JP2012230340A - Optical system, imaging apparatus having the same, and manufacturing method of the same - Google Patents

Optical system, imaging apparatus having the same, and manufacturing method of the same Download PDF

Info

Publication number
JP2012230340A
JP2012230340A JP2011105892A JP2011105892A JP2012230340A JP 2012230340 A JP2012230340 A JP 2012230340A JP 2011105892 A JP2011105892 A JP 2011105892A JP 2011105892 A JP2011105892 A JP 2011105892A JP 2012230340 A JP2012230340 A JP 2012230340A
Authority
JP
Japan
Prior art keywords
lens component
positive lens
optical system
rear group
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011105892A
Other languages
Japanese (ja)
Other versions
JP5716995B2 (en
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011105892A priority Critical patent/JP5716995B2/en
Publication of JP2012230340A publication Critical patent/JP2012230340A/en
Application granted granted Critical
Publication of JP5716995B2 publication Critical patent/JP5716995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact optical system having a small number of lenses, and achieving high performance, and to provide an imaging apparatus having the optical system and a manufacturing method of the optical system.SOLUTION: An optical system OS to be mounted on a single-lens reflex camera 1 or the like includes, in order from an object side along an optical axis, a front group GF, an aperture stop S, and a rear group GR having a positive refractive power. The front group GF includes, in order from the object side, a first positive lens component LF1, a second positive lens component LF2, and a negative lens component LF3. The rear group GR includes, in order from the object side, a negative lens component LR1 in which a negative lens LRn1 with its concave surface facing the object side and a positive lens LRp1 are joined, a first positive lens component LR2 in which a positive lens LRp2 and a negative lens LRn2 are joined, and a second positive lens component LR3.

Description

本発明は、光学系、この光学系を有する撮像装置、及び、光学系の製造方法に関する。   The present invention relates to an optical system, an imaging apparatus having the optical system, and a method for manufacturing the optical system.

従来、所謂変形ガウス型レンズは多数提案されている(例えば、特許文献1参照)。   Conventionally, many so-called modified Gaussian lenses have been proposed (see, for example, Patent Document 1).

特開2009−251398号公報JP 2009-251398 A

しかしながら、従来のガウス型レンズはコマ収差の補正が不十分で、特にサジタルコマ収差の改善は困難であった。   However, the conventional Gaussian lens has insufficient correction of coma, and it has been particularly difficult to improve sagittal coma.

本発明は、このような課題に鑑みてなされたものであり、小型で、構成枚数が少なく、高性能で、コマ収差、特にサジタルコマ収差、球面収差の少ない光学系、この光学系を有する撮像装置、及び、光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is an optical system that is small in size, has a small number of components, has high performance, has low coma aberration, particularly sagittal coma aberration, and spherical aberration, and an imaging apparatus having the optical system. And it aims at providing the manufacturing method of an optical system.

前記課題を解決するために、本発明に係る光学系は、光軸に沿って物体側から順に、前群と、開口絞りと、正の屈折力を有する後群と、を有し、前群は、物体側から順に、第1正レンズ成分と、第2正レンズ成分と、負レンズ成分と、を有し、後群は、物体側から順に、物体側に凹面を向けた負レンズと正レンズとが接合された負レンズ成分と、正レンズと負レンズとが接合された第1正レンズ成分と、第2正レンズ成分と、を有し、以下の条件式を満足することを特徴とする。
0.000 < nRP−nRN < 0.350
−1.00 < (rp2+rp1)/(rp2−rp1) < 1.00
但し、
nRP:後群中の負レンズ成分を構成する正レンズの媒質のd線に対する屈折率
nRN:後群中の負レンズ成分を構成する負レンズの媒質のd線に対する屈折率
rp1:後群中の第1正レンズ成分の最も物体側の面の曲率半径
rp2:後群中の第1正レンズ成分の最も像側の面の曲率半径
In order to solve the above problems, an optical system according to the present invention includes, in order from the object side along the optical axis, a front group, an aperture stop, and a rear group having a positive refractive power. Has, in order from the object side, a first positive lens component, a second positive lens component, and a negative lens component, and the rear group in order from the object side is a positive lens and a positive lens with a concave surface facing the object side. A negative lens component in which the lens is cemented, a first positive lens component in which the positive lens and the negative lens are cemented, and a second positive lens component, wherein the following conditional expression is satisfied: To do.
0.000 <nRP-nRN <0.350
-1.00 <(rp2 + rp1) / (rp2-rp1) <1.00
However,
nRP: refractive index with respect to d-line of medium of positive lens constituting negative lens component in rear group nRN: refractive index with respect to d-line of medium of negative lens constituting negative lens component in rear group rp1: in rear group The radius of curvature of the surface closest to the object side of the first positive lens component rp2: The radius of curvature of the surface closest to the image side of the first positive lens component in the rear group

また、このような光学系は、以下の条件式を満足することが好ましい。
2.0 < fF2/f0 < 10.0
但し、
fF2:前群中の第2正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
Such an optical system preferably satisfies the following conditional expression.
2.0 <fF2 / f0 <10.0
However,
fF2: focal length of the second positive lens component in the front group f0: focal length of the entire system when focusing on infinity

また、このような光学系は、以下の条件式を満足することが好ましい。
0.001 < fR/fF < 1.500
但し、
fF:無限遠合焦時の前群の焦点距離
fR:無限遠合焦時の後群の焦点距離
Such an optical system preferably satisfies the following conditional expression.
0.001 <fR / fF <1.500
However,
fF: Focal length of the front group when focusing on infinity fR: Focal length of the rear group when focusing on infinity

また、このような光学系は、以下の条件式を満足することが好ましい。
0.2 < fR2/f0 < 4.0
但し、
fR2:後群中の第1正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
Such an optical system preferably satisfies the following conditional expression.
0.2 <fR2 / f0 <4.0
However,
fR2: focal length of the first positive lens component in the rear group f0: focal length of the entire system when focusing on infinity

また、このような光学系は、以下の条件式を満足することが好ましい。
2.5 < (−fR1)/f0 < 40
但し、
fR1:後群中の負レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
Such an optical system preferably satisfies the following conditional expression.
2.5 <(− fR1) / f0 <40
However,
fR1: Focal length of the negative lens component in the rear group f0: Focal length of the entire system when focusing on infinity

また、このような光学系において、前群は、少なくとも1面の非球面を有することが好ましい。   In such an optical system, the front group preferably has at least one aspheric surface.

また、このような光学系において、後群は、少なくとも1面の非球面を有することが好ましい。   In such an optical system, the rear group preferably has at least one aspheric surface.

また、本発明に係る撮像装置は、上述の光学系のいずれかを有することを特徴とする。   In addition, an imaging apparatus according to the present invention includes any one of the above-described optical systems.

また、本発明に係る光学系の製造方法は、光軸に沿って物体側から順に、前群と、開口絞りと、正の屈折力を有する後群と、を有する光学系の製造方法であって、前群として、物体側から順に、第1正レンズ成分と、第2正レンズ成分と、負レンズ成分と、を配置し、後群として、物体側から順に、物体側に凹面を向けた負レンズと正レンズとが接合された負レンズ成分と、正レンズと負レンズとが接合された第1正レンズ成分と、第2正レンズ成分と、を配置し、以下の条件式を満足することを特徴とする。
0.000 < nRP−nRN < 0.350
−1.00 < (rp2+rp1)/(rp2−rp1) < 1.00
但し、
nRP:後群中の負レンズ成分を構成する正レンズの媒質のd線に対する屈折率
nRN:後群中の負レンズ成分を構成する負レンズの媒質のd線に対する屈折率
rp1:後群中の第1正レンズ成分の最も物体側の面の曲率半径
rp2:後群中の第1正レンズ成分の最も像側の面の曲率半径
The optical system manufacturing method according to the present invention is an optical system manufacturing method including a front group, an aperture stop, and a rear group having a positive refractive power in order from the object side along the optical axis. Then, as the front group, a first positive lens component, a second positive lens component, and a negative lens component are arranged in order from the object side, and a concave surface is directed to the object side in order from the object side as the rear group. A negative lens component in which a negative lens and a positive lens are cemented, a first positive lens component in which a positive lens and a negative lens are cemented, and a second positive lens component are disposed, and the following conditional expression is satisfied: It is characterized by that.
0.000 <nRP-nRN <0.350
-1.00 <(rp2 + rp1) / (rp2-rp1) <1.00
However,
nRP: refractive index with respect to d-line of medium of positive lens constituting negative lens component in rear group nRN: refractive index with respect to d-line of medium of negative lens constituting negative lens component in rear group rp1: in rear group The radius of curvature of the surface closest to the object side of the first positive lens component rp2: The radius of curvature of the surface closest to the image side of the first positive lens component in the rear group

本発明によれば、小型で、構成枚数が少なく、高性能な光学系、この光学系を有する撮像装置、及び、光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a high-performance optical system that is small in size, has a small number of components, an image pickup apparatus having the optical system, and a method for manufacturing the optical system.

