JP2012228720A - Resistance welding controller - Google Patents

Resistance welding controller Download PDF

Info

Publication number
JP2012228720A
JP2012228720A JP2011099312A JP2011099312A JP2012228720A JP 2012228720 A JP2012228720 A JP 2012228720A JP 2011099312 A JP2011099312 A JP 2011099312A JP 2011099312 A JP2011099312 A JP 2011099312A JP 2012228720 A JP2012228720 A JP 2012228720A
Authority
JP
Japan
Prior art keywords
current
value
correction
pressure
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011099312A
Other languages
Japanese (ja)
Other versions
JP5851711B2 (en
Inventor
Takeo Yukinaga
丈夫 雪永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011099312A priority Critical patent/JP5851711B2/en
Publication of JP2012228720A publication Critical patent/JP2012228720A/en
Application granted granted Critical
Publication of JP5851711B2 publication Critical patent/JP5851711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resistance welding controller capable of forming an adequate nugget.SOLUTION: In the resistance welding controller, a differential pressure calculation circuit EP calculates the difference between the pressure detection value Pd and the pressure set value Pr, and a current correction value calculation circuit GD calculates the current setting correction value Gi and the current conduction time setting correction value Gt. A current set value correction circuit IRR adds the correction value Gi to the current set value Ir, and a current conduction time set value correction circuit ITRR adds the correction value Gt to the current conduction time set value ITr. A current error amplification circuit EI calculates the error between the current detection value Id and the current correction set value Irr, and outputs the current error amplification value Ei. An inverter drive circuit DV inputs the current error amplification value Ei and the current conduction time correction set value ITrr to control an inverter circuit INV. As a result, an adequate nugget can be formed.

Description

本発明は、適正なナゲットを得ることができる改善された抵抗溶接制御装置に関するものである。   The present invention relates to an improved resistance welding control apparatus capable of obtaining an appropriate nugget.

スポット溶接を行う抵抗溶接制御装置は、溶接トランスの二次側に設けられた電流検出器が母材に通電される二次電流(以下、溶接電流という。)を検出して、この検出値が予め定めた溶接電流の設定値と一致するように制御される。(例えば、特許文献1参照。)。例えば上部電極に設けられたエアーシリンダへのエアーの供給量が不足して、上部電極と下部電極に挟まれた母材が、予め定めた加圧力で加圧されない場合がある。この場合、加圧力が低くなると電極と母材との間及び母材と母材との間の接触抵抗が増加して発熱量が大きくなる。そこで従来、上部電極又は下部電極の近傍に設けられた加圧力検出器によって母材への加圧力を検出して、この検出値が予め定めた加圧力よりも不足して、この不足に対応して、溶接電流設定値を減少させて所望の発熱量が得られるようにして溶接を行っていた。電極の加圧力は、増加する場合よりも上述した原因によって不足する場合の方が多い。   A resistance welding control apparatus that performs spot welding detects a secondary current (hereinafter referred to as a welding current) in which a current detector provided on a secondary side of a welding transformer energizes a base material, and the detected value is Control is performed so as to coincide with a predetermined set value of the welding current. (For example, refer to Patent Document 1). For example, the amount of air supplied to an air cylinder provided in the upper electrode may be insufficient, and the base material sandwiched between the upper electrode and the lower electrode may not be pressurized with a predetermined pressure. In this case, when the applied pressure is lowered, the contact resistance between the electrode and the base material and between the base material and the base material is increased, and the heat generation amount is increased. Therefore, conventionally, the pressure applied to the base material is detected by a pressure detector provided in the vicinity of the upper electrode or the lower electrode, and the detected value is insufficient than a predetermined applied pressure. Thus, the welding current has been reduced so as to obtain a desired calorific value. In many cases, the pressure applied to the electrode is deficient due to the above-described causes, rather than the case where it increases.

特開2001−138061号公報JP 2001-138061 A

上述したように、従来技術の抵抗溶接制御装置は、電極の加圧力が不足しているときに溶接電流の設定値のみを減少させていた。この場合、溶接電流の設定値のみを減少させると、スポット溶接中に母材の抵抗値の変化が大きくなるために、溶接の状態が大きく変化して、ナゲットの形成に時間がかかり、所望のナゲット径が得られない場合があった。そこで所望のナゲット径を得るために溶接電流の通電時間を増加させると、発生した熱量が熱拡散してナゲットの周囲が軟化して強度が低下するという不具合があった。 As described above, the resistance welding control device of the prior art reduces only the set value of the welding current when the pressure of the electrode is insufficient. In this case, if only the set value of the welding current is decreased, the change in the resistance value of the base metal becomes large during spot welding, so the welding state changes greatly, and it takes time to form the nugget, which is desired. In some cases, the nugget diameter could not be obtained. Therefore, when the energization time of the welding current is increased in order to obtain a desired nugget diameter, there is a problem that the amount of generated heat is thermally diffused and the periphery of the nugget is softened to reduce the strength.

