KR101542204B1 - Grout composition for marine wind velocity generator - Google Patents

Grout composition for marine wind velocity generator Download PDF

Info

Publication number
KR101542204B1
KR101542204B1 KR1020140079254A KR20140079254A KR101542204B1 KR 101542204 B1 KR101542204 B1 KR 101542204B1 KR 1020140079254 A KR1020140079254 A KR 1020140079254A KR 20140079254 A KR20140079254 A KR 20140079254A KR 101542204 B1 KR101542204 B1 KR 101542204B1
Authority
KR
South Korea
Prior art keywords
weight
grout
mortar
water
ultra
Prior art date
Application number
KR1020140079254A
Other languages
Korean (ko)
Inventor
고상진
김상현
조기덕
최영진
Original Assignee
주식회사 제트콘코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제트콘코리아 filed Critical 주식회사 제트콘코리아
Priority to KR1020140079254A priority Critical patent/KR101542204B1/en
Application granted granted Critical
Publication of KR101542204B1 publication Critical patent/KR101542204B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/05Materials having an early high strength, e.g. allowing fast demoulding or formless casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to an ultra-high performance grout composition used in an offshore wind power generator structure. The composition has a flow rate of 225 or higher, the compressive strength of 100 MPa or higher when aged for one day, compressive strength of 140 MPa or higher when aged for 28 days, and flexural strength of 20 MPa or higher when aged for 28 days. The grout also has excellent freezing and thawing resistance, chloride penetration resistance, and crack resistance.

Description

해상풍력발전기용 그라우트 조성물{Grout composition for marine wind velocity generator}[0001] The present invention relates to a grout composition for marine wind power generators,

본 발명은 해상풍력발전기용 구조물에 사용되는 초고성능 그라우트 조성물에 관한 것이다.The present invention relates to an ultra high performance grout composition for use in a structure for offshore wind power generators.

본 발명은 더욱 상세하게는 플로 225 이상, 재령 1일 압축강도 100MPa 이상, 재령 28일 압축강도 140MPa 이상, 재령 28일 휨강도 20MPa 이상 강도 발현하며, 동결융해 저항성, 염소이온침투 저항성, 균열발생 저항성이 우수한 그라우트에 관한 것이다.
More particularly, the present invention relates to a steel sheet having a strength of at least 250 pounds, a compressive strength of 100 MPa or more per day, a compressive strength of 140 MPa or more at 28 days of age, and a flexural strength of 20 MPa or more at 28 days of age and exhibiting strengths of freezing and thawing resistance, It is about excellent grout.

종래 그라우트 조성물 관련 기술로는 특허공개 제10-2013-0140307호(2013. 12. 23. 공개, 명칭 : 내해수성 그라우트 조성물 및 이를 이용한 해상풍력발전 구조물의 시공방법)가 개시되어 있다.Conventional grout composition related technologies are disclosed in Japanese Patent Application Laid-Open No. 10-2013-0140307 (published on Mar. 23, 201, entitled "Inert water-resistant grout composition and method of constructing offshore wind power generation structure using the same).

상기 공개기술은 해상풍력발전 구조물에 설치하는 것을 특징으로 하고 있으며, 그라우트 물성인 재령 28일 압축강도, 건조수축, 염소이온 침투 전하량에 대해 개시되어 있다.The above disclosed technology is characterized in that it is installed in an offshore wind power generating structure and is disclosed in terms of compressive strength, drying shrinkage, and chlorine ion penetration charge capacity at 28 days, which is the property of grout.

해상풍력발전기에 있어서는 기초 하부와 상부인 타워를 연결하는 부위는 바람, 파도와 같은 동적 조건인 해양 환경에 대응하여 조기 강도 확보가 필수적이다.For offshore wind power generators, it is essential to secure early strength in response to the marine environment, which is dynamic conditions such as wind and wave, at the connecting portion between the foundation bottom and the tower at the top.

또한, 공사 시기에 따라 연결부 그라우트가 추운 조건에서도 충분히 강도발현을 해야하므로 저온에서도 조기강도 발현이 중요하다.
Also, it is important to express early strength even at low temperatures because the joint grout must exhibit sufficient strength even under cold conditions depending on the construction time.

본 발명은 구조물의 안정성과 조기강도(재령 1일) 발현, 장기강도(재령 28일) 증진, 저온에서도 조기강도(재령 1일) 발현하고, 그라우트의 내구성, 내해수성, 주입성능 등의 특성을 극대화시키기 위한 그라우트 조성물을 제공하는데 그 목적이 있다.
The present invention relates to a method for improving the stability of a structure, expressing early strength (1 day in a year), improving long-term strength (28 days in a year), expressing early strength It is an object of the present invention to provide a grout composition for maximizing the effect of the present invention.

상기 목적을 달성하기 위하여 본 발명의 그라우트 조성물은, 모르타르는 100 중량%, 물은 모르타르 대비 8.0 ~ 10.0 중량%를 첨가하여 이루어진 것을 특징으로 한다.In order to attain the above object, the grout composition of the present invention is characterized in that the mortar is added by 100 weight% and the water is added by 8.0 ~ 10.0 weight% with respect to the mortar.

모르타르는 보통포틀랜트시멘트(OPC) 20 ~ 25 중량%, 알루미나시멘트 9 ~ 12중량%, 천연무수석고 10.5 ~ 14 중량%, 고로수쇄슬래그 미분말 3 ~ 7중량%, 실리카 흄 5 ~ 8 중량%, 첨가제 1.0 ~ 2.0 중량%, 규산질 골재 또는 제강풍쇄슬래그 골재 40 ~ 50 중량%를 포함하여 이루어진 것을 특징으로 한다.The mortar is usually composed of 20 to 25% by weight of portland cement (OPC), 9 to 12% by weight of alumina cement, 10.5 to 14% by weight of natural anhydrite, 3 to 7% by weight of blast furnace slag fine powder, 5 to 8% by weight of silica fume, 1.0 to 2.0% by weight of an additive, and 40 to 50% by weight of a silicate aggregate or a high-strength chain slag aggregate.