第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure in the infinite point focusing state of the optical system which concerns on 1st Example. 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the optical system according to Example 1 in an infinitely focused state. 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure in the infinite point focusing state of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の無限遠合焦状態における諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the optical system according to Example 2 in a focused state at infinity. 光学系を搭載する一眼レフカメラの断面図を示す。A sectional view of a single-lens reflex camera equipped with an optical system is shown. 光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of an optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る光学系OSは、光軸に沿って物体側から順に、前群GFと、開口絞りSと、正の屈折力を有する後群GRと、を有して構成される。また、前群GFは、物体側から順に、第1正レンズ成分LF1と、第2正レンズ成分LF2と、負レンズ成分LF3と、を有し、後群GRは、物体側から順に、物体側に凹面を向けた負レンズLRn1と正レンズLRp1とが接合された負レンズ成分LR1と、正レンズLRp2と負レンズLRn2とが接合された第1正レンズ成分LR2と、第2正レンズ成分LR3と、を有して構成されている。なお、以降の説明において、「レンズ成分」とは、1枚の単レンズ(レンズ要素)、若しくは、2枚以上の単レンズ(レンズ要素)を接合した接合レンズを指すものとする。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the optical system OS according to the present embodiment includes a front group GF, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side along the optical axis. Configured. Further, the front group GF includes a first positive lens component LF1, a second positive lens component LF2, and a negative lens component LF3 in order from the object side, and the rear group GR is in order from the object side to the object side. A negative lens component LR1 in which a negative lens LRn1 and a positive lens LRp1 having a concave surface are cemented to each other, a first positive lens component LR2 in which a positive lens LRp2 and a negative lens LRn2 are cemented, and a second positive lens component LR3, , And is configured. In the following description, “lens component” refers to a single lens (lens element) or a cemented lens in which two or more single lenses (lens elements) are cemented.

本光学系OSは、基本的に正負負正に代表される、所謂ガウス型、クセノター型等の光学系の欠点であるコマ収差、特にサジタルコマ収差を、色収差、像面湾曲及び非点収差を悪化させること無く、改善したものである。以下に、このような光学系OSを構成するための条件について説明する。   This optical system OS basically deteriorates coma aberration, especially sagittal coma aberration, which is a defect of so-called Gaussian type, xenota type optical system represented by positive and negative signs, and chromatic aberration, curvature of field and astigmatism. It is improved without letting it. The conditions for configuring such an optical system OS will be described below.

本実施形態に係る光学系OSは、次の条件式(1)を満足することが望ましい。   The optical system OS according to the present embodiment desirably satisfies the following conditional expression (1).

0.000 < nRP−nRN < 0.350 (1)
但し、
nRP:後群GR中の負レンズ成分LR1を構成する正レンズLRp1の媒質のd線に対する屈折率
nRN:後群GR中の負レンズ成分LR1を構成する負レンズLRn1の媒質のd線に対する屈折率
0.000 <nRP-nRN <0.350 (1)
However,
nRP: refractive index of medium of positive lens LRp1 constituting negative lens component LR1 in rear group GR with respect to d-line nRN: refractive index of medium of negative lens LRn1 constituting negative lens component LR1 of rear group GR with respect to d-line

条件式(1)は、後群GR中の負レンズ成分LR1を構成する正レンズLRp1の媒質と負レンズLRn1の媒質のd線(波長λ=587.6nm)に対する屈折率の差を規定する条件である。この条件をはずれた場合、ペッツバール和に対する最適値の設定が損なわれ、結果的に像面湾曲が悪化する。   Conditional expression (1) defines a difference in refractive index with respect to the d-line (wavelength λ = 587.6 nm) between the medium of the positive lens LRp1 and the medium of the negative lens LRn1 constituting the negative lens component LR1 in the rear group GR. It is. If this condition is not met, the setting of the optimum value for the Petzval sum is impaired, and as a result, the field curvature deteriorates.

条件式(1)の上限値を上回る場合、屈折率差が著しく大きくなることを意味している。この場合でも、ペッツバール和が最適な値から悪化し、結果的に像面湾曲の補正が悪化し好ましくない。また、球面収差の補正能力も低下し、最適な色収差のための硝材選択もできなくなり好ましくない。なお、この条件式(1)の上限値を0.300に設定すると、上述の諸収差の補正がより有利になる。また、この条件式(1)の上限値を0.200に設定すると、本願の効果をより発揮できる。また、条件式(1)の上限値を0.170に抑えることによって、本願の効果を最大限に発揮できる。   When the value exceeds the upper limit value of the conditional expression (1), it means that the refractive index difference is remarkably increased. Even in this case, the Petzval sum is deteriorated from the optimum value, and as a result, the correction of the field curvature is deteriorated. Further, the ability to correct spherical aberration is also reduced, and it is not preferable because it is impossible to select a glass material for optimal chromatic aberration. When the upper limit value of conditional expression (1) is set to 0.300, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of the conditional expression (1) is set to 0.200, the effect of the present application can be exhibited more. In addition, by suppressing the upper limit value of conditional expression (1) to 0.170, the effect of the present application can be maximized.

また、条件式(1)の下限値を下回る場合、屈折率差が著しく小さくなり、正レンズLRp1の屈折率より負レンズLRn1の屈折率のほうが大きくなってしまう。この場合、正負の屈折率の高低が逆になり、ペッツバール和を小さく抑えることが困難になる。したがって、ペッツバール和が最適な値から大きく逸脱し、結果的に像面湾曲の補正、非点収差の補正が悪化し好ましくない。なお、条件式(1)の下限値を0.020に設定すると、像面湾曲及び非点収差等の諸収差の補正に有利となる。また、この条件式(1)の下限値を0.035に設定すると、本願の効果をより発揮できる。また、条件式(1)の下限値を0.05に設定することによって、本願の効果を最大限に発揮できる。   Further, when the lower limit of conditional expression (1) is not reached, the difference in refractive index becomes remarkably small, and the refractive index of the negative lens LRn1 becomes larger than the refractive index of the positive lens LRp1. In this case, the positive and negative refractive indexes are reversed, and it is difficult to keep the Petzval sum small. Therefore, the Petzval sum deviates greatly from the optimum value, and as a result, the correction of curvature of field and the correction of astigmatism are deteriorated. If the lower limit value of conditional expression (1) is set to 0.020, it is advantageous for correction of various aberrations such as field curvature and astigmatism. Further, when the lower limit value of the conditional expression (1) is set to 0.035, the effect of the present application can be further exhibited. Further, by setting the lower limit value of conditional expression (1) to 0.05, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(2)を満足することが望ましい。   Moreover, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (2).

−1.00 < (rp2+rp1)/(rp2−rp1) < 1.00 (2)
但し、
rp1:後群GR中の第1正レンズ成分LR2の最も物体側の面の曲率半径
rp2:後群GR中の第1正レンズ成分LR2の最も像側の面の曲率半径
-1.00 <(rp2 + rp1) / (rp2-rp1) <1.00 (2)
However,
rp1: radius of curvature of the surface closest to the object side of the first positive lens component LR2 in the rear group GR rp2: radius of curvature of the surface closest to the image side of the first positive lens component LR2 in the rear group GR

条件式(2)は後群GR中の第1正レンズ成分LR2の全体での形状因子を規定する条件である。この条件は球面収差とコマ収差の補正に大きく関わっている。ここで、条件式(2)が±1以内に設定されているということは、当該第1正レンズ成分LR2の全体での形状因子が両凸形状を示していることになる。この形状を維持することにより、球面収差の良好な補正及びコマ収差の良好な補正が可能になる。   Conditional expression (2) is a condition that defines the overall shape factor of the first positive lens component LR2 in the rear group GR. This condition is greatly related to correction of spherical aberration and coma. Here, the conditional expression (2) being set within ± 1 means that the overall shape factor of the first positive lens component LR2 indicates a biconvex shape. By maintaining this shape, it is possible to correct spherical aberration and to correct coma.

条件式(2)の上限値を上回る場合、第1正レンズ成分LR2は、物体側に凸面を向けた平凸形状を越え、物体側に凸面を向けた正メニスカス形状になる。この形状では球面収差の補正が悪化し、非点収差の補正も悪化するので好ましくない。また、偏芯等の製造敏感度も増し好ましくない。なお、条件式(2)の上限値を0.75に設定すると、上述の諸収差の補正がより有利になる。また、条件式(2)の上限値を0.70に設定すると、本願の効果をより発揮できる。また、条件式(2)の上限値を0.60に抑えることによって、本願の効果を最大限に発揮できる。   When the upper limit of conditional expression (2) is exceeded, the first positive lens component LR2 has a positive meniscus shape that exceeds the plano-convex shape with the convex surface facing the object side and the convex surface toward the object side. This shape is not preferable because the correction of spherical aberration deteriorates and the correction of astigmatism also deteriorates. In addition, manufacturing sensitivity such as eccentricity increases, which is not preferable. If the upper limit value of conditional expression (2) is set to 0.75, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of the conditional expression (2) is set to 0.70, the effect of the present application can be exhibited more. Further, by suppressing the upper limit value of conditional expression (2) to 0.60, the effect of the present application can be maximized.