本発明は、適正なナゲットを形成することができる抵抗溶接制御装置を提供することを目的としている。 An object of this invention is to provide the resistance welding control apparatus which can form an appropriate nugget.

上述した課題を解決するために、請求項1の発明は、
インバータ回路と、
前記インバータ回路の出力を降圧する溶接トランスと、
前記溶接トランスの溶接電流を設定して電流設定値を出力する電流設定器と、
前記溶接電流を検出して電流検出値を出力する電流検出器と、
電極の加圧力を設定して加圧力設定値を出力する加圧力設定器と、
前記電極の加圧力を検出して加圧力検出値を出力する加圧力検出器と、
前記溶接電流の通電時間を設定して電流通電時間設定値を出力する電流通電時間設定器と、
前記加圧力検出値と前記加圧力設定値との差値を算出する加圧力差値算出回路と、
前記加圧力差値算出回路の算出値に基づいて電流設定補正値及び電流通電時間設定補正値を算出する電流補正値算出回路と、
前記電流設定値に前記電流設定補正値を加算する電流設定値補正回路と、
前記電流通電時間設定値に前記電流通電時間設定補正値を加算する電流通電時間設定値補正回路と、
前記電流検出値と前記電流設定値補正回路の出力値との誤差を増幅する電流誤差増幅回路と、
前記電流誤差増幅回路の出力値と前記電流通電時間設定値補正回路の出力値とにより前記インバータ回路を制御するインバータ駆動回路と、
を備えたことを特徴とする抵抗溶接制御装置である。
In order to solve the above-described problems, the invention of claim 1
An inverter circuit;
A welding transformer for stepping down the output of the inverter circuit;
A current setter for setting a welding current of the welding transformer and outputting a current set value;
A current detector that detects the welding current and outputs a current detection value;
A pressure setting device that sets the electrode pressure and outputs a pressure setting value;
A pressure detector that detects the pressure of the electrode and outputs a pressure detection value;
A current energizing time setting device for setting the energizing time of the welding current and outputting a current energizing time set value;
A pressure difference calculation circuit for calculating a difference value between the pressure detection value and the pressure setting value;
A current correction value calculation circuit that calculates a current setting correction value and a current energization time setting correction value based on the calculated value of the pressure difference calculation circuit;
A current set value correction circuit for adding the current set correction value to the current set value;
A current conduction time setting value correction circuit for adding the current conduction time setting correction value to the current conduction time setting value;
A current error amplification circuit for amplifying an error between the current detection value and the output value of the current set value correction circuit;
An inverter drive circuit that controls the inverter circuit based on an output value of the current error amplifier circuit and an output value of the current energization time setting value correction circuit;
A resistance welding control apparatus comprising:

請求項2の発明は、
前記加圧力検出値が前記加圧力設定値よりも小さいとき、前記電流設定値及び前記電流通電時間設定値を減少させることを特徴とする請求項1記載の抵抗溶接制御装置である。
The invention of claim 2
2. The resistance welding control device according to claim 1, wherein when the detected pressure value is smaller than the pressure setting value, the current setting value and the current conduction time setting value are decreased.

本発明の抵抗溶接制御装置は、加圧力検出値が加圧力設定値よりも不足しているときに、適正なナゲットを形成することができ、加圧力が適切なときと同様の溶接品質を確保することができる。   The resistance welding control device of the present invention can form an appropriate nugget when the detected pressure value is less than the set pressure value, and ensures the same welding quality as when the applied pressure is appropriate. can do.

本発明の抵抗溶接制御装置のブロック図である。It is a block diagram of the resistance welding control apparatus of this invention. 加圧力差値Ep%(右縦軸)と、電流設定補正値Gi%(左縦軸)と、電流通電時間設定補正値Gt%(横軸)との関数を示す図である。It is a figure which shows the function of applied pressure difference value Ep% (right vertical axis), electric current setting correction value Gi% (left vertical axis), and electric current energization time setting correction value Gt% (horizontal axis).

