JP2012232887A - Surface protection method for improving durability of concrete - Google Patents

Surface protection method for improving durability of concrete Download PDF

Info

Publication number
JP2012232887A
JP2012232887A JP2012090822A JP2012090822A JP2012232887A JP 2012232887 A JP2012232887 A JP 2012232887A JP 2012090822 A JP2012090822 A JP 2012090822A JP 2012090822 A JP2012090822 A JP 2012090822A JP 2012232887 A JP2012232887 A JP 2012232887A
Authority
JP
Japan
Prior art keywords
concrete
deterioration
construction
inorganic
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012090822A
Other languages
Japanese (ja)
Inventor
Yoshiro Yamakita
吉郎 山北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASC KK
Original Assignee
ASC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASC KK filed Critical ASC KK
Priority to JP2012090822A priority Critical patent/JP2012232887A/en
Publication of JP2012232887A publication Critical patent/JP2012232887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coating method and a surface heat treatment method contributing to reduction of a life cycle cost by protecting concrete structures from deterioration factors such as salt damage, frost damage, neutralization, alkali-aggregate reactions, or the like, on the basis of proper selection of a plurality of surface coating materials with durability for a long term and proper application of treatment methods, and by improving the durability with fine sight maintained by imparting water repellency or hydrophilicity to the surfaces.SOLUTION: The surface coating method and the surface coating and heat treatment method apply a silicate-based inorganic modifier combined with an alkali metal ion source, or an inorganic coating agent with high performance principal ingredients of which are a silane-based permeable water-repellent agent and a polysilazane compound.

Description

この発明は、長期の耐久性を持つ複数の表面塗布剤の適用によりコンクリート構造物を塩害、凍害、中性化、アルカリ骨材反応等の劣化因子から保護すると共に、表面に遮水性及び撥水性を付与し美観を保持しながらコンクリートの耐久性を向上させ、ライフサイクルコストの低減に寄与する表面塗布工法に関する。 The present invention protects a concrete structure from deterioration factors such as salt damage, frost damage, neutralization, alkali aggregate reaction, etc. by applying a plurality of surface coating agents having long-term durability, and has a water-impervious and water-repellent surface. It is related with the surface coating method which contributes to the reduction of life cycle cost, improving the durability of concrete while providing aesthetics.

コンクリート構造物は本来高い耐久性を持ち、設計時の耐用年数も50年〜100年とされて来たが、社会環境の変化や厳しい自然環境での構築、供用が多くなる事により、耐用年数経過前にコンクリートの劣化が顕著になる例が多く報告されている事態となっている。特に積雪寒冷地や塩害地域における凍結融解や塩害による劣化および複合劣化、中性化やASR(アルカリ骨材反応)等によるコンクリート構造物の劣化が社会問題化し、これら劣化の要因や主な原因の究明が進む事により、様々な対策が講じられてきた。具体的にはコンクリート水セメント比の低減による高強度化、膨張剤等の混和剤混入及びシリカフューム、高炉スラグ等の混入などコンクリートを構成するセメントの組成変更、良好な骨材の成分や産地の指定、新設打設後のコンクリートについては、打設後のミスト養生やバルーン養生等の工法採用、表面に乾燥収縮低減剤や養生剤を塗布する方法、新設・既設コンクリート表面をポリマーセメント、エポキシ樹脂等で被覆する工法、有機・無機塗料やセメント系、ケイ酸質系、シラン系材料による塗膜形成、浸透、注入による表層強化工法などが提案されている。 Concrete structures are inherently highly durable and have a service life of 50 to 100 years at the time of design. However, due to changes in the social environment and the increased use and construction in harsh natural environments, the service life is increased. Many cases have been reported in which deterioration of concrete becomes prominent before progress. Deterioration of concrete structures due to freezing and thawing, salt damage, combined deterioration, neutralization, ASR (alkaline aggregate reaction), etc., has become a social problem, especially in cold snowy areas and salt damage areas. Various measures have been taken as research progresses. Specifically, concrete strength changes by reducing the concrete water cement ratio, mixing of admixtures such as expansive agents, silica fume, blast furnace slag, etc., changing the composition of the cement that makes up the concrete, and specifying good aggregate components and production areas For newly placed concrete, methods such as mist curing and balloon curing after placement, methods of applying a drying shrinkage reducing agent and curing agent to the surface, polymer cement, epoxy resin, etc. on the surface of newly installed and existing concrete There are proposed methods of coating with, coating formation with organic / inorganic paints, cement-based, siliceous-based, and silane-based materials, surface strengthening by infiltration and injection.