첨가제는 상기 초고성능 그라우트의 전체 중량 대비 유동화제 0.3 ~ 0.5 중량%, 지연제 0.2 ~ 0.3 중량%, 소포제 0.3 ~ 0.4중량 %, 촉진제 0.1 ~ 0.4 중량%로 이루어진 것을 특징으로 한다.The additive is characterized by comprising 0.3 to 0.5% by weight of a fluidizing agent, 0.2 to 0.3% by weight of retarding agent, 0.3 to 0.4% by weight of an antifoaming agent and 0.1 to 0.4% by weight of an accelerator relative to the total weight of the ultra high performance grout.

본 발명은 상기 초고성능 모르타르의 구성 성분 중 무기계 재료인 칼슘설포알루미네이트계 클링커, 칼슘알루미네이트계 클링커와 무수천연석고를 사용하여 조기강도를 향상시키고, 무기계 혼합재인 고로수쇄슬래그 미분말과 실리카 흄을 사용하여 장기강도 및 내구성을 향상시키는 것을 특징으로 한다.
The present invention improves early strength by using calcium sulfoaluminate-based clinker, calcium aluminate-based clinker and anhydrous natural gypsum, which are inorganic materials among the constituent components of the ultra high-performance mortar, and improves the strength of the blast furnace slag fine powder and silica fume Thereby improving long-term strength and durability.

본 발명의 해당풍력발전기용 그라우트 조성물에 따르면, 다음과 같은 이점이 있다.The grout composition for a wind turbine according to the present invention has the following advantages.

첫째, 시멘트 제조시 산업부산물 재활용을 통한 온실가스 배출 및 에너지 소모 절감이 가능하고, 자원이용 효율을 향상시킬 수 있어 경제적이고 친환경적이며, 안정적인 강도 발현성과 균열 제어 능력 향상으로 내구성이 우수하다.First, it is possible to reduce greenhouse gas emissions and energy consumption by recycling industrial by-products in manufacturing cement, and it is possible to improve the resource utilization efficiency, and it is economical, environment-friendly, has excellent durability due to stable strength development and improvement of crack control ability.

둘째, 재령 1일 만에 압축강도가 100MPa 이상 확보가 가능하고, 저온에서도 재령 1일 만에 압축강도가 60MPa 이상 확보 가능함으로써 안정적이고 지속적인 강도 발현성을 통하여 해양구조물 공사시 공사시간을 단축할 수 있는 효과가 있다.Second, it is possible to secure a compressive strength of 100MPa or more in one day of aging, and it is possible to secure a compressive strength of 60MPa or more within one day of aging even at low temperature, so that the construction time can be shortened There is an effect.

셋째, 주입성능이 뛰어나 주입시 원활한 작업이 가능하며, 동결 융해 저항성, 염소이온 저항성, 균열발생 저항성이 우수하여 해양 환경조건에 노출시 안정적인 구조물을 형성할 수 있다.Third, the injection performance is excellent, and it is possible to work smoothly at the time of injection, and it has excellent freeze-thaw resistance, chlorine ion resistance and cracking resistance, so that a stable structure can be formed when exposed to marine environmental conditions.

도 1은 본 발명의 실시예1에 따라 재령별 물/모르타르 비에 따른 플로 변화 그래프.
도 2는 본 발명의 실시예1에 따라 재령별 물/모르타르 비에 따른 응결시간 변화 그래프.
도 3은 본 발명의 실시예1에 따라 재령별 물/모르타르 비에 따른 압축강도 변화 그래프.
도 4는 본 발명의 실시예 1에 따라 재령별 물/모르타르 비에 따른 휨강도 변화 그래프.
도 5는 본 발명의 실시예2에 따라 재령별 물/모르타르 비에 따른 플로 변화 그래프.
도 6은 본 발명의 실시예2에 따라 재령별 물/모르타르 비에 따른 응결시간 변화 그래프.
도 7은 본 발명의 실시예2에 따라 재령별 물/모르타르 비에 따른 압축강도 변화 그래프.
도 8은 본 발명의 실시예2에 따라 재령별 물/모르타르 비에 따른 휨강도 변화 그래프.
도 9는 동결융해 시험시 싸이클에 따른 상대동탄성계수 변화 그래프.
도 10a 내지 도 10d는 재령에 따른 시험체 변화를 나타낸 사진으로써, 도 10a는 시험체, 도 10b는 재령 1일, 도 10c는 재령 7일, 도 10d는 재령 28일을 각각 나타낸 것.
FIG. 1 is a graph showing a flow change according to water / mortar ratio according to the embodiment of the present invention. FIG.
FIG. 2 is a graph of the change of the setting time according to the water / mortar ratio according to the age according to Example 1 of the present invention. FIG.
FIG. 3 is a graph showing a change in compressive strength according to the water / mortar ratio according to the age according to Example 1 of the present invention. FIG.
FIG. 4 is a graph showing changes in flexural strength according to the water / mortar ratio at each age according to Example 1 of the present invention.
FIG. 5 is a graph showing the flow change according to the water / mortar ratio according to the second embodiment according to the second embodiment of the present invention.
FIG. 6 is a graph showing the change of setting time according to the water / mortar ratio according to the second embodiment according to the second embodiment of the present invention. FIG.
FIG. 7 is a graph showing a change in compressive strength according to the water / mortar ratio according to the age according to Example 2 of the present invention. FIG.
8 is a graph showing changes in flexural strength according to the water / mortar ratio at each age according to Example 2 of the present invention.
FIG. 9 is a graph showing the change in relative modulus of elasticity according to cycles during the freeze-thaw test.
Figs. 10A to 10D are photographs showing changes in the test specimen according to the ages. Fig. 10A shows the specimen, Fig. 10B shows the first day, Fig. 10C shows the seventh day, and Fig.

