JP2012231669A - Coil mechanism of rotary motor - Google Patents

Coil mechanism of rotary motor Download PDF

Info

Publication number
JP2012231669A
JP2012231669A JP2012159292A JP2012159292A JP2012231669A JP 2012231669 A JP2012231669 A JP 2012231669A JP 2012159292 A JP2012159292 A JP 2012159292A JP 2012159292 A JP2012159292 A JP 2012159292A JP 2012231669 A JP2012231669 A JP 2012231669A
Authority
JP
Japan
Prior art keywords
plate
bobbin
coil
groove
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159292A
Other languages
Japanese (ja)
Inventor
Hirohide Konishi
博英 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012159292A priority Critical patent/JP2012231669A/en
Publication of JP2012231669A publication Critical patent/JP2012231669A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coil mechanism of a rotary motor that a coil having a strand arrayed and wound is mounted around a salient pole of a stator and the output of the rotary motor is increased.SOLUTION: There is provided the coil mechanism of the rotary motor including coils formed by winding strands around a cover member made of an insulating material keeping a state of insulation from the stator and mounted around respective salient poles of the stator via the cover member, and the cover member is constituted as an annular structure formed by coupling a plurality of bobbins 2 for mounting the coils around the respective salient poles of the stator. Each bobbin 2 includes a plurality of cylindrical parts 22 individually covering surfaces of the salient poles while the strands are wound, and flanges 24i, 24o projecting inner and outer-diameter ends 22i, 22o of the cylindrical part 22. The cylindrical part 22 of the bobbin 2 is provided with plate members 4 independent of the bobbin 2 at both ends in a rotary shaft direction, and the plate member 4 has a plurality of groove parts 4a, 4b, and 4c for guiding and arraying the strands formed along a winding direction of the strands when the strands are wound.

Description

本発明は、ステータが複数の突極を有し、当該突極にコイルが巻装される回転電動機のコイル機構の改良に関する。   The present invention relates to an improvement in a coil mechanism of a rotary motor in which a stator has a plurality of salient poles and a coil is wound around the salient poles.

例えば、このようなコイル機構は、合成樹脂などの絶縁材を環状に成形して、ステータを覆うための絶縁カバーと、当該絶縁カバーに巻装されるコイルから構成される。絶縁カバーは、ステータの各突極に対してコイルを巻装させるためのボビンが複数個連結された環状の構造体として構成されており、各ボビンには、素線が巻回された状態で各突極の表面を個別に覆う複数の筒状部と、前記筒状部の内外径端部から回転電動機の回転軸方向の両側へ突出するフランジと、当該筒状部の外径端部から周方向の両側へ突出する鍔部が備えられている。なお、各ボビンは、筒状部の内径側を相互に連結させることで環状の構造体(すなわち、絶縁カバー)を形成している。   For example, such a coil mechanism is formed of an insulating cover for covering a stator by forming an insulating material such as synthetic resin in an annular shape and a coil wound around the insulating cover. The insulating cover is configured as an annular structure in which a plurality of bobbins for winding a coil around each salient pole of the stator are connected, and each bobbin has a wire wound around it. From a plurality of cylindrical portions individually covering the surface of each salient pole, a flange projecting from the inner and outer diameter end portions of the cylindrical portion to both sides in the rotation axis direction of the rotary motor, and an outer diameter end portion of the cylindrical portion The collar part which protrudes to the both sides of the circumferential direction is provided. Each bobbin forms an annular structure (that is, an insulating cover) by connecting the inner diameter sides of the cylindrical portions to each other.

この場合、コイルは、絶縁カバーの各ボビンに対して素線を複数層、かつ複数列に巻回することで形成され、隣り合う突極に挟まれた空間(スロット)にボビンを介して収容されている。回転電動機の出力は、スロットに収容されたコイルの巻線数が多いほど高められるため、限られたスロットにより多くの巻線を収容させるべく、コイルを形成する際には、巻線時における素線のずれや崩れを防止し、可能な限り一定の位置に整列して巻線させることが好ましい。すなわち、コイル形成時において、素線のずれや崩れが生じると必然的にコイルの巻線数が減少し、スロットに収容されるコイルの巻線数が少なくなり、回転電動機の出力低下を招くこととなる。   In this case, the coil is formed by winding a plurality of layers of wires on each bobbin of the insulating cover in a plurality of rows, and is accommodated in a space (slot) sandwiched between adjacent salient poles via the bobbin. Has been. Since the output of the rotary motor increases as the number of windings of the coil accommodated in the slot increases, when forming a coil to accommodate more windings in a limited slot, the element at the time of winding It is preferable to prevent the deviation and breakage of the wire and to wind the wires in a fixed position as much as possible. In other words, when the coil is formed, if the displacement or collapse of the wire occurs, the number of windings of the coil inevitably decreases, and the number of windings of the coil accommodated in the slot decreases, leading to a decrease in the output of the rotary motor. It becomes.

コイル形成時の巻線作業は、自動巻線機によって素線をボビンに対して巻回させることで行われており、一般的には、その生産効率を上昇させるべく、素線を高速でスロット内(すなわち、ステータの突極間)に落とし込み、ボビンの筒状部に対して径方向の一端側のフランジから他端側のフランジに至るまでの領域へ巻回させてコイルが形成されている。一例として、アウター型のステータの場合、素線は筒状部の外側から高速で落とし込まれ、当該筒状部に対して外側から各層ごとに巻回されるが、その際、巻回される素線に対しては外側へ広がろうとする力が働いており、一旦巻回された素線のずれや崩れが生じやすい。   Winding work at the time of coil formation is performed by winding an element wire around a bobbin by an automatic winding machine. Generally, in order to increase the production efficiency, the element wire is slotted at a high speed. The coil is formed by being wound into the inside (that is, between the salient poles of the stator) and wound around a region from the flange on one end side in the radial direction to the flange on the other end side with respect to the cylindrical portion of the bobbin. . As an example, in the case of an outer-type stator, the strand is dropped at a high speed from the outside of the cylindrical portion, and is wound for each layer from the outside with respect to the cylindrical portion. A force to spread outward acts on the strands, and the strands once wound are likely to shift or collapse.

そこで、従来から、このようなコイルを形成する際における素線のずれや崩れを防止すべく、各種の方策が講じられており、例えば、特許文献1には、絶縁カバー(具体的には、ボビンの筒状部)の表面に素線を巻回させる際、当該素線をガイドするための複数の溝(以下、ガイド溝という)を設けることで、コイルの整列性を確保したコイル機構(ステータ)の構成が一例として開示されている。   Therefore, conventionally, various measures have been taken to prevent the displacement and collapse of the strands when forming such a coil. For example, Patent Document 1 discloses an insulating cover (specifically, Coil mechanism that ensures the alignment of the coil by providing a plurality of grooves (hereinafter referred to as guide grooves) for guiding the wire when winding the wire on the surface of the bobbin tubular portion) The structure of the stator is disclosed as an example.

ところで、上述したように、回転電動機を高出力化させるためには、スロット内にできるだけ多くの素線が巻回されたコイルを収容させることが好ましく、隣り合う素線同士の間隔は極力狭める必要がある。ここで、自動巻線機によってコイルを形成する際、ボビンに落とし込まれて巻線される素線は、その巻線作業時の巻回条件により変形する場合がある。その変形量は、素線の種類などにより異なるが、概ね3〜10%程度となる。また、素線自体にも、通常市販されている製品には±10%程度で径寸法に対してばらつきが生じている。   By the way, as described above, in order to increase the output of the rotary motor, it is preferable to accommodate a coil in which as many strands as possible are wound in the slot, and it is necessary to reduce the interval between adjacent strands as much as possible. There is. Here, when the coil is formed by the automatic winding machine, the wire that is dropped into the bobbin and wound may be deformed depending on the winding condition during the winding operation. The amount of deformation is approximately 3 to 10% although it varies depending on the type of wire. In addition, the strands themselves have a variation in diameter of about ± 10% in a commercially available product.

したがって、これらの変形量を考慮してガイド溝の溝間隔を最適な幅に設定することで、素線を巻回させる際、当該素線が隣のガイド溝に飛んでしまうこと(いわゆる、ずれ)や、上位層の素線に崩れなどが生じることを防止し、より多くの素線が巻回されたコイルを形成することができる。   Therefore, by considering the amount of deformation and setting the groove spacing of the guide grooves to an optimum width, when winding the strands, the strands fly into the adjacent guide grooves (so-called misalignment). ), Or collapse of the higher-layer wires, and a coil in which more wires are wound can be formed.

上述したような巻線作業時に素線に生じる変形は、巻線されたコイルが収容されるスロットの形状、ステータの高さ(突極の積厚)、ボビン(絶縁カバー)の形状、あるいは素線の品種など、さまざまな条件及び要因が重畳されて生じるため、予め机上計算によってガイド溝を最適な形状(具体的には、最適な溝間隔)にしておくことは容易ではない。例えば、想定される各種の形状を成すボビン(絶縁カバー)を多数用意しておき、必要に応じて巻線作業を中断して最適なボビン(絶縁カバー)を選択することや、実際の変形状態に応じて、ガイド溝を最適な形状(具体的には、最適な溝間隔)に適宜改造することで、より多くの素線が巻回されたコイルを形成することは可能である。しかしながら、多種多様のボビン(絶縁カバー)を大量に成形するための金型の製作コストや製作期間などを考慮すれば、実施するには限界がある。   The deformation that occurs in the wire during the winding operation as described above is the shape of the slot that accommodates the wound coil, the height of the stator (the thickness of the salient poles), the shape of the bobbin (insulating cover), or the wire. Since various conditions and factors such as the line type are superimposed, it is not easy to set the guide grooves in an optimal shape (specifically, an optimal groove interval) by desktop calculation in advance. For example, prepare a large number of bobbins (insulation covers) that have various possible shapes, interrupt the winding work if necessary, and select the optimal bobbin (insulation cover), or the actual deformation state Accordingly, it is possible to form a coil around which more strands are wound by appropriately modifying the guide groove into an optimal shape (specifically, an optimal groove interval). However, there is a limit to implementation in consideration of the manufacturing cost and manufacturing period of a mold for forming a large variety of bobbins (insulating covers) in large quantities.

このため、例えは、特許文献2には、絶縁カバー(具体的には、ボビンの筒状部)の表面に対して接着剤を塗布し、当該接着剤でガイド溝を簡易に形成するための方法、及び当該方法によるコイル機構(ステータ)の構成が一例として開示されている。   For this reason, for example, in Patent Document 2, an adhesive is applied to the surface of an insulating cover (specifically, a cylindrical portion of a bobbin), and a guide groove is simply formed with the adhesive. A method and a configuration of a coil mechanism (stator) according to the method are disclosed as an example.

