a uniaxially stretched film or a biaxially stretched film.

延伸倍率は、一軸延伸及び二軸延伸のいずれにおいても、延伸方向にそれぞれ1.1~10倍(好ましくは1.2~8倍、さらに好ましくは1.5~6倍)程度であってもよく、通常1.1~2.5倍(好ましくは1.2~2.3倍、さらに好ましくは1.5~2.2倍)程度であってもよい。なお、二軸延伸の場合、等延伸(例えば、縦横両方向に1.5~5倍延伸)であっても、偏延伸(例えば、縦方向に1.1~4倍、横方向に2~6倍延伸)であってもよい。また、一軸延伸の場合、縦延伸(例えば、縦方向に2.5~8倍延伸)であっても横延伸(例えば、横方向に1.2~5倍延伸)であってもよい。 The draw ratio may be about 1.1 to 10 times (preferably 1.2 to 8 times, more preferably 1.5 to 6 times) in the drawing direction in both uniaxial stretching and biaxial stretching. It may be usually about 1.1 to 2.5 times (preferably 1.2 to 2.3 times, more preferably 1.5 to 2.2 times). In the case of biaxial stretching, even if the stretching is equal (for example, 1.5 to 5 times in both the vertical and horizontal directions), the partial stretching (for example, 1.1 to 4 times in the vertical direction and 2 to 6 times in the horizontal direction). It may be double-stretched). Further, in the case of uniaxial stretching, it may be longitudinal stretching (for example, 2.5 to 8 times stretching in the longitudinal direction) or transverse stretching (for example, 1.2 to 5 times stretching in the transverse direction).

延伸フィルムの厚み(平均厚み)は、例えば1~150μm、好ましくは3~120μm、さらに好ましくは5~100μm程度であってもよい。 The thickness (average thickness) of the stretched film may be, for example, 1 to 150 μm, preferably 3 to 120 μm, and more preferably 5 to 100 μm.

なお、このような延伸フィルムは、成膜後のフィルム(又は未延伸フィルム)に、延伸処理を施すことにより得ることができる。延伸方法は、特に制限が無く、一軸延伸の場合、湿式延伸法又は乾式延伸法のいずれであってもよく、二軸延伸の場合、テンター法(フラット法ともいわれる)であってもチューブ法であってもよいが、延伸厚みの均一性に優れるテンター法が好ましい。 In addition, such a stretched film can be obtained by subjecting a film (or an unstretched film) after film formation to a stretching treatment. The stretching method is not particularly limited, and in the case of uniaxial stretching, either a wet stretching method or a dry stretching method may be used, and in the case of biaxial stretching, a tenter method (also referred to as a flat method) may be used by a tube method. Although it may be present, the tenter method having excellent uniformity of stretch thickness is preferable.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、用いた原料の略号及び詳細、並びに得られた樹脂又はフィルムの評価方法を以下に示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The abbreviations and details of the raw materials used and the evaluation method of the obtained resin or film are shown below.

[原料]
BPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、大阪ガスケミカル(株)製
BNEF:9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(後述する合成例1によって合成)
BOPPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、大阪ガスケミカル(株)製
BNF:9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、大阪ガスケミカル(株)製
BINOL:2,2’-ジヒドロキシ-1,1’-ビナフタレン、東京化成工業(株)製
BINOL-2EO:2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(後述する合成例2によって合成)
DPC:ジフェニルカーボネート。
[material]
BPEF: 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, manufactured by Osaka Gas Chemical Co., Ltd. BNEF: 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene ( Synthesized according to Synthesis Example 1 described later)
BOPPEF: 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene, manufactured by Osaka Gas Chemical Co., Ltd. BNF: 9,9-bis (6-hydroxy-2-naphthyl) fluorene, Osaka BINOL manufactured by Gas Chemical Co., Ltd .: 2,2'-dihydroxy-1,1'-binaphthalene, manufactured by Tokyo Kasei Kogyo Co., Ltd. BINOL-2EO: 2,2'-bis (2-hydroxyethoxy) -1,1' -Vinaphthalene (synthesized by Synthesis Example 2 described later)
DPC: Diphenyl carbonate.

[分子量]
試料をクロロホルムに溶解し、ゲルパーミエーションクロマトグラフィー(東ソー(株)製「HLC-8120GPC」)を用いて、ポリスチレン換算の重量平均分子量(Mw)を求めた。
[Molecular weight]
The sample was dissolved in chloroform, and the weight average molecular weight (Mw) in terms of polystyrene was determined using gel permeation chromatography (“HLC-8120GPC” manufactured by Tosoh Corporation).

[ガラス転移温度(Tg)]
示差走査熱量計(セイコーインスツル(株)製「DSC 6220」)を用いて、アルミパンに試料を入れ、30~200℃の範囲でガラス転移温度(Tg)を測定した。
[Glass transition temperature (Tg)]
A sample was placed in an aluminum pan using a differential scanning calorimeter (“DSC 6220” manufactured by Seiko Instruments Co., Ltd.), and the glass transition temperature (Tg) was measured in the range of 30 to 200 ° C.