이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 그라우트 조성물은, 초고성능 모르타르 100 중량%, 물은 초고성능 모르타르 대비 8.0 ~ 10.0 중량%를 첨가하여 이루어진다.The grout composition according to the present invention is prepared by adding 100 wt% of ultra high performance mortar and 8.0-10.0 wt% of water to ultra high performance mortar.

상기 초고성능 모르타르는 보통포틀랜트시멘트(OPC) 20 ~ 25 중량%, 알루미나시멘트 9 ~ 12중량%, 천연무수석고 10.5 ~ 14 중량%, 고로수쇄슬래그 미분말 3 ~ 7 중량%, 실리카 흄 5 ~ 8 중량%, 첨가제 1.0 ~ 2.0 중량%, 규산질 골재 또는 제강풍쇄슬래그 골재 40 ~ 50 중량%를 혼합하여 이루어진다.The ultra high performance mortar is usually composed of 20-25% by weight of portland cement (OPC), 9-12% by weight of alumina cement, 10.5-14% by weight of natural anhydrous gypsum, 3-7% by weight of blast furnace slag fine powder, 1.0 to 2.0% by weight of an additive, and 40 to 50% by weight of a silicate aggregate or a high-strength chain slag aggregate.

상기 첨가제는 상기 초고성능 그라우트의 전체 중량 대비 유동화제 0.3 ~ 0.5 중량%, 지연제 0.2 ~ 0.3 중량%, 소포제 0.3 ~ 0.4 중량%, 촉진제 0.1 ~ 0.4 중량%를 혼합하여 이루어진다. The additive is composed of 0.3 to 0.5 wt% of a fluidizing agent, 0.2 to 0.3 wt% of a retarder, 0.3 to 0.4 wt% of a defoamer, and 0.1 to 0.4 wt% of an accelerator relative to the total weight of the ultra high performance grout.

상기 초고성능 모르타르는 수화반응 생성물인 수산화칼슘이나 수산화 알칼리 혼합물을 조정하여 조성물 내부의 공극을 채움으로써 침투성 및 화학물질에 대한 저항성을 개선하여 그라우트 구조물의 내구성을 증진시키는 효과가 있다.The ultrahigh performance mortar has the effect of enhancing the durability of the grout structure by improving the permeability and resistance to chemicals by filling the voids in the composition by adjusting calcium hydroxide or alkali hydroxide mixture, which is a hydration reaction product.

즉, 상기 무기계 혼화재인 고로수쇄슬래그 미분말과 실리카 흄은 물질에 존재하는 CaO 및 SiO2는 물과 반응하여 시멘트의 특질을 지닌 C-S-H Gel(C=CaO, S=SiO2, H=H2O)을 형성하게 되고, C-S-H Gel의 형성은 초기 단계에서 응결시간을 가속시키고, 추후 단계에서 강도 증진에 기여하게 된다.That is, CaO and SiO 2 existing in the material react with water to form CSH Gel (C = CaO, S = SiO 2, H = H 2 O) having a characteristic of cement as the inorganic admixture of granulated blast furnace slag and silica fume The formation of CSH gel accelerates the settling time at the initial stage and contributes to the strength enhancement at a later stage.

아울러 상기 칼슘설포알루미네이트계 클링커는 수화광물인 에트린자이트를 다량 생성할 뿐만 아니라, 수화 활성이 높고, 또한 상기 칼슘설포알루미네이트계 클링커와 칼슘알루미네이트계 클링커는 시멘트의 수화물인 Ca(OH)2, 석고의 SO3와 반응하여 팽창성, 속경성, 조강성 등의 특성을 나타내게 한다.In addition, the calcium sulfoaluminate-based clinker not only produces a large amount of nitrite hydrate, etrinite, but also has a high hydration activity, and the calcium sulfoaluminate-based clinker and calcium aluminate-based clinker are used as a hydrate of cement, Ca (OH ) 2 , It reacts with SO 3 of gypsum to exhibit properties such as expansive, rapid hardness and toughness.

그리고 상기 무수석고는 수화광물인 에트린자이트의 형성과 초기강도를 향상시킬 목적으로 첨가한다.The anhydrous gypsum is added for the purpose of improving the initial strength and the formation of etrinite as a hydration mineral.

더 나아가 상기 초고성능 그라우트의 구성 성분 중 무기계 혼화재인 보통포틀랜트시멘트, 칼슘설포알루미네이트계 클링커, 칼슘알루미네이트 클링커, 천연무수석고의 함량 조절을 통하여 그라우트의 조기강도를 발현함으로써 최적의 설계 시공을 할 수 있게 된다.Furthermore, by controlling the content of ordinary Portland cement, calcium sulfoaluminate clinker, calcium aluminate clinker, and natural anhydrite, which are inorganic admixtures among the constituents of the ultra high performance grout, the early strength of the grout is expressed, .

이하, 본 발명의 실시예를 설명하기로 한다.
Hereinafter, embodiments of the present invention will be described.

초고성능 그라우트 상온(21℃ ~ 25℃) 실험Ultra high performance grout at room temperature (21 ℃ ~ 25 ℃)

(1) 실험방법(1) Experimental method

하기 표 1과 같은 물리적, 화학적 특성을 나타내는 재료를 이용하여 초고성능 모르타르를 제조하였다.High-performance mortar was prepared using materials showing physical and chemical properties as shown in Table 1 below.