特許第2975902号公報Japanese Patent No. 2975902 特開平10−174378号公報JP-A-10-174378

しかしながら、接着剤でガイド溝を簡易に形成した場合、接着剤の特性から複雑な形状を作ることには限界がある。また、接着剤で成るガイド溝と樹脂製などのボビン(絶縁カバー)との材質の相違によって、ガイド溝の溝自体に変形が生じる場合や形態精度(形状精度及び寸法精度)が十分確保できない場合、あるいは、接着剤の充填不足によりガイド溝の溝自体が形状不良となる場合もある。
このため、各ボビンに同一形状、かつ同一寸法のガイド溝が設けられた絶縁カバーを構成することは容易ではなく、結果として、ステータの複数の突極(具体的には、ボビン)に、素線を整列された状態で巻線させた同一構成のコイルを巻装することは非常に困難となる。
However, when the guide groove is simply formed with an adhesive, there is a limit to making a complicated shape from the characteristics of the adhesive. In addition, when the guide groove made of adhesive and the bobbin (insulating cover) made of resin differ in material, the guide groove itself may be deformed or the form accuracy (shape accuracy and dimensional accuracy) cannot be secured sufficiently. Alternatively, the guide groove itself may become defective due to insufficient filling of the adhesive.
Therefore, it is not easy to configure an insulating cover in which each bobbin is provided with a guide groove having the same shape and the same size, and as a result, a plurality of salient poles (specifically, bobbins) of the stator are not covered. It becomes very difficult to wind a coil having the same configuration in which the wires are wound in an aligned state.

本発明は、このような課題を解決するためになされており、その目的は、ステータの複数の突極(具体的には、ボビン)に素線が整列して巻回されたコイルを容易に巻装させ、回転電動機の高出力化を図ることを可能とする回転電動機のコイル機構を提供することにある。   The present invention has been made in order to solve such a problem, and an object of the present invention is to easily provide a coil in which strands are wound around a plurality of salient poles (specifically, bobbins) of a stator. An object of the present invention is to provide a coil mechanism for a rotary motor that can be wound to increase the output of the rotary motor.

このような目的を達成するために、本発明に係る回転電動機のコイル機構は、回転電動機に組み込まれ、径方向へ突出する複数の突極が設けられた環状のステータとの絶縁状態を保つために当該ステータに装着される絶縁材製のカバー部材と、前記カバー部材に素線を巻回させて形成され、当該カバー部材を介して前記ステータの各突極に巻装されるコイルとを備えている。かかるコイル機構において、カバー部材は、ステータの各突極に対してコイルを巻装させるためのボビンが複数個連結された環状の構造体として構成され、各ボビンは、前記素線が巻回された状態で前記各突極の表面を個別に覆う複数の筒状部と、前記筒状部の内外径端部から前記回転電動機の回転軸方向の両側へ突出するフランジとを備えている。そして、前記ボビンの筒状部には、前記回転軸方向の両端部に当該ボビンとは別体を成すプレート部材が設けられ、当該プレート部材には、前記コイルの素線が巻回される際、前記素線をガイドして整列させるための複数の溝部が当該素線の巻回方向に沿って形成されている。
このような構成によれば、ステータの複数の突極(具体的には、ボビン)に整列された状態でコイルを容易に巻装させ、回転電動機の高出力化を図ることができる。
In order to achieve such an object, the coil mechanism of the rotary electric motor according to the present invention is incorporated in the rotary electric motor in order to maintain an insulation state with the annular stator provided with a plurality of salient poles protruding in the radial direction. A cover member made of an insulating material attached to the stator, and a coil formed by winding a wire around the cover member and wound around each salient pole of the stator via the cover member. ing. In such a coil mechanism, the cover member is configured as an annular structure in which a plurality of bobbins for winding a coil around each salient pole of the stator are connected, and each bobbin is wound with the wire. A plurality of cylindrical portions that individually cover the surfaces of the salient poles, and flanges that protrude from the inner and outer diameter end portions of the cylindrical portions to both sides in the rotational axis direction of the rotary electric motor. The cylindrical portion of the bobbin is provided with a plate member that is separate from the bobbin at both ends in the rotational axis direction, and the coil wire is wound around the plate member. A plurality of grooves for guiding and aligning the strands are formed along the winding direction of the strands.
According to such a configuration, it is possible to easily wind the coil while being aligned with a plurality of salient poles (specifically, bobbins) of the stator, and to increase the output of the rotary motor.

この場合、前記プレート部材には、前記ボビンのフランジと係合して径方向へ位置決めするための径方向固定部が設けられているとともに、当該ボビンの筒状部の前記回転軸方向の端面と係合して周方向へ位置決めするための周方向固定部が設けられている。
これにより、プレート部材をボビンの筒状部に対して径方向、並びに周方向の双方に容易に位置決めすることができ、当該筒状部に安定して固定することができる。この結果、巻線作業時におけるプレート部材の姿勢が安定し、当該巻線作業をスムーズに行うことができる。
In this case, the plate member is provided with a radial fixing portion for engaging with the flange of the bobbin and positioning in the radial direction, and the end surface of the cylindrical portion of the bobbin in the rotational axis direction. A circumferential fixing portion for engaging and positioning in the circumferential direction is provided.
Accordingly, the plate member can be easily positioned in both the radial direction and the circumferential direction with respect to the cylindrical portion of the bobbin, and can be stably fixed to the cylindrical portion. As a result, the posture of the plate member during the winding operation is stabilized, and the winding operation can be performed smoothly.

また、前記プレート部材には、前記ボビンの筒状部と係合する面とは反対側の平面、並びに当該平面と前記素線の巻回方向に沿って連続する両側面にそれぞれ溝部が形成されており、当該溝部は、前記巻回方向に沿った直線状を成す複数の凸状突起を前記平面、並びに両側面に対して等間隔で配することにより、当該凸状突起の間に形成される複数の溝として構成されている。
これにより、プレート部材に対する溝部の形成を容易に行うことができるとともに、当該溝部の溝に素線を落とし込んで巻回させることで、コイルを構成する素線を容易に整列させることができる。この結果、スロットに収容されるコイルの単位当たりの巻線数を増やすことができ、回転電動機の高出力化を図ることができる。
Further, the plate member is provided with grooves on the plane opposite to the plane that engages with the cylindrical portion of the bobbin, and on both sides that are continuous with the plane along the winding direction of the element wire. The groove portion is formed between the convex projections by arranging a plurality of convex projections that form a straight line along the winding direction at equal intervals with respect to the plane and both side surfaces. Are configured as a plurality of grooves.
Accordingly, the groove portion can be easily formed on the plate member, and the strands constituting the coil can be easily aligned by dropping and winding the strand in the groove of the groove portion. As a result, the number of windings per unit of the coil accommodated in the slot can be increased, and the output of the rotary motor can be increased.

なお、前記プレート部材の平面と両側面とは、なだらかな曲面状に連続させることが好ましい。これにより、ボビンの筒状部にプレート部材を取り付けた状態で素線を巻回させ、コイルを形成する際、プレート部材の肩部(前記平面と両側面との連続部)において、巻回される素線がプレート部材と干渉することがなく、巻線時における張力が当該肩部に集中せず、有効にこれを前記平面の全体へ分散させることができる。この結果、巻線作業をスムーズに行うことができるとともに、当該巻線作業時における素線の変形を有効に抑止することができる。
また、前記プレート部材は、絶縁材で構成すればよい。これにより、ボビンの筒状部にプレート部材を取り付けた場合であっても、ステータとの絶縁状態を保ち続けることができる。
In addition, it is preferable that the flat surface and both side surfaces of the plate member are continuously curved. As a result, the wire is wound in the state where the plate member is attached to the cylindrical portion of the bobbin, and when the coil is formed, the wire is wound at the shoulder portion of the plate member (the continuous portion between the flat surface and both side surfaces). The element wire does not interfere with the plate member, and the tension at the time of winding does not concentrate on the shoulder portion, which can be effectively distributed over the entire plane. As a result, the winding operation can be performed smoothly and the deformation of the wire during the winding operation can be effectively suppressed.
The plate member may be made of an insulating material. Thereby, even if it is a case where a plate member is attached to the cylindrical part of a bobbin, an insulation state with a stator can be maintained.

本発明の回転電動機のコイル機構によれば、ステータの複数の突極(具体的には、ボビン)に整列された状態でコイルを容易に巻装させ、回転電動機の高出力化を図ることができる。   According to the coil mechanism of the rotary motor of the present invention, it is possible to easily wind the coil while being aligned with a plurality of salient poles (specifically, bobbins) of the stator to increase the output of the rotary motor. it can.

本発明の一実施形態に係る回転電動機のコイル機構の構成を示す図であって、(a)は、プレートを取り付けたボビン(ボビン構成体)を内径側から示す斜視図、(b)は、プレートを取り付けたボビン(ボビン構成体)を外径側から示す斜視図。It is a diagram showing a configuration of a coil mechanism of a rotary motor according to an embodiment of the present invention, (a) is a perspective view showing a bobbin (bobbin constituent body) attached with a plate from the inner diameter side, (b), The perspective view which shows the bobbin (bobbin structure) which attached the plate from the outer diameter side. 本発明の一実施形態に係る回転電動機のコイル機構におけるプレートの構成を示す図であって、(a)は、プレート表面側から見た平面図、(b)は、外径側(同図(a)の矢印b2の方向)から見た端面図、(c)は、同図(a)の矢印c2の方向から見た側面図、(d)は、同図(a)のd2−d2線での断面図。It is a diagram showing the configuration of the plate in the coil mechanism of the rotary electric motor according to one embodiment of the present invention, (a) is a plan view seen from the plate surface side, (b) is the outer diameter side (same figure ( a) end view as seen from the direction of arrow b2), (c) is a side view as seen from the direction of arrow c2 in FIG. 11 (a), and (d) is a d2-d2 line in FIG. FIG. 本発明の一実施形態に係る回転電動機のコイル機構におけるプレートの構成を示す図であって、(a)は、プレート表面側から見た全体斜視図、(b)は、プレート裏面側から見た全体斜視図。It is a figure which shows the structure of the plate in the coil mechanism of the rotary electric motor which concerns on one Embodiment of this invention, Comprising: (a) is the whole perspective view seen from the plate surface side, (b) is seen from the plate back surface side FIG. 本発明の一実施形態に係る回転電動機のコイル機構におけるコイルの形成方法を説明するための図であって、(a)は、コイルエンド部分の素線の巻回状態を示す要部断面図、(b)は、プレート表面溝部における素線の整列状態を説明するための図、(c)は、プレート側面溝部における素線の整列状態を説明するための図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the formation method of the coil in the coil mechanism of the rotary electric motor which concerns on one Embodiment of this invention, (a) is principal part sectional drawing which shows the winding state of the strand of a coil end part, (b) is a figure for demonstrating the alignment state of the strand in a plate surface groove part, (c) is a figure for demonstrating the alignment state of the strand in a plate side surface groove part. 本発明の一実施形態に係る回転電動機のコイル機構におけるプレートを成形するための金型の構成を示す図であって、(a)は、分割構造を説明するための要部構成図、(b)は、表面溝型の表面溝部(凸状突起)成形部分の成型方法を説明するための概念図。It is a figure which shows the structure of the metal mold | die for shape | molding the plate in the coil mechanism of the rotary electric motor which concerns on one Embodiment of this invention, Comprising: (a) is a principal part block diagram for demonstrating a division structure, (b) ) Is a conceptual diagram for explaining a molding method of a surface groove part (convex protrusion) molding part of a surface groove mold.