また、条件式(2)の下限値を下回る場合、第1正レンズ成分LR2は、像側に凸面を向けた平凸形状を越え、像側に凸面を向けた正メニスカス形状になる。この場合、球面収差、サジタルコマ収差、メリジオナルコマ収差の補正が悪化し好ましくない。また、偏芯等の製造敏感度も増し好ましくない。なお、条件式(2)の下限値を−0.7に設定すると、諸収差の補正に有利となる。また、条件式(2)の下限値を−0.42に設定すると、本願の効果をより発揮できる。また、条件式(2)の下限値を−0.40に設定することによって、本願の効果を最大限に発揮できる。   When the lower limit of conditional expression (2) is not reached, the first positive lens component LR2 has a positive meniscus shape that exceeds the planoconvex shape with the convex surface facing the image side and the convex surface toward the image side. In this case, correction of spherical aberration, sagittal coma aberration, and meridional coma aberration deteriorates, which is not preferable. In addition, manufacturing sensitivity such as eccentricity increases, which is not preferable. If the lower limit value of conditional expression (2) is set to −0.7, it is advantageous for correcting various aberrations. Moreover, when the lower limit value of the conditional expression (2) is set to −0.42, the effect of the present application can be exhibited more. Moreover, the effect of the present application can be maximized by setting the lower limit value of conditional expression (2) to −0.40.

また、本実施形態に係る光学系OSは、次の条件式(3)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (3).

2.0 < fF2/f0 < 10.0 (3)
但し、
fF2:前群GF中の第2正レンズ成分LF2の焦点距離
f0:無限遠合焦時の全系の焦点距離
2.0 <fF2 / f0 <10.0 (3)
However,
fF2: focal length of the second positive lens component LF2 in the front group GF f0: focal length of the entire system when focusing on infinity

条件式(3)は前群GFの第2正レンズ成分LF2の焦点距離を規定する条件である。本実施形態に係る光学系OSの前群GFは正正負の構成になっており、この中間部の第2正レンズ成分LF2の最適な屈折力を規定すものである。   Conditional expression (3) defines the focal length of the second positive lens component LF2 of the front group GF. The front group GF of the optical system OS according to the present embodiment has a positive / negative configuration, and defines an optimum refractive power of the second positive lens component LF2 at the intermediate portion.

条件式(3)の上限値を上回る場合、当該第2正レンズ成分LF2の屈折力が弱くなることを意味している。この場合、像面湾曲、非点収差の補正が悪化し好ましくない。なお、条件式(3)の上限値を9.0に設定すると、上述の諸収差の補正がより有利になる。また、条件式(3)の上限値を8.0に設定すると、本願の効果をより発揮できる。また、条件式(3)の上限値を7.0に抑えることによって、本願の効果を最大限に発揮できる。   If the upper limit value of conditional expression (3) is exceeded, it means that the refractive power of the second positive lens component LF2 becomes weak. In this case, correction of field curvature and astigmatism deteriorates, which is not preferable. When the upper limit value of conditional expression (3) is set to 9.0, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of conditional expression (3) is set to 8.0, the effect of the present application can be exhibited more. Further, by suppressing the upper limit value of conditional expression (3) to 7.0, the effect of the present application can be maximized.

また、条件式(3)の下限値を下回る場合、当該第2正レンズ成分LF2の屈折力が強くなることを意味している。その場合、結果的にコマ収差、球面収差、歪曲収差の補正が悪化し好ましくない。なお、条件式(3)の下限値を2.5に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(3)の下限値を3.0に設定すると、本願の効果をより発揮できる。また、条件式(3)の下限値を3.8に設定すると、本願の効果をさらに発揮できる。また、条件式(3)の下限値を4.0に設定することによって、本願の効果を最大限に発揮できる。   Further, when the lower limit value of conditional expression (3) is not reached, it means that the refractive power of the second positive lens component LF2 becomes strong. In that case, correction of coma aberration, spherical aberration, and distortion is deteriorated as a result, which is not preferable. If the lower limit value of conditional expression (3) is set to 2.5, it is advantageous for correction of various aberrations such as spherical aberration. Further, when the lower limit value of the conditional expression (3) is set to 3.0, the effect of the present application can be exhibited more. Further, when the lower limit value of the conditional expression (3) is set to 3.8, the effect of the present application can be further exhibited. Further, by setting the lower limit value of conditional expression (3) to 4.0, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(4)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (4).

0.001 < fR/fF < 1.500 (4)
但し、
fF:無限遠合焦時の前群GFの焦点距離
fR:無限遠合焦時の後群GRの焦点距離
0.001 <fR / fF <1.500 (4)
However,
fF: Focal length of front group GF when focusing on infinity fR: Focal length of rear group GR when focusing on infinity

条件式(4)は、本実施形態に係る光学系OSを構成する前群GFと後群GRとの焦点距離比、言い換えると前群GFと後群GRとの屈折力の大小関係を規定する条件である。   Conditional expression (4) defines the focal length ratio between the front group GF and the rear group GR constituting the optical system OS according to this embodiment, in other words, the magnitude relationship between the refractive powers of the front group GF and the rear group GR. It is a condition.

条件式(4)の上限値を上回る場合、前群GFに比較して後群GRの焦点距離が大きくなる。言い換えれば、前群GFに比較して後群GRの屈折力が弱い状態、前群GFに着目すれば、後群GRに比較して前群GFの屈折力が著しく強くなることを示す。この場合、像面湾曲、非点収差、コマ収差の補正のバランスが崩れ、好ましくない。なお、条件式(4)の上限値を1.000に設定すると、諸収差の補正が有利になる。また、条件式(4)の上限値を0.550に設定すると本願の効果をより発揮できる。また、条件式(4)の上限値を0.350に抑えることによって、本願の効果を最大限に発揮できる。   When the upper limit value of conditional expression (4) is exceeded, the focal length of the rear group GR is greater than that of the front group GF. In other words, the refractive power of the rear group GR is weaker than that of the front group GF, and focusing on the front group GF indicates that the refractive power of the front group GF is significantly stronger than that of the rear group GR. In this case, the balance of correction of field curvature, astigmatism, and coma is lost, which is not preferable. If the upper limit value of conditional expression (4) is set to 1.000, various aberrations can be corrected. Further, when the upper limit value of the conditional expression (4) is set to 0.550, the effect of the present application can be exhibited more. Further, by suppressing the upper limit value of conditional expression (4) to 0.350, the effects of the present application can be maximized.

条件式(4)の下限値を下回る場合、前群GFに比較して後群GRの焦点距離が小さくなる。言い換えれば、前群GFに比較して後群GRの屈折力が著しく強い状態、前群GFに着目すれば、後群GRに比較して前群GFの屈折力が弱くなることを示す。この場合、特に球面収差、コマ収差が悪化するので好ましくない。なお、条件式(4)の下限値を0.010に設定すると、上述の諸収差の補正がより良好にできる。また、条件式(4)の下限値を0.030に設定すると本願の効果をより発揮できる。また、条件式(4)の下限値を0.070に設定することによって、本願の効果を最大限に発揮できる。   When the lower limit value of conditional expression (4) is not reached, the focal length of the rear group GR becomes smaller than that of the front group GF. In other words, the refractive power of the rear group GR is significantly stronger than that of the front group GF, and focusing on the front group GF indicates that the refractive power of the front group GF is weaker than that of the rear group GR. In this case, spherical aberration and coma are particularly deteriorated, which is not preferable. When the lower limit value of conditional expression (4) is set to 0.010, the above-mentioned various aberrations can be corrected more favorably. Moreover, when the lower limit value of the conditional expression (4) is set to 0.030, the effect of the present application can be exhibited more. Moreover, by setting the lower limit value of conditional expression (4) to 0.070, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(5)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (5).

0.2 < fR2/f0 < 4.0 (5)
但し、
fR2:後群GR中の第1正レンズ成分LR2の焦点距離
f0:無限遠合焦時の全系の焦点距離
0.2 <fR2 / f0 <4.0 (5)
However,
fR2: focal length of the first positive lens component LR2 in the rear group GR f0: focal length of the entire system when focusing on infinity

条件式(5)は後群GR中の全体で両凸形状を有する第1正レンズ成分LR2の焦点距離の大小関係、言い換えれば屈折力を規定した条件である。本実施形態に係る光学系OSの後群GRは負正正の構成になっており、この中間部の両凸形状の第1正レンズ成分LR2の最適な屈折力を規定するものである。   Conditional expression (5) is a condition that defines the relationship between the focal lengths of the first positive lens component LR2 having a biconvex shape as a whole in the rear group GR, in other words, the refractive power. The rear group GR of the optical system OS according to the present embodiment has a negative positive / positive configuration, and defines an optimum refractive power of the biconvex first positive lens component LR2 at the intermediate portion.