구분division 밀도
(g/㎤)
density
(g / cm3)
비표면적
(㎤/g)
Specific surface area
(Cm3 / g)
화학성분 (중량%)Chemical composition (% by weight)
SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 Lg-loss.Lg-loss. 보통포틀랜드
시멘트
Ordinary Portland
cement
3.153.15 3,2543,254 16.0016.00 4.524.52 3.393.39 66.8066.80 3.593.59 3.363.36 2.342.34
칼슘설포알루미네이트Calcium sulfoaluminate 2.932.93 4,3204,320 1.581.58 12.7012.70 0.640.64 57.2057.20 1.381.38 25.8025.80 0.700.70 알루미나 시멘트Alumina cement 3.023.02 5,0465,046 4.004.00 51.2051.20 0.830.83 40.0040.00 0.490.49 0.160.16 3.323.32 천연무수석고Natural anhydrous gypsum 2.912.91 5,3675,367 1.861.86 0.860.86 0.180.18 46.6046.60 0.160.16 50.0050.00 0.340.34 고로슬래그 미분말Fine powder of blast furnace slag 2.972.97 4,0514,051 31.5031.50 13.8013.80 1.081.08 44.3044.30 2.912.91 3.903.90 2.392.39 실리카 흄Silica fume 2.252.25 223,458223,458 96.9096.90 0.130.13 0.120.12 0.630.63 0.230.23 0.30.3 1.691.69

하기 표 2에 나타낸 바와 같이 초고성능 그라우트 혼합은, 초고성능 모르타르에 물을 넣고, 모르타르 혼합기로 1속(공전 62회전, 자전 140회전)으로 3분 혼합하고, 그 후 2속(공전 125회전, 자전 285회전)으로 조정하여 2분 동안 혼합하는 방식으로 수행하였다. As shown in the following Table 2, the ultra high performance grout mixing was carried out by mixing water with a mortar mixer in a first speed (62 revolutions per revolution, 140 revolutions per minute) for 3 minutes, Rotation of 285 rotations) and mixing for 2 minutes.

이렇게 혼합된 초고성능 그라우트에 대해 플로시험과 응결시험을 실시하였다. 초고성능 그라우트의 플로시험과 응결시험은 KS F 4044(수경성 시멘트 무수축 그라우트) 기준으로 측정하였으며, 초고성능 그라우트의 퍼짐이 정지된 시점에서 직교하는 2방향의 지름을 측정하였다. 초고성능 그라우트의 플로시험과 응결시험 기준은 KS F 4044 에 따라 플로 225㎜ 이상으로 선정하였고, 응결시험은 초결 1시간 이상, 종결 10시간 이내로 선정하였다. Flow tests and coagulation tests were carried out on the ultra-high-performance grout. The flow and coagulation tests of the ultra high performance grout were carried out on the basis of KS F 4044 (Hydraulic Cement Unshrinkable Grout) and the diameters of the two orthogonal directions were measured at the time when the spread of the ultra high performance grout was stopped. The flow test and the condensation test of ultra high performance grout were selected according to KS F 4044 as flow 225 mm or more and the condensation test was performed within 1 hour or more and 10 hours or less.

한편, 초고성능 그라우트의 압축강도 시험은 50㎜×50㎜×50㎜ Cubic 몰드를 사용하여 제작된 시험체에 대해 측정하였다. 시험체 양생은 시험체 성형 후 온도 20℃±2℃, 상대 습도 90% 이상인 항온항습기에서 24시간 경과 후 탈형하여 재령 1일 압축강도 시험을 실시하였으며, 탈형된 시험체는 온도 20℃±2℃의 물속에서 양생하여 재령 7일, 28일 압축강도 시험을 실시하였다.On the other hand, the compressive strength test of the ultra high-performance grout was carried out on a specimen manufactured using a 50 mm x 50 mm x 50 mm cubic mold. The cured specimens were demolded after 24 hours in a thermo - hygrostat with a temperature of 20 ° C ± 2 ° C and a relative humidity of 90% or higher. The specimens were subjected to a 1 - Curing was carried out on the 7th and 28th days of aging.

또한, 초고성능 그라우트의 휨강도 시험은 40㎜×40㎜×160㎜ 몰드를 사용하여 제작된 시험체에 대해 측정하였다. 시험체 양생은 시험체 성형 후 온도 20℃±2℃, 상대 습도 90% 이상인 항온항습기에서 24시간 경과 후 탈형하여 재령 1일 휨강도 시험을 실시하였으며, 탈형된 시험체는 온도 20℃±3℃의 물속에서 양생하여 재령 7일, 28일 휨강도 시험을 실시하였다.In addition, the flexural strength test of the ultra high-performance grout was performed on a specimen manufactured using a mold of 40 mm x 40 mm x 160 mm. The specimens were cured at a temperature of 20 ° C ± 2 ° C and a relative humidity of 90% or more after 24 hours of curing. The cured specimens were subjected to one day bending strength test. The specimens were cured at a temperature of 20 ° C ± 3 ° C The bending strength test was carried out on the 7th and 28th days of the year.

구 분division 초고성능 모르타르 (중량 %)Ultra high performance mortar (wt%) 물 (중량 %)Water (% by weight) (가)(end) 100100 8.08.0 (나)(I) 100100 8.58.5 (다)(All) 100100 9.09.0 (라)(la) 100100 9.59.5 (마)(hemp) 100100 10.010.0

(2) 실험결과(2) Experimental results

초고성능 그라우트의 플로시험 결과는 도 1, 응결시험 결과는 도 2, 압축강도 시험 결과는 도 3, 휨강도 시험 결과는 도 4에 각각 나타내었다.The results of the flow test of the ultra high performance grout are shown in Fig. 1, the results of the coagulation test are shown in Fig. 2, the results of compressive strength test are shown in Fig. 3, and the results of bending strength test are shown in Fig.