以下、本発明の一実施形態に係る回転電動機のコイル機構について、添付図面を参照して説明する。
図1〜4には、本実施形態に係る回転電動機のコイル機構(以下、単にコイル機構という)が示されており、当該コイル機構は、回転電動機(図示しない)に組み込まれ、径方向へ突出する複数の突極(図示しない)が設けられた環状のステータ(図示しない)との絶縁状態を保つために当該ステータに装着される絶縁材製のカバー部材(図示しない)と、前記カバー部材に素線10を巻回させて形成され、当該カバー部材を介して前記ステータの各突極に巻装されるコイルCとを備えている。
Hereinafter, a coil mechanism of a rotary motor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
1 to 4 show a coil mechanism (hereinafter simply referred to as a coil mechanism) of a rotary motor according to the present embodiment. The coil mechanism is incorporated in a rotary motor (not shown) and protrudes in the radial direction. A cover member (not shown) made of an insulating material to be attached to the stator in order to maintain an insulation state with an annular stator (not shown) provided with a plurality of salient poles (not shown). A coil C is formed by winding the element wire 10 and is wound around each salient pole of the stator via the cover member.

カバー部材は、ステータの各突極に対してコイルCを巻装させるためのボビン2が複数個連結された環状の構造体として構成され、各ボビン2は、素線10が巻回された状態で前記ステータの各突極の表面を個別に覆う複数の筒状部22と、当該筒状部22の内外径端部22i,22oから前記回転電動機の回転軸方向(以下、軸方向という)の両側へ突出するフランジ24i,24oとを備えている。なお、この場合、各ボビン2は、軸方向の中間位置で分割された一対のボビン構成体2aが軸方向の両側から組み付けられた構造を成しており、当該複数のボビン構成体2aが筒状部22の内径側22iを相互に連結させて環状の構造体(以下、分割構造体という)を形成し、一対の当該分割構造体を軸方向の両側からステータを挟み込むように組み付けることで、カバー部材が構成されている。   The cover member is configured as an annular structure in which a plurality of bobbins 2 for winding the coil C around each salient pole of the stator are connected, and each bobbin 2 is in a state in which the wire 10 is wound. And a plurality of cylindrical portions 22 that individually cover the surface of each salient pole of the stator, and inner and outer diameter end portions 22i and 22o of the cylindrical portion 22 in the rotational axis direction (hereinafter referred to as the axial direction) of the rotary motor. It has flanges 24i and 24o protruding to both sides. In this case, each bobbin 2 has a structure in which a pair of bobbin constituting bodies 2a divided at intermediate positions in the axial direction are assembled from both sides in the axial direction, and the plurality of bobbin constituting bodies 2a are cylinders. By connecting the inner diameter side 22i of the shaped portion 22 to each other to form an annular structure (hereinafter referred to as a divided structure), and assembling the pair of divided structures so as to sandwich the stator from both sides in the axial direction, A cover member is configured.

これにより、ステータにカバー部材が装着され、当該ステータの各突極の表面が筒状部22によって個別に覆われる。その際、各ボビン2(筒状部22)の大きさや形状は、ステータ(突極)の表面を覆うことが可能となるように、当該ステータ(突極)の大きさや形状に応じて相対的に設定すればよい。また、カバー部材を構成するボビン2の数は、当該カバー部材が装着されるステータの突極と同数以上に設定するとともに、当該所定個数のボビン2を回転軸の軸心に対して各突極と同位相となるように、カバー部材の周方向に沿って配設すればよい。   As a result, the cover member is mounted on the stator, and the surface of each salient pole of the stator is individually covered by the cylindrical portion 22. At that time, the size and shape of each bobbin 2 (cylindrical portion 22) is relatively dependent on the size and shape of the stator (saliency pole) so that the surface of the stator (saliency pole) can be covered. Should be set. Further, the number of bobbins 2 constituting the cover member is set to be equal to or greater than the number of salient poles of the stator on which the cover member is mounted, and the predetermined number of bobbins 2 are arranged on each salient pole with respect to the axis of the rotating shaft. May be arranged along the circumferential direction of the cover member so as to have the same phase as that of the cover member.

ボビン2の筒状部22には、軸方向の両端部にボビン2とは別体を成すプレート部材(以下、プレートという)4が設けられており、当該プレート4には、コイルCの素線10が巻回される際、素線10をガイドして整列させるための複数の溝部4a,4b,4cが当該素線10の巻回方向に沿って形成されている。なお、図1(a),(b)には、ボビン2の筒状部22に対し、軸方向の一端部にプレート4が設けられた(取り付けられた)状態(ボビン構成体2aにプレート4が取り付けられた状態)を例示している。   The cylindrical portion 22 of the bobbin 2 is provided with a plate member (hereinafter referred to as a plate) 4 that is separate from the bobbin 2 at both ends in the axial direction. When the wire 10 is wound, a plurality of grooves 4a, 4b, 4c for guiding and aligning the wire 10 are formed along the winding direction of the wire 10. 1 (a) and 1 (b), the plate 4 is provided (attached) to one end in the axial direction with respect to the cylindrical portion 22 of the bobbin 2 (the plate 4 is attached to the bobbin constituting body 2a). A state in which is attached).

図1(a),(b)に示すように、プレート4は、その幅(周方向寸法(図2(a)の上下方向の距離))がボビン2の筒状部22の軸方向端面(以下、プレート配設面という)の幅寸法と略同一の寸法に設定されるとともに、その長さ(径方向寸法(同図の左右方向の距離))がボビン2から軸方向の同一側へ突出する2つのフランジ24i,24oの間隔と略同一の寸法に設定され、当該プレート配設面の輪郭形状に略沿った形状を成している。   As shown in FIGS. 1 (a) and 1 (b), the plate 4 has a width (circumferential dimension (vertical distance in FIG. 2 (a)) in the axial direction of the cylindrical portion 22 of the bobbin 2 ( (Hereinafter referred to as the plate mounting surface) is set to be approximately the same as the width dimension, and its length (the radial dimension (the distance in the horizontal direction in the figure)) protrudes from the bobbin 2 to the same axial direction. The distance between the two flanges 24i and 24o is set to be approximately the same as the distance between the two flanges 24i and 24o, and the shape substantially conforms to the contour shape of the plate mounting surface.

なお、プレート幅は、上述したようにプレート配設面の幅寸法(周方向距離)と同一、あるいはそれ以下となるように設定することが好ましい。すなわち、プレート幅をプレート配設面の幅よりも大きな寸法に設定した場合、後述するようにボビン2の筒状部22にプレート4を取り付けた状態で素線10を巻回させ、コイルCを形成する際(図4(a)〜(c)参照)、当該プレート幅の分だけコイル幅が増大してコイルCの巻線距離が長くなり、コイルの抵抗値の増大を招くこととなる。また、この場合、プレート4とプレート配設面との幅寸法差による段差が生じ、コイルCを形成する際にプレート4のずれなどが生じ易く、コイルCの形状安定性が損なわれてしまう。
したがって、プレート4の幅をプレート配設面の幅寸法と同一、あるいはそれ以下となるように設定することで、コイル抵抗値の増大を有効に抑制することができるとともに、プレート4の姿勢を安定させ、コイルCの形状安定性を保つことができる。
The plate width is preferably set to be equal to or less than the width dimension (circumferential distance) of the plate mounting surface as described above. That is, when the plate width is set to be larger than the width of the plate mounting surface, the wire 10 is wound with the plate 4 attached to the cylindrical portion 22 of the bobbin 2 as described later, and the coil C is When forming (see FIGS. 4A to 4C), the coil width is increased by the plate width, the winding distance of the coil C is increased, and the resistance value of the coil is increased. Further, in this case, a step due to the width difference between the plate 4 and the plate mounting surface is generated, and the plate 4 is easily displaced when the coil C is formed, and the shape stability of the coil C is impaired.
Therefore, by setting the width of the plate 4 to be equal to or less than the width dimension of the plate mounting surface, it is possible to effectively suppress an increase in coil resistance and to stabilize the posture of the plate 4. The shape stability of the coil C can be maintained.

また、プレート長さをボビン2から軸方向の同一側へ突出する2つのフランジ24i,24oの間隔と略同一の寸法に設定することで、プレート4を当該2つのフランジ24i,24oによって挟持された状態でプレート配設面に対して安定して取り付けることができる。   Further, the plate 4 is sandwiched between the two flanges 24i and 24o by setting the plate length to be approximately the same as the distance between the two flanges 24i and 24o protruding from the bobbin 2 to the same axial direction. In this state, it can be stably attached to the plate mounting surface.

かかるプレート4には、ボビン2のフランジ24i,24oと係合して径方向へ位置決めするための径方向固定部6i,6oが設けられているとともに、当該ボビン2のプレート配設面と係合して周方向へ位置決めするための周方向固定部8が設けられており、これにより、当該プレート配設面の全体に被さるようにプレート4が位置付けられている。   The plate 4 is provided with radial fixing portions 6i and 6o for engaging with the flanges 24i and 24o of the bobbin 2 to be positioned in the radial direction, and engaging with the plate arrangement surface of the bobbin 2. Thus, a circumferential fixing portion 8 for positioning in the circumferential direction is provided, so that the plate 4 is positioned so as to cover the entire plate mounting surface.