[屈折率及びアッベ数]
試料を200~240℃で熱プレスすることによって、厚みが10~300μmのフィルムを成形した。このフィルムを縦20~30mm×横10mmの短冊状に切り出し、試験片を得た。得られた試験片について、多波長アッベ屈折計((株)アタゴ製「DR-M2/1550」)を用いて、接触液にジヨードメタンを使用して、測定温度20℃、測定波長486nm(F線)、589nm(D線)、656nm(C線)における屈折率nF、nD、nCをそれぞれ測定した。なお、アッベ数は以下の式によって算出した。
[Refractive index and Abbe number]
By hot pressing the sample at 200 to 240 ° C., a film having a thickness of 10 to 300 μm was formed. This film was cut into strips having a length of 20 to 30 mm and a width of 10 mm to obtain test pieces. For the obtained test piece, a multi-wavelength Abbe refractometer (“DR-M2 / 1550” manufactured by Atago Co., Ltd.) was used, and diiodomethane was used as the contact liquid, and the measurement temperature was 20 ° C. and the measurement wavelength was 486 nm (F line). ), Refractive indexes nF, nD, and nC at 589 nm (D line) and 656 nm (C line), respectively. The Abbe number was calculated by the following formula.

アッベ数=(nD-1)/(nF-nC)。 Abbe number = (nD-1) / (nF-nC).

[複屈折(又は3倍複屈折)]
試料を200~240℃で熱プレスすることによって、厚みが200~600μmのフィルムを成形した。このフィルムを10mm×50mmの短冊状に切り出し、Tg+10℃の温度条件下、25mm/分で延伸倍率が3倍となるように一軸延伸して試験片を得た。延伸した試験片を、位相差フィルム・光学材料検査装置(大塚電子(株)製「RETS-100」)を用いて、測定温度20℃、測定波長600nmの条件下、回転検光子法にてリタデーションを測定し、その絶対値を測定部位の厚みで除することで算出した。
[Birerefringence (or triple birefringence)]
By hot pressing the sample at 200 to 240 ° C., a film having a thickness of 200 to 600 μm was formed. This film was cut into strips of 10 mm × 50 mm and uniaxially stretched at 25 mm / min under a temperature condition of Tg + 10 ° C. so that the stretching ratio was 3 times to obtain a test piece. The stretched test piece is retarded by a rotary photon method using a retardation film / optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.) under the conditions of a measurement temperature of 20 ° C. and a measurement wavelength of 600 nm. Was measured, and the absolute value was divided by the thickness of the measurement site.

[合成例1]BNEFの合成
1Lのセパラブルフラスコに、9-フルオレノン45g(0.25モル、大阪ガスケミカル(株)製)、エチレングリコールモノ(2-ナフチル)エーテル188g(1モル)、及び3-メルカプトプロピオン酸1gを投入した後に、60℃まで加温して完全に溶解させた。その後、硫酸54gを徐々に投入して、60℃を維持しつつ5時間攪拌したところ、HPLC(高速又は高性能液体クロマトグラフィー)にて9-フルオレノンの転化率が99%以上であることを確認できた。得られた反応液に48重量%水酸化ナトリウム水溶液を投入して中和した後、キシレン400gを添加して蒸留水にて数回洗浄し、冷却することで結晶を析出させた。さらに、ろ過して乾燥したところ、87g(収率67%)の結晶として、目的とする9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(BNEF)を得た。得られた結晶のHPLC純度を測定したところ、98.3%であった。なお、得られた結晶は、H-NMR及びマススペクトルにより、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(BNEF)であることを確認した。
[Synthesis Example 1] Synthesis of BNEF In a 1 L separable flask, 45 g of 9-fluorenone (0.25 mol, manufactured by Osaka Gas Chemical Co., Ltd.), 188 g (1 mol) of ethylene glycol mono (2-naphthyl) ether, and After adding 1 g of 3-mercaptopropionic acid, the mixture was heated to 60 ° C. and completely dissolved. After that, 54 g of sulfuric acid was gradually added and stirred for 5 hours while maintaining 60 ° C., and it was confirmed by HPLC (high performance liquid chromatography) that the conversion rate of 9-fluorenone was 99% or more. did it. After neutralizing by adding a 48 wt% sodium hydroxide aqueous solution to the obtained reaction solution, 400 g of xylene was added, the mixture was washed with distilled water several times, and cooled to precipitate crystals. Further, it was filtered and dried to obtain the desired 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene (BNEF) as crystals of 87 g (yield 67%). The HPLC purity of the obtained crystals was measured and found to be 98.3%. The obtained crystal was confirmed to be 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene (BNEF) by 1 H-NMR and mass spectrum.

[合成例2]BINOL-2EOの合成
1Lのセパラブルフラスコに、BINOL 89g(0.31モル)、炭酸カリウム86g(0.62モル)、N,N-ジメチルホルムアミド(DMF)295gを投入し、100℃まで加温した後、DMF 112gにエチレンカーボネート110gを溶解した溶液を徐々に投入して、100℃を維持しつつ2時間撹拌した。HPLCにてBINOLの転化率が99%以上であることを確認できた。得られた反応液に蒸留水800gと酢酸エチル900gとを添加して、蒸留水にて数回洗浄し、減圧濃縮後、酢酸エチル/エタノール混合溶媒にて再結晶を行った。析出物をろ過して乾燥したところ、67g(収率58%)の結晶を得た。得られた結晶を分析した結果、HPLCによる純度が94.8%であり、H-NMR及びマススペクトルにより、目的化合物の2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BINOL-2EO)であることを確認した。
[Synthesis Example 2] Synthesis of BINOL-2EO 89 g (0.31 mol) of BINOL, 86 g (0.62 mol) of potassium carbonate, and 295 g of N, N-dimethylformamide (DMF) were put into a 1 L separable flask. After heating to 100 ° C., a solution in which 110 g of ethylene carbonate was dissolved in 112 g of DMF was gradually added, and the mixture was stirred for 2 hours while maintaining 100 ° C. It was confirmed by HPLC that the conversion rate of BINOL was 99% or more. 800 g of distilled water and 900 g of ethyl acetate were added to the obtained reaction solution, washed several times with distilled water, concentrated under reduced pressure, and then recrystallized from a mixed solvent of ethyl acetate / ethanol. When the precipitate was filtered and dried, 67 g (yield 58%) of crystals was obtained. As a result of analyzing the obtained crystals, the purity by HPLC was 94.8%, and 1 H-NMR and mass spectrum showed that the target compound was 2,2'-bis (2-hydroxyethoxy) -1,1'-. It was confirmed that it was binaftalene (BINOL-2EO).