条件式(5)の上限値を上回る場合、当該第1正レンズ成分LR2の焦点距離が著しく長くなり、正の屈折力が弱くなることを意味している。この場合、像面湾曲、非点収差の補正が悪化し好ましくない。なお、条件式(5)の上限値を3.0に設定すると、上述の諸収差の補正がより有利になる。また、条件式(5)の上限値を2.0に設定すると本願の効果をより発揮できる。また、条件式(5)の上限値を1.7に抑えることによって、本願の効果を最大限に発揮できる。   When the value exceeds the upper limit value of the conditional expression (5), it means that the focal length of the first positive lens component LR2 becomes extremely long and the positive refractive power becomes weak. In this case, correction of field curvature and astigmatism deteriorates, which is not preferable. When the upper limit value of conditional expression (5) is set to 3.0, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of the conditional expression (5) is set to 2.0, the effect of the present application can be exhibited more. Moreover, the effect of the present application can be maximized by suppressing the upper limit value of conditional expression (5) to 1.7.

また、条件式(5)の下限値を下回る場合、当該第1正レンズ成分LR2の焦点距離が著しく短くなり、正の屈折力が著しく強くなることを意味している。その場合、結果的に球面収差、サジタルコマ収差、メリジオナルコマ収差の補正が悪化し好ましくない。また偏芯に対する敏感度も増し好ましくない。なお、条件式(5)の下限値を0.5に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(5)の下限値を0.7に設定すると本願の効果をより発揮できる。また、条件式(5)の下限値を1.0に設定することによって、本願の効果を最大限に発揮できる。   On the other hand, if the lower limit value of conditional expression (5) is not reached, it means that the focal length of the first positive lens component LR2 is remarkably shortened and the positive refractive power is remarkably increased. In this case, the correction of spherical aberration, sagittal coma aberration, and meridional coma aberration deteriorates as a result, which is not preferable. Also, the sensitivity to eccentricity increases, which is not preferable. Note that setting the lower limit of conditional expression (5) to 0.5 is advantageous for correcting various aberrations such as spherical aberration. Further, when the lower limit value of the conditional expression (5) is set to 0.7, the effect of the present application can be exhibited more. Further, by setting the lower limit value of conditional expression (5) to 1.0, the effect of the present application can be maximized.

また、本実施形態に係る光学系OSは、次の条件式(6)を満足することが望ましい。   In addition, it is desirable that the optical system OS according to the present embodiment satisfies the following conditional expression (6).

2.5 < (−fR1)/f0 < 40 (6)
但し、
fR1:後群GR中の負レンズ成分LR1の焦点距離
f0:無限遠合焦時の全系の焦点距離
2.5 <(− fR1) / f0 <40 (6)
However,
fR1: focal length of the negative lens component LR1 in the rear group GR f0: focal length of the entire system when focusing on infinity

条件式(6)は、後群GR中の物体側に凹面を向けた負レンズLRn1と正レンズLRp1とが接合された負レンズ成分LR1の焦点距離を規定する条件である。本実施形態に係る光学系OSの後群GRは負正正の構成になっており、この物体側の負レンズ成分LR1の最適な屈折力を規定すものである。   Conditional expression (6) is a condition that defines the focal length of the negative lens component LR1 in which the negative lens LRn1 having the concave surface facing the object side in the rear group GR and the positive lens LRp1 are cemented. The rear group GR of the optical system OS according to the present embodiment has a negative positive configuration, and defines the optimum refractive power of the negative lens component LR1 on the object side.

条件式(6)の上限値を上回る場合、当該負レンズ成分LR1の焦点距離の絶対値が著しく大きくなり、負の屈折力が弱くなることを意味している。この場合、球面収差、コマ収差の補正能力が低下し好ましくない。なお、条件式(6)の上限値を30に設定すると、上述の諸収差の補正がより有利になる。また、条件式(6)の上限値を25に設定すると本願の効果をより発揮できる。また、条件式(6)の上限値を20に抑えることによって、本願の効果を最大限に発揮できる。   If the upper limit value of conditional expression (6) is exceeded, it means that the absolute value of the focal length of the negative lens component LR1 is significantly increased and the negative refractive power is weakened. In this case, the correction capability of spherical aberration and coma aberration is lowered, which is not preferable. If the upper limit value of conditional expression (6) is set to 30, the above-described correction of various aberrations becomes more advantageous. Further, when the upper limit value of conditional expression (6) is set to 25, the effect of the present application can be further exhibited. Further, by suppressing the upper limit value of conditional expression (6) to 20, the effect of the present application can be maximized.

また、条件式(6)の下限値を下回る場合、当該負レンズ成分LR1の焦点距離の絶対値が著しく小さくなり、負の屈折力が著しく強くなることを意味している。その場合、結果的に球面収差、サジタルコマ収差、メリジオナルコマ収差の補正が悪化し好ましくない。また偏芯に対する敏感度も増し好ましくない。なお、条件式(6)の下限値を3.0に設定すると、球面収差等の諸収差の補正に有利となる。また、条件式(6)の下限値を4.0に設定すると本願の効果をより発揮できる。また、条件式(6)の下限値を6.9に設定することによって、本願の効果を最大限に発揮できる。   On the other hand, if the lower limit value of conditional expression (6) is not reached, it means that the absolute value of the focal length of the negative lens component LR1 is remarkably reduced and the negative refractive power is remarkably increased. In this case, the correction of spherical aberration, sagittal coma aberration, and meridional coma aberration deteriorates as a result, which is not preferable. Also, the sensitivity to eccentricity increases, which is not preferable. Note that setting the lower limit of conditional expression (6) to 3.0 is advantageous for correcting various aberrations such as spherical aberration. Further, when the lower limit value of the conditional expression (6) is set to 4.0, the effect of the present application can be exhibited more. Further, by setting the lower limit value of conditional expression (6) to 6.9, the effect of the present application can be maximized.

また、前群GFには少なくとも1面の非球面を有することが望ましく、大口径に対応した球面収差、コマ収差の補正に有利である。また、後群GRには少なくとも1面の非球面を有することが望ましい。後群GRも同様に大口径に対応した球面収差、コマ収差の補正に有利である。なお、開口絞りSを挟んで前後に1面ずつの非球面を有することは、球面収差、サジタルコマ収差、メリジオナルコマ収差等の大口径に起因する収差を補正するのに有効である。   The front group GF preferably has at least one aspheric surface, which is advantageous for correcting spherical aberration and coma corresponding to a large aperture. The rear group GR preferably has at least one aspheric surface. Similarly, the rear group GR is advantageous for correcting spherical aberration and coma corresponding to a large aperture. It should be noted that having one aspherical surface before and after the aperture stop S is effective in correcting aberrations caused by a large aperture such as spherical aberration, sagittal coma aberration, meridional coma aberration.

また、本実施形態に係る光学系OSにおいて、前群GFを構成する第1正レンズ成分LF1、第2正レンズ成分LF2及び負レンズ成分LF3、並びに、後群GRを構成する第2正レンズ成分LR3は、図1に示すように単レンズで構成されているが、2以上の単レンズを接合した接合レンズで構成しても良い。   In the optical system OS according to the present embodiment, the first positive lens component LF1, the second positive lens component LF2, and the negative lens component LF3 that constitute the front group GF, and the second positive lens component that constitutes the rear group GR. The LR 3 is composed of a single lens as shown in FIG. 1, but may be composed of a cemented lens in which two or more single lenses are cemented.

図5に、上述の光学系OSを備える撮像装置として、一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(光学系OS)で集光されて、クイックリタ−ンミラ−3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を、接眼レンズ6を介して正立像として観察することができる。   FIG. 5 is a schematic cross-sectional view of a single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an imaging apparatus including the optical system OS described above. In this camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 (optical system OS) and focused on the focusing screen 4 via the quick return mirror-3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリ−ズボタンが押されると、クイックリタ−ンミラ−3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図5に記載のカメラ1は、撮影レンズ2を着脱可能に保持するものでも良く、撮影レンズ2と一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリタ−ンミラ−等を有さないコンパクトカメラ若しくはミラ−レスの一眼レフカメラでも良い。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) (not shown) condensed by the taking lens 2 is captured by the image sensor 7. A subject image is formed on the top. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1. The camera 1 shown in FIG. 5 may be one that holds the photographing lens 2 in a detachable manner or may be molded integrally with the photographing lens 2. Further, the camera 1 may be a so-called single-lens reflex camera, or a compact camera without a quick return mirror or a mirrorless single-lens reflex camera.