図2及び図3に示す構成においては、径方向の両端にそれぞれ設けられる径方向固定部6i,6oのうち、一端側(図2(a)の右端側、すなわち内径側)の径方向固定部6iがプレート4の一端側をフランジ24iの基端部分34iに沿って平行させて成る平坦面として形成されているのに対し、他端側(同図の左端側、すなわち外径側)の径方向固定部6oがプレート4の他端側をフランジ24oの基端部分34oの輪郭に沿った形状に欠落させて成る切り欠きとして形成されている。   In the configuration shown in FIGS. 2 and 3, of the radial fixing portions 6i and 6o provided at both ends in the radial direction, the radial fixing portion on one end side (the right end side in FIG. 2A, that is, the inner diameter side). 6i is formed as a flat surface having one end side of the plate 4 parallel to the base end portion 34i of the flange 24i, whereas the diameter on the other end side (the left end side, ie, the outer diameter side). The direction fixing portion 6o is formed as a notch formed by missing the other end side of the plate 4 into a shape along the outline of the proximal end portion 34o of the flange 24o.

なお、この場合、一端側のフランジ24iは、その幅(周方向距離)がプレート配設面の幅寸法と略同一の寸法に設定された直方体状を成して筒状部22の内径端部22iから突出しており、当該フランジ24iの基端部分34iは、プレート4の径方向固定部6iとの対向部分が平坦面状に構成されている。また、他端側のフランジ24oは、その幅(周方向距離)がプレート配設面の幅寸法よりも若干小さな寸法に設定されているとともに、当該フランジ24oが裾広がりとなるように筒状部22の外径端部22oから突出しており、当該フランジ24oの裾広がり部分に相当する基端部分34oは、なだらかな傾斜曲面状に一端側へ広がりつつ、筒状部22のプレート配設面へ連続した構成となっている。   In this case, the flange 24i on one end side has a rectangular parallelepiped shape in which the width (distance in the circumferential direction) is set to be substantially the same as the width dimension of the plate mounting surface, and the inner diameter end portion of the cylindrical portion 22 The base end portion 34i of the flange 24i is configured to have a flat surface portion facing the radial fixing portion 6i of the plate 4. Further, the flange 24o on the other end side has a width (circumferential distance) set to a dimension slightly smaller than the width dimension of the plate mounting surface, and the tubular portion so that the flange 24o spreads toward the bottom. The base end portion 34o that protrudes from the outer diameter end portion 22o of the flange 22 and corresponds to the flared portion of the flange 24o extends toward the one end side in a gently sloping curved surface, and toward the plate mounting surface of the cylindrical portion 22. It has a continuous configuration.

一方、図2及び図3に示すように、周方向固定部8は、筒状部22のプレート配設面に対するプレート4の係合面(図2(b)の左側の面(以下、プレート裏面という))4pを直線状に窪ませて成る溝として形成されている。   On the other hand, as shown in FIGS. 2 and 3, the circumferential fixing portion 8 is an engagement surface of the plate 4 with respect to the plate arrangement surface of the cylindrical portion 22 (the left surface of FIG. It is formed as a groove formed by recessing 4p in a straight line.

なお、この場合、ボビン2(筒状部22)のプレート配設面には、その径方向の一端側から他端側まで連続する断面形状が略矩形状を成して凸出する突出部(図示しない)が設けられており、プレート裏面4pには、その径方向の一端側から他端側まで、前記プレート配設面の突出部の輪郭に沿った略矩形状の断面形状を有する一連の溝が形成され、周方向固定部8を構成している。一例として、図2(b)に示すように、周方向固定部8の溝底の角部、及び溝肩には面取りが施されており、当該面取りを施すことで、プレート4をプレート配設面に取り付ける際、当該プレート配設面の突出部にプレート裏面4pの周方向固定部8をスムーズに係合させることができる。   In this case, on the plate disposition surface of the bobbin 2 (cylindrical portion 22), a projecting portion that protrudes in a substantially rectangular shape with a cross-sectional shape continuous from one end side to the other end side in the radial direction ( (Not shown) is provided, and the plate back surface 4p has a series of substantially rectangular cross-sectional shapes along the outline of the protruding portion of the plate mounting surface from one end side to the other end side in the radial direction. A groove is formed to constitute the circumferential fixing portion 8. As an example, as shown in FIG. 2B, chamfering is applied to the corners of the groove bottom and the shoulders of the circumferentially fixed portion 8, and the plate 4 is disposed by chamfering. When attaching to a surface, the circumferential direction fixing | fixed part 8 of the plate back surface 4p can be smoothly engaged with the protrusion part of the said plate arrangement | positioning surface.

このように径方向固定部6i,6o、及び周方向固定部8が設けられたプレート4をボビン2の筒状部22(具体的には、プレート配設面)に取り付ける際には、まず、径方向固定部6o(切り欠き)をフランジ24oの先端部位に係合させるとともに、径方向固定部6o(平坦面)をフランジ24iの先端部位に当接させる。この状態においては、径方向固定部6o(切り欠き)がフランジ24oの先端部位に係合されているため、プレート4を径方向に位置決めすることができる。   When attaching the plate 4 provided with the radial direction fixing portions 6i, 6o and the circumferential direction fixing portion 8 to the cylindrical portion 22 (specifically, the plate disposition surface) of the bobbin 2, first, The radial fixing portion 6o (notch) is engaged with the tip portion of the flange 24o, and the radial fixing portion 6o (flat surface) is brought into contact with the tip portion of the flange 24i. In this state, since the radial fixing portion 6o (notch) is engaged with the tip portion of the flange 24o, the plate 4 can be positioned in the radial direction.

次いで、この状態のまま、プレート6をフランジ24i,24oに沿って(すなわち、フランジ24i,24oをガイドとして)、筒状部22のプレート配設面方向へ押し込んでいき、プレート裏面4pの周方向固定部8(溝)をプレート配設面の突出部に係合させる。そして、プレート6をプレート配設面方向へさらに押し込み、プレート裏面4pを当該プレート配設面と密着させるとともに、周方向固定部8を突出部と完全に係合させる。この状態においては、周方向固定部8(溝)がプレート配設面の突出部と完全に係合されているため、プレート4を周方向に位置決めすることができる。   Next, in this state, the plate 6 is pushed along the flanges 24i, 24o (that is, using the flanges 24i, 24o as guides) toward the plate arrangement surface of the cylindrical portion 22, and the circumferential direction of the plate back surface 4p The fixing portion 8 (groove) is engaged with the protruding portion of the plate mounting surface. Then, the plate 6 is further pushed in the plate arrangement surface direction so that the plate back surface 4p is brought into close contact with the plate arrangement surface, and the circumferential direction fixing portion 8 is completely engaged with the protruding portion. In this state, since the circumferential fixing portion 8 (groove) is completely engaged with the protruding portion of the plate mounting surface, the plate 4 can be positioned in the circumferential direction.

これにより、プレート4は、プレート配設面に対して径方向、並びに周方向の双方に位置決めされ、当該プレート配設面に安定して固定することができ、この結果、当該プレート4に形成された溝部4a,4b,4cがボビン2の筒状部22に対して容易に位置決めされる。   Accordingly, the plate 4 can be positioned in both the radial direction and the circumferential direction with respect to the plate arrangement surface, and can be stably fixed to the plate arrangement surface. As a result, the plate 4 is formed on the plate 4. The groove portions 4a, 4b, 4c are easily positioned with respect to the cylindrical portion 22 of the bobbin 2.

ここで、径方向固定部6i,6o及び周方向固定部8の大きさや形状などは、プレート4をボビン2の筒状部22に対して径方向、並びに周方向へ位置決め固定することが可能であれば特に限定されず、プレート4が配設されるボビン2(筒状部22及びプレート配設面)の大きさ、あるいはフランジ24i,24oの形状などに応じて任意に設定すればよい。例えば、径方向固定部6iを切り欠きとして形成するとともに、径方向固定部6oを平坦面として形成してもよい。また、プレート配設面に径方向へ沿って所定間隔(例えば、等間隔)で棒状突起を設け、周方向固定部8として、プレート裏面4pに対して前記棒状突起を収容させるための係合穴を当該当該棒状突起と同一間隔で配した構成してもよい。   Here, the size and shape of the radial direction fixing parts 6i, 6o and the circumferential direction fixing part 8 can position and fix the plate 4 with respect to the cylindrical part 22 of the bobbin 2 in the radial direction and the circumferential direction. There is no particular limitation as long as it is set, and it may be arbitrarily set according to the size of the bobbin 2 (the cylindrical portion 22 and the plate mounting surface) on which the plate 4 is disposed or the shapes of the flanges 24i and 24o. For example, the radial fixing part 6i may be formed as a notch and the radial fixing part 6o may be formed as a flat surface. In addition, rod-shaped protrusions are provided at predetermined intervals (for example, at equal intervals) along the radial direction on the plate mounting surface, and the engagement holes for accommodating the rod-shaped protrusions on the plate back surface 4p as the circumferential fixing portion 8 May be arranged at the same intervals as the rod-shaped protrusions.

また、プレート4には、プレート裏面4pとは反対側(図2(b)の右側)の平面(以下、プレート表面という)4q、並びに当該プレート表面4qと素線10の巻回方向に沿って連続する両側面(以下、プレート側面という)4s,4tにそれぞれ溝部4a,4b,4cが形成されている。   Further, the plate 4 has a plane (hereinafter referred to as a plate surface) 4q on the side opposite to the plate back surface 4p (right side in FIG. 2B), and the winding direction of the plate surface 4q and the strand 10. Grooves 4a, 4b, and 4c are formed in continuous side surfaces (hereinafter referred to as plate side surfaces) 4s and 4t, respectively.

図2及び図3に示す構成においては、プレート表面4qの周方向(図2の上下方向)の中間位置に径方向(同図の左右方向)の一端側から他端側まで溝部4a(以下、表面溝部4aという)が形成されている。この場合、表面溝部4aの一端側(内径側(図2(a)の右端側))は、プレート4の径方向固定部6iと連続されているとともに、他端側(外径側(同図の左端側))は、当該プレート4の径方向固定部6oと連続され、その長さ寸法は、径方向固定部6iと径方向固定部6oの間の最短距離に相当する。また、表面溝部4aの幅(図2の上下方向の距離)は、プレート4の径方向固定部6oの幅寸法よりも小さく設定されている。
また、プレート側面4s,4tには、その長さ(図2の左右方向の距離)を表面溝部4aの長さ寸法と同一の寸法に設定した溝部4b,4c(以下、側面溝部4b,4cという)が形成されており、当該側面溝部4b,4cは、プレート4の径方向(同図の左右方向)に対して表面溝部4aと同一の位相を成すように位置付けられている。
In the configuration shown in FIG. 2 and FIG. 3, the groove 4a (hereinafter referred to as the following) is provided at the intermediate position in the circumferential direction (vertical direction in FIG. 2) of the plate surface 4q. Surface groove 4a) is formed. In this case, one end side (inner diameter side (right end side in FIG. 2A)) of the surface groove 4a is continuous with the radial fixing portion 6i of the plate 4, and the other end side (outer diameter side (same figure)). The left end side) of the plate 4 is continuous with the radial fixing portion 6o of the plate 4, and its length corresponds to the shortest distance between the radial fixing portion 6i and the radial fixing portion 6o. Further, the width of the surface groove 4a (the distance in the vertical direction in FIG. 2) is set smaller than the width dimension of the radial fixing portion 6o of the plate 4.
Further, the plate side surfaces 4s, 4t have groove portions 4b, 4c (hereinafter referred to as side surface groove portions 4b, 4c) whose length (distance in the left-right direction in FIG. 2) is set to the same dimension as the length of the surface groove portion 4a. The side groove portions 4b and 4c are positioned so as to have the same phase as the surface groove portion 4a with respect to the radial direction of the plate 4 (left and right direction in the figure).