[実施例1]
ジオール成分としてBNF 0.10モル及びBPEF 0.90モルと、DPC 1.05モルと、エステル交換触媒としてテトラメチルアンモニウムヒドロキシド2×10-4モルとを加え、撹拌しながら徐々に加熱溶融し、250℃まで昇温した後、10000Paまで段階的に減圧を行った。270℃、0.13kPa以下に到達するまで徐々に昇温、減圧しながらフェノールを除去した。所定の撹拌トルクに到達後、内容物を反応器から取り出し、ポリカーボネート樹脂のペレットを得た。得られたペレットを、H-NMRにより分析したところ、ポリカーボネート樹脂の構成単位の90モル%がBPEF由来であり、10モル%がBNF由来であった。
[Example 1]
0.10 mol of BNF and 0.90 mol of BPEF as diol components, 1.05 mol of DPC, and 2 × 10 -4 mol of tetramethylammonium hydroxide as a transesterification catalyst were added and gradually heated and melted with stirring. After raising the temperature to 250 ° C., the pressure was gradually reduced to 10,000 Pa. Phenol was removed by gradually raising the temperature and reducing the pressure until the temperature reached 270 ° C. and 0.13 kPa or less. After reaching the predetermined stirring torque, the contents were taken out from the reactor to obtain pellets of polycarbonate resin. When the obtained pellets were analyzed by 1 H-NMR, 90 mol% of the constituent units of the polycarbonate resin were derived from BPEF and 10 mol% were derived from BNF.

[実施例2]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNF 0.15モル及びBPEF 0.85モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の15モル%がBNF由来であり、85モル%がBPEF由来であった。
[Example 2]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.15 mol of BNF and 0.85 mol of BPEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 15 mol% of the constituent units of the polycarbonate resin were derived from BNF, and 85 mol% were derived from BPEF.

[実施例3]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNF 0.2モル及びBPEF 0.8モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の20モル%がBNF由来であり、80モル%がBPEF由来であった。
[Example 3]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.2 mol of BNF and 0.8 mol of BPEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 20 mol% of the constituent units of the polycarbonate resin were derived from BNF and 80 mol% were derived from BPEF.

[実施例4]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNF 0.25モル及びBPEF 0.75モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の25モル%がBNF由来であり、75モル%がBPEF由来であった。
[Example 4]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.25 mol of BNF and 0.75 mol of BPEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 25 mol% of the constituent units of the polycarbonate resin were derived from BNF, and 75 mol% were derived from BPEF.

[比較例1]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BPEF 1モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の100モル%がBPEF由来であった。
[Comparative Example 1]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 1 mol of BPEF was used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. When the obtained pellets were analyzed by 1 H-NMR, 100 mol% of the constituent units of the polycarbonate resin were derived from BPEF.

[実施例5]
ジオール成分のBPEF 0.90モルに代えて、BNEF 0.3モル及びBINOL 0.6モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の10モル%がBNF由来であり、30モル%がBNEF由来であり、60モル%がBINOL由来であった。
[Example 5]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.3 mol of BNEF and 0.6 mol of BINOL were used instead of 0.90 mol of BPEF as a diol component. When the obtained pellets were analyzed by 1 H-NMR, 10 mol% of the constituent units of the polycarbonate resin were derived from BNF, 30 mol% were derived from BNEF, and 60 mol% were derived from BINOL.

[実施例6]
ジオール成分のBPEF 0.90モルに代えて、BNEF 0.35モル及びBINOL 0.55モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の10モル%がBNF由来であり、35モル%がBNEF由来であり、55モル%がBINOL由来であった。
[Example 6]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.35 mol of BNEF and 0.55 mol of BINOL were used instead of 0.90 mol of BPEF as a diol component. When the obtained pellets were analyzed by 1 H-NMR, 10 mol% of the constituent units of the polycarbonate resin were derived from BNF, 35 mol% were derived from BNEF, and 55 mol% were derived from BINOL.

[実施例7]
ジオール成分のBPEF 0.90モルに代えて、BNEF 0.45モル及びBINOL 0.45モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の10モル%がBNF由来であり、45モル%がBNEF由来であり、45モル%がBINOL由来であった。
[Example 7]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.45 mol of BNEF and 0.45 mol of BINOL were used instead of 0.90 mol of BPEF as a diol component. When the obtained pellets were analyzed by 1 H-NMR, 10 mol% of the constituent units of the polycarbonate resin were derived from BNF, 45 mol% were derived from BNEF, and 45 mol% were derived from BINOL.