特開2000−044317JP 2000-044317 A 特開2002−193686JP2002-193686A

しかしながら、以上の工法、対策のうち、新設コンクリートついては、近年国内での資源枯渇により優良な骨材調達が難しくなっており、海外調達についても新興国の需要が増大し調達コストが上昇、今後は調達自体が難しくなって行く事が予想される。同じくセメント組成の変更、混和剤等の使用量の増加も同じくコストの上昇圧力となっている事、打設後のコンクリート表面処理・被覆対策については、使用材料自体の劣化が早く、短い間隔での再施工が必要となる為、ライフサイクルコストが増大する事から、今後増加が予想される維持補修対策が必要となる全ての既設構造物への対策をして行く事は難しくなると想定される。
そこで、この発明は、従来使用されていた材料に比べ、自体が高い耐候性、耐久性を持つ素材を採用し、比較的施工が簡単な表面塗布工法で、新設及び既設コンクリート構造物の凍結融解、塩害、中性化、ASR(アルカリ骨材反応)、化学浸食等による劣化やこれらによる複合劣化を防止または抑制すると共に、施工に使用した材料の耐久性を向上する工法、手法を考案し、従来の一般的工法に比べ耐候性、耐久性が高い事から、再施工の間隔を延ばす事が可能となる。且つ表面意匠を保持する事で維持管理に要する費用を低減、総じてコンクリート構造物のライフサイクルコストの低減に寄与する工法を提供することを課題とする。
However, among the above construction methods and measures, for new concrete, it has become difficult to procure excellent aggregates due to depletion of domestic resources in recent years. As for overseas procurement, demand in emerging countries has increased and procurement costs have increased. Procurement itself is expected to become difficult. Similarly, changes in cement composition and increases in the amount of admixture used are also increasing costs, and with regard to concrete surface treatment and coating measures after placement, the materials themselves deteriorate quickly and at short intervals. It is assumed that it will be difficult to take countermeasures for all existing structures that require maintenance and repair measures that are expected to increase in the future because life cycle costs will increase due to the need to reconstruct .
Therefore, the present invention adopts a material having high weather resistance and durability as compared with the conventionally used material, and is a surface coating method that is relatively easy to construct, and freezes and thaws existing and existing concrete structures. In addition to preventing or suppressing deterioration due to salt damage, neutralization, ASR (alkaline aggregate reaction), chemical erosion, etc. and composite deterioration due to these, we devised construction methods and methods that improve the durability of materials used in construction, Since the weather resistance and durability are higher than the conventional general construction method, it is possible to extend the interval between re-work. In addition, it is an object of the present invention to provide a construction method that contributes to reducing the life cycle cost of a concrete structure by reducing the cost required for maintenance by maintaining the surface design.

以上の課題を解決するために、第一発明は、表面塗布型含浸剤とポリシラザン化合物を主成分とする無機質系高機能コーティング剤を適用する事を特徴とするコンクリート劣化防止または劣化抑制工法である。 In order to solve the above problems, the first invention is a concrete deterioration prevention or deterioration suppression construction method characterized by applying a surface coating type impregnating agent and an inorganic high-performance coating agent mainly composed of a polysilazane compound. .

以上の課題を解決するために、第二発明は、アルカリ金属イオン源を配合したケイ酸塩系改質剤とポリシラザン化合物を主成分とする無機質系高機能コーティング剤を適用する事を特徴とする項目005記載のコンクリート劣化防止または劣化抑制工法である。 In order to solve the above-mentioned problems, the second invention is characterized by applying an inorganic high-performance coating agent mainly composed of a silicate modifier containing an alkali metal ion source and a polysilazane compound. Item 005 is a concrete deterioration prevention or deterioration suppression construction method.

第三発明は、シラン化合物を主成分とするシラン系浸透性吸水防止改質剤とポリシラザン化合物を主成分とする無機質系高機能コーティング剤を適用する事を特徴とする項目005記載のコンクリート劣化防止または劣化抑制工法である。 The third invention relates to the prevention of concrete deterioration according to Item 005, characterized by applying a silane-based permeable water absorption preventing modifier having a silane compound as a main component and an inorganic high-performance coating agent having a polysilazane compound as a main component. Or it is a deterioration suppression construction method.

第四発明は、適用時にコンクリート表面を加熱処理する事で乾燥させ表面塗布型含浸剤をコンクリート表面に塗布、含浸させた後、塗布表面に加熱処理を施し十分乾燥させた後ポリシラザン化合物を主成分とする無機質系高機能コート剤を塗布、加熱処理を施す事で、施工後の養生期間を短縮もしくは不要とする事が出来、施工に要する時間短縮が可能となり、工期の短縮、施工コストの縮減を可能とする事を特徴とする項目005記載のコンクリート劣化防止または劣化抑制工法である。 The fourth invention is a method in which the surface of the concrete is dried by heat treatment at the time of application, and a surface coating type impregnating agent is applied and impregnated on the concrete surface, and then the coating surface is heated and sufficiently dried, and then the polysilazane compound is a main component. By applying and heat-treating inorganic high-performance coating agent, it is possible to shorten or eliminate the curing period after construction, shortening the time required for construction, shortening the construction period, and reducing construction costs The concrete deterioration prevention or deterioration suppression construction method according to item 005, characterized in that

第五発明は、前記第一、第二、第三、第四発明を適用し劣化防止または抑制性能を付与されたコンクリート及びコンクリート二次製品である。 A fifth invention is a concrete and a concrete secondary product to which the first, second, third, and fourth inventions are applied and imparted with deterioration prevention or suppression performance.