なお、プレート4は、プレート表面4qが表面溝部4aを天部として、当該表面溝部4aからプレート側面4s,4tの方向へ向かうに従って下降勾配となるように傾斜し、当該プレート側面4s,4tとなだらかな曲面状(いわゆる、所定の曲率を有するR状)に連続された構成となっている。これにより、後述するようにボビン2の筒状部22にプレート4を取り付けた状態で素線10を巻回させ、コイルCを形成する際(図4(a)〜(c)参照)、プレート表面4qの肩部(プレート側面4s,4tとの連続部)において、巻回される素線10がプレート4と干渉することがない。このため、巻線時における張力が当該肩部に集中せず、有効にこれをプレート表面4qの全体へ分散させることができる。この結果、巻線作業をスムーズに行うことができるとともに、当該巻線作業時における素線10の変形を有効に抑止することができる。   The plate 4 is inclined such that the plate surface 4q has a descending gradient from the surface groove 4a toward the plate side surfaces 4s and 4t, with the surface groove 4a as the top, and gradually becomes the plate side surfaces 4s and 4t. It is configured to be continuous in a curved shape (so-called R shape having a predetermined curvature). As a result, as described later, when the wire 10 is wound with the plate 4 attached to the cylindrical portion 22 of the bobbin 2 to form the coil C (see FIGS. 4A to 4C), the plate The wound wire 10 does not interfere with the plate 4 at the shoulder portion of the surface 4q (continuous portion with the plate side surfaces 4s and 4t). For this reason, the tension at the time of winding does not concentrate on the shoulder portion, but can be effectively distributed over the entire plate surface 4q. As a result, the winding operation can be performed smoothly, and the deformation of the wire 10 during the winding operation can be effectively suppressed.

図2及び図3に示すように、表面溝部4aは、素線10の巻回方向に沿った直線状を成す複数の凸状突起4uをプレート表面4qに対して等間隔で配することにより、当該凸状突起4uの間に形成される複数の溝4xとして構成されている。同様に、側面溝部4b,4cは、素線10の巻回方向に沿った直線状を成す複数の凸状突起4v,4wをプレート側面4s,4tに対して等間隔で配することにより、当該凸状突起4v,4wの間に形成される複数の溝4y,4zとして構成されている。表面溝部4a及び側面溝部4b,4cをこのような構成とすることで、プレート表面4q及びプレート側面4s,4tに対するこれらの形成を容易に行うことができる。   As shown in FIGS. 2 and 3, the surface groove portion 4 a is formed by arranging a plurality of convex protrusions 4 u that form a straight line along the winding direction of the element wire 10 at equal intervals with respect to the plate surface 4 q. It is configured as a plurality of grooves 4x formed between the convex protrusions 4u. Similarly, the side groove portions 4b and 4c are formed by arranging a plurality of convex protrusions 4v and 4w that form a straight line along the winding direction of the element wire 10 at equal intervals with respect to the plate side surfaces 4s and 4t. It is configured as a plurality of grooves 4y, 4z formed between the convex protrusions 4v, 4w. By forming the surface groove portion 4a and the side surface groove portions 4b and 4c in such a configuration, the plate surface 4q and the plate side surfaces 4s and 4t can be easily formed.

この場合、プレート表面4qの凸状突起4uとプレート側面4s,4tの凸状突起4v,4wとは、いずれも相互に同一の大きさ、形状、並びに同一間隔(同一ピッチ)で、同一個数だけ形成されている。これにより、プレート表面4qの凸状突起4u、及びプレート側面4s,4tの凸状突起4v,4wを、素線10の巻回方向に対して相互に等間隔で配列させることができる。すなわち、表面溝部4aの各溝4z、及び側面溝部4b,4cの各溝4y,4zを、素線10の巻回方向に対して相互に等間隔で配列させることができる。
これにより、後述するようにボビン2の筒状部22にプレート4を取り付けた状態で素線10を巻回させ、コイルCを形成する際(図4(a)〜(c)参照)、その巻回方向に対して同位相に位置付けられた表面溝部4aの溝4x及び側面溝部4b,4cの溝4y,4zに、一端側から他端側(例えば、内径側から外径側(図2(a)の右端側から左端側))まで素線10を落とし込ませることで、当該素線10を整列して巻線させることができる。
In this case, the convex protrusions 4u on the plate surface 4q and the convex protrusions 4v, 4w on the plate side surfaces 4s, 4t are all the same size, shape, and the same interval (same pitch), and the same number. Is formed. Thereby, the convex protrusions 4u on the plate surface 4q and the convex protrusions 4v, 4w on the plate side surfaces 4s, 4t can be arranged at equal intervals in the winding direction of the strand 10. That is, the grooves 4z of the surface groove 4a and the grooves 4y and 4z of the side surface grooves 4b and 4c can be arranged at equal intervals with respect to the winding direction of the strand 10.
Thus, when the wire 10 is wound with the plate 4 attached to the cylindrical portion 22 of the bobbin 2 to form the coil C as described later (see FIGS. 4A to 4C), The groove 4x of the surface groove portion 4a and the grooves 4y and 4z of the side surface groove portions 4b and 4c positioned in the same phase with respect to the winding direction are connected from one end side to the other end side (for example, from the inner diameter side to the outer diameter side (FIG. 2 ( By dropping the wire 10 from the right end side of a) to the left end side)), the wire 10 can be aligned and wound.

なお、プレート表面4qの凸状突起4u及びプレート側面4s,4tの凸状突起4v,4w、すなわち表面溝部4aの溝4x及び側面溝部4b,4cの溝4y,4zの大きさ(寸法)や形状、あるいは間隔や個数は、プレート4の大きさ、あるいはボビン2の筒状部22に当該プレート4を介して巻線される素線10の径寸法及び品種などに応じて任意に設定すればよいため、ここでは特に限定しない。例えば、プレート表面4qの凸状突起4u及びプレート側面4s,4tの凸状突起4v,4wの断面の輪郭形状は、図2及び図3に示すような曲線状(一例として、放物曲線)であってもよいし、三角形状、台形状や矩形状、及び半円形状や半楕円形状、あるいは台形の稜線部分を凹曲線状とした形状など、各種の形状であってもよい。   The size (dimensions) and shape of the convex protrusions 4u on the plate surface 4q and the convex protrusions 4v, 4w on the plate side surfaces 4s, 4t, that is, the grooves 4x on the surface groove portion 4a and the grooves 4y, 4z on the side surface groove portions 4b, 4c. Alternatively, the interval and the number may be arbitrarily set according to the size of the plate 4 or the diameter and type of the wire 10 wound around the cylindrical portion 22 of the bobbin 2 via the plate 4. Therefore, there is no particular limitation here. For example, the contour shapes of the cross-sections of the convex protrusions 4u on the plate surface 4q and the convex protrusions 4v, 4w on the plate side surfaces 4s, 4t are curved as shown in FIGS. 2 and 3 (for example, a parabolic curve). There may be various shapes such as a triangular shape, a trapezoidal shape, a rectangular shape, a semicircular shape, a semielliptical shape, or a shape in which the ridge line portion of the trapezoid is a concave curve shape.

ここで、プレート4の厚さ方向(図2(c)の上下方向)に対するプレート側面4s,4tの凸状突起4v,4wの形成位置は、側面溝部4b,4cのプレート表面4q側の端面(すなわち、各凸状突起4v,4wの同端面)4e,4fが、当該プレート4の厚さ方向に対してプレート裏面4pと同一高さ(すなわち、端面4e,4fとプレート裏面4pとが面一相当)となるように設定することが好ましい。これにより、後述するようにボビン2の筒状部22にプレート4を取り付けた状態で素線10を巻回させ、コイルCを形成する際(図4(a)〜(c)参照)、側面溝部4b,4cの溝4y,4zに巻回される素線10が当該プレート幅よりも過大に突出されてコイルC(特に、コイルエンド部分)の巻線距離が長くなることを有効に防止することができ、結果として、コイルの抵抗値が増大することを回避することができる。   Here, the formation positions of the convex protrusions 4v and 4w on the plate side surfaces 4s and 4t with respect to the thickness direction of the plate 4 (vertical direction in FIG. 2C) are the end surfaces of the side surface groove portions 4b and 4c on the plate surface 4q side ( That is, the same end surfaces 4e and 4f of the convex protrusions 4v and 4w are the same height as the plate back surface 4p in the thickness direction of the plate 4 (that is, the end surfaces 4e and 4f and the plate back surface 4p are flush with each other). It is preferable to set so as to be equivalent). As a result, as will be described later, when the element wire 10 is wound with the plate 4 attached to the cylindrical portion 22 of the bobbin 2 to form the coil C (see FIGS. 4A to 4C), the side surface It effectively prevents the wire 10 wound around the grooves 4y and 4z of the grooves 4b and 4c from protruding excessively beyond the plate width and increasing the winding distance of the coil C (particularly the coil end portion). As a result, it is possible to avoid an increase in the resistance value of the coil.

その際、側面溝部4b,4c(プレート側面4s,4tの凸状突起4v,4w)とプレート裏面4pとは、図2(b)に示すような面取り部12を設けることで、なだらかな凹曲面状(いわゆる、所定の曲率を有するR状)に連続させた構造とすればよい。   At that time, the side groove portions 4b and 4c (the convex projections 4v and 4w of the plate side surfaces 4s and 4t) and the plate back surface 4p are formed by a chamfered portion 12 as shown in FIG. What is necessary is just to make it the structure continued in a shape (what is called R shape which has a predetermined curvature).