플로 시험은 도 1에서 보는 바와 같이 KS F 4044 기준인 225mm 이상 측정되었으며, 물/모르타르 비가 증가할수록 플로 결과가 증가하는 경향을 나타내었다. 응결시험은 도 2에서 보는 바와 같이 KS F 4044 기준인 초결 1시간(60분) 이상, 종결 10시간(600분) 이내 측정되었으며, 물/모르타르 비가 증가할수록 응결시간이 증가하는 것으로 나타내었다.As shown in FIG. 1, the flow test was performed on the basis of KS F 4044 (225 mm or more), and the flow rate was increased as the water / mortar ratio was increased. As shown in FIG. 2, the coagulation test was performed within 1 hour (60 minutes) and 10 hours (600 minutes) of the freshness based on KS F 4044, and the coagulation time was increased with increasing water / mortar ratio.

압축강도는 표 3과 같이 재령 1일에는 물/모르타르 = 0.08 ~ 0.1일 때 110 ~ 130MPa, 재령 7일에는 130 ~ 140MPa, 재령 28일에는 140 ~ 145MPa로 측정되었다. 물/모르타르 비에 따른 압축강도 결과를 보면 도 4와 같이 재령 1일에 물/모르타르 = 0.08일 때 가장 높은 값으로 측정되었고, 물/모르타르 비가 증가할수록 측정값이 감소하는 경향을 나타내었다. 재령 7일에는 물/모르타르 비와 상관없이 비슷한 측정값을 나타내었으며, 재령 28일에도 물/모르타르 비와 상관없이 비슷한 측정값을 나타내었다.Compressive strength was measured as 110 ~ 130MPa at water / mortar = 0.08 ~ 0.1, 130 ~ 140MPa at 7 days, and 140 ~ 145MPa at 28 days of age in the first day of age in Table 3. As shown in FIG. 4, the water / mortar ratio was the highest in water / mortar = 0.08 on the first day of the year and the measured value decreased with increasing water / mortar ratio. Similar measurements were obtained regardless of the water / mortar ratio on the 7th day of the year, and similar measurements were obtained on the 28th day of the year regardless of the water / mortar ratio.

휨강도는 표 3과 같이 재령 1일에는 물/모르타르 = 0.08 ~ 0.1일 때 13 ~ 17MPa, 재령 7일에는 19 ~ 22MPa, 재령 28일에는 21 ~ 23MPa로 측정되었다. 물/모르타르 비에 따른 휨강도 결과를 보면 도 3과 같이 물/모르타르 = 0.85일 때 가장 높은 값으로 측정되었다. 재령 7일에는 물/모르타르 비가 증가할수록 측정값이 감소하는 경향을 나타내었으며, 재령 28일에는 물/모르타르 비가 증가할수록 측정값이 감소하는 경향을 나타내었다.The flexural strength was measured as 13 ~ 17MPa at water / mortar = 0.08 ~ 0.1, 19 ~ 22MPa at 7 days, and 21 ~ 23MPa at 28 days of age in the first day of age in Table 3. The results of the bending strength according to the water / mortar ratio are as shown in FIG. 3, which is the highest value when water / mortar = 0.85. As the water / mortar ratio increased, the measured value tended to decrease. On the 28th day, the measured value decreased with increasing water / mortar ratio.

구 분division 압축강도 [MPa]Compressive strength [MPa] 휨강도 [MPa]Flexural strength [MPa] 1일1 day 7일7 days 28일28th 1일1 day 7일7 days 28일28th (가)(end) 130.11130.11 136.73136.73 142.37142.37 15.1115.11 21.6421.64 22.9422.94 (나)(I) 123.33123.33 137.19137.19 143.50143.50 16.2816.28 21.5921.59 23.1623.16 (다)(All) 119.57119.57 134.35134.35 144.18144.18 17.2217.22 20.2120.21 22.8022.80 (라)(la) 116.16116.16 132.61132.61 142.57142.57 15.1015.10 20.0920.09 21.4121.41 (마)(hemp) 115.69115.69 137.49137.49 142.21142.21 13.3713.37 19.8719.87 20.7020.70

초고성능 그라우트 저온(2℃ ~ 4℃) 실험Ultra high performance grout Low temperature (2 ℃ ~ 4 ℃) Experiment

(1) 실험방법(1) Experimental method

하기 표 4에 나타난 바와 같이 초고성능 그라우트 혼합은 저온실험실(온도 3℃±1℃, 상대 습도 70% 이상)에서 초고성능 모르타르에 물을 넣고, 모르타르 혼합기로 1속(공전 62회전, 자전 140회전)으로 3분 혼합하고, 그 후 2속(공전 125회전, 자전 285회전)으로 조정하여 2분 동안 혼합하는 방식으로 수행하였다. 이렇게 혼합된 초고성능 그라우트에 대해 플로시험과 응결시험을 실시하였다. 초고성능 그라우트의 플로시험과 응결시험은 상온 실험과 동일하게 KS F 4044(수경성 시멘트 무수축 그라우트) 기준으로 측정하였으며, 초고성능 그라우트 퍼짐이 정지된 시점에서 직교하는 2방향의 지름을 측정하였다.As shown in Table 4 below, the ultra-high performance grout mixing was carried out in a low temperature laboratory (temperature 3 ° C ± 1 ° C, relative humidity 70% or higher), water was added to the ultra high performance mortar, ) For 3 minutes, and then the mixture was adjusted to 2-speed (125 revolutions per revolution, 285 revolutions per revolution) and mixed for 2 minutes. Flow tests and coagulation tests were carried out on the ultra-high-performance grout. The flow and coagulation tests of the ultra high performance grout were carried out in accordance with KS F 4044 (Hydraulic Cement Unshrinkable Grout) as in the room temperature test. Diameters of the two orthogonal directions were measured at the point of time when the ultra high performance grout spread was stopped.