発明の実施の形態を実施例に基づき図面を参照して説明する。図1は、本発明の抵抗溶接制御装置のブロック図であり、インバータ制御方式の場合であって、溶接電流は直流と成る。同図において、抵抗溶接制御装置のインバータ回路INVは、商用交流電源を入力として、後述する駆動信号Dvに従ってインバータ制御を行い、高周波交流を出力する。このインバータ回路INVは、図示は省略するが、商用交流電源を整流する1次整流回路、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する複数のスイッチング素子から成るブリッジ回路から構成される。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a block diagram of a resistance welding control apparatus according to the present invention, which is a case of an inverter control system, in which a welding current is a direct current. In the figure, an inverter circuit INV of the resistance welding control device receives a commercial AC power supply as an input, performs inverter control according to a drive signal Dv described later, and outputs a high-frequency AC. Although not shown, this inverter circuit INV has a primary rectifier circuit that rectifies commercial AC power, a smoothing capacitor that smoothes the rectified direct current, and a bridge that includes a plurality of switching elements that convert the smoothed direct current into high-frequency alternating current. It consists of a circuit.

溶接トランスTRは、一次コイル7と二次コイル8とから成り、一次コイル7がインバータ回路INVの出力側に接続されている。二次コイル8の出力端子が第1整流素子DR1及び第2整流素子DR2をそれぞれ介して上部アーム3aに接続されるとともに、二次コイル8のセンタータップ10が下部アーム3bに接続されている。上部アーム3a及び下部アーム3bの先端部に上部電極1a及び下部電極1bがそれぞれ取り付けられている。 The welding transformer TR comprises a primary coil 7 and a secondary coil 8, and the primary coil 7 is connected to the output side of the inverter circuit INV. The output terminal of the secondary coil 8 is connected to the upper arm 3a via the first rectifier element DR1 and the second rectifier element DR2, respectively, and the center tap 10 of the secondary coil 8 is connected to the lower arm 3b. An upper electrode 1a and a lower electrode 1b are respectively attached to the tip portions of the upper arm 3a and the lower arm 3b.

複数枚の母材2が上部電極1a及び下部電極1bによって加圧された後に、インバータ回路INVから出力された高周波交流電力が、溶接トランスTRの一次コイル7に印加され、溶接トランスTRの二次コイル8には電圧が降圧された大電流の高周波交流電力が発生する。この二次コイル8に発生した高周波交流電力が第1整流素子DR1及び第2整流素子DR2によって半周期毎に交互に整流され、上部電極1a及び下部電極1bを介して溶接電流Iwが通電され、溶接電圧Vwが印加される。溶接部がジュール熱によって冶金的に接合される。 After the plurality of base materials 2 are pressurized by the upper electrode 1a and the lower electrode 1b, the high-frequency AC power output from the inverter circuit INV is applied to the primary coil 7 of the welding transformer TR, and the secondary of the welding transformer TR The coil 8 generates a high-frequency high-frequency AC power whose voltage is stepped down. The high-frequency AC power generated in the secondary coil 8 is alternately rectified every half cycle by the first rectifying element DR1 and the second rectifying element DR2, and the welding current Iw is passed through the upper electrode 1a and the lower electrode 1b, A welding voltage Vw is applied. The weld is metallurgically joined by Joule heat.

電流設定器IRは予め定めた溶接電流Iwの設定値である電流設定値Irを出力する。加圧力設定器PRは予め定めた上部電極1aと下部電極1bとによる母材2への加圧力である加圧力設定値Prを出力する。エアーシリンダASが上部アーム3aに取り付けられている。このエアーシリンダASは加圧力設定値Prを入力して、この加圧力設定値Prに対応した空気量が供給されて動作して母材2が加圧される。加圧力検出器PDが下部アーム3bに取り付けられていて、この加圧力検出器PDが母材2への加圧力を検出して加圧力検出値Pdを出力する。加圧力差値算出回路EPは、加圧力検出値Pdと加圧力設定値Prとの差である加圧力差値Epを算出する。電流通電時間設定器ITRは、予め定めた1回当たりの溶接電流Iwの通電時間である電流通電時間設定値ITrを出力する。 The current setter IR outputs a current set value Ir that is a preset value of the welding current Iw. The pressure setting device PR outputs a pressure setting value Pr which is a pressure applied to the base material 2 by a predetermined upper electrode 1a and lower electrode 1b. An air cylinder AS is attached to the upper arm 3a. The air cylinder AS receives a pressure setting value Pr, is supplied with an air amount corresponding to the pressure setting value Pr, and pressurizes the base material 2. A pressure detector PD is attached to the lower arm 3b, and the pressure detector PD detects a pressure applied to the base material 2 and outputs a pressure detection value Pd. The pressure difference calculation circuit EP calculates a pressure difference value Ep that is a difference between the pressure detection value Pd and the pressure setting value Pr. The current energization time setting unit ITR outputs a current energization time setting value ITr that is a predetermined energization time of the welding current Iw per time.