[実施例8]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNF 0.2モル、BNEF 0.4モル及びBINOL 0.4モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の20モル%がBNF由来であり、40モル%がBNEF由来であり、40モル%がBINOL由来であった。
[Example 8]
Polycarbonate as in Example 1 except that 0.2 mol of BNF, 0.4 mol of BNEF and 0.4 mol of BINOL are used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. Resin pellets were obtained. When the obtained pellets were analyzed by 1 H-NMR, 20 mol% of the constituent units of the polycarbonate resin were derived from BNF, 40 mol% were derived from BNEF, and 40 mol% were derived from BINOL.

[比較例2]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.55モル及びBINOL 0.45モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の55モル%がBNEF由来であり、45モル%がBINOL由来であった。
[Comparative Example 2]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.55 mol of BNEF and 0.45 mol of BINOL were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 55 mol% of the constituent units of the polycarbonate resin were derived from BNEF, and 45 mol% were derived from BINOL.

[比較例3]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.45モル及びBINOL 0.55モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の45モル%がBNEF由来であり、55モル%がBINOL由来であった。
[Comparative Example 3]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.45 mol of BNEF and 0.55 mol of BINOL were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 45 mol% of the constituent units of the polycarbonate resin was derived from BNEF, and 55 mol% was derived from BINOL.

[比較例4]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.4モル及びBINOL 0.6モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の40モル%がBNEF由来であり、60モル%がBINOL由来であった。
[Comparative Example 4]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.4 mol of BNEF and 0.6 mol of BINOL were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 40 mol% of the constituent units of the polycarbonate resin were derived from BNEF, and 60 mol% were derived from BINOL.

[実施例9]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNF 0.2モル、BNEF 0.3モル及びBINOL-2EO 0.5モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の20モル%がBNF由来であり、30モル%がBNEF由来であり、50モル%がBINOL-2EO由来であった。
[Example 9]
Same as Example 1 except that 0.2 mol of BNF, 0.3 mol of BNEF and 0.5 mol of BINOL-2EO are used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. Obtained pellets of polycarbonate resin. When the obtained pellets were analyzed by 1 H-NMR, 20 mol% of the constituent units of the polycarbonate resin were derived from BNF, 30 mol% were derived from BNEF, and 50 mol% were derived from BINOL-2EO.

[比較例5]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.5モル及びBINOL-2EO 0.5モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の50モル%がBNEF由来であり、50モル%がBINOL-2EO由来であった。
[Comparative Example 5]
Polycarbonate resin pellets were prepared in the same manner as in Example 1 except that 0.5 mol of BNEF and 0.5 mol of BINOL-2EO were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. Obtained. When the obtained pellets were analyzed by 1 H-NMR, 50 mol% of the constituent units of the polycarbonate resin were derived from BNEF, and 50 mol% were derived from BINOL-2EO.

[比較例6]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.55モル及びBINOL-2EO 0.45モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の55モル%がBNEF由来であり、45モル%がBINOL-2EO由来であった。
[Comparative Example 6]
Polycarbonate resin pellets were prepared in the same manner as in Example 1 except that 0.55 mol of BNEF and 0.45 mol of BINOL-2EO were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. Obtained. When the obtained pellets were analyzed by 1 H-NMR, 55 mol% of the constituent units of the polycarbonate resin were derived from BNEF, and 45 mol% were derived from BINOL-2EO.

[比較例7]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BNEF 0.7モル及びBINOL-2EO 0.3モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の70モル%がBNEF由来であり、30モル%がBINOL-2EO由来であった。
[Comparative Example 7]
Polycarbonate resin pellets were prepared in the same manner as in Example 1 except that 0.7 mol of BNEF and 0.3 mol of BINOL-2EO were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. Obtained. When the obtained pellets were analyzed by 1 H-NMR, 70 mol% of the constituent units of the polycarbonate resin were derived from BNEF, and 30 mol% were derived from BINOL-2EO.

[比較例8]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BPEF 0.5モル及びBNEF 0.5モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の50モル%がBPEF由来であり、50モル%がBNEF由来であった。
[Comparative Example 8]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.5 mol of BPEF and 0.5 mol of BNEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 50 mol% of the constituent units of the polycarbonate resin were derived from BPEF, and 50 mol% were derived from BNEF.

[比較例9]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BOPPEF 0.5モル及びBNEF 0.5モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の50モル%がBOPPEF由来であり、50モル%がBNEF由来であった。
[Comparative Example 9]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.5 mol of BOPPEF and 0.5 mol of BNEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 50 mol% of the constituent units of the polycarbonate resin were derived from BOPPEF, and 50 mol% were derived from BNEF.

[比較例10]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BPEF 0.5モル及びBOPPEF 0.5モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の50モル%がBPEF由来であり、50モル%がBOPPEF由来であった。
[Comparative Example 10]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 0.5 mol of BPEF and 0.5 mol of BOPPEF were used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. .. When the obtained pellets were analyzed by 1 H-NMR, 50 mol% of the constituent units of the polycarbonate resin were derived from BPEF, and 50 mol% were derived from BOPPEF.

[比較例11]
ジオール成分として、BNF 0.10モル及びBPEF 0.90モルに代えて、BOPPEF 1モルを使用する以外は、実施例1と同様にしてポリカーボネート樹脂のペレットを得た。得られたペレットをH-NMRで分析したところ、ポリカーボネート樹脂の構成単位の100モル%がBOPPEF由来であった。
[Comparative Example 11]
Polycarbonate resin pellets were obtained in the same manner as in Example 1 except that 1 mol of BOPPEF was used instead of 0.10 mol of BNF and 0.90 mol of BPEF as the diol component. When the obtained pellets were analyzed by 1 H-NMR, 100 mol% of the constituent units of the polycarbonate resin were derived from BOPPEF.