これにより、側面溝部4b,4cのプレート表面4q側の端面(すなわち、各凸状突起4v,4wの同側端面)4e,4fが、当該プレート4の厚さ方向に対してプレート裏面4pと同一高さ(すなわち、端面4e,4fとプレート裏面4pとが面一相当)とすることができ、上述したようにプレート4をコイルCの抵抗値を抑止可能な構造とすることができる。また、側面溝部4b,4c(プレート側面4s,4tの凸状突起4v,4w)とプレート裏面4pとの連続部分の強度を面取り部12によって高めることができ、ひいては、当該側面溝部4b,4c(プレート側面4s,4tの凸状突起4v,4w)自体の強度、すなわち耐久性を格段に高めることができる。この結果、プレート4を取り付けた筒状部22に素線10を巻回させる際(コイルCを形成する際)、巻線から作用される力を確実に負荷することができ、巻線作業を安定して行うことが可能となる。   As a result, the end surfaces of the side surface grooves 4b and 4c on the plate surface 4q side (that is, the same end surfaces of the convex protrusions 4v and 4w) 4e and 4f are the same as the plate back surface 4p in the thickness direction of the plate 4 The height (that is, the end surfaces 4e and 4f and the plate back surface 4p correspond to the same surface) can be set, and the plate 4 can be configured to suppress the resistance value of the coil C as described above. Further, the strength of the continuous portion between the side groove portions 4b, 4c (the convex protrusions 4v, 4w of the plate side surfaces 4s, 4t) and the plate back surface 4p can be increased by the chamfered portion 12, and as a result, the side groove portions 4b, 4c ( The strength, that is, the durability of the convex protrusions 4v, 4w) on the plate side surfaces 4s, 4t can be remarkably increased. As a result, when the wire 10 is wound around the cylindrical portion 22 to which the plate 4 is attached (when the coil C is formed), the force applied from the winding can be reliably loaded, and the winding work can be performed. It becomes possible to carry out stably.

また、このように側面溝部4b,4c(プレート側面4s,4tの凸状突起4v,4w)を、面取り部12を設けてプレート裏面4pと連続させた構造とすることで、側面溝部4b,4cの端面4e,4fとプレート裏面4pとを同一高さとすることが可能となると、後述するプレート4を成形するための金型を分割構造とし易く、金型の成型精度を高めることができる。これにより、プレート4の成形を容易に行うことができるだけでなく、当該金型により成形されたプレート4の側面溝部4b,4c(プレート側面4s,4tの凸状突起4v,4w)の形態精度(形状精度及び寸法精度)を高めることができるとともに、かかる精度を長期に亘って維持することができる。   Further, the side groove portions 4b, 4c (convex projections 4v, 4w of the plate side surfaces 4s, 4t) are continuously provided on the plate back surface 4p by providing the chamfered portion 12 in this manner, thereby providing the side groove portions 4b, 4c. If the end surfaces 4e, 4f and the plate back surface 4p can be made to have the same height, a mold for molding the plate 4 described later can be easily divided, and the molding accuracy of the mold can be increased. Thereby, not only can the plate 4 be molded easily, but also the form accuracy of the side groove portions 4b, 4c (the convex projections 4v, 4w of the plate side surfaces 4s, 4t) of the plate 4 molded by the mold ( (Shape accuracy and dimensional accuracy) can be improved, and such accuracy can be maintained over a long period of time.

ここで、上述した本実施形態においては、プレート4の材質について特に言及しなかったが、各種の絶縁材製、具体的には、各種のボビン2と同一材質の絶縁材製とすればよい。例えば、プレート4は、これが取り付けられるボビン2と同一の樹脂製とすることができる。このようにプレート4をボビン2と同一の樹脂製とすることで、当該プレート4をボビン2の筒状部22に取り付けた場合であっても、ステータとの絶縁状態を保ち続けることができるとともに、材料の調達コストを削減させることも可能となる。   Here, in the present embodiment described above, the material of the plate 4 is not particularly mentioned, but may be made of various insulating materials, specifically, made of the same material as the various bobbins 2. For example, the plate 4 can be made of the same resin as the bobbin 2 to which it is attached. Thus, by making the plate 4 made of the same resin as the bobbin 2, even when the plate 4 is attached to the cylindrical portion 22 of the bobbin 2, it is possible to maintain the insulation state with the stator. It is also possible to reduce material procurement costs.

なお、このようなプレート4の成形、並びに径方向固定部6i,6o及び周方向固定部8の成形、表面溝部4aの溝4x及び側面溝部4b,4cの溝4y,4z(プレート表面4pの凸状突起4u及びプレート側面4s,4tの凸状突起4v,4w)の成形は、当該プレート4の材質などに応じて任意の方法を選択して行えばよい。
例えば、プレート4が樹脂製である場合、所定の金型を用いて当該金型に流し込んだ樹脂材をプレスすることにより、プレート4を成形すればよい。この場合、当該プレート4の成形と同時に表面溝部4aの溝4x、及び側面溝部4b,4cの溝4y,4z(プレート表面4pの凸状突起4u、及びプレート側面4s,4tの凸状突起4v,4w)を形成することができる。
It should be noted that the plate 4 is formed, the radial direction fixing portions 6i, 6o and the circumferential direction fixing portion 8 are formed, the groove 4x of the surface groove portion 4a and the grooves 4y, 4z of the side surface groove portions 4b, 4c (the convexity of the plate surface 4p). The projection 4u and the convex projections 4v, 4w) of the plate side surfaces 4s, 4t may be formed by selecting an arbitrary method according to the material of the plate 4 and the like.
For example, when the plate 4 is made of resin, the plate 4 may be formed by pressing a resin material poured into the mold using a predetermined mold. In this case, the groove 4x of the surface groove portion 4a and the grooves 4y and 4z of the side surface groove portions 4b and 4c (the convex protrusions 4u on the plate surface 4p and the convex protrusions 4v on the plate side surfaces 4s and 4t, simultaneously with the molding of the plate 4). 4w) can be formed.

また、樹脂製のプレート4を光造形により成形してもよい。この場合、より簡易にプレート4、表面溝部4aの溝4x、及び側面溝部4b,4cの溝4y,4z(プレート表面4pの凸状突起4u、及びプレート側面4s,4tの凸状突起4v,4w)を同時に成形することができる。
あるいは、プレート4を各種の方法により成形した後、当該成形後のプレート4に対して削り加工などを施すことで、表面溝部4aの溝4x、及び側面溝部4b,4cの溝4y,4z(プレート表面4pの凸状突起4u、及びプレート側面4s,4tの凸状突起4v,4w)を形成してもよい。
Further, the resin plate 4 may be formed by optical modeling. In this case, the plate 4, the groove 4x of the surface groove portion 4a, and the grooves 4y and 4z of the side surface groove portions 4b and 4c (the convex protrusions 4u on the plate surface 4p and the convex protrusions 4v and 4w on the plate side surfaces 4s and 4t) are simplified. ) Can be formed simultaneously.
Alternatively, after the plate 4 is formed by various methods, the formed plate 4 is subjected to a cutting process or the like, so that the groove 4x of the surface groove portion 4a and the grooves 4y and 4z of the side surface groove portions 4b and 4c (plate Convex protrusions 4u on the surface 4p and convex protrusions 4v, 4w) on the plate side surfaces 4s, 4t may be formed.

なお、プレート4の成形、並びに径方向固定部6i,6o及び周方向固定部8の成形、表面溝部4aの溝4x及び側面溝部4b,4cの溝4y,4z(プレート表面4pの凸状突起4u及びプレート側面4s,4tの凸状突起4v,4w)の成形を金型を用いて行う場合、当該金型は、図5(a),(b)に示すような分割構造とすることが好ましい。   The plate 4 is molded, the radial direction fixing portions 6i, 6o and the circumferential direction fixing portion 8 are molded, the groove 4x of the surface groove portion 4a and the grooves 4y, 4z of the side surface groove portions 4b, 4c (the convex protrusion 4u on the plate surface 4p). When the projections 4v and 4w) of the plate side surfaces 4s and 4t are formed using a mold, the mold is preferably divided as shown in FIGS. 5 (a) and 5 (b). .

図5(a),(b)に示す構成において、金型50は、側面溝部4b,4cの端面4e,4fの部分を境界として、プレート4の厚さ方向の上側部分を成形する上側の型(以下、上型という)52と、下側部分を成形する下側の型(以下、下型という)54とを合わせることによりプレート4の全体を成形している。   5 (a) and 5 (b), the mold 50 is an upper mold that molds the upper portion in the thickness direction of the plate 4 with the end surfaces 4e and 4f of the side groove portions 4b and 4c as boundaries. The entire plate 4 is molded by combining a 52 (hereinafter referred to as an upper mold) and a lower mold (hereinafter referred to as a lower mold) 54 for molding the lower portion.

この場合、上型52は、表面溝部4aの溝4x(プレート表面4pの凸状突起4u)を成形する型(以下、表面溝型という)52aと、表面溝部4aを除いたプレート表面4p部分を成形する2つの型(以下、表面型という)52b,52cの3つに分割可能な構造を成している。また、下型54は、プレート裏面4q及び周方向固定部8を成形する型(以下、裏面型という)54aと、側面溝部4b,4cの溝4y,4z(プレート側面4s,4tの凸状突起4v,4w)を成形する2つの型(以下、側面溝型という)54b,54cの3つに分割可能な構造を成している。
なお、径方向固定部6i,6oは、上型52(表面溝型52a、表面型52b,52c)、あるいは下型54(裏面型54a、側面溝型54b,54c)のいずれで成形する構成であってもよい。
In this case, the upper mold 52 includes a mold (hereinafter referred to as a surface groove mold) 52a for forming a groove 4x (a convex protrusion 4u on the plate surface 4p) of the surface groove 4a and a plate surface 4p portion excluding the surface groove 4a. It has a structure that can be divided into two molds (hereinafter referred to as surface molds) 52b and 52c. The lower mold 54 includes a mold (hereinafter referred to as a back mold) 54a for forming the plate back surface 4q and the circumferential fixing portion 8, and grooves 4y and 4z of the side groove portions 4b and 4c (convex projections of the plate side surfaces 4s and 4t). 4v, 4w) is divided into three molds 54b and 54c (hereinafter referred to as side surface groove molds) 54b and 54c.
The radial direction fixing portions 6i, 6o are configured to be molded by either the upper mold 52 (surface groove mold 52a, surface molds 52b, 52c) or the lower mold 54 (back surface mold 54a, side surface groove molds 54b, 54c). There may be.