本発明によれば、アルカリ金属シリケートを配合したケイ酸塩系化合物を主成分とする浸透性改質剤がコンクリート表層部に浸透しコンクリート成分の水酸化カルシウム、水と反応しC-S-Hゲル状生成物によりコンクリート表層部の細孔、マイクロクラックを閉塞、緻密化し。次に適用するポリシラザン化合物を主成分とする高機能コーティング剤がコンクリート表面(表面細孔内部及びクラック内部を含む)基材との結合力が高く、耐久・耐候性の高い無機質膜を生成し、水、塩化物、二酸化炭素、酸素、腐食性ガス等の劣化要因の内部への浸透を防止又は抑制し、さらに化学薬品に対する防食性能を付与する。 According to the present invention, a permeability modifier mainly composed of a silicate compound containing an alkali metal silicate penetrates into a concrete surface layer portion and reacts with calcium hydroxide and water of the concrete component to produce C—S—H. The gel product closes and densifies the pores and microcracks in the concrete surface layer. Next, the high-functional coating agent mainly composed of the polysilazane compound has a high bonding strength with the concrete surface (including surface pores and cracks), and produces an inorganic film with high durability and weather resistance. Prevents or suppresses penetration of deterioration factors such as water, chloride, carbon dioxide, oxygen, corrosive gas, etc., and further provides anti-corrosion performance for chemicals.

本発明によれば、シラン系化合物を主成分とする浸透性吸水防止改質剤は、コンクリート表層部に浸透しコンクリート表層部に撥水、遮水性を付与する事で水の浸透を防止または抑制する。次に適用するポリシラザン化合物を主成分とする高機能コーティング剤がコンクリート表面(表面細孔内部及びクラック内部を含む)基材との結合力が高く、耐久・耐候性の高い無機質膜を生成し、水、塩化物、二酸化炭素、酸素、腐食性ガス等の劣化要因の内部への浸透を防止又は抑制し、さらに化学薬品に対する防食性能を付与する。 According to the present invention, the permeable water absorption preventing modifier mainly composed of a silane-based compound prevents or suppresses the penetration of water by penetrating into the concrete surface layer portion and imparting water repellency and water impermeability to the concrete surface layer portion. To do. Next, the high-functional coating agent mainly composed of the polysilazane compound has a high bonding strength with the concrete surface (including surface pores and cracks), and produces an inorganic film with high durability and weather resistance. Prevents or suppresses penetration of deterioration factors such as water, chloride, carbon dioxide, oxygen, corrosive gas, etc., and further provides anti-corrosion performance for chemicals.

ポリシラザン化合物を主成分とする高機能コーティング剤が生成する無機質膜を加熱処理する事で、撥水性及び劣化因子の浸透抑制性能をコンクリート表層部に処理終了後、ただちに付与する事が出来る。 By heat-treating the inorganic film produced by the high-functional coating agent containing a polysilazane compound as a main component, water repellency and permeation suppression performance of deterioration factors can be imparted to the concrete surface layer immediately after the treatment.

加熱処理作業終了後、ただちに本発明工法で施工したコンクリートは供用(使用)が可能となり、通常同種の製品や工法適用時に必要な施工後の乾燥採暖(20℃程度)養生の必要が無い。したがって施工後に長期間に亘り施工対象コンクリート表面を防水シート等で雨等から保護する必要が無く、積雪寒冷地においての冬季施工性も向上し、通年施工が可能となる。また適用に際しての補助コスト(採暖養生、仮設等費用)を低減する。 Immediately after the heat treatment work is completed, the concrete constructed by the method of the present invention can be used (used), and there is no need for drying / heating (about 20 ° C.) curing after construction, which is usually required when applying the same type of product or method. Therefore, it is not necessary to protect the concrete surface to be protected from rain with a waterproof sheet or the like for a long period after construction, and the winter workability in a snowy cold region is improved, and year-round construction is possible. In addition, sub-costs for application (cost for warming, temporary construction, etc.) will be reduced.