電流補正値算出回路GDには、加圧力差値Epに対する電流設定値Irの補正値である電流設定補正値Giと、電流通電時間設定値ITrの補正値である電流通電時間設定補正値Gtとの関係を示す関数が保存されている。この関数は、発熱量=0.24×電流の2乗×抵抗×通電時間の関係式に基づき、種々の母材2の材質及び板厚において、加圧力差値Epを変化させてスポット溶接を行ってナゲット径を実測して、所望のナゲット径が得られるときの電流設定補正値Gi及び電流通電時間設定補正値Gtが求められ決定される。加圧力差値Ep、電流設定補正値Gi及び電流通電時間設定補正値Gtは、増加又は減少する絶対量や、補正率で求めても良い。 The current correction value calculation circuit GD includes a current setting correction value Gi that is a correction value of the current setting value Ir with respect to the pressure difference value Ep, a current conduction time setting correction value Gt that is a correction value of the current conduction time setting value ITr, and A function indicating the relationship is stored. This function is based on a relational expression of calorific value = 0.24 × current square × resistance × energization time, and spot welding is performed by changing the pressure difference value Ep for various materials and plate thicknesses of the base material 2. The nugget diameter is actually measured, and the current setting correction value Gi and the current conduction time setting correction value Gt when the desired nugget diameter is obtained are obtained and determined. The pressing force difference value Ep, the current setting correction value Gi, and the current energization time setting correction value Gt may be obtained by an absolute amount that increases or decreases, or a correction rate.

加圧力検出値Pdが加圧力設定値Prよりも不足しているときに、電流設定値Irを補正しないで溶接電流を通電すると、母材の抵抗値が大きいために発熱量が大きくなる。そのために、コロナボンド径に対してナゲット径が大きくなって、コロナボンドの圧接部で溶融金属を封じ込めておくことができなくなり、溶融金属が圧接部を破壊して外へ放出されてチリが多く発生する。そこで、発熱量が大きく成らないようにするために電流設定値Irを減少させると、従来技術の課題で述べたように、スポット溶接中に母材の抵抗値の変化が大きくなるために、溶接の状態が大きく変化して、ナゲットの形成に時間がかかり、所望のナゲット径が得られない場合がある。そこで本発明は、電流設定値Irのみを大きく減少させる代わりに、電流設定値Irの減少量を少なくして、同時に電流通電時間設定値ITrも減少させて、スポット溶接中に母材の抵抗値の変化を小さくして、溶接の状態が大きく変化しないようにして、適正なナゲットを得るものである。 When the welding pressure is detected without correcting the current setting value Ir when the pressure detection value Pd is less than the pressure setting value Pr, the amount of heat generation increases because the resistance value of the base material is large. Therefore, the nugget diameter becomes larger than the corona bond diameter, and it becomes impossible to contain the molten metal at the pressure contact portion of the corona bond, and the molten metal breaks the pressure contact portion and is released to the outside, resulting in a lot of dust. Occur. Therefore, if the current set value Ir is decreased in order to prevent the heat generation amount from becoming large, the change in the resistance value of the base metal becomes large during spot welding as described in the problem of the prior art. In this case, the nugget formation takes time and the desired nugget diameter may not be obtained. Therefore, in the present invention, instead of greatly reducing only the current set value Ir, the amount of decrease in the current set value Ir is decreased, and at the same time, the current energization time set value ITr is also reduced, so that the resistance value of the base metal during spot welding is reduced. By reducing the change in the thickness of the weld so that the welding state does not change significantly, an appropriate nugget is obtained.

電流設定値補正回路IRRは、電流設定値Irに電流設定補正値Giを加算して電流補正設定値Irrを出力する。電流通電時間設定値補正回路ITRRは、電流通電時間設定値ITrに電流通電時間設定補正値Gtを加算して電流通電時間補正設定値ITrrを出力する。電流検出器IDは、溶接電流Iwを検出して電流検出値Idを出力する。電流誤差増幅回路EIは、電流検出値Idと電流補正設定値Irrとの誤差を増幅して、電流誤差増幅値Eiを出力する。 The current set value correction circuit IRR adds the current set correction value Gi to the current set value Ir and outputs a current correction set value Irr. The current conduction time setting value correction circuit ITRR adds the current conduction time setting correction value Gt to the current conduction time setting value ITr and outputs a current conduction time correction setting value ITrr. The current detector ID detects the welding current Iw and outputs a current detection value Id. The current error amplification circuit EI amplifies an error between the current detection value Id and the current correction set value Irr and outputs a current error amplification value Ei.