金型50をこのような分割構造とすることで、表面溝型52aにおける表面溝部4aの溝4x(プレート表面4pの凸状突起4u)を成形する部分を外部へ露出させることができるとともに、側面溝型54b,54cにおける側面溝部4b,4cの溝4y,4z(プレート側面4s,4tの凸状突起4v,4w)を成形する部分を外部へ露出させることができる。   By making the mold 50 have such a divided structure, a portion for molding the groove 4x of the surface groove portion 4a (the convex protrusion 4u of the plate surface 4p) in the surface groove mold 52a can be exposed to the outside, and the side surface The portions where the grooves 4y and 4z of the side groove portions 4b and 4c (the convex protrusions 4v and 4w of the plate side surfaces 4s and 4t) are formed can be exposed to the outside in the groove molds 54b and 54c.

したがって、例えば、図5(b)に示すように、表面溝型52aの溝4x(凸状突起4u)成形部分、並びに側面溝型54b,54cの溝4y,4z(凸状突起4v,4w)成形部分をワイヤーカット加工などにより高精度に成型することができる(同図には、表面溝型52aの成型のみ示す)。この場合、表面溝型52aの溝4x(凸状突起4u)の形状、並びに側面溝型54b,54cの溝4y,4z(凸状突起4v,4w)の形状に沿ってワイヤー60を移動させることで、容易に、かつ高精度にこれらの溝4x,4y,4z(凸状突起4x,4y,4w)成形部分を成型することができる。   Therefore, for example, as shown in FIG. 5B, the groove 4x (convex protrusion 4u) forming portion of the surface groove mold 52a and the grooves 4y, 4z (convex protrusions 4v, 4w) of the side surface groove molds 54b, 54c are formed. The molded part can be molded with high accuracy by wire cutting or the like (only the surface groove mold 52a is molded in the figure). In this case, the wire 60 is moved along the shape of the groove 4x (convex protrusion 4u) of the surface groove mold 52a and the shapes of the grooves 4y and 4z (convex protrusions 4v and 4w) of the side surface groove molds 54b and 54c. Thus, these groove 4x, 4y, 4z (convex protrusions 4x, 4y, 4w) forming portions can be formed easily and with high accuracy.

なお、金型を上述したような分割構造としない場合、当該金型は、表面溝型52aの溝4x(凸状突起4u)成形部分、並びに側面溝型54b,54cの溝4y,4z(凸状突起4v,4w)成形部分が当該金型の内部に窪んだ凹状部内に入り込んだ構造となるため、これらの溝4x,4y,4z(凸状突起4x,4y,4w)成形部分を放電加工などにより成型することとなる。したがって、かかる溝4x,4y,4z(凸状突起4x,4y,4w)成形部分の成型精度が低くなり、当該金型により成形された溝4x,4y,4z(凸状突起4x,4y,4w)の形態精度(形状精度及び寸法精度)が低くなってしまう。   If the mold is not divided as described above, the mold is formed by forming the groove 4x (convex protrusion 4u) of the surface groove mold 52a and the grooves 4y, 4z (protrusion) of the side surface groove molds 54b and 54c. 4v, 4w) Since the molded part enters the recessed part recessed inside the mold, these grooves 4x, 4y, 4z (convex protrusions 4x, 4y, 4w) are formed by electrical discharge machining. It will be molded by. Accordingly, the molding accuracy of the groove 4x, 4y, 4z (convex protrusion 4x, 4y, 4w) is reduced, and the groove 4x, 4y, 4z (convex protrusion 4x, 4y, 4w) formed by the mold is reduced. ) Form accuracy (shape accuracy and dimensional accuracy) is lowered.

このため、金型50を図5(a),(b)に示すような分割構造とすることで、溝4x,4y,4z(凸状突起4x,4y,4w)成形部分の成型精度を格段に高めることができ、当該金型50により成形された溝4x,4y,4z(凸状突起4x,4y,4w)の形態精度(形状精度及び寸法精度)を格段に高めることができる。このような溝4x,4y,4z(凸状突起4x,4y,4w)の形態精度の向上効果は、成形される溝4x,4y,4z(凸状突起4x,4y,4w)が小さくなるほど、すなわち、プレート4(溝4x,4y,4z)に巻回される素線10の径寸法が小さくなるほど顕著となり、かかる分割構造の金型50による成形メリットは非常に大きくなる。
その際、金型50における溝4x,4y,4z(凸状突起4x,4y,4w)成形部分が外部へ露出されているため、当該成形部分の形態精度(形状精度及び寸法精度)の確認作業を目視などにより容易に行うことができ、その評価も非常に行い易い。
For this reason, the mold 50 has a divided structure as shown in FIGS. 5A and 5B, so that the molding accuracy of the molded part of the grooves 4x, 4y, 4z (convex projections 4x, 4y, 4w) is remarkably increased. The shape accuracy (shape accuracy and dimensional accuracy) of the grooves 4x, 4y, 4z (convex protrusions 4x, 4y, 4w) formed by the mold 50 can be remarkably increased. The effect of improving the form accuracy of such grooves 4x, 4y, 4z (convex protrusions 4x, 4y, 4w) is such that the grooves 4x, 4y, 4z (convex protrusions 4x, 4y, 4w) to be formed become smaller. In other words, the smaller the diameter of the wire 10 wound around the plate 4 (grooves 4x, 4y, 4z), the more significant the forming merits by the mold 50 having such a divided structure become.
At that time, the grooves 4x, 4y, 4z (convex projections 4x, 4y, 4w) in the mold 50 are exposed to the outside, so the form accuracy (shape accuracy and dimensional accuracy) of the molded portion is confirmed. Can be easily performed by visual inspection or the like, and the evaluation is very easy.

また、金型50をこのような分割構造とすることで、プレート4の成形を繰り返し行った際、表面溝型52aの溝4x(凸状突起4u)成形部分、並びに側面溝型54b,54cの溝4y,4z(凸状突起4v,4w)成形部分がプレス時の圧力により摩耗した場合であっても、当該金型50を構成する複数(一例として、6つ)の型52a,52b,52c,54a,54b,54cのうち、表面溝型52a及び側面溝型54b,54cのみを新品と交換し、再度金型50を組み上げることで、成形されるプレート4の溝4x,4y,4z(凸状突起4x,4y,4w)の形状を長期に亘って安定して高精度に維持することができる。また、金型50を必要に応じて部分的にメンテナンスすることが可能となり、金型50のメンテナンスコストも大幅に削減させることができる。   Further, by forming the mold 50 in such a divided structure, when the molding of the plate 4 is repeatedly performed, the groove 4x (convex protrusion 4u) molding portion of the surface groove mold 52a and the side groove molds 54b and 54c are formed. Even if the groove 4y, 4z (convex projection 4v, 4w) is formed by wear due to pressure during pressing, a plurality of (for example, six) molds 52a, 52b, 52c constituting the mold 50 are used. , 54a, 54b, 54c, only the surface groove mold 52a and the side groove molds 54b, 54c are replaced with new ones, and the mold 50 is assembled again, so that the grooves 4x, 4y, 4z of the plate 4 to be formed (convex) The shape of the projections 4x, 4y, 4w) can be stably maintained with high accuracy over a long period of time. Further, the mold 50 can be partially maintained as necessary, and the maintenance cost of the mold 50 can be greatly reduced.

これにより、各種の形状や寸法を成す表面溝部4aの溝4x(プレート表面4pの凸状突起4u)、並びに側面溝部4b,4cの溝4y,4z(プレート側面4s,4tの凸状突起4v,4w)が形成されたプレート4を容易かつ大量に、短期間かつ低コストで製造することができる。   Thereby, the groove 4x of the surface groove portion 4a having various shapes and dimensions (the convex protrusion 4u on the plate surface 4p), and the grooves 4y and 4z of the side surface groove portions 4b and 4c (the convex protrusions 4v on the plate side surfaces 4s and 4t, The plate 4 on which 4w) is formed can be manufactured easily and in large quantities in a short period of time and at a low cost.

なお、金型50における上型52と下型54とを分割させる位置や、これらの分割個数などは、図5(a)に示す構成には限定されず、プレート4の形状などに応じて任意に設定すればよい。
例えば、上型は、完全な分割構造ではなく、表面溝部4aを除いたプレート表面4p部分を成形する型に、表面溝部4aの溝4x(プレート表面4pの凸状突起4u)を成形する型を入れ子状に組み合わせる構造としてもよい。また、側面溝部4b,4cの溝4y,4z(プレート側面4s,4tの凸状突起4v,4w)は、上型で成形する構成であってもよい。
The position where the upper mold 52 and the lower mold 54 in the mold 50 are divided, the number of divisions, and the like are not limited to the configuration shown in FIG. 5A, and are arbitrary according to the shape of the plate 4 and the like. Should be set.
For example, the upper mold is not a completely divided structure, but a mold that molds the groove 4x of the surface groove 4a (the convex protrusion 4u of the plate surface 4p) into a mold that molds the plate surface 4p portion excluding the surface groove 4a. A structure may be combined in a nested manner. Further, the grooves 4y and 4z of the side surface groove portions 4b and 4c (the convex protrusions 4v and 4w of the plate side surfaces 4s and 4t) may be configured to be molded with an upper mold.

以上のような構成を成すプレート4は、ボビン2の筒状部22に取り付けられ、この状態で表面溝部4aの溝4x、並びに側面溝部4b,4cの溝4y,4zに素線10が巻回されることで、コイルCが形成される。なお、コイルC形成時の巻線作業には、従来と同様の自動巻線機を用いることができ、図4(a)〜(c)には、素線10が6層を成して巻回されたコイルCの状態が一例として示されている。   The plate 4 configured as described above is attached to the cylindrical portion 22 of the bobbin 2, and in this state, the element wire 10 is wound around the groove 4x of the surface groove portion 4a and the grooves 4y and 4z of the side surface groove portions 4b and 4c. As a result, the coil C is formed. For winding work when forming the coil C, an automatic winding machine similar to the conventional one can be used. In FIGS. 4A to 4C, the strands 10 are wound in six layers. The state of the rotated coil C is shown as an example.

図4(a)〜(c)に示すように、本実施形態においては、ボビン2の筒状部22にプレート4が取り付けられているため、コイルCの最下層の素線10aは、自動巻線機からプレート4の表面溝部4aの溝4x、並びに側面溝部4b,4cの溝4y,4zに落とし込まれ、巻回されていく。このため、最下層の素線10aは、表面溝部4aに形成された溝4xの間隔、並びに側面溝部4b,4cに形成された溝4y,4zの間隔で整列された状態で巻回される。   As shown in FIGS. 4A to 4C, in this embodiment, since the plate 4 is attached to the cylindrical portion 22 of the bobbin 2, the lowermost strand 10a of the coil C is automatically wound. The wire machine is dropped into the grooves 4x of the surface groove 4a of the plate 4 and the grooves 4y and 4z of the side grooves 4b and 4c, and is wound. For this reason, the lowermost strand 10a is wound in a state of being aligned with the interval between the grooves 4x formed in the surface groove portion 4a and the intervals between the grooves 4y and 4z formed in the side surface groove portions 4b and 4c.