한편, 그라우트의 압축강도 시험은 50㎜×50㎜ Cubic 몰드를 사용하여 제작된 시험체에 대해 측정하였다. 시험체 양생은 시험체 성형 후 온도 3℃±1℃, 상대 습도 90% 이상인 저온실험실에서 24시간 경과 후 탈형하여 재령 1일 압축강도 시험을 실시하였으며, 탈형된 시험체는 온도 2℃±1℃, 상대 습도 90% 이상인 저온실험실에서 양생하여 재령 7일, 28일 압축강도 시험을 실시하였다.On the other hand, the compressive strength test of the grout was carried out on a specimen manufactured using a 50 mm x 50 mm cubic mold. The specimens were demolded after 24 hours in a low temperature laboratory with a temperature of 3 ° C ± 1 ° C and a relative humidity of 90% or higher after molding. The specimens were subjected to a 1-day compressive strength test at a temperature of 2 ° C ± 1 ° C, Compressive strength test was carried out at 7 days and 28 days at the lower temperature of 90% or more.

또한, 그라우트의 휨강도 시험은 40㎜×40㎜×160㎜ 몰드를 사용하여 제작된 시험체에 대해 측정하였다. 시험체 양생은 시험체 성형 후 온도 2℃±1℃, 상대 습도 90% 이상인 저온실험실에서 24시간 경과 후 탈형하여 재령 1일 휨강도 시험을 실시하였으며, 탈형된 시험체는 온도 2℃±1℃의 습윤상태(습도 90% 이상)로 양생하여 재령 7일, 28일 휨강도 시험을 실시하였다.
The bending strength test of the grout was carried out on a specimen manufactured using a mold of 40 mm x 40 mm x 160 mm. The specimen was cured at a temperature of 2 ° C ± 1 ° C and a relative humidity of 90% or higher after 24 hours in the laboratory. The cured specimens were subjected to one day bending strength test. The specimen was wetted at a temperature of 2 ° C ± 1 ° C Humidity of 90% or more), and the bending strength test was conducted on the 7th and 28th days of the year.

(2) 실험결과(2) Experimental results

그라우트 플로시험 결과는 도 5, 응결시험 결과는 도 6, 압축강도 시험결과는 도 7, 휨강도 시험 결과는 도 8에 각각 나타내었다.The results of the grout flow test are shown in Fig. 5, the results of the condensation test are shown in Fig. 6, the compressive strength test results are shown in Fig. 7, and the results of bending strength test are shown in Fig.

플로 시험은 도 5에서 보는 바와 같이 물/모르타르 비가 8.0일 때 210㎜, 물/모르타르 비가 10.0일 때 275㎜ 측정되었으며. 물/모르타르 비가 증가할수록 플로 결과가 증가하는 경향을 나타내었다. 응결시간은 물/모르타르 비가 8.0일 때 종결시간이 2시간 45분, 물/모르타르 비가 10.0일 때 3시간 35분 측정되었으며, 또한 물/모르타르 비가 증가할수록 응결시간이 증가하는 것으로 나타내었다.As shown in FIG. 5, the flow test was performed at a water / mortar ratio of 8.0 and a water / mortar ratio of 10.0, respectively. As the water / mortar ratio increased, the flow rate tended to increase. The curing time was measured as 3 hours and 35 minutes when the water / mortar ratio was 8.0 and the termination time was 2 hours and 45 minutes. When the water / mortar ratio was 10.0, the curing time was increased as the water / mortar ratio was increased.

압축강도는 표 5와 같이 재령 1일에는 물/모르타르 = 0.08 ~ 0.1일 때 65 ~ 75MPa, 재령 7일에는 65 ~ 95MPa, 재령 28일에는 110 ~ 120MPa로 측정되었다. 물/모르타르 비에 따른 압축강도 결과를 보면 도 7과 같이 물/모르타르 = 0.80 ~ 0.95 일 때는 재령이 경과함에 따라 측정값이 비슷하게 나타났지만, 물/모르타르 = 0.1일 때에는 재령별로 10MPa 정도 낮게 측정되었다.Compressive strengths were measured as 65 ~ 75MPa for water / mortar = 0.08 ~ 0.1, 65 ~ 95MPa for 7 days, and 110 ~ 120MPa for 28 days of age in the first day of age. As shown in FIG. 7, when the water / mortar ratio is 0.80 to 0.95, the measured values are similar to each other as the age elapses. However, when the water / mortar ratio is 0.1, .

휨강도는 표 5와 같이 재령 1일에는 물/모르타르 = 0.08 ~ 0.1일 때 8 ~ 10MPa, 재령 7일에는 12 ~ 14MPa, 재령 28일에는 14 ~ 15MPa로 각각 측정되었다. 물/모르타르 비에 따른 휨강도 결과를 보면 도 8과 같이 물/모르타르 = 0.80일 때 가장 높은 값으로 측정되었고, 물/모르타르 비가 증가할수록 측정값이 감소하는 경향을 나타내었다. 재령 7일과 28일에는 물/모르타르 비와 상관없이 재령이 경과함에 따라 비슷한 측정값을 나타내었다.The flexural strength was measured as 8 ~ 10MPa for water / mortar = 0.08 ~ 0.1, 12 ~ 14MPa for 7 days, and 14 ~ 15MPa for 28 days of age at the first day of age in Table 5. As shown in FIG. 8, the bending strength according to the water / mortar ratio was the highest at water / mortar = 0.80 and the measured value decreased with increasing water / mortar ratio. On the 7th and 28th days of the year, similar measurements were obtained as age elapsed regardless of the water / mortar ratio.