溶接開始回路STは、溶接を開始するときにHighレベルとなる溶接開始信号Stを出力する。起動回路ONは、電流通電時間補正設定値ITrrと溶接開始信号Stとを入力して、溶接開始信号StがHighレベルに変化した時点から電流通電時間補正設定値ITrrによって定まる時間だけHighレベルになる起動信号Onを出力する。インバータ駆動回路DVは、電流誤差増幅値Eiと起動信号Onとを入力して、起動信号OnがHighレベルの間は、電流誤差増幅値Eiに基づいてパルス幅変調制御を行い、インバータ回路INVを駆動するための駆動信号Dvを出力する。 The welding start circuit ST outputs a welding start signal St that becomes High level when starting welding. The activation circuit ON inputs the current energization time correction set value ITrr and the welding start signal St, and becomes the High level for a time determined by the current energization time correction set value ITrr from the time when the welding start signal St changes to the High level. An activation signal On is output. The inverter drive circuit DV receives the current error amplification value Ei and the activation signal On, and performs pulse width modulation control based on the current error amplification value Ei while the activation signal On is at a high level. A drive signal Dv for driving is output.

以下、動作を説明する。例えば板厚が1mmの軟鋼を2枚重ね合わせて溶接電流の設定値が10、000A、溶接電流の通電時間の設定値が0.2sec、電極加圧力の設定値が3kNでスポット溶接を行う場合を説明する。この場合、電流補正値算出回路GDに保存された関数の中から、例えば図2に示す関数を利用する。図2は、加圧力差値Ep%(右縦軸)と、電流設定補正値Gi%(左縦軸)と、電流通電時間設定補正値Gt%(横軸)との関数を示す図である。同図において、例えば、加圧力差値Epが20%減のとき、電流設定補正値Giは4%減であり、電流通電時間設定補正値Gtは10減であることを示しており、このように、補正することによって所望のナゲット径が得られる。   The operation will be described below. For example, when two sheets of mild steel with a thickness of 1 mm are overlapped and spot welding is performed with a welding current setting value of 10,000 A, a welding current energization time setting value of 0.2 sec, and an electrode pressure setting value of 3 kN Will be explained. In this case, for example, the function shown in FIG. 2 is used from the functions stored in the current correction value calculation circuit GD. FIG. 2 is a diagram showing a function of the pressure difference value Ep% (right vertical axis), the current setting correction value Gi% (left vertical axis), and the current conduction time setting correction value Gt% (horizontal axis). . In the figure, for example, when the pressure difference Ep is reduced by 20%, the current setting correction value Gi is reduced by 4%, and the current energization time setting correction value Gt is reduced by 10, which is shown in FIG. In addition, a desired nugget diameter can be obtained by correction.

まず、加圧力設定器PRによって設定された適切な加圧力が母材2にかかる場合を説明する。スポット溶接を開始するために、母材2を下部電極1bに設置する。溶接開始回路STからHighレベルの溶接開始信号StがエアーシリンダASへ入力されて、上部電極1aが降下して上部電極1aと下部電極1bとで母材2が挟まれて、加圧力設定器PRによって設定された3kNの加圧力が母材2にかかる。その後、電流設定器IRによって設定された10、000Aの電流が、電流通電時間設定器ITRによって設定された0.2secの期間だけ母材2に通電されて、スポット溶接が正常に行われる。   First, a case where an appropriate pressure set by the pressure setting device PR is applied to the base material 2 will be described. In order to start spot welding, the base material 2 is placed on the lower electrode 1b. A high level welding start signal St is input from the welding start circuit ST to the air cylinder AS, the upper electrode 1a is lowered, the base material 2 is sandwiched between the upper electrode 1a and the lower electrode 1b, and the pressure setting device PR A pressure of 3 kN set by is applied to the base material 2. Thereafter, a current of 10,000 A set by the current setting device IR is supplied to the base material 2 for a period of 0.2 sec set by the current supply time setting device ITR, and spot welding is normally performed.