そして、最下層の素線10aに重なる第2層の素線10bは、最下層の隣り合う素線10aの間に落とし込まれ、当該隣り合う素線10aの間隔で整列された状態で巻回される。さらに第3層から第6層の素線10c〜10fも同様に、ひとつ下層の隣り合う素線10間に落とし込まれ、整列された状態で巻回される。なお、図4(a)〜(c)には、一例として素線10が6層から成るコイルCの構成を示しているが、コイルCを形成する素線10の層の数はこれに限定されず、回転電動機の必要出力などに応じて任意の層数となるように素線10を巻回してコイルCを形成すればよい。   Then, the second-layer wires 10b that overlap the lower-layer wires 10a are dropped between adjacent lower-layer wires 10a, and are wound in a state of being aligned at intervals between the adjacent wires 10a. Is done. Further, the third to sixth layers of wires 10c to 10f are similarly dropped between the adjacent wires 10 of one layer below and wound in an aligned state. 4A to 4C show the configuration of the coil C in which the strands 10 are composed of six layers as an example, the number of layers of the strands 10 forming the coils C is limited to this. Instead, the coil C may be formed by winding the wire 10 so as to have an arbitrary number of layers according to the required output of the rotary motor.

このように、本実施形態に係るコイル機構によれば、ボビン2の筒状部22にプレート4を取り付けることで、ステータの複数の突極(具体的には、ボビン)に素線を容易に同一精度で整列して巻回させることができ、各コイルCを精度よく形成することができる。これにより、ステータの複数の突極に整列された状態でコイルCを容易に巻装させ、スロットに収容されるコイルCの単位当たりの巻線数を増やすことができ、回転電動機の高出力化を図ることができる。   Thus, according to the coil mechanism according to the present embodiment, by attaching the plate 4 to the cylindrical portion 22 of the bobbin 2, it is easy to wire the plurality of salient poles (specifically, bobbins) of the stator. The coils can be aligned and wound with the same accuracy, and each coil C can be formed with high accuracy. As a result, the coil C can be easily wound in a state aligned with the plurality of salient poles of the stator, the number of windings per unit of the coil C accommodated in the slot can be increased, and the output of the rotary motor can be increased. Can be achieved.

また、各種の形状や寸法を成す溝4x,4y,4z(凸状突起4x,4y,4w)が形成されたプレート4を容易かつ大量に、短期間かつ低コストで製造することができるため、多様な径寸法に設定された素線10や各品種の素線10に応じてプレート4を付け替えることで、回転電動機の出力調整などに柔軟に対応したコイルCを形成することが可能となる。   In addition, since the plate 4 formed with the grooves 4x, 4y, 4z (convex projections 4x, 4y, 4w) having various shapes and dimensions can be manufactured easily and in large quantities in a short period of time and at a low cost, By replacing the plate 4 in accordance with the strands 10 set to various diameters and the strands 10 of each type, it is possible to form the coil C that can flexibly cope with output adjustment of the rotary motor.

2 ボビン
4 プレート
4a,4b,4c 溝部
10 素線
22 筒状部
22i 筒状部内径側端部
22o 筒状部外径側端部
24i,24o フランジ
C コイル
2 Bobbin 4 Plates 4a, 4b, 4c Groove part 10 Wire 22 Tubular part 22i Tubular part inner diameter side end part 22o Tubular part outer diameter side end part 24i, 24o Flange C Coil

Claims (5)

回転電動機に組み込まれ、径方向へ突出する複数の突極が設けられた環状のステータとの絶縁状態を保つために当該ステータに装着される絶縁材製のカバー部材と、前記カバー部材に素線を巻回させて形成され、当該カバー部材を介して前記ステータの各突極に巻装されるコイルとを備えた回転電動機のコイル機構であって、
カバー部材は、ステータの各突極に対してコイルを巻装させるためのボビンが複数個連結された環状の構造体として構成され、各ボビンは、前記素線が巻回された状態で前記各突極の表面を個別に覆う複数の筒状部と、前記筒状部の内外径端部から前記回転電動機の回転軸方向の両側へ突出するフランジとを備えており、
前記ボビンの筒状部には、前記回転軸方向の両端部に当該ボビンとは別体を成すプレート部材が設けられ、当該プレート部材には、前記コイルの素線が巻回される際、前記素線をガイドして整列させるための複数の溝部が当該素線の巻回方向に沿って形成されていることを特徴とする回転電動機のコイル機構。
A cover member made of an insulating material to be attached to the stator in order to maintain an insulation state with the annular stator provided with a plurality of salient poles protruding in the radial direction and incorporated in the rotary motor, and a wire to the cover member A coil mechanism of a rotary electric motor including a coil wound around each salient pole of the stator via the cover member,
The cover member is configured as an annular structure in which a plurality of bobbins for winding a coil to each salient pole of the stator are connected, and each bobbin has the element wire wound around the bobbin. A plurality of cylindrical portions individually covering the surfaces of the salient poles, and flanges that protrude from the inner and outer diameter end portions of the cylindrical portions to both sides in the rotational axis direction of the rotary motor,
The cylindrical portion of the bobbin is provided with a plate member that is separate from the bobbin at both ends in the rotation axis direction, and when the element wire of the coil is wound around the plate member, A coil mechanism for a rotary electric motor, wherein a plurality of grooves for guiding and aligning the strands are formed along a winding direction of the strands.
前記プレート部材には、前記ボビンのフランジと係合して径方向へ位置決めするための径方向固定部が設けられているとともに、当該ボビンの筒状部の前記回転軸方向の端面と係合して周方向へ位置決めするための周方向固定部が設けられていることを特徴とする請求項1に記載の回転電動機のコイル機構。   The plate member is provided with a radial fixing portion for engaging with the flange of the bobbin and positioning in the radial direction, and is engaged with the end surface of the cylindrical portion of the bobbin in the rotational axis direction. The coil mechanism of the rotary electric motor according to claim 1, further comprising a circumferential direction fixing portion for positioning in the circumferential direction. 前記プレート部材には、前記ボビンの筒状部と係合する面とは反対側の平面、並びに当該平面と前記素線の巻回方向に沿って連続する両側面にそれぞれ溝部が形成されており、当該溝部は、前記巻回方向に沿った直線状を成す複数の凸状突起を前記平面、並びに両側面に対して等間隔で配することにより、当該凸状突起の間に形成される複数の溝として構成されていることを特徴とする請求項1又は2に記載の回転電動機のコイル機構。   The plate member has grooves formed on a plane opposite to the surface engaged with the cylindrical portion of the bobbin, and on both side surfaces continuous with the plane along the winding direction of the element wire. The groove portion is formed between the convex projections by arranging a plurality of convex projections that form a straight line along the winding direction at equal intervals with respect to the plane and both side surfaces. The coil mechanism of the rotary electric motor according to claim 1, wherein the coil mechanism is configured as a groove. 前記プレート部材の平面と両側面とは、なだらかな曲面状に連続されていることを特徴とする請求項3に記載の回転電動機のコイル機構。   The coil mechanism of the rotary electric motor according to claim 3, wherein the flat surface and both side surfaces of the plate member are continuously curved. 前記プレート部材は、絶縁材で成ることを特徴とする請求項1〜4のいずれかに記載の回転電動機のコイル機構。   The said plate member consists of insulating materials, The coil mechanism of the rotary electric motor in any one of Claims 1-4 characterized by the above-mentioned.
JP2012159292A 2012-07-18 2012-07-18 Coil mechanism of rotary motor Pending JP2012231669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159292A JP2012231669A (en) 2012-07-18 2012-07-18 Coil mechanism of rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159292A JP2012231669A (en) 2012-07-18 2012-07-18 Coil mechanism of rotary motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007206827A Division JP5056252B2 (en) 2007-08-08 2007-08-08 Coil mechanism of rotating motor

Publications (1)

Publication Number Publication Date
JP2012231669A true JP2012231669A (en) 2012-11-22

Family

ID=47432701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159292A Pending JP2012231669A (en) 2012-07-18 2012-07-18 Coil mechanism of rotary motor

Country Status (1)

Country Link
JP (1) JP2012231669A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304605A (en) * 1997-04-24 1998-11-13 Toshiba Corp Direct-current motor
JP2005229703A (en) * 2004-02-12 2005-08-25 Sanko Kiki Co Ltd Insulator for stator core, and winding method for stator core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304605A (en) * 1997-04-24 1998-11-13 Toshiba Corp Direct-current motor
JP2005229703A (en) * 2004-02-12 2005-08-25 Sanko Kiki Co Ltd Insulator for stator core, and winding method for stator core

Similar Documents

Publication Publication Date Title
JP5056252B2 (en) Coil mechanism of rotating motor
KR101593861B1 (en) Coil manufacturing method
US8638019B2 (en) Electric motor
EP2597755A1 (en) Insulator, motor, and method for manufacturing stator comprising insulator and coil
US9806576B2 (en) Armature, armature manufacturing method, and rotating electrical device
JP5056253B2 (en) Plate member for coil mechanism of rotary motor
WO2018131392A1 (en) Split core unit, rotary electric machine, method for manufacturing split core unit, and method for manufacturing rotary electric machine
JP5233200B2 (en) Plate member molding die device, plate member manufacturing method, plate member, and rotary motor
JP6576559B2 (en) Rotating electric machine and method of manufacturing unit coil of rotating electric machine
JP2012231670A (en) Plate member for coil mechanism of rotary motor
JP5991308B2 (en) Stator manufacturing method
JP2012231669A (en) Coil mechanism of rotary motor
JP7258625B2 (en) motor stator
WO2016194182A1 (en) Stator
CN106411014A (en) Rotating motor, manufacturing method thereof, stator coil, and coil resin structure
JP5860767B2 (en) Coil manufacturing method
JP2013251996A (en) Method for manufacturing coil
JP5583246B1 (en) Resolver stator and resolver
JP2014082267A (en) Coil
JP7331639B2 (en) Reactor
JP2018085870A (en) Stator of rotary electric machine and rotary electric machine
JP5986730B2 (en) Motor coil assembly structure, motor and method for manufacturing motor coil assembly structure
WO2014185342A1 (en) Coil device
JP7050239B2 (en) Stator, motor
JP6095462B2 (en) Rotating electric machine armature, rotating electric machine, and method of manufacturing rotating electric machine armature

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304