この発明の一実施形態を示す。表面塗布型含浸剤が2〜40mm浸透し表層部を疎水緻密化、無機質高機能コート剤がコンクリート表面及び細孔内部、マイクロクラック内部表面をコーティングする。1 shows an embodiment of the present invention. The surface coating type impregnating agent penetrates 2 to 40 mm to make the surface layer hydrophobic and dense, and the inorganic high-performance coating agent coats the concrete surface, the inside of the pores, and the inside surface of the microcrack. 本発明を適用したコンクリートの吸水試験方法。A concrete water absorption test method to which the present invention is applied. 吸水試験データ。Water absorption test data. コンクリート表面撥水状況(ケイ酸塩系改質剤+ポリシラザン系コート剤)Concrete surface water repellency (silicate modifier + polysilazane coating) 中性化促進試験後試験体(左)無塗布(右)発明工法適用。Specimen after neutralization promotion test (left) No application (right) Invention method applied. 凍結融解スケーリング試験データ。Freeze-thaw scaling test data. 凍結融解スケーリング試験での試験体表面(無塗布)の状況変化。(左)試験前(右)試験終了後Change in the condition of the specimen surface (no application) in the freeze-thaw scaling test. (Left) Before test (Right) After test 凍結融解スケーリング試験での試験体表面(発明工法1)の状況変化。(左)試験前(右)試験終了後Changes in the condition of the specimen surface (Invention Method 1) in the freeze-thaw scaling test. (Left) Before test (Right) After test

本発明はケイ酸塩系改質剤、シラン系浸透性吸水防止改質剤とポリシラザン化合物を主成分とする高機能コーティング剤を適用し、さらに熱処理工程を加えることで、短時間で保護膜を生成しコンクリートの耐久性を向上させる工法である。以下本発明の構成要件につき説明する。 In the present invention, a high-performance coating agent mainly composed of a silicate-based modifier, a silane-based permeable water absorption preventing modifier and a polysilazane compound is applied, and a heat treatment step is further added to form a protective film in a short time. It is a construction method that generates and improves the durability of concrete. Hereinafter, the configuration requirements of the present invention will be described.

ケイ酸塩系改質剤とは、ナトリウムシリケート水溶液もしくはリチウムシリケート水溶液にアルカリ金属イオン源を配合した製品である。 A silicate type modifier is a product in which an alkali metal ion source is blended with an aqueous solution of sodium silicate or an aqueous solution of lithium silicate.

ケイ酸塩系改質剤にはシラン系化合物を配合した製品も含まれる。 Silicate-based modifiers include products containing silane-based compounds.

シラン系浸透性吸水防止改質剤はアルキルアルコキシシラン、アルキルアルコキシシロキサン等を主成分とする製品である。 Silane-based water-absorbing modifiers are products mainly composed of alkylalkoxysilane, alkylalkoxysiloxane and the like.

本発明に係る好適な高機能コーティング剤はポリシラザン系化合物(10〜40重量%)とヘキサメチルジシロキサン(60〜90重量%)を合計100重量%となるよう配合し得られたもの、もしくはヘキサメチルジシラザンおよびヘキサメチルジシロキサンを適正配合し得られる混合物であり、生成する塗膜の骨格構造が無機質で構成されている。 A suitable high-performance coating agent according to the present invention is obtained by blending a polysilazane compound (10 to 40% by weight) and hexamethyldisiloxane (60 to 90% by weight) to a total of 100% by weight, or hexa It is a mixture obtained by properly blending methyldisilazane and hexamethyldisiloxane, and the skeleton structure of the resulting coating film is composed of an inorganic substance.

本発明を適用するコンクリートに使用するセメントは、普通、早強、中庸熱、低熱、耐硫酸塩性、及び白色等の各種ポルトランドセメント、高炉スラグや通常のフライアッシュをポルトランドセメントに混合した混合セメント、エコセメント、超早強セメントや急硬セメント等である。また、これらのセメントの複数を任意量混合したセメントも使用できる。 The cement used in the concrete to which the present invention is applied is a mixed cement obtained by mixing various Portland cements such as normal, early strength, moderate heat, low heat, sulfate resistance, and white, blast furnace slag and ordinary fly ash with Portland cement. Ecocement, super early strength cement, rapid hardening cement, etc. A cement obtained by mixing an arbitrary amount of a plurality of these cements can also be used.

次に、本発明工法につき実施例を参照しながら具体的に説明する。尚、本発明は実施例によりいかなる限定も受けない。 Next, the method of the present invention will be specifically described with reference to examples. The present invention is not limited in any way by the examples.