実施例及び比較例で得られたポリカーボネート樹脂のガラス転移温度Tg、重量平均分子量Mw、屈折率、アッベ数、3倍複屈折を表1に示す。 Table 1 shows the glass transition temperature Tg, weight average molecular weight Mw, refractive index, Abbe number, and triple refraction of the polycarbonate resins obtained in Examples and Comparative Examples.

Figure 0007082872000007
Figure 0007082872000007

表1より明らかなように、前述の式(1)で表される構成単位(ジオール成分としてのBNF)を含むポリカーボネート樹脂を用いた実施例1~4によれば、ジオール成分がBPEFのみである比較例1に比べて、ポリカーボネート樹脂のガラス転移温度Tgを著しく高くすることができた。実施例におけるBNF由来の単位の割合は、構成単位全体に対して、わずか10~25モル%と低いにもかかわらず、比較例1に対してTgを約14~29℃程度も向上できるのは、意外な結果であった。 As is clear from Table 1, according to Examples 1 to 4 using the polycarbonate resin containing the structural unit (BNF as the diol component) represented by the above formula (1), the diol component is only BPEF. Compared with Comparative Example 1, the glass transition temperature Tg of the polycarbonate resin could be remarkably increased. Although the proportion of BNF-derived units in the examples is as low as 10 to 25 mol% with respect to the entire constituent units, it is possible to improve Tg by about 14 to 29 ° C. with respect to Comparative Example 1. It was a surprising result.

また、実施例1~4のポリカーボネート樹脂では、屈折率も比較例1に比べて向上できた。しかも、複屈折の程度を示す3倍複屈折も比較例1と同等程度か、より一層小さく優れた値であった。 Further, in the polycarbonate resins of Examples 1 to 4, the refractive index could be improved as compared with Comparative Example 1. Moreover, the triple birefringence, which indicates the degree of birefringence, was about the same as or even smaller than that of Comparative Example 1, and was an excellent value.

一方、比較例2~4、8~10は、ジオール成分として、ナフタレン骨格及びエチレンオキシド骨格を有するBNEFと、ビナフチル骨格を有するBINOL又はBINOL-2EOとを併用した例である。これらのポリカーボネート樹脂では、ガラス転移温度Tgを高くすることができたものの、複屈折が大きくなった。 On the other hand, Comparative Examples 2 to 4 and 8 to 10 are examples in which BNEF having a naphthalene skeleton and an ethylene oxide skeleton and BINOL or BINOL-2EO having a binaftyl skeleton are used in combination as a diol component. With these polycarbonate resins, the glass transition temperature Tg could be increased, but the birefringence was increased.

また、実施例1~4(特に、実施例1)では、3倍複屈折が特に低く、高い屈折率及び耐熱性と低い複屈折とのバランスが優れていた。 Further, in Examples 1 to 4 (particularly, Example 1), the triple birefringence was particularly low, and the balance between high refractive index and heat resistance and low birefringence was excellent.

本発明のポリカーボネート樹脂は、高い耐熱性及び優れた光学的特性(高屈折率、低複屈折、高透明性など)を有しており、さらに機械的特性などの各種特性にも優れている。そのため、本発明のポリカーボネート樹脂(又はその樹脂組成物)は、光学レンズ、光学フィルム、光学シート、ピックアップレンズ、プリズム、ホログラム、液晶用フィルム、有機EL用フィルムなどに好適に利用できる。また、本発明のポリカーボネート樹脂(又はその樹脂組成物)は、塗料、帯電防止剤、インキ、接着剤、粘着剤、樹脂充填材、帯電トレイ、導電シート、保護膜(例えば、電子機器、液晶部材などの保護膜など)、電気・電子材料(例えば、キャリア輸送剤、発光体、有機感光体、感熱記録材料、ホログラム記録材料など)、電気・電子部品又は機器(例えば、光ディスク、インクジェットプリンタ、デジタルペーパ、有機半導体レーザ、色素増感型太陽電池、EMIシールドフィルム、フォトクロミック材料、有機EL素子、カラーフィルタなど)用の樹脂、機械部品又は機器(例えば、自動車、航空・宇宙材料、センサ、摺動部材など)用の樹脂などに好適に利用できる。 The polycarbonate resin of the present invention has high heat resistance and excellent optical properties (high refractive index, low birefringence, high transparency, etc.), and is also excellent in various properties such as mechanical properties. Therefore, the polycarbonate resin (or resin composition thereof) of the present invention can be suitably used for optical lenses, optical films, optical sheets, pickup lenses, prisms, holograms, liquid crystal films, organic EL films and the like. Further, the polycarbonate resin (or resin composition thereof) of the present invention is a paint, an antioxidant, an ink, an adhesive, an adhesive, a resin filler, a charging tray, a conductive sheet, a protective film (for example, an electronic device, a liquid crystal member). Protective films such as), electrical / electronic materials (eg, carrier transport agents, light emitters, organic photoconductors, heat sensitive recording materials, hologram recording materials, etc.), electrical / electronic parts or equipment (eg, optical disks, inkjet printers, digital). Resins, mechanical parts or equipment (eg, automobiles, aeronautical / space materials, sensors, sliding) for papers, organic semiconductor lasers, dye-sensitized solar cells, EMI shield films, photochromic materials, organic EL elements, color filters, etc. It can be suitably used as a resin for (members, etc.).