次に、エアーシリンダASへエアーを供給するコンプレッサの不具合で、エアーシリンダASへ供給されるエアーが不足して、加圧力設定器PRによって設定された加圧力が母材2に適切にかからない場合を説明する。スポット溶接を開始するために、母材2を下部電極1bに設置する。溶接開始回路STからHighレベルの溶接開始信号StがエアーシリンダASへ入力されて、上部電極1aが降下して上部電極1aと下部電極1bとで母材2が挟まれて母材2が加圧される。このとき、加圧力設定器PRによって設定された加圧力が3kNに対して、加圧力検出値Pdが2.4kNしかかなかった場合、加圧力差値算出回路EPは、加圧力差値Epが0.6kN、即ち20%減であることを算出する。   Next, there is a problem with the compressor that supplies air to the air cylinder AS, the air supplied to the air cylinder AS is insufficient, and the pressure set by the pressure setting device PR is not applied to the base material 2 properly. explain. In order to start spot welding, the base material 2 is placed on the lower electrode 1b. A high level welding start signal St is input from the welding start circuit ST to the air cylinder AS, the upper electrode 1a is lowered, the base material 2 is sandwiched between the upper electrode 1a and the lower electrode 1b, and the base material 2 is pressurized. Is done. At this time, when the applied pressure set by the applied pressure setting device PR is 3 kN and the detected applied pressure value Pd is only 2.4 kN, the applied pressure difference value calculation circuit EP has the applied pressure difference value Ep. Calculate that it is 0.6 kN, that is, a 20% reduction.

電流補正値算出回路GDは、図2に示した加圧力差値Epと電流設定補正値Giと電流通電時間設定補正値Gtとの関数から、加圧力差値Epが20%減のとき、電流設定補正値Giが4%減で、電流通電時間設定補正値Gtが10%減を選択する。電流設定値補正回路IRRは、10、000Aの電流設定値Irに4%減の電流設定補正値Giを加算して、9,600Aの電流補正設定値Irrを出力する。電流通電時間設定値補正回路ITRRは、0.2secの電流通電時間設定値ITrに10%減の電流通電時間設定補正値Gtを加算して、0.18secの電流通電時間補正設定値ITrrを出力する。 The current correction value calculation circuit GD calculates the current when the pressure difference value Ep is reduced by 20% from the function of the pressure difference value Ep, the current setting correction value Gi, and the current conduction time setting correction value Gt shown in FIG. The setting correction value Gi is reduced by 4%, and the current conduction time setting correction value Gt is selected by 10% reduction. The current setting value correction circuit IRR adds a current setting correction value Gi of 4% to the current setting value Ir of 10,000 A, and outputs a current correction setting value Irr of 9,600 A. The current conduction time setting value correction circuit ITRR adds a current conduction time setting correction value Gt of 10% to the current conduction time setting value ITr of 0.2 sec, and outputs a current conduction time correction setting value ITrr of 0.18 sec. To do.

電流誤差増幅回路EIは、電流検出値Idと電流補正設定値Irrとの誤差を増幅して、電流誤差増幅値Eiをインバータ駆動回路DVへ出力する。電流通電時間補正設定値ITrrが起動回路ONへ入力されて、溶接開始信号StがHighレベルに変化した時点から電流通電時間補正設定値ITrrによって定まる時間だけHighレベルになる起動信号Onをインバータ駆動回路DVへ出力する。これによって、電流設定値補正回路IRRによって補正された9,600Aの電流値が、電流通電時間設定値補正回路ITRRによって補正された0.18secの通電時間だけ通電されてスポット溶接が行われる。 The current error amplification circuit EI amplifies an error between the current detection value Id and the current correction set value Irr, and outputs the current error amplification value Ei to the inverter drive circuit DV. The start-up signal On which becomes the high level only for the time determined by the current energization time correction set value ITrr from the time when the welding start signal St is changed to the high level after the current energization time correction set value ITrr is input to the start-up circuit ON. Output to DV. As a result, the current value of 9,600 A corrected by the current set value correction circuit IRR is energized for the energization time of 0.18 sec corrected by the current energization time set value correction circuit ITRR, and spot welding is performed.

この結果、加圧力検出値Pdが加圧力設定値Prよりも不足しているときに、電流設定値Irのみを大きく減少させる代わりに、電流設定値Irの減少量を少なくして、同時に電流通電時間設定値ITrも減少させて、スポット溶接中に母材の抵抗値の変化を小さくして、溶接の状態が大きく変化しないようにすることができる。そのために適正なナゲットを形成することができ、加圧力が適切なときと同様の溶接品質を確保することができる。   As a result, when the detected pressure value Pd is less than the set pressure value Pr, instead of greatly reducing only the set current value Ir, the amount of decrease in the set current value Ir is reduced and current is applied simultaneously. The time set value ITr can also be decreased to reduce the change in the resistance value of the base metal during spot welding so that the welding state does not change significantly. Therefore, an appropriate nugget can be formed, and the same welding quality as when the applied pressure is appropriate can be ensured.