まず本発明に係る「ケイ酸塩系無機質改質剤」を適用する場合は、原液もしくは希釈後の材料を必要に応じてよく攪拌する(工程1)。塗布面を湿潤状態とし「ケイ酸塩系無機質改質剤」の薬剤を、低圧の噴霧器、刷毛、ローラー等(施工場所状況により選択)にて、基準使用量(100ml〜250ml/m2)を塗布する(工程2)。表面が乾燥したのを確認し(好適には水分計で計測し、表面水分量10%以下を確認する)、高機能コーティング剤を低圧の噴霧器、刷毛、ローラー等を使用し1度で塗布する。この際むらなく塗布する事が重要である(工程3)。「ケイ酸塩系無機質改質剤」を「シラン系浸透性吸水防止改質剤」にする場合もしくは「ケイ酸塩系無機質改質剤」にシラン系成分が含まれている場合は(工程2)の塗布面は乾燥状態(好適には水分計で計測し、表面水分量10%以下)であることが必要。 First, when applying the “silicate-based inorganic modifier” according to the present invention, the stock solution or the diluted material is well stirred as necessary (step 1). Apply the standard amount of use (100ml to 250ml / m2) with a low-pressure sprayer, brush, roller, etc. (select depending on the construction site) with the coated surface wet. (Step 2). Confirm that the surface has dried (preferably measure with a moisture meter and check that the surface moisture content is 10% or less), and apply a high-performance coating agent at a time using a low-pressure sprayer, brush, roller, etc. . In this case, it is important to apply evenly (step 3). When the “silicate inorganic modifier” is changed to the “silane-based permeable water absorption preventing modifier” or the “silicate inorganic modifier” contains a silane component (step 2) ) Coated surface must be in a dry state (preferably measured with a moisture meter and having a surface moisture content of 10% or less).

次に第四発明の加熱工法につき説明する。加熱時間0.01秒〜15分(表面加熱温度により増減する)とし、電気発熱体(ハロゲン、カーボン発熱体等)、ガスバーナー等による加熱を行う。ガスバーナーによる加熱を行う際には、遠赤外線表面温度計等によりコンクリート表面温度の管理を行いコンクリートの組成を壊さないように施工する事が重要である。 Next, the heating method of the fourth invention will be described. The heating time is 0.01 seconds to 15 minutes (increase or decrease depending on the surface heating temperature), and heating is performed with an electric heating element (halogen, carbon heating element, etc.), a gas burner, or the like. When heating with a gas burner, it is important to control the concrete surface temperature with a far-infrared surface thermometer or the like so as not to destroy the concrete composition.

前記加熱方法については、電気発熱体(ハロゲン、カーボン発熱体等)による加熱では、サーモスタット、コンピューター等を組み合わせた自動制御、赤外線温度計による手動制御を行う。バーナー加熱についてはガスによる1300〜2000℃の炎温度であれば、ガスの種類等特に制限はないが、コンクリート表面温度の急激な上昇には注意が必要である。赤外線温度計等でコンクリート表面温度の計測を行い温度管理を厳密に制御し作業する事が好適である。 As for the heating method, in heating by an electric heating element (halogen, carbon heating element, etc.), automatic control combining a thermostat, a computer, etc., and manual control by an infrared thermometer are performed. As for the burner heating, there is no particular limitation on the type of gas as long as it is a flame temperature of 1300 to 2000 ° C. by gas, but caution is required for a sudden rise in concrete surface temperature. It is preferable to measure the concrete surface temperature with an infrared thermometer or the like to strictly control the temperature management.

コンクリート表面加熱を行う場合コンクリートは打設後標準養生(28日気中)後の施工とし、打設直後の施工は避ける事が重要である。 When concrete surface heating is performed, it is important that the concrete is constructed after standard curing after placing (in the atmosphere on the 28th), and construction immediately after placing is avoided.

施工時の外気温は+5℃以上であることが好適であり、+5℃未満の場合は採暖養生等による作業環境の温度管理を行うことが好適である。 The outside air temperature at the time of construction is preferably + 5 ° C. or more, and when it is less than + 5 ° C., it is preferable to perform temperature management of the work environment by heating and curing.

性能確認試験
表1に示す各種試験を行い、上記性能を検証した。
Performance Confirmation Test Various tests shown in Table 1 were conducted to verify the above performance.

1.吸水量比較試験
「試験概要」
使用材料:
試験体は、普通セメントコンクリート(W/C50%)、材齢は28日。
処理面は、型枠側面とし、□50×100mmの範囲とした。
図2に試験装置の概要を示す。
1. Water absorption comparison test "Summary"
Materials used:
The test specimen is ordinary cement concrete (W / C 50%), age is 28 days.
The treated surface was the side of the mold and was in the range of □ 50 × 100 mm.
FIG. 2 shows an outline of the test apparatus.