구분division 초고성능 모르타르 (중량%)Ultra high performance mortar (wt%) 물 (중량%)Water (% by weight) (가)(end) 100100 8.08.0 (나)(I) 100100 8.58.5 (다)(All) 100100 9.09.0 (라)(la) 100100 9.59.5 (마)(hemp) 100100 10.010.0

구 분division 압축강도 [MPa]Compressive strength [MPa] 휨강도 [MPa]Flexural strength [MPa] 1일1 day 7일7 days 28일28th 1일1 day 7일7 days 28일28th (가)(end) 70.5270.52 90.7190.71 118.36118.36 10.1110.11 12.9412.94 14.2714.27 (나)(I) 72.3972.39 88.5188.51 120.53120.53 9.619.61 13.1213.12 14.7214.72 (다)(All) 70.1970.19 88.9688.96 120.36120.36 9.649.64 13.6513.65 14.3714.37 (라)(la) 73.4373.43 91.2891.28 119.99119.99 9.369.36 13.4513.45 14.2814.28 (마)(hemp) 65.0465.04 86.3186.31 114.17114.17 8.878.87 12.4612.46 14.2414.24

성능 시험Performance test

(1) 실험방법(1) Experimental method

성능시험은 초고성능 그라우트의 배합은 초고성능 모르타르 100 중량%, 물 9 중량%를 혼합하였으며, 혼합 방법은 초고성능 모르타르에 물을 넣고 모르타르 혼합기로 1속(공전 62회전, 자전 140회전)으로 3분 혼합하고, 그 후 2속(공전 125회전, 자전 285회전)으로 조정하여 2분 동안 혼합하는 방식으로 수행하였다. 이렇게 혼합된 초고성능 그라우트에 대해 동결융해저항성 시험, 구조물 균열 저항성 시험, 염소이온저항성 시험을 실시하였다. 이는 해양환경에 놓인 구조물은 조수 간만에 의한 침식작용, 건습 반복에 의한 건조수축 및 팽창, 동경융해의 작용, 침투한 유해이온과 시멘트 수화물의 반응 및 염소이온에 의한 내구성 저하 상태를 알아보기 위한 시험이다.In the performance test, ultra high performance grout was mixed with 100% by weight of ultra high performance mortar and 9% by weight of water. In the mixing method, water was added to ultra high performance mortar and the mixture was mixed with a mortar mixer in a first speed (62 revolutions, 140 revolutions) Minute, followed by adjusting to two speeds (125 revolutions per revolution, 285 revolutions per revolution) and mixing for 2 minutes. The super - high - performance grout was tested for freeze - thaw resistance, structure crack resistance and chloride ion resistance. This is a test to determine the structure of the marine environment due to erosion due to the tide of the tide, the shrinkage and expansion due to dry and wet repetition, the effect of long - term melting, the reaction of harmful ions and cement hydrates, .

초고성능 그라우트의 동결융해저항성 시험은 KS F 2456 중 혹독한 방법인 A법으로 실시하였으며, 균열저항성 시험은 AASHTO PP 34-99로 실시하여 구속된 경화체의 균열 저항성을 평가하는 시험을 실시하였다. 또한 염소 이온저항성 시험은 KS F 2711로 실시하여 경화체의 염소이온의 침투에 대한 저항성을 빠른 시간에 알아내기 위한 목적으로 경화체의 전기전도도를 결정하는 시험 방법으로 실시하였다.
The freezing and thawing resistance test of ultra high performance grout was carried out using A method which is the severer method of KS F 2456 and the crack resistance test was conducted with AASHTO PP 34-99 to evaluate the crack resistance of the constrained cured product. The chloride ion resistance test was carried out with KS F 2711 as a test method to determine the electrical conductivity of the cured product in order to find the resistance of the cured product to the penetration of the chloride ion quickly.

(2)실험결과(2) Experimental results

도 9는 동결융해저항시험을 실시하면서 30 cycle당 공시체의 상대동탄성계수 변화를 나타낸 그래프이다. 그래프에서 알 수 있듯이 총 300 cycle을 시험해 본 결과, cycle이 진행함에 따라 상대동탄성계수의 변화가 거의 없는 것을 확인할 수 있었다. 이는 초고성능 그라우트는 내구성이 매우 우수하고, 치밀한 구조를 가지고 있어 동해저항성이 있어 뛰어난 성능을 발휘한 것이다.9 is a graph showing changes in relative dynamic modulus of a specimen per 30 cycles while performing a freeze-thaw resistance test. As can be seen from the graph, a total of 300 cycles were tested. As the cycle progressed, it was confirmed that there was almost no change in the elastic modulus. This is because the ultra-high-performance grout has excellent durability and has a dense structure.

도 10은 균열저항성 시험한 결과이며 재령이 경과함에 따라 균열 발생이 없었으며, 재령 28일까지 균열 발생이 없었다. 이는 초고성능 그라우트의 수축 및 팽창에 의한 균열발생이 유리하게 적용된 것이다.Fig. 10 shows the result of the crack resistance test. As the age elapsed, no crack occurred, and no crack occurred until 28 days of age. This is advantageously applied to the generation of cracks due to shrinkage and expansion of ultra-high performance grout.