特に、本発明のポリカーボネート樹脂は、光学的特性に優れているため、光学用途の成形体(光学用成形体)を構成するのに有用である。このような前記ポリカーボネート樹脂で構成された光学用成形体としては、例えば、光学フィルム、光学シート、光学レンズなどが挙げられる。 In particular, since the polycarbonate resin of the present invention has excellent optical properties, it is useful for forming a molded product (optical molded product) for optical use. Examples of the optical molded body made of such a polycarbonate resin include an optical film, an optical sheet, and an optical lens.

光学フィルムとしては、偏光フィルム(及びそれを構成する偏光素子と偏光板保護フィルム)、位相差フィルム、配向膜(配向フィルム)、視野角拡大(補償)フィルム、拡散板(フィルム)、プリズムシート、導光板、輝度向上フィルム、近赤外吸収フィルム、反射フィルム、反射防止(AR)フィルム、反射低減(LR)フィルム、アンチグレア(AG)フィルム、透明導電(ITO)フィルム、異方導電性フィルム(ACF)、電磁波遮蔽(EMI)フィルム、電極基板用フィルム、カラーフィルタ基板用フィルム、バリアフィルム、カラーフィルタ層、ブラックマトリクス層、光学フィルム同士の接着層もしくは離型層などが挙げられる。とりわけ、本発明のフィルムは、機器のディスプレイに用いる光学フィルムとして有用である。このような本発明の光学フィルムを備えたディスプレイ用部材(又はディスプレイ)としては、具体的には、パーソナル・コンピュータのモニタ、テレビジョン、情報端末(例えば、スマートフォンなどの携帯電話、タブレット端末など)、ゲーム機、カー・ナビゲーションシステム、タッチパネルなどFPD装置(例えば、LCD、PDPなど)などが挙げられる。 Optical films include polarizing films (and the polarizing elements and polarizing plate protective films that compose them), retardation films, alignment films (alignment films), viewing angle expansion (compensation) films, diffuser plates (films), prism sheets, etc. Light guide plate, brightness improving film, near infrared absorption film, reflective film, antireflection (AR) film, antireflection (LR) film, antiglare (AG) film, transparent conductive (ITO) film, idiosyncratic conductive film (ACF) ), Electromagnetic wave shielding (EMI) film, electrode substrate film, color filter substrate film, barrier film, color filter layer, black matrix layer, adhesive layer between optical films, or release layer. In particular, the film of the present invention is useful as an optical film used for a display of an apparatus. Specific examples of the display member (or display) provided with the optical film of the present invention include personal computer monitors, televisions, and information terminals (for example, mobile phones such as smartphones, tablet terminals, etc.). , Game machines, car navigation systems, FPD devices such as touch panels (for example, LCD, PDP, etc.) and the like.

光学レンズとしては、例えば、カメラ用レンズなどの低アッベ数が要求されるレンズ[例えば、カメラ機能を有する小型機器(又はモバイル機器、例えば、携帯電話、デジタルカメラなど)に搭載されるレンズなど]などが挙げられる。特に、本発明のポリカーボネート樹脂は、高い耐熱性を有するため、車載用光学レンズなどの高温環境下における使用が想定される用途であっても好適に利用できる。 As the optical lens, for example, a lens that requires a low number of cameras, such as a camera lens [for example, a lens mounted on a small device having a camera function (or a mobile device, for example, a mobile phone, a digital camera, etc.)]. And so on. In particular, since the polycarbonate resin of the present invention has high heat resistance, it can be suitably used even in applications that are expected to be used in a high temperature environment such as an in-vehicle optical lens.

Claims (10)