「試験結果及び考察」
発明工法試験体処理面は、ケイ酸塩系無機質改質剤100ml/m2を塗布し24時間気中養生後、ポリシラザン系無機質高機能コーティング剤70ml/m2を塗布した後、14日間20℃気中養生。市販ケイ酸塩系改質剤処理面は、試験体処理面に100ml/m2の薬剤を塗布し90分後に散水養生を行い、さらに100ml/m2を塗布し90分後に再び散水養生を行い、以後14日間20℃気中養生を行い試験体とした。図2の試験装置により、給水量を測定した。試験結果を、無塗布試験体との比較により図3に示す。発明工法で処理した面(実施例)はケイ酸塩系改質剤処理面(比較例)に対し1/2、無塗布試験体に比較して1/3の吸水量となり発明工法による水等劣化要因の浸透抑制効果が確認できた。
"Test results and discussion"
The treated surface of the test body of the invention method was coated with 100 ml / m2 of silicate mineral modifier, air-cured for 24 hours, then coated with 70 ml / m2 of polysilazane inorganic high-performance coating agent, and then aired at 20 ° C for 14 days. Curing. On the treated surface of the commercial silicate-based modifier, 100 ml / m2 of chemical is applied to the treated surface of the specimen and sprayed after 90 minutes, and then 100 ml / m2 is applied and sprayed again after 90 minutes. Test specimens were aged at 20 ° C. for 14 days. The amount of water supply was measured with the test apparatus of FIG. The test results are shown in FIG. 3 by comparison with an uncoated specimen. The surface treated with the invention method (Example) is 1/2 of the surface treated with the silicate modifier (comparative example), and 1/3 the water absorption compared to the uncoated specimen, and the water produced by the invention method. The penetration control effect of the deterioration factor was confirmed.

2.撥水比較試験
「試験概要」
使用材料:
試験体は、普通セメントコンクリート(W/C50%)、材齢は28日。
処理面は、型枠側面とし、□50×100mmの範囲とした。
図3に発明工法にて処理をした面の撥水状況を示す。
2. Water repellent comparison test "Summary"
Materials used:
The test specimen is ordinary cement concrete (W / C 50%), age is 28 days.
The treated surface was the side of the mold and was in the range of □ 50 × 100 mm.
FIG. 3 shows the water repellency of the surface treated by the inventive method.

「試験結果及び考察」
発明工法試験体処理面は、ケイ酸塩系無機質改質剤100ml/m2を塗布し24時間気中養生後、ポリシラザン系無機質高機能コーティング剤70ml/m2を塗布した後、14日間20℃気中養生。ケイ酸塩系改質剤処理面は、試験体処理面に100ml/m2の薬剤を塗布し90分後に散水養生を行い、さらに100ml/m2を塗布し90分後に再び散水養生を行い、以後14日間20℃気中養生を行い試験体とした。発明工法処理をした面(実施例)は水滴の接触角が116.5°となり、ケイ酸塩系改質剤(比較例)38.5°、無塗布19.7°の接触角試験結果と比較し、高い撥水性を示すことが確認できた。発明工法の表面撥水状況を図4に示す。
"Test results and discussion"
The treated surface of the test body of the invention method was coated with 100 ml / m2 of silicate mineral modifier, air-cured for 24 hours, then coated with 70 ml / m2 of polysilazane inorganic high-performance coating agent, and then aired at 20 ° C for 14 days. Curing. On the treated surface of the silicate-based modifier, 100 ml / m2 of chemical is applied to the treated surface of the specimen and sprayed after 90 minutes, and then sprayed with 100 ml / m2 and sprayed again after 90 minutes. The specimen was subjected to air curing at 20 ° C. for a day. The surface treated with the inventive method (Example) has a water droplet contact angle of 116.5 °, which is higher in water repellency than the contact angle test results of 38.5 ° and 19.7 ° with no silicate modifier (comparative example). It was confirmed that The surface water repellency of the invention method is shown in FIG.

3.中性化促進試験
「試験概要」
使用材料:
試験体は、普通セメントコンクリート(W/C50%)、材齢は28日以上。
処理試験体は、6面処理とし、□100×100mmの範囲とした。
無処理の試験体も同様の形状とした。
3. Neutralization test “Summary”
Materials used:
The test specimen is ordinary cement concrete (W / C 50%), and the age is 28 days or more.
The treated specimen was a 6-sided treatment and □ 100 × 100 mm.
The untreated specimen was also shaped similarly.

「試験結果及び考察」
発明工法試験体処理面は、ケイ酸塩系無機質改質剤100ml/m2を塗布し24時間気中養生後、ポリシラザン系無機質高機能コーティング剤70ml/m2を塗布した後、14日間20℃気中養生。ケイ酸塩系改質剤処理面は、試験体処理面に100ml/m2の薬剤を塗布し90分後に散水養生を行い、さらに100ml/m2を塗布し90分後に再び散水養生を行い、以後14日間20℃気中養生を行い試験体とした。次に100のポリエチレン袋内に試験体を静置し、真空ポンプで内部空気を排出した後100%二酸化炭素を充填、密閉し180日間放置した。180日経過後試験体を割裂し、断面にフェノールフタレイン水溶液を噴霧して中性化深度を確認した、比較として無処理試験体も同様に試験した。試験結果を図5に示す。本試験で発明工法での処理によりコンクリートの中性化を抑制する効果が有ることが確認された。
"Test results and discussion"
The treated surface of the test body of the invention method was coated with 100 ml / m2 of silicate mineral modifier, air-cured for 24 hours, then coated with 70 ml / m2 of polysilazane inorganic high-performance coating agent, and then aired at 20 ° C for 14 days. Curing. On the treated surface of the silicate-based modifier, 100 ml / m2 of chemical is applied to the treated surface of the specimen and sprayed after 90 minutes, and then sprayed with 100 ml / m2 and sprayed again after 90 minutes. The specimen was subjected to air curing at 20 ° C. for a day. Next, the test body was left still in a polyethylene bag of 100, the internal air was discharged with a vacuum pump, filled with 100% carbon dioxide, sealed, and left for 180 days. After 180 days, the test specimen was split, and a phenolphthalein aqueous solution was sprayed on the cross section to confirm the neutralization depth. For comparison, an untreated specimen was also tested. The test results are shown in FIG. In this test, it was confirmed that there was an effect of suppressing the neutralization of concrete by the treatment by the invention method.