염소 이온 저항성 시험은 재령 28일 측정된 전기전도도가 100C(Coulom) 이하로 측정되었으며, 이 측정값은 염소 이온이 거의 침투되지 않는 수치이며, 염소 이온 침투에 의한 구조체의 영향은 거의 받지 않을 것으로 판단된다.The chloride ion resistance test was conducted at 28 days of age and the electric conductivity was measured to be less than 100 C (Coulom). The measured value is a value at which almost no chlorine ions are penetrated, and the influence of the structure due to chlorine ion penetration do.

Claims (3)

보통포틀랜트시멘트(OPC) 20 ~ 25 중량%, 알루미나시멘트 9 ~ 12중량%, 천연무수석고 10.5 ~ 14 중량%, 고로수쇄슬래그 미분말 3 ~ 7중량%, 실리카 흄 5 ~ 8 중량%, 첨가제 1.0 ~ 2.0 중량%, 규산질 골재 또는 제강풍쇄슬래그 골재 40 ~ 50 중량%를 포함하여 이루어진 모르타르 100 중량%, 물은 상기 모르타르 대비 8.0 ~ 10.0 중량%를 첨가하여 이루어지며,
상기 첨가제는 그라우트의 전체 중량 대비 유동화제 0.3 ~ 0.5 중량%와, 지연제 0.2 ~ 0.3 중량%와, 소포제 0.3 ~ 0.4 중량%와, 촉진제 0.1 ~ 0.4 중량%로 이루어진 것을 특징으로 하는 해상풍력발전기용 그라우트 조성물.
A mixture of 20 to 25% by weight of Portland cement (OPC), 9 to 12% by weight of alumina cement, 10.5 to 14% by weight of natural anhydrous gypsum, 3 to 7% by weight of blast furnace slag fine powder, 5 to 8% by weight of silica fume, To 2.0% by weight of silicate aggregate or 40 to 50% by weight of a silicate aggregate or a high-strength slag aggregate, and 8.0 to 10.0% by weight of water relative to the mortar,
Wherein the additive comprises 0.3 to 0.5 wt% of a fluidizing agent, 0.2 to 0.3 wt% of a retarder, 0.3 to 0.4 wt% of a defoamer, and 0.1 to 0.4 wt% of an accelerator relative to the total weight of the grout. Grout composition.
삭제delete 삭제delete
KR1020140079254A 2014-06-26 2014-06-26 Grout composition for marine wind velocity generator KR101542204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140079254A KR101542204B1 (en) 2014-06-26 2014-06-26 Grout composition for marine wind velocity generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140079254A KR101542204B1 (en) 2014-06-26 2014-06-26 Grout composition for marine wind velocity generator

Publications (1)

Publication Number Publication Date
KR101542204B1 true KR101542204B1 (en) 2015-08-06

Family

ID=53885547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140079254A KR101542204B1 (en) 2014-06-26 2014-06-26 Grout composition for marine wind velocity generator

Country Status (1)

Country Link
KR (1) KR101542204B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604063A (en) * 2015-12-28 2016-05-25 中交第三航务工程局有限公司 Grouting technology for offshore wind power jackets
CN110028295A (en) * 2019-05-21 2019-07-19 四川华磷科技有限公司 A kind of mating grouting material of ECP wallboard and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094675A (en) 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk Cement mortar composition for grout
JP2008184353A (en) 2007-01-29 2008-08-14 Kajima Corp Mortar used for repair and tunnel maintenance and repair method using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094675A (en) 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk Cement mortar composition for grout
JP2008184353A (en) 2007-01-29 2008-08-14 Kajima Corp Mortar used for repair and tunnel maintenance and repair method using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604063A (en) * 2015-12-28 2016-05-25 中交第三航务工程局有限公司 Grouting technology for offshore wind power jackets
CN110028295A (en) * 2019-05-21 2019-07-19 四川华磷科技有限公司 A kind of mating grouting material of ECP wallboard and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110256023B (en) Anti-freezing, anti-permeability and anti-cracking concrete and preparation method thereof
Mohseni et al. Combined effects of metakaolin, rice husk ash, and polypropylene fiber on the engineering properties and microstructure of mortar
BR102014002644B1 (en) FIRE PROTECTION MORTAR
KR100666312B1 (en) Composition of polymer-modified cement paste and joining method of precast product
KR101809485B1 (en) Ultra rapid harding,high early strength waterproof and mothproof mortar composition
Topcu High-volume ground granulated blast furnace slag (GGBFS) concrete
Barbero-Barrera et al. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes
Wardhono et al. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature
KR101542204B1 (en) Grout composition for marine wind velocity generator
CN103553408A (en) Flexible water-proofing powder and preparation method
KR20100028693A (en) A method for manufacturing concrete having high performance
CN106747056B (en) Ultrahigh-strain high-strength thermal insulation material and preparation method thereof
KR20120078273A (en) Non sintered cement mortar composition using nanoslag and alkali activator
CN112341123A (en) Seawater corrosion resistant ceramic tile binder and production method thereof
CN111848068A (en) Rapid repair mortar for horizontal surface defects and preparation method thereof
CN111646764A (en) Whisker modified hydrated magnesium silicate material and preparation method and application thereof
Zhang et al. Effect of fly ash on durability of high performance concrete composites
Zhao et al. Study on frost resistance of nano SiO2 cement concrete
Yu et al. Study on corrosion and destroy mechanism of concrete under acidic conditions
KR101456024B1 (en) Eco-friendly concrete compostion used basement and shrinkage-reducing construction method using the same
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
Li et al. Effect of EVA emulsion on the properties of corn stalk magnesium oxychloride cement composites
KR102111254B1 (en) Composition for shrinkage reduction cement, methods for manufacturing thesame and mortar composition
CN109111185B (en) Fiber modified sulfur-oxygen-magnesium-based heat-insulating material
Na et al. Experimental investigation of material properties and self-healing ability in a blended cement mortar with blast furnace slag

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 5