下記式(1)
Figure 0007082872000008
(式中、環Zは縮合多環式アレーン環、Rは置換基、kは0以上の整数を示す。)
で表される構成単位と、下記式(2)
Figure 0007082872000009
(式中、環Z はベンゼン環、R 及びR はそれぞれ置換基、n及びpはそれぞれ0以上の整数、A は直鎖状又は分岐鎖状C 2-4 アルキレン基、qは1以上の整数を示す。)
を含むポリカーボネート樹脂であって、
式(1)で表される構成単位の割合が、ポリカーボネート樹脂の構成単位全体に対して、30モル%であるポリカーボネート樹脂[但し、下記式(4)
Figure 0007082872000010
(式中、環Zはナフタレン環、Aはアルキレン基、Rは、同一又は異なって、アルキル基、シアノ基、ハロゲン原子、Rは、同一又は異なって、アルキル基、シクロアルキル基、アルコキシ基を示し、wは0~3の整数、uは0~4の整数、vは0~6の整数である。)
で表される構成単位と、
下記式(5)
Figure 0007082872000011
(式中、Aはアルキレン基、Rは、同一又は異なって、アルキル基、シアノ基、ハロゲン原子、xは0~4の整数を示し、環Z、A、w、R、u、R及びvは前記式(4)に同じ。)
で表される構成単位及び/又は下記式(6)
Figure 0007082872000012
(式中、Aはアルキレン基、R10は、同一又は異なって、アルキル基、シアノ基、ハロゲン原子、y及びzは0~4の整数を示し、環Z、A、w、R、u、R及びvは前記式(4)に同じ。)
で表される構成単位とを含み、20℃、波長589nmでの屈折率が1.660~1.700であり、ガラス転移点よりも10℃高い温度で3倍に延伸したフィルムにおける20℃、波長600nmでの複屈折の絶対値が75×10-4以下であるポリカーボネート系樹脂を除く。]。
The following formula (1)
Figure 0007082872000008
(In the formula, ring Z 1 is a condensed polycyclic arene ring, R 1 is a substituent, and k is an integer of 0 or more.)
The structural unit represented by and the following formula (2)
Figure 0007082872000009
(In the formula, ring Z 2 is a benzene ring, R 3 and R 4 are substituents, n and p are integers of 0 or more, respectively, A 1 is a linear or branched C 2-4 alkylene group, and q is. Indicates an integer of 1 or more.)
It is a polycarbonate resin containing
The ratio of the constituent unit represented by the formula (1) is 5 to 30 mol% with respect to the entire constituent unit of the polycarbonate resin [however, the following formula (4)
Figure 0007082872000010
(In the formula, ring Z 3 is a naphthalene ring, A 3 is an alkylene group, R 7 is the same or different, an alkyl group, a cyano group, a halogen atom, and R 8 is the same or different, an alkyl group or a cycloalkyl group. , W is an integer of 0 to 3, u is an integer of 0 to 4, and v is an integer of 0 to 6.)
The structural unit represented by
The following formula (5)
Figure 0007082872000011
( In the formula, A4 is an alkylene group, R9 is the same or different, an alkyl group, a cyano group, a halogen atom, x is an integer of 0 to 4, and rings Z3 , A3 , w, R7 , u, R8 and v are the same as the above formula (4).
The structural unit represented by and / or the following formula (6)
Figure 0007082872000012
(In the formula, A 5 is an alkylene group, R 10 is the same or different, an alkyl group, a cyano group, a halogen atom, y and z are integers of 0 to 4, and rings Z 3 , A 3 , w, R. 7 , u, R8 and v are the same as the above formula (4).
Including the structural unit represented by, the refractive index at 20 ° C. and a wavelength of 589 nm is 1.660 to 1.700, and 20 ° C. in a film stretched three times at a temperature 10 ° C. higher than the glass transition point. Excludes polycarbonate resins whose absolute value of birefringence at a wavelength of 600 nm is 75 × 10 -4 or less. ].
式(1)において、環Zがナフタレン環である請求項1記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1 , wherein the ring Z1 is a naphthalene ring in the formula (1). さらに、下記式(
Figure 0007082872000013
(式中、Xは直接結合又はアルキレン基、R及びRはそれぞれ置換基、Aはアルキレン基、rは0~4の整数、sは0~2の整数、tは0以上の整数を示す。)
で表される構成単位を含む請求項1又は2記載のポリカーボネート樹脂。
Furthermore, the following formula ( 3 )
Figure 0007082872000013
(In the formula, X is a direct bond or an alkylene group, R 5 and R 6 are substituents, A 2 is an alkylene group, r is an integer of 0 to 4, s is an integer of 0 to 2, and t is an integer of 0 or more. Shows.)
The polycarbonate resin according to claim 1 or 2, which comprises a structural unit represented by.
式(2)において、R がC1-6アルキル基又はC6-12アリール基、pが0~2の整数、qが1~10の整数であり、
式(3)において、Xが直接結合又はアルキレン基、R及びRがそれぞれC1-6アルキル基又はC6-12アリール基、Aが直鎖状又は分岐鎖状C2-6アルキレン基、rが0~2の整数、sが0又は1、tが0~10の整数である請求項3記載のポリカーボネート樹脂。
In formula (2) , R 4 is a C 1-6 alkyl group or C 6-12 aryl group, p is an integer of 0 to 2, and q is an integer of 1 to 10.
In formula (3), X is a direct bond or alkylene group, R 5 and R 6 are C 1-6 alkyl groups or C 6-12 aryl groups, respectively, and A 2 is a linear or branched C 2-6 alkylene. The polycarbonate resin according to claim 3, wherein r is an integer of 0 to 2, s is an integer of 0 or 1, and t is an integer of 0 to 10.
式(1)で表される構成単位と、式(2)及び(3)で表される構成単位の総量との割合が、前者/後者(モル比)=5/95~25/75である請求項3又は4記載のポリカーボネート樹脂。 The ratio of the constituent unit represented by the formula (1) to the total amount of the constituent units represented by the formulas (2) and (3) is the former / the latter (molar ratio) = 5/95 to 25/75. The polycarbonate resin according to claim 3 or 4. 式(2)で表される構成単位と、式(3)で表される構成単位との割合が、前者/後者(モル比)=20/80~70/30である請求項3~5のいずれかに記載のポリカーボネート樹脂。 Claims 3 to 5 in which the ratio of the structural unit represented by the formula (2) to the structural unit represented by the formula (3) is the former / the latter (molar ratio) = 20/80 to 70/30. The polycarbonate resin described in any of them. 式(1)で表される構成単位を形成するための第1のジオール成分および式(2)で表される構成単位を形成するための第2のジオール成分を含むジオール成分と、炭酸ジエステルとを反応させて、請求項1~6のいずれかに記載のポリカーボネート樹脂を製造する方法。 A diol component containing a first diol component for forming the structural unit represented by the formula (1) and a second diol component for forming the structural unit represented by the formula (2), and a carbonic acid diester. The method for producing the polycarbonate resin according to any one of claims 1 to 6. 請求項1~6のいずれかに記載のポリカーボネート樹脂を含む成形体。 A molded product containing the polycarbonate resin according to any one of claims 1 to 6. 光学用部材である請求項8記載の成形体。 The molded body according to claim 8, which is an optical member. 車載用光学レンズである請求項8又は9記載の成形体。 The molded body according to claim 8 or 9, which is an in-vehicle optical lens.
JP2017244292A 2016-12-26 2017-12-20 High heat resistant polycarbonate resin and molded product Active JP7082872B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016251269 2016-12-26
JP2016251269 2016-12-26