4.凍結融解スケーリング試験
「試験概要」
使用材料:
試験体は、普通セメントコンクリート(W/C50%)、材齢は28日以上。
処理試験体は、型枠側面処理とし、□50×100mmの範囲とした。
4). Freeze-thaw scaling test "Summary"
Materials used:
The test specimen is ordinary cement concrete (W / C 50%), and the age is 28 days or more.
The treated specimen was a mold side surface treatment, and was in a range of □ 50 × 100 mm.

「試験結果及び考察」
発明工法試験体処理面は、1.ケイ酸塩系無機質改質剤100ml/m2を塗布し24時間20℃気中養生後、ポリシラザン系無機質高機能コーティング剤70ml/m2を塗布した後、14日間20℃気中養生。2.シラン系吸水防止剤100ml/m2を塗布し24時間20℃気中養生後、ポリシラザン系無機質高機能コーティング剤70ml/m2を塗布した後、14日間20℃気中養生。ケイ酸塩系改質剤処理面は、試験体処理面に100ml/m2の薬剤を塗布し90分後に散水養生を行い、さらに100ml/m2を塗布し90分後に再び散水養生を行い、以後14日間20℃気中養生を行いそれぞれ試験体とした。ケイ酸塩系無機質改質剤はケイ酸ナトリウム系改質剤を使用、試験体6面に補修材を塗布、14日間20℃気中養生。「RILEM TC 176-IDC CIF-Test」により凍結融解スケーリングによる試験体表面剥離量を計測したところ、発明工法1.2.共、無塗布及び比較工法に比べ56サイクル経過後の剥離量が1/3程度となり、凍結融解スケーリングに対する抑制効果が確認された。試験結果グラフを図6に示す。また試験体表面状況変化を図7(無塗布)図8(発明工法1)に示す。
"Test results and discussion"
The treated surface of the invention method test specimen is as follows. After applying silicate inorganic modifier 100ml / m2 and curing at 20 ° C in air for 24 hours, applying polysilazane inorganic high performance coating agent 70ml / m2 and then curing at 20 ° C in air for 14 days. 2. Silane water absorption inhibitor 100ml / m2 was applied and air-cured for 24 hours at 20 ° C, then polysilazane inorganic high-performance coating agent 70ml / m2 was applied, and air-cured at 20 ° C for 14 days. On the treated surface of the silicate-based modifier, 100 ml / m2 of chemical is applied to the treated surface of the specimen and sprayed after 90 minutes, and then sprayed with 100 ml / m2 and sprayed again after 90 minutes. Each specimen was subjected to 20 ° C air curing for a day. The silicate mineral modifier is a sodium silicate modifier, and a repair material is applied to the six surfaces of the test specimen, followed by air curing at 20 ° C for 14 days. When the surface peeling amount of the specimen was measured by freezing and thawing scaling with “RILEM TC 176-IDC CIF-Test”, the peeling amount after 56 cycles was about 1/3 compared to the non-coating method and the comparative method in both of the invention method 1.2. Thus, the inhibitory effect on freeze-thaw scaling was confirmed. A test result graph is shown in FIG. Further, the change in the surface condition of the specimen is shown in FIG. 7 (no application) and FIG. 8 (Invention Method 1).

Claims (5)