上述した本発明の抵抗溶接制御装置は、溶接トランスTRの二次電流を検出してフィードバック制御を行う場合について説明したが、溶接トランスTRの一次電流を検出してフィードバック制御を行う場合も動作及び効果は同様であるので説明を省略する。 The resistance welding control device of the present invention described above has been described for the case where feedback control is performed by detecting the secondary current of the welding transformer TR, but the operation and the case where feedback control is performed by detecting the primary current of the welding transformer TR Since the effect is the same, the description is omitted.

また、上述した本発明の抵抗溶接制御装置は、インバータ制御方式の場合で溶電流が直流のときについて説明したが、溶接電流が単相交流電流の場合も同様であるので、説明を省略する。 The above-described resistance welding control apparatus of the present invention has been described in the case of the inverter control method when the molten current is DC, but the description is omitted because the same applies when the welding current is a single-phase AC current.

1a 上部電極
1b 下部電極
2 母材
3a 上部アーム
3b 下部アーム
7 一次コイル
8 二次コイル
10 センタータップ
AS エアーシリンダ
DR1 第1整流素子
DR2 第2整流素子
DV インバータ駆動回路
Dv 駆動信号
EI 電流誤差増幅回路
Ei 電流誤差増幅値
Ep 加圧力差値
EP 加圧力差値算出回路
GD 電流補正値算出回路
Gi 電流設定補正値
Gt 電流通電時間設定補正値
ID 電流検出器
Id 電流検出値
INV インバータ回路
IR 電流設定器
Ir 電流設定値
IRR 電流設定値補正回路
Irr 電流補正設定値
ITr 電電流通電時間設定値
ITR 電流通電時間設定器
ITr 電流通電時間設定値
ITr 電流通電時間設定値
ITRR 電流通電時間設定値補正回路
ITrr 電流通電時間補正設定値
Iw 溶接電流
ON 起動回路
On 起動信号
PD 加圧力検出器
Pd 加圧力検出値
PR 加圧力設定器
Pr 加圧力設定値
ST 溶接開始回路
St 溶接開始信号
TR 溶接トランス
Vw 溶接電圧
DESCRIPTION OF SYMBOLS 1a Upper electrode 1b Lower electrode 2 Base material 3a Upper arm 3b Lower arm 7 Primary coil 8 Secondary coil 10 Center tap AS Air cylinder DR1 1st rectification element DR2 2nd rectification element DV Inverter drive circuit Dv Drive signal EI Current error amplification circuit Ei Current error amplification value Ep Pressure difference value EP Pressure difference value calculation circuit GD Current correction value calculation circuit Gi Current setting correction value Gt Current conduction time setting correction value ID Current detector Id Current detection value INV Inverter circuit IR Current setting device Ir current set value IRR current set value correction circuit Irr current correction set value ITr current energization time set value ITR current energization time setter ITr current energization time set value ITr current energization time set value ITRR current energization time set value correction circuit ITrr current Energizing time correction set value Iw Welding current ON Start circuit On Start No. PD pressure detector Pd pressure start detection value PR pressure setter Pr pressure setpoint ST welding start circuit St welding signal TR welding transformer Vw welding voltage

Claims (2)

インバータ回路と、
前記インバータ回路の出力を降圧する溶接トランスと、
前記溶接トランスの溶接電流を設定して電流設定値を出力する電流設定器と、
前記溶接電流を検出して電流検出値を出力する電流検出器と、
電極の加圧力を設定して加圧力設定値を出力する加圧力設定器と、
前記電極の加圧力を検出して加圧力検出値を出力する加圧力検出器と、
前記溶接電流の通電時間を設定して電流通電時間設定値を出力する電流通電時間設定器と、
前記加圧力検出値と前記加圧力設定値との差値を算出する加圧力差値算出回路と、
前記加圧力差値算出回路の算出値に基づいて電流設定補正値及び電流通電時間設定補正値を算出する電流補正値算出回路と、
前記電流設定値に前記電流設定補正値を加算する電流設定値補正回路と、
前記電流通電時間設定値に前記電流通電時間設定補正値を加算する電流通電時間設定値補正回路と、
前記電流検出値と前記電流設定値補正回路の出力値との誤差を増幅する電流誤差増幅回路と、
前記電流誤差増幅回路の出力値と前記電流通電時間設定値補正回路の出力値とにより前記インバータ回路を制御するインバータ駆動回路と、
を備えたことを特徴とする抵抗溶接制御装置。
An inverter circuit;
A welding transformer for stepping down the output of the inverter circuit;
A current setter for setting a welding current of the welding transformer and outputting a current set value;
A current detector that detects the welding current and outputs a current detection value;
A pressure setting device that sets the electrode pressure and outputs a pressure setting value;
A pressure detector that detects the pressure of the electrode and outputs a pressure detection value;
A current energizing time setting device for setting the energizing time of the welding current and outputting a current energizing time set value;
A pressure difference calculation circuit for calculating a difference value between the pressure detection value and the pressure setting value;
A current correction value calculation circuit that calculates a current setting correction value and a current energization time setting correction value based on the calculated value of the pressure difference calculation circuit;
A current set value correction circuit for adding the current set correction value to the current set value;
A current conduction time setting value correction circuit for adding the current conduction time setting correction value to the current conduction time setting value;
A current error amplification circuit for amplifying an error between the current detection value and the output value of the current set value correction circuit;
An inverter drive circuit that controls the inverter circuit based on an output value of the current error amplifier circuit and an output value of the current energization time setting value correction circuit;
A resistance welding control device comprising:
前記加圧力検出値が前記加圧力設定値よりも小さいとき、前記電流設定値及び前記電流通電時間設定値を減少させることを特徴とする請求項1記載の抵抗溶接制御装置。 The resistance welding control device according to claim 1, wherein when the detected pressure value is smaller than the pressure setting value, the current setting value and the current application time setting value are decreased.
JP2011099312A 2011-04-27 2011-04-27 Resistance welding control device Active JP5851711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099312A JP5851711B2 (en) 2011-04-27 2011-04-27 Resistance welding control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099312A JP5851711B2 (en) 2011-04-27 2011-04-27 Resistance welding control device