ここで、本カメラ1に撮影レンズ2として上述した光学系OSを搭載することにより、その特徴的なレンズ構成によって、球面収差、サジタルコマフレアー、像面湾曲、コマ収差の少ない大口径レンズを実現している。これにより本カメラ1は、球面収差、サジタルコマ収差、像面湾曲、メリジオナルコマ収差の少なく、大口径を有し、広角撮影可能な撮像装置を実現することができる。   Here, by mounting the above-described optical system OS as the photographing lens 2 on the camera 1, a large-aperture lens with less spherical aberration, sagittal coma flare, field curvature, and coma is realized by its characteristic lens configuration. doing. As a result, the camera 1 can realize an image pickup apparatus that has a large aperture and is capable of wide-angle shooting with less spherical aberration, sagittal coma aberration, field curvature, and meridional coma aberration.

また、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である   In addition, the contents described below can be employed as appropriate within a range that does not impair the optical performance.

本実施形態では、2群構成の光学系OSを示したが、以上の構成条件等は、3群、4群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、上述のように開口絞りSで分離された、少なくとも1枚のレンズを有する部分、または、変倍時若しくは合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the present embodiment, the optical system OS having the two-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as the third group, the fourth group, and the like. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group is a portion having at least one lens separated by the aperture stop S as described above, or at least one piece separated by an air interval that changes at the time of zooming or focusing. The part which has a lens is shown.

また、本実施形態では全体(全群)繰り出しによって無限遠物体から近距離物体に対して合焦するが、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。すなわち、前群GFを用いる方式や後群GRを用いたリヤフォーカスでも良い。この場合、前記合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。   In this embodiment, the entire (all groups) feed is used to focus on an object at a short distance from an object at infinity. A focusing lens group that performs focusing from an object to a short-distance object may be used. That is, a method using the front group GF or a rear focus using the rear group GR may be used. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に、後群GRの少なくとも一枚を防振レンズ群とするのが好ましい。   Also, by moving the lens group or partial lens group so that it has a component in the direction perpendicular to the optical axis, or rotating (swinging) in the in-plane direction including the optical axis, image blur caused by camera shake is corrected. An anti-vibration lens group may be used. In particular, it is preferable that at least one of the rear group GR is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、光軸方向に像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモ−ルド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is shifted in the optical axis direction, it is preferable because there is little deterioration in the drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin on the glass surface. Any of the aspherical surfaces may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りSは光学系OSの中央近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably arranged near the center of the optical system OS. However, the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴ−ストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

以下、本実施形態に係る光学系OSの製造方法の概略を、図6を参照して説明する。この光学系OSの製造方法は、光軸に沿って物体側から順に、前群GF、開口絞りS、及び、正の屈折力を有する後群GRを配置する。具体的に、本実施形態では、例えば、前群GFとして、物体側から順に、両凸レンズ形状の非球面正レンズ(第1正レンズ成分)LF1、物体側に凸面を向けた正メニスカスレンズ(第2正レンズ成分)LF2、及び、物体側に凸面を向けた負メニスカスレンズ(負レンズ成分)LF3を配置し(ステップS100)、開口絞りSを配置し(ステップS200)、後群GRとして、物体側から順に、両凹レンズLRn1と両凸レンズLRp1とが接合された負レンズ成分LR1、両凸レンズLRp2と物体側に凹面を向けた負メニスカスレンズLRn2とが接合された第1正レンズ成分LR2、及び、両凸レンズ形状の非球面正レンズ(第2正レンズ成分)LR3を配置する(ステップS300)。このとき、後群GRを構成する負レンズ成分LR1及び第1正レンズ成分LR2は、上述の条件式(1)及び条件式(2)を満足する。   Hereinafter, an outline of a method for manufacturing the optical system OS according to the present embodiment will be described with reference to FIG. In the manufacturing method of the optical system OS, the front group GF, the aperture stop S, and the rear group GR having a positive refractive power are arranged in this order from the object side along the optical axis. Specifically, in the present embodiment, for example, as the front group GF, in order from the object side, a biconvex aspherical positive lens (first positive lens component) LF1, and a positive meniscus lens (first lens) with a convex surface facing the object side. 2 positive lens components) LF2 and a negative meniscus lens (negative lens component) LF3 having a convex surface facing the object side (step S100), an aperture stop S (step S200), and the rear group GR as an object In order from the side, a negative lens component LR1 in which a biconcave lens LRn1 and a biconvex lens LRp1 are cemented, a first positive lens component LR2 in which a biconvex lens LRp2 and a negative meniscus lens LRn2 with a concave surface facing the object side are cemented, and A biconvex aspherical positive lens (second positive lens component) LR3 is arranged (step S300). At this time, the negative lens component LR1 and the first positive lens component LR2 constituting the rear group GR satisfy the conditional expression (1) and the conditional expression (2) described above.

以上説明したように、本実施形態に係る光学系OSによれば、カメラ等の撮像装置、印刷用レンズ、複写用レンズに好適な、小型で高性能なレンズ、およびそれを用いた撮像装置を提供することができる。   As described above, according to the optical system OS according to the present embodiment, a small and high-performance lens suitable for an imaging device such as a camera, a printing lens, and a copying lens, and an imaging device using the same. Can be provided.

以下、光学系OSの実施例を、図面に基づいて説明する。なお、図1及び図3は、各実施例に係る光学系OS(OS1,OS2)の構成を示している。   Hereinafter, embodiments of the optical system OS will be described with reference to the drawings. 1 and 3 show the configuration of the optical system OS (OS1, OS2) according to each embodiment.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ is the conic constant, and An is the nth-order aspherical coefficient, and is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/[1+{1−κ(y2/r2)}1/2
+A4×y4+A6×y6+A8×y8 (a)
S (y) = (y 2 / r) / [1+ {1−κ (y 2 / r 2 )} 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the right side of the surface number.

[第1実施例]
図1は、第1実施例に係る光学系OS1の構成を示す図である。この光学系OS1は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRと、を有して構成されている。前群GFは、物体側から順に、両凸レンズ形状の非球面正レンズからなる第1正レンズ成分LF1、物体側に凸面を向けた正メニスカスレンズからなる第2正レンズ成分LF2、及び、物体側に凸面を向けた負メニスカスレンズからなる負レンズ成分LF3から構成されている。また、後群GRは、物体側から順に、両凹レンズ(物体側に凹面を向けた負レンズ)LRn1と両凸レンズ(正レンズ)LRp1とが接合された負レンズ成分LR1、両凸レンズ(正レンズ)LRp2と物体側に凹面を向けた負メニスカスレンズ(負レンズ)LRn2とが接合された第1正レンズ成分LR2、及び、両凸レンズ形状の非球面正レンズからなる第2正レンズ成分LR3から構成されている。
[First embodiment]
FIG. 1 is a diagram illustrating a configuration of an optical system OS1 according to the first example. The optical system OS1 includes, in order from the object side, a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power. The front group GF includes, in order from the object side, a first positive lens component LF1 composed of an aspherical positive lens having a biconvex lens shape, a second positive lens component LF2 composed of a positive meniscus lens having a convex surface facing the object side, and the object side. And a negative lens component LF3 composed of a negative meniscus lens having a convex surface facing the surface. The rear group GR includes, in order from the object side, a negative lens component LR1 in which a biconcave lens (a negative lens having a concave surface facing the object side) LRn1 and a biconvex lens (positive lens) LRp1 are cemented, and a biconvex lens (positive lens). LRp2 is composed of a first positive lens component LR2 in which a negative meniscus lens (negative lens) LRn2 having a concave surface facing the object side is cemented, and a second positive lens component LR3 composed of a biconvex aspherical positive lens. ing.

以下の表1に、本第1実施例に係る光学系OS1の諸元の値を掲げる。この表1の全体諸元において、fは焦点距離、FNOはFナンバー、ωは半画角(単位:度)、Yは像高、TLは光学系OS1の全長、及び、Bfはバックフォーカスをそれぞれ表している。なお、全長TLは、この光学系OS1の最も物体側のレンズ面(第1面)から像面までの光軸上の距離を示し、バックフォーカスBfは、この光学系OS1の最も像側のレンズ面(第15面)から像面までの光軸上の距離を表している。また、レンズデータにおいて、第1欄mは、光線の進行する方向に沿った物体側からの光学面の順序(面番号)を、第2欄rは、各光学面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄νd及び第5欄ndは、それぞれd線(波長λ=587.6nm)に対するアッべ数及び屈折率を示している。なお、この表1に示す面番号1〜15は、図1に示す番号1〜15に対応している。また、曲率半径0.0000はレンズ面においては平面を示し、開口絞りSにおいては開口を示す。また、空気の屈折率1.00000は省略してある。また、レンズ群焦点距離は、各レンズ群が開始する面番号(始面)および各レンズ群の焦点距離をそれぞれ示している。   Table 1 below lists values of specifications of the optical system OS1 according to the first example. In the overall specifications of Table 1, f is the focal length, FNO is the F number, ω is the half angle of view (unit: degree), Y is the image height, TL is the total length of the optical system OS1, and Bf is the back focus. Represents each. The total length TL indicates the distance on the optical axis from the most object side lens surface (first surface) of the optical system OS1 to the image plane, and the back focus Bf is the most image side lens of the optical system OS1. This represents the distance on the optical axis from the surface (fifteenth surface) to the image surface. In the lens data, the first column m indicates the order (surface number) of the optical surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each optical surface, The column d shows the distance (surface interval) on the optical axis from each optical surface to the next optical surface, and the fourth column νd and the fifth column nd show the Ab for the d-line (wavelength λ = 587.6 nm), respectively. Number and refractive index are shown. The surface numbers 1 to 15 shown in Table 1 correspond to the numbers 1 to 15 shown in FIG. A curvature radius of 0.0000 indicates a plane on the lens surface and an aperture on the aperture stop S. Further, the refractive index of air of 1.0000 is omitted. The lens group focal length indicates the surface number (starting surface) where each lens group starts and the focal length of each lens group.

ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

(表1)
[全体諸元]
f = 58.0216
FNO= F1.210
ω = 20.83°
Y = 21.6
TL = 97.9986
Bf = 37.9986

[レンズデータ]
m r d νd nd
1* 68.8166 7.0000 49.53 1.744430
2 -294.0348 0.1000
3 38.2098 10.0000 46.63 1.816000
4 39.7292 4.2000
5 285.9607 1.5000 31.06 1.688930
6 28.2115 7.0000
7 0.0000 7.0000 開口絞りS
8 -28.6407 1.7000 29.52 1.717360
9 58.9495 9.5000 46.63 1.816000
10 -42.9396 0.1000
11 141.1289 6.5000 49.61 1.772500
12 -52.9259 1.3000 52.32 1.517420
13 -380.3063 0.1000
14* 201.4725 4.0000 49.61 1.772500
15 -104.4312 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 339.4386
後群 8 41.6343
(Table 1)
[Overall specifications]
f = 58.0216
FNO = F1.210
ω = 20.83 °
Y = 21.6
TL = 97.9986
Bf = 37.9986

[Lens data]
m rd νd nd
1 * 68.8166 7.0000 49.53 1.744430
2 -294.0348 0.1000
3 38.2098 10.0000 46.63 1.816000
4 39.7292 4.2000
5 285.9607 1.5000 31.06 1.688930
6 28.2115 7.0000
7 0.0000 7.0000 Aperture stop S
8 -28.6407 1.7000 29.52 1.717360
9 58.9495 9.5000 46.63 1.816000
10 -42.9396 0.1000
11 141.1289 6.5000 49.61 1.772500
12 -52.9259 1.3000 52.32 1.517420
13 -380.3063 0.1000
14 * 201.4725 4.0000 49.61 1.772500
15 -104.4312 Bf

[Lens focal length]
Lens group Start surface Focal length Front group 1 339.4386
Rear group 8 41.6343

この第1実施例に係る光学系OS1において、第1面及び第14面の各レンズ面は非球面形状に形成されている。次の表2に、非球面データ、すなわち円錐定数κ及び各非球面定数A4〜A8の値を示す。   In the optical system OS1 according to the first example, the lens surfaces of the first surface and the fourteenth surface are formed in an aspheric shape. Table 2 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A8.

(表2)
κ A4 A6 A8
第 1面 0.6729 -5.61406E-07 -9.97203E-11 -2.12831E-13
第14面 10.6153 -9.55365E-07 -2.33540E-11 0.00000E+00
(Table 2)
κ A4 A6 A8
1st surface 0.6729 -5.61406E-07 -9.97203E-11 -2.12831E-13
14th surface 10.6153 -9.55365E-07 -2.33540E-11 0.00000E + 00

次の表3に、この第1実施例に係る光学系OS1に対する各条件式対応値を示す。なおこの表3において、nRPは後群GR中の負レンズ成分LR1を構成する正レンズLRp1の媒質のd線に対する屈折率、nRNは後群GR中の負レンズ成分LR1を構成する負レンズLRn1の媒質のd線に対する屈折率、rp1は後群GR中の第1正レンズ成分LR2の最も物体側の面の曲率半径、rp2は後群GR中の第1正レンズ成分LR2の最も像側の面の曲率半径、f0は全系の焦点距離、fF2は前群GF中の第2正レンズ成分LF2の焦点距離、fFは無限遠合焦時の前群GFの焦点距離、fRは無限遠合焦時の後群GRの焦点距離、fR1は後群GR中の負レンズ成分LR1の焦点距離、fR2は後群GR中の第1正レンズ成分LF2の焦点距離をそれぞれ表している。これらの符号の説明は以降の実施例においても同様である。   Table 3 below shows values corresponding to the conditional expressions for the optical system OS1 according to the first example. In Table 3, nRP is the refractive index of the medium of the positive lens LRp1 constituting the negative lens component LR1 in the rear group GR with respect to the d-line, and nRN is the negative lens LRn1 constituting the negative lens component LR1 in the rear group GR. Refractive index with respect to the d-line of the medium, rp1 is the radius of curvature of the most object side surface of the first positive lens component LR2 in the rear group GR, and rp2 is the most image side surface of the first positive lens component LR2 in the rear group GR , F0 is the focal length of the entire system, fF2 is the focal length of the second positive lens component LF2 in the front group GF, fF is the focal length of the front group GF when focused at infinity, and fR is focused at infinity. At that time, the focal length of the rear group GR, fR1 represents the focal length of the negative lens component LR1 in the rear group GR, and fR2 represents the focal length of the first positive lens component LF2 in the rear group GR. The description of these symbols is the same in the following embodiments.

(表3)
(1)nRP−nRN=0.09864
(2)(rp2+rp1)/(rp2−rp1)=0.4587
(3)fF2/f0=5.3326
(4)fR/fF=0.1227
(5)fR2/f0=1.4964
(6)(−fR1)/f0=11.2062
(Table 3)
(1) nRP-nRN = 0.09864
(2) (rp2 + rp1) / (rp2-rp1) = 0.458
(3) fF2 / f0 = 5.3326
(4) fR / fF = 0.1227
(5) fR2 / f0 = 1.4964
(6) (−fR1) /f0=11.2062

このように、第1実施例に係る光学系OS1は、上記条件式(1)〜(6)を全て満足している。   Thus, the optical system OS1 according to the first example satisfies all the conditional expressions (1) to (6).

図2に、この第1実施例に係る光学系OS1の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。各収差図において、FNOはFナンバーを、Yは像高を、ωは半画角[単位:度]を、それぞれ示している。また、各収差図において、dはd線(波長λ=587.6nm)、及び、gはg線(波長λ=435.8nm)に対する収差を表している。また、非点収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示している。また、コマ収差図は、各半画角ωにおいて、実線はd線及びg線に対するメリジオナルコマ収差を表し、原点より左側の破線はd線に対してメリジオナル方向に発生するサジタルコマ収差、原点より右側の破線はd線に対してサジタル方向に発生するサジタルコマ収差を表している。なお、この収差図の説明は以降の実施例においても同様である。この図2に示す各収差図から明らかなように、この第1実施例に係る光学系OS1では、球面収差、サジタルコマ収差、像面湾曲、非点収差、メリジオナルコマ収差を含め諸収差が良好に補正されており、高い光学性能を有していることが分かる。   FIG. 2 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system OS1 according to the first example. In each aberration diagram, FNO represents an F number, Y represents an image height, and ω represents a half angle of view [unit: degree]. In each aberration diagram, d represents the aberration with respect to the d-line (wavelength λ = 587.6 nm), and g represents the aberration with respect to the g-line (wavelength λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, at each half angle of view ω, the solid line represents the meridional coma aberration with respect to the d-line and the g-line, and the broken line on the left side from the origin represents the sagittal coma aberration generated in the meridional direction with respect to the d-line. The broken line represents the sagittal coma generated in the sagittal direction with respect to the d line. The description of this aberration diagram is the same in the following examples. As is apparent from the respective aberration diagrams shown in FIG. 2, in the optical system OS1 according to the first example, various aberrations including spherical aberration, sagittal coma, field curvature, astigmatism, and meridional coma are corrected well. It can be seen that it has high optical performance.

[第2実施例]
図3は、第2実施例に係る光学系OS2の構成を示す図である。この光学系OS2は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRと、を有して構成されている。前群GFは、物体側から順に、両凸レンズ形状の非球面正レンズからなる第1正レンズ成分LF1、物体側に凸面を向けた正メニスカスレンズからなる第2正レンズ成分LF2、及び、物体側に凸面を向けた負メニスカスレンズからなる負レンズ成分LF3から構成されている。また、後群GRは、物体側から順に、両凹レンズ(物体側に凹面を向けた負レンズ)LRn1と両凸レンズ(正レンズ)LRp1とが接合された負レンズ成分LR1、両凸レンズ(正レンズ)LRp2と物体側に凹面を向けた負メニスカスレンズ(負レンズ)LRn2とが接合された第1正レンズ成分LR2、及び、両凸レンズ形状の非球面正レンズからなる第2正レンズ成分LR3から構成されている。
[Second Embodiment]
FIG. 3 is a diagram illustrating a configuration of the optical system OS2 according to the second embodiment. The optical system OS2 includes, in order from the object side, a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power. The front group GF includes, in order from the object side, a first positive lens component LF1 composed of an aspherical positive lens having a biconvex lens shape, a second positive lens component LF2 composed of a positive meniscus lens having a convex surface facing the object side, and the object side. And a negative lens component LF3 composed of a negative meniscus lens having a convex surface facing the surface. The rear group GR includes, in order from the object side, a negative lens component LR1 in which a biconcave lens (a negative lens having a concave surface facing the object side) LRn1 and a biconvex lens (positive lens) LRp1 are cemented, and a biconvex lens (positive lens). LRp2 is composed of a first positive lens component LR2 in which a negative meniscus lens (negative lens) LRn2 having a concave surface facing the object side is cemented, and a second positive lens component LR3 composed of a biconvex aspherical positive lens. ing.