表面塗布型含浸剤及びポリシラザン化合物を主成分とする無機質高機能コート剤を適用する事を特徴とするコンクリート劣化防止または劣化抑制工法。 A concrete deterioration prevention or deterioration control method characterized by applying a surface coating type impregnating agent and an inorganic high-performance coating agent mainly composed of a polysilazane compound. アルカリ金属イオン源を配合したケイ酸塩系無機質改質剤及びポリシラザン化合物を主成分とする無機質高機能コート剤を適用する事を特徴とする請求項1記載のコンクリート劣化防止または劣化抑制工法。 2. The concrete deterioration prevention or deterioration suppressing method according to claim 1, wherein an inorganic high-performance coating agent mainly composed of a silicate inorganic modifier and a polysilazane compound containing an alkali metal ion source is applied. シラン系浸透性吸水防止剤及びポリシラザン化合物を主成分とする無機質高機能コート剤を適用する事を特徴とする請求項1記載のコンクリート劣化防止または劣化抑制工法。
2. The concrete deterioration prevention or deterioration suppression method according to claim 1, wherein an inorganic high-performance coating agent mainly comprising a silane-based permeable water absorption inhibitor and a polysilazane compound is applied.
適用時に加熱処理を施す事で劣化防止もしくは劣化抑制効果及び耐久性を増大させ、施工後の養生期間が不要となる事で施工時間の短縮によるライフサイクルコストの低減効果が有り、積雪寒冷地での冬季間の施工が可能となる事を特徴とする請求項1記載の工法。 By applying heat treatment at the time of application, deterioration prevention or deterioration suppression effect and durability are increased, and there is no need for a curing period after construction, so there is an effect of reducing life cycle cost by shortening construction time, in snowy cold areas The construction method according to claim 1, wherein construction during winter is possible. 請求項1〜4のいずれか一項もしくは複数項を適用し劣化防止または劣化要因の浸透抑制性能を付与されたコンクリート及びコンクリート二次製品。 Concrete and a concrete secondary product to which deterioration prevention or the permeation suppression performance of a deterioration factor was given by applying any one or a plurality of paragraphs of Claims 1-4.
JP2012090822A 2011-04-16 2012-04-12 Surface protection method for improving durability of concrete Pending JP2012232887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090822A JP2012232887A (en) 2011-04-16 2012-04-12 Surface protection method for improving durability of concrete

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011091613 2011-04-16
JP2011091613 2011-04-16
JP2012090822A JP2012232887A (en) 2011-04-16 2012-04-12 Surface protection method for improving durability of concrete

Publications (1)

Publication Number Publication Date
JP2012232887A true JP2012232887A (en) 2012-11-29

Family

ID=47433603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090822A Pending JP2012232887A (en) 2011-04-16 2012-04-12 Surface protection method for improving durability of concrete

Country Status (1)

Country Link
JP (1) JP2012232887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135685A (en) * 2021-04-30 2021-07-20 中海建筑有限公司 Waterproof material, cement and concrete
CN113882224A (en) * 2021-11-18 2022-01-04 同济大学 Airport rigid pavement surface in-situ modifier and enhancement modification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135685A (en) * 2021-04-30 2021-07-20 中海建筑有限公司 Waterproof material, cement and concrete
CN113882224A (en) * 2021-11-18 2022-01-04 同济大学 Airport rigid pavement surface in-situ modifier and enhancement modification method

Similar Documents

Publication Publication Date Title
Pazderka et al. Crystalline admixtures and their effect on selected properties of concrete
KR102148187B1 (en) Functional mortar composition for repairing-reinforcing concrete structure having high strength and high durability and repairing-reinforcing method of concrete structure using the same
KR101964367B1 (en) Composition for repairing and reinforcing concrete structure and method for repairing and reinforcing concrete structure therewith
MX2014001274A (en) Fire protection mortar.
KR102232477B1 (en) Mortar composition with excellent wet curable properties and method of repairing concrete structure using the same
WO2019210598A1 (en) Migration inhibitor for internal and external moisture of concrete
KR101675490B1 (en) Ion Binding Agent for Cement Mixture, Ion Binding Typed Polymer Cement Mortar Using the Agent, and Repairing Method Using the Mortar
CN101580356B (en) Water-emulsion organic silicon waterproof agent
KR101166792B1 (en) Restroative mortar compositions for cross section restorations and repairing method of reinforced concrete using that
Zhou et al. The waterproofing effect and mechanism of graphene oxide/silane composite emulsion on cement-based materials under compressive stress
CA2286643A1 (en) Method for retarding efflorescence in building materials and building material that exhibits reduced efflorescence
US20160244369A1 (en) Waterproof mortar composition and method for preparing same
KR100879882B1 (en) Restoring concrete structures by using strengthening agency, eco-friendly repair mortar and epoxy paint
KR102172007B1 (en) Polymer Cement Concrete Composition with Improved Performance and Road Pavement Method Using the Same
Shangina et al. Dry mixes for the restoration: basic principles of design
JP2012232887A (en) Surface protection method for improving durability of concrete
CN103979887B (en) The anti-face checking coating of clear-water concrete and using method thereof
CN105036792A (en) Novel carbon-fiber ceramsite aerated concrete block
KR101102249B1 (en) Method for repairing reinforced concrete structure using mortar having anticorrosive
JP6828875B2 (en) Concrete protection method
JP2004131316A (en) Concrete modification material
Zheng et al. A review on silane and siloxane materials: enhancing durability of cementitious materials through surface treatments
CN105924106A (en) Cement-based permeable crystallization type waterproof inorganic paint
KR102001448B1 (en) Composition of environmentally friendly functional waterproofing agent and method of construction using the same
KR101542204B1 (en) Grout composition for marine wind velocity generator