Publications (2)

Publication Number Publication Date
JP2012228720A true JP2012228720A (en) 2012-11-22
JP5851711B2 JP5851711B2 (en) 2016-02-03

Family

ID=47430728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099312A Active JP5851711B2 (en) 2011-04-27 2011-04-27 Resistance welding control device

Country Status (1)

Country Link
JP (1) JP5851711B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135573A (en) * 1998-10-27 2000-05-16 Kurata:Kk Welding control device of resistance welding machine
JP2001062570A (en) * 1999-08-30 2001-03-13 Nisshin Steel Co Ltd Device and method for seam welding
JP2004268057A (en) * 2003-03-05 2004-09-30 Jfe Koken Corp Flush welding apparatus
JP2006187791A (en) * 2005-01-07 2006-07-20 Miyachi Technos Corp Power source apparatus for inverter type resistance welding
JP2011062730A (en) * 2009-09-17 2011-03-31 Nas Toa Co Ltd Device for and method of monitoring resistance welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135573A (en) * 1998-10-27 2000-05-16 Kurata:Kk Welding control device of resistance welding machine
JP2001062570A (en) * 1999-08-30 2001-03-13 Nisshin Steel Co Ltd Device and method for seam welding
JP2004268057A (en) * 2003-03-05 2004-09-30 Jfe Koken Corp Flush welding apparatus
JP2006187791A (en) * 2005-01-07 2006-07-20 Miyachi Technos Corp Power source apparatus for inverter type resistance welding
JP2011062730A (en) * 2009-09-17 2011-03-31 Nas Toa Co Ltd Device for and method of monitoring resistance welding

Also Published As

Publication number Publication date
JP5851711B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5907317B1 (en) Resistance spot welding apparatus and resistance spot welding method
KR20150038629A (en) Hot-wire welding power supply
JP5473048B2 (en) Resistance welding control method
JP5709247B2 (en) Resistance welding method and resistance welding apparatus
JP2013121616A (en) Resistance welding machine and resistance welding method
JP5653116B2 (en) Resistance welding control method for plated steel sheet
JP5851711B2 (en) Resistance welding control device
JP5584026B2 (en) Resistance welding control method
JP5514505B2 (en) Resistance welding power supply apparatus, resistance welding apparatus using the power supply, and power supply control method
WO2013031247A1 (en) Method for controlling welding current of resistance welding machine, and device therefor
CN105142840A (en) Welding device
JP5236420B2 (en) Arc spot welding equipment
JP2010149143A (en) Resistance welding control method
JP6135922B2 (en) Resistance welding apparatus and welding control method for resistance welding
JP2012187621A (en) Resistance welding control device
JP2006095572A (en) Resistance welding control method
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
KR101221052B1 (en) Resistance spot welding method
JP2017087280A (en) Inverter type resistance welding machine
JP2015116579A (en) Resistance welding method, resistance welding apparatus and control apparatus of the same
JP2011189405A (en) Resistance welding control method
JP2006167745A (en) Welding controller of seam welding machine
JP6712894B2 (en) Resistance welding equipment
JP2012061487A (en) Method of controlling resistance welding
JP2019118921A (en) Welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250