以下の表4に、本第2実施例に係る光学系OS2の諸元の値を掲げる。なお、この表4に示す面番号1〜15は、図3に示す番号1〜15に対応している。   Table 4 below lists values of specifications of the optical system OS2 according to the second example. The surface numbers 1 to 15 shown in Table 4 correspond to the numbers 1 to 15 shown in FIG.

(表4)
[全体諸元]
f = 58.0216
FNO= F1.217
ω = 20.83°
Y = 21.6
TL = 97.9972
Bf = 37.9972

[レンズデータ]
m r d νd nd
1* 68.6463 7.0000 49.53 1.744430
2 -284.0624 0.1000
3 38.3363 10.0000 46.63 1.816000
4 40.0410 4.2000
5 513.0081 1.5000 31.06 1.688930
6 28.3928 7.0000
7 0.0000 7.0000 開口絞りS
8 -30.5598 1.7000 28.46 1.728250
9 51.9885 9.5000 40.77 1.883000
10 -50.3917 0.1000
11 157.5857 6.5000 49.61 1.772500
12 -59.9955 1.3000 52.32 1.517420
13 -137.9000 0.1000
14* 266.2953 4.0000 49.61 1.772500
15 -107.7468 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 400.8473
後群 8 41.2837
(Table 4)
[Overall specifications]
f = 58.0216
FNO = F1.217
ω = 20.83 °
Y = 21.6
TL = 97.9972
Bf = 37.9972

[Lens data]
m rd νd nd
1 * 68.6463 7.0000 49.53 1.744430
2 -284.0624 0.1000
3 38.3363 10.0000 46.63 1.816000
4 40.0410 4.2000
5 513.0081 1.5000 31.06 1.688930
6 28.3928 7.0000
7 0.0000 7.0000 Aperture stop S
8 -30.5598 1.7000 28.46 1.728250
9 51.9885 9.5000 40.77 1.883000
10 -50.3917 0.1000
11 157.5857 6.5000 49.61 1.772500
12 -59.9955 1.3000 52.32 1.517420
13 -137.9000 0.1000
14 * 266.2953 4.0000 49.61 1.772500
15 -107.7468 Bf

[Lens focal length]
Lens group Start surface Focal length Front group 1 400.8473
Rear group 8 41.2837

この第2実施例に係る光学系OS2において、第1面及び第14面の各レンズ面は非球面形状に形成されている。次の表5に、非球面データ、すなわち円錐定数κ及び各非球面定数A4〜A8の値を示す。   In the optical system OS2 according to the second example, the lens surfaces of the first surface and the fourteenth surface are formed in an aspherical shape. Table 5 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A8.

(表5)
κ A4 A6 A8
第 1面 0.6729 -5.61406E-07 -9.97203E-11 -2.12831E-13
第14面 6.1738 -1.03841E-06 -3.16075E-10 0.00000E+00
(Table 5)
κ A4 A6 A8
1st surface 0.6729 -5.61406E-07 -9.97203E-11 -2.12831E-13
14th surface 6.1738 -1.03841E-06 -3.16075E-10 0.00000E + 00

次の表6に、この第2実施例に係る光学系OS2に対する各条件式対応値を示す。   Table 6 below shows values corresponding to the conditional expressions for the optical system OS2 according to the second example.

(表6)
(1)nRP−nRN=0.15475
(2)(rp2+rp1)/(rp2−rp1)=-0.06662
(3)fF2/f0=5.2311
(4)fR/fF=0.1030
(5)fR2/f0=1.3536
(6)(−fR1)/f0=17.0128
(Table 6)
(1) nRP-nRN = 0.15475
(2) (rp2 + rp1) / (rp2-rp1) = − 0.06662
(3) fF2 / f0 = 5.2311
(4) fR / fF = 0.130
(5) fR2 / f0 = 1.3536
(6) (−fR1) /f0=17.0128

このように、第2実施例に係る光学系OS2は、上記条件式(1)〜(6)を全て満足している。   As described above, the optical system OS2 according to the second example satisfies all the conditional expressions (1) to (6).

図4に、この第2実施例に係る光学系OS2の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。この図4に示す各収差図から明らかなように、この第2実施例に係る光学系OS2では、球面収差、サジタルコマ収差、像面湾曲、非点収差、メリジオナルコマ収差を含め諸収差が良好に補正されており、高い光学性能を有していることが分かる。   FIG. 4 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system OS2 according to the second example. As is apparent from the respective aberration diagrams shown in FIG. 4, in the optical system OS2 according to the second example, various aberrations including spherical aberration, sagittal coma, field curvature, astigmatism, and meridional coma are corrected well. It can be seen that it has high optical performance.

以上の各実施例によれば、2ω=41.6°程度の包括角を有し、さらに大口径F1.2の口径を有し、高性能で球面収差、サジタルコマ収差、像面湾曲、メリジオナルコマ収差が良好に補正された光学系OSが実現できる。   According to each of the above-described embodiments, it has a comprehensive angle of about 2ω = 41.6 °, and further has a large aperture F1.2, high performance, spherical aberration, sagittal coma aberration, field curvature, meridional coma aberration. It is possible to realize an optical system OS in which is corrected well.

なお、以上の各実施例に示す光学系OS1,OS2を、上述したカメラ1に搭載することにより、上述した効果を奏することは言うまでもない。また、上記各実施例は本発明の一具体例を示しているものであり、本発明はこれらに限定されるものではない。   Needless to say, the above-described effects can be obtained by mounting the optical systems OS1 and OS2 shown in the above embodiments in the camera 1 described above. Moreover, each said Example has shown the specific example of this invention, and this invention is not limited to these.

OS(OS1,OS2) 光学系 GF 前群
LF1 第1正レンズ成分 LF2 第2正レンズ成分 LF3 負レンズ成分
S 開口絞り GR 後群
LR1 負レンズ成分 LRn1 負レンズ LRp1 正レンズ
LR2 第1正レンズ成分 LRp2 正レンズ LRn2 負レンズ
LR3 第2正レンズ成分 1 一眼レフカメラ(撮像装置)
OS (OS1, OS2) Optical system GF Front group LF1 First positive lens component LF2 Second positive lens component LF3 Negative lens component S Aperture stop GR Rear group LR1 Negative lens component LRn1 Negative lens LRp1 Positive lens LR2 First positive lens component LRp2 Positive lens LRn2 Negative lens LR3 Second positive lens component 1 SLR camera (imaging device)

Claims (9)