Publications (2)

Publication Number Publication Date
JP2018104691A JP2018104691A (en) 2018-07-05
JP7082872B2 true JP7082872B2 (en) 2022-06-09

Family

ID=62785695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244292A Active JP7082872B2 (en) 2016-12-26 2017-12-20 High heat resistant polycarbonate resin and molded product

Country Status (1)

Country Link
JP (1) JP7082872B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440991B2 (en) 2018-01-23 2022-09-13 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin composition, production method therefor, and optical lens
KR102625933B1 (en) * 2019-02-27 2024-01-16 데이진 가부시키가이샤 Thermoplastics and optical components
CN115461388B (en) * 2020-04-28 2024-03-26 帝人株式会社 Thermoplastic resin and optical member
WO2021230085A1 (en) * 2020-05-11 2021-11-18 三菱瓦斯化学株式会社 Polycarbonate resin, and optical lens and optical film using same
CN115703881B (en) * 2021-08-06 2023-09-15 中国科学院过程工程研究所 Polycarbonate optical resin and preparation method and application thereof
CN118176235A (en) * 2021-10-26 2024-06-11 帝人株式会社 Thermoplastic resin and optical member
TW202336084A (en) * 2021-11-12 2023-09-16 日商三菱瓦斯化學股份有限公司 Polycarbonate resin, and optical lens and optical film using same
KR20240047925A (en) * 2022-10-05 2024-04-12 주식회사 엘지화학 Polycarbonate resin and preparation method thereof
WO2024090157A1 (en) * 2022-10-28 2024-05-02 帝人株式会社 Polycarbonate resin and molded article formed of same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032390A (en) 2012-11-06 2013-02-14 Osaka Gas Co Ltd Compound having fluorene framework and method for producing the same
JP2014073496A (en) 2013-12-18 2014-04-24 Toppan Printing Co Ltd Resin molded article having moisture absorption capability and drying container using the same
US20160023978A1 (en) 2014-07-28 2016-01-28 Samsung Electro-Mechanics Co., Ltd. 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
JP2017171827A (en) 2016-03-25 2017-09-28 東京応化工業株式会社 Manufacturing method of polycarbonate resin and polyester resin, polycarbonate resin and polyester resin
JP6831650B2 (en) 2016-03-28 2021-02-17 大阪ガスケミカル株式会社 High refractive index polycarbonate resin and molded product
JP6988805B2 (en) 2016-07-21 2022-01-05 三菱瓦斯化学株式会社 Polycarbonate resin, its manufacturing method and optical lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769007B (en) * 2012-11-07 2018-04-06 三菱瓦斯化学株式会社 Polycarbonate resin, its manufacture method and optical molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032390A (en) 2012-11-06 2013-02-14 Osaka Gas Co Ltd Compound having fluorene framework and method for producing the same
JP2014073496A (en) 2013-12-18 2014-04-24 Toppan Printing Co Ltd Resin molded article having moisture absorption capability and drying container using the same
US20160023978A1 (en) 2014-07-28 2016-01-28 Samsung Electro-Mechanics Co., Ltd. 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
JP2017171827A (en) 2016-03-25 2017-09-28 東京応化工業株式会社 Manufacturing method of polycarbonate resin and polyester resin, polycarbonate resin and polyester resin
JP6831650B2 (en) 2016-03-28 2021-02-17 大阪ガスケミカル株式会社 High refractive index polycarbonate resin and molded product
JP6988805B2 (en) 2016-07-21 2022-01-05 三菱瓦斯化学株式会社 Polycarbonate resin, its manufacturing method and optical lens

Also Published As

Publication number Publication date
JP2018104691A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP7082872B2 (en) High heat resistant polycarbonate resin and molded product
JP6831650B2 (en) High refractive index polycarbonate resin and molded product
JP6968642B2 (en) Polyester resin with fluorene skeleton
JP6225150B2 (en) Polyester resin having fluorene skeleton and molded product thereof
JP2018002894A (en) Thermoplastic resin
JP2018002895A (en) Thermoplastic resin
JP5437106B2 (en) Polyester resin having a fluorene skeleton
JP6242270B2 (en) Birefringence modifier
JP5501790B2 (en) Polyester resin having a fluorene skeleton
JP2017171885A (en) High refractive index resin and molded body
JP5437105B2 (en) Polyester resin having a fluorene skeleton
WO2020213470A1 (en) Dicarboxylic acids, and production method and use thereof
JP7210148B2 (en) Polyester resin having fluorene skeleton, method for producing the same, and molded article
JP5154957B2 (en) New fluorene skeleton-containing polymer
JP6175268B2 (en) Moisture resistance improver
JP7118681B2 (en) Highly heat-resistant polyester resin and molding
JP2022040080A (en) Fluorene derivative and resin, and production method and application thereof
JP6276076B2 (en) Polyester resin having a fluorene skeleton
JP2012131865A (en) Polyarylate resin having fluorene skeleton
JP6940314B2 (en) A novel compound having a triptycene skeleton and a method for producing the same
JP2011168742A (en) Polycarbonate resin of low photoelastic constant, and optical film
JP2008239956A (en) Method for producing silicon-containing polymer having fluorene backbone
WO2022244451A1 (en) Polyether-based resin, and production method and application therefor
JP7130380B2 (en) Polyester resin having fluorene skeleton, method for producing the same, and molded article
JP6486808B2 (en) Polyester resin having fluorene skeleton and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220314

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7082872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150