光軸に沿って物体側から順に、
前群と、
開口絞りと、
正の屈折力を有する後群と、を有し、
前記前群は、物体側から順に、
第1正レンズ成分と、
第2正レンズ成分と、
負レンズ成分と、を有し、
前記後群は、物体側から順に、
物体側に凹面を向けた負レンズと正レンズとが接合された負レンズ成分と、
正レンズと負レンズとが接合された第1正レンズ成分と、
第2正レンズ成分と、を有し、
以下の条件式を満足することを特徴とする光学系。
0.000 < nRP−nRN < 0.350
−1.00 < (rp2+rp1)/(rp2−rp1) < 1.00
但し、
nRP:前記後群中の前記負レンズ成分を構成する前記正レンズの媒質のd線に対する屈折率
nRN:前記後群中の前記負レンズ成分を構成する前記負レンズの媒質のd線に対する屈折率
rp1:前記後群中の前記第1正レンズ成分の最も物体側の面の曲率半径
rp2:前記後群中の前記第1正レンズ成分の最も像側の面の曲率半径
In order from the object side along the optical axis,
The front group,
An aperture stop,
A rear group having a positive refractive power,
The front group is in order from the object side,
A first positive lens component;
A second positive lens component;
A negative lens component,
The rear group is in order from the object side,
A negative lens component in which a negative lens having a concave surface facing the object side and a positive lens are cemented, and
A first positive lens component in which a positive lens and a negative lens are cemented;
A second positive lens component,
An optical system satisfying the following conditional expression:
0.000 <nRP-nRN <0.350
-1.00 <(rp2 + rp1) / (rp2-rp1) <1.00
However,
nRP: refractive index with respect to d-line of medium of the positive lens constituting the negative lens component in the rear group nRN: refractive index with respect to d-line of medium of the negative lens constituting the negative lens component in the rear group rp1: radius of curvature of the most object side surface of the first positive lens component in the rear group rp2: radius of curvature of the most image side surface of the first positive lens component in the rear group
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
2.0 < fF2/f0 < 10.0
但し、
fF2:前記前群中の前記第2正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
2.0 <fF2 / f0 <10.0
However,
fF2: focal length of the second positive lens component in the front group f0: focal length of the entire system when focusing on infinity
以下の条件式を満足することを特徴とする請求項1または2に記載の光学系。
0.001 < fR/fF < 1.500
但し、
fF:無限遠合焦時の前記前群の焦点距離
fR:無限遠合焦時の前記後群の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.001 <fR / fF <1.500
However,
fF: focal length of the front group when focused at infinity fR: focal length of the rear group when focused at infinity
以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の光学系。
0.2 < fR2/f0 < 4.0
但し、
fR2:前記後群中の前記第1正レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.2 <fR2 / f0 <4.0
However,
fR2: focal length of the first positive lens component in the rear group f0: focal length of the entire system when focusing on infinity
以下の条件式を満足することを特徴とする請求項1〜4のいずれか一項に記載の光学系。
2.5 < (−fR1)/f0 < 40.0
但し、
fR1:前記後群中の前記負レンズ成分の焦点距離
f0:無限遠合焦時の全系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
2.5 <(− fR1) / f0 <40.0
However,
fR1: focal length of the negative lens component in the rear group f0: focal length of the entire system when focusing on infinity
前記前群は、少なくとも1面の非球面を有することを特徴とする請求項1〜5のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the front group has at least one aspheric surface. 前記後群は、少なくとも1面の非球面を有することを特徴とする請求項1〜6のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the rear group has at least one aspheric surface. 請求項1〜7のいずれか一項に記載の光学系を有することを特徴とする撮像装置。   An imaging apparatus comprising the optical system according to claim 1. 光軸に沿って物体側から順に、前群と、開口絞りと、正の屈折力を有する後群と、を有する光学系の製造方法であって、
前記前群として、物体側から順に、第1正レンズ成分と、第2正レンズ成分と、負レンズ成分と、を配置し、
前記後群として、物体側から順に、物体側に凹面を向けた負レンズと正レンズとが接合された負レンズ成分と、正レンズと負レンズとが接合された第1正レンズ成分と、第2正レンズ成分と、を配置し、
以下の条件式を満足することを特徴とする光学系の製造方法。
0.000 < nRP−nRN < 0.350
−1.00 < (rp2+rp1)/(rp2−rp1) < 1.00
但し、
nRP:前記後群中の前記負レンズ成分を構成する前記正レンズの媒質のd線に対する屈折率
nRN:前記後群中の前記負レンズ成分を構成する前記負レンズの媒質のd線に対する屈折率
rp1:前記後群中の前記第1正レンズ成分の最も物体側の面の曲率半径
rp2:前記後群中の前記第1正レンズ成分の最も像側の面の曲率半径
In order from the object side along the optical axis, a manufacturing method of an optical system having a front group, an aperture stop, and a rear group having a positive refractive power,
As the front group, in order from the object side, a first positive lens component, a second positive lens component, and a negative lens component are arranged,
As the rear group, in order from the object side, a negative lens component in which a negative lens having a concave surface facing the object side and a positive lens are cemented, a first positive lens component in which a positive lens and a negative lens are cemented, Two positive lens components,
An optical system manufacturing method satisfying the following conditional expression:
0.000 <nRP-nRN <0.350
-1.00 <(rp2 + rp1) / (rp2-rp1) <1.00
However,
nRP: refractive index with respect to d-line of medium of the positive lens constituting the negative lens component in the rear group nRN: refractive index with respect to d-line of medium of the negative lens constituting the negative lens component in the rear group rp1: radius of curvature of the most object side surface of the first positive lens component in the rear group rp2: radius of curvature of the most image side surface of the first positive lens component in the rear group
JP2011105892A 2011-04-11 2011-05-11 Optical system and imaging apparatus having this optical system Active JP5716995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105892A JP5716995B2 (en) 2011-04-11 2011-05-11 Optical system and imaging apparatus having this optical system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011087043 2011-04-11
JP2011087043 2011-04-11
JP2011105892A JP5716995B2 (en) 2011-04-11 2011-05-11 Optical system and imaging apparatus having this optical system

Publications (2)

Publication Number Publication Date
JP2012230340A true JP2012230340A (en) 2012-11-22
JP5716995B2 JP5716995B2 (en) 2015-05-13

Family

ID=47431917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105892A Active JP5716995B2 (en) 2011-04-11 2011-05-11 Optical system and imaging apparatus having this optical system

Country Status (1)

Country Link
JP (1) JP5716995B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571661B2 (en) 2017-08-18 2020-02-25 Largan Precision Co., Ltd. Image capturing optical assembly, imaging apparatus and electronic device
WO2020071812A1 (en) * 2018-10-02 2020-04-09 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
CN112099199A (en) * 2020-11-02 2020-12-18 瑞泰光学(常州)有限公司 Image pickup optical lens
JP6909350B1 (en) * 2020-10-30 2021-07-28 エーエーシー オプティックス (ソシュウ) カンパニーリミテッド Imaging optical lens
US12001082B2 (en) 2017-08-18 2024-06-04 Largan Precision Co., Ltd. Image capturing optical assembly, imaging apparatus and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676425B (en) * 2016-03-17 2018-07-03 沈阳师范大学 A kind of digital camera silent frame lens assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR884478A (en) * 1941-07-25 1943-08-18 Zeiss Carl Soc Lens corrected for one or more colors with regard to spherical, astigmatic and comatic aberrations
US2466424A (en) * 1946-02-18 1949-04-05 Eastman Kodak Co Four component highly corrected wide angular field objective with small petzval sum
US2979998A (en) * 1957-02-05 1961-04-18 Gauthier Gmbh A Photographic camera with coupled exposure meter
US3350157A (en) * 1963-04-20 1967-10-31 Schneider Co Optische Werke High-speed camera objective
JPH03288112A (en) * 1990-04-04 1991-12-18 Dainippon Screen Mfg Co Ltd Achromatic lens system
JP2011128273A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Imaging lens and imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR884478A (en) * 1941-07-25 1943-08-18 Zeiss Carl Soc Lens corrected for one or more colors with regard to spherical, astigmatic and comatic aberrations
US2466424A (en) * 1946-02-18 1949-04-05 Eastman Kodak Co Four component highly corrected wide angular field objective with small petzval sum
US2979998A (en) * 1957-02-05 1961-04-18 Gauthier Gmbh A Photographic camera with coupled exposure meter
US3350157A (en) * 1963-04-20 1967-10-31 Schneider Co Optische Werke High-speed camera objective
JPH03288112A (en) * 1990-04-04 1991-12-18 Dainippon Screen Mfg Co Ltd Achromatic lens system
JP2011128273A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Imaging lens and imaging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571661B2 (en) 2017-08-18 2020-02-25 Largan Precision Co., Ltd. Image capturing optical assembly, imaging apparatus and electronic device
US11506867B2 (en) 2017-08-18 2022-11-22 Largan Precision Co., Ltd. Image capturing optical assembly, imaging apparatus and electronic device
US12001082B2 (en) 2017-08-18 2024-06-04 Largan Precision Co., Ltd. Image capturing optical assembly, imaging apparatus and electronic device
WO2020071812A1 (en) * 2018-10-02 2020-04-09 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
US11163135B2 (en) 2018-10-02 2021-11-02 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
JP6909350B1 (en) * 2020-10-30 2021-07-28 エーエーシー オプティックス (ソシュウ) カンパニーリミテッド Imaging optical lens
JP2022073851A (en) * 2020-10-30 2022-05-17 エーエーシー オプティックス (ソシュウ) カンパニーリミテッド Image capturing optical lens
CN112099199A (en) * 2020-11-02 2020-12-18 瑞泰光学(常州)有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JP5716995B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5510634B2 (en) Wide angle lens and optical apparatus having the wide angle lens
JP5115102B2 (en) Lens system and optical device
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5691855B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5712751B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
US9715127B2 (en) Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
JP2010176015A (en) Wide-angle lens, imaging apparatus, and method for manufacturing the wide angle-lens
JP5246226B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5716995B2 (en) Optical system and imaging apparatus having this optical system
JP5761605B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2011102871A (en) Wide angle lens, image pickup device, and method for manufacturing the wide angle lens
JP5887995B2 (en) LENS SYSTEM, OPTICAL DEVICE, AND LENS SYSTEM MANUFACTURING METHOD
JP4624744B2 (en) Wide angle zoom lens
US20090034100A1 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP5691854B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5434496B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5471487B2 (en) Photographic lens and optical apparatus provided with the photographic lens
JP5703930B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5761604B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5716986B2 (en) Lens system and optical equipment
JP5641393B2 (en) Lens system and optical equipment
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5761566B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5716995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250