JP2012187621A - Resistance welding control device - Google Patents

Resistance welding control device Download PDF

Info

Publication number
JP2012187621A
JP2012187621A JP2011055087A JP2011055087A JP2012187621A JP 2012187621 A JP2012187621 A JP 2012187621A JP 2011055087 A JP2011055087 A JP 2011055087A JP 2011055087 A JP2011055087 A JP 2011055087A JP 2012187621 A JP2012187621 A JP 2012187621A
Authority
JP
Japan
Prior art keywords
welding
current
circuit
secondary current
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011055087A
Other languages
Japanese (ja)
Inventor
Takuji Matsuura
卓治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011055087A priority Critical patent/JP2012187621A/en
Publication of JP2012187621A publication Critical patent/JP2012187621A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resistance welding control device 1 capable of correcting a reactive current, generated in a to-be-welded object 17 and flowing in a flow dividing circuit, by improving working efficiency.SOLUTION: In the resistance welding control device 1, a welding clearance setting unit 29 sets each welding clearance, and a current increasing degree calculating circuit 28 calculates the increasing degree of a secondary current setting value with an output signal of the welding clearance setting unit 29 as input. A secondary current setting value adding circuit 30 outputs a signal, where the increasing degree G is added to a setting value of a secondary current setting unit 22, to a current error amplifying circuit 23, with an output signal of the secondary current setting unit 22 and an output signal of the current increasing degree calculating circuit 28 as input. The current error amplifying circuit 23 calculates an error with a detection signal of a secondary current detector 21 and an output signal of the secondary current setting value adding circuit 30 as input, and an inverter drive circuit 5 controls an inverter circuit 4 with an output signal of the current error amplifying circuit 23 as input.

Description

本発明は、被溶接物において発生する分流回路に流れる電流(以下、無効電流という。)を補正することができる抵抗溶接制御装置に関するものである。   The present invention relates to a resistance welding control apparatus capable of correcting a current (hereinafter referred to as a reactive current) flowing in a shunt circuit generated in a workpiece.

スポット溶接において、スポット溶接を行う点の隣に既に溶接した点があり、スポット溶接を行う点と既に溶接した点との距離が近い場合、既に溶接した点に分流回路が発生して無効電流が流れる。分流回路が発生すると、これから溶接する点に供給される溶接電流が不足して、ナゲット径が小さくなり、その結果、溶接強度が低下する溶接欠陥となる。そこで、ナゲット径を一定に保つには、分流回路に流れる無効電流を考慮して、二次電流の設定値を増加させる必要がある。   In spot welding, when there is a spot already welded next to the spot welding spot and the distance between the spot welding spot and the spot welded is close, a shunt circuit is generated at the spot welded and reactive current is generated. Flowing. When a shunt circuit is generated, the welding current supplied to the point to be welded is insufficient, the nugget diameter is reduced, and as a result, a welding defect is produced in which the welding strength is reduced. Therefore, in order to keep the nugget diameter constant, it is necessary to increase the set value of the secondary current in consideration of the reactive current flowing in the shunt circuit.

従来、二次電流を通電する前に、溶接点毎にパイロット電流を流して全体の抵抗値を算出し、その算出した抵抗値と溶接点の抵抗値とから溶接点以外の抵抗値を求め、これによって二次電流の分流比を求め、無効電流だけ増加させた電流を二次電流の設定値として設定することが提案されている。(例えば、特許文献1参照。)。 Conventionally, before energizing the secondary current, the pilot current is passed for each welding point to calculate the overall resistance value, and the resistance value other than the welding point is obtained from the calculated resistance value and the resistance value of the welding point, Thus, it has been proposed to obtain the shunt ratio of the secondary current and set the current increased by the reactive current as the set value of the secondary current. (For example, refer to Patent Document 1).

特開平9−99379号公報JP-A-9-99379

上述したように、従来技術の抵抗溶接制御装置は、二次電流の設定値を無効電流の分だけ増加させた電流を二次電流として流すことができるので、溶接点に供給される溶接電流が不足して、溶接強度が低下する溶接欠陥となることがない。しかし、溶接点毎にパイロット電流を流して全体の抵抗値を算出する必要があるために、溶接作業の工数が掛かり、作業効率が低下していた。また、パイロット電流を流すことによって、被加工物が不完全に溶接された状態になることがある。その場合、無効電流の分だけ増加させた電流を二次電流として流す前にパイロット電流を流した場合と、パイロット電流を流さない場合とでは、溶接結果が異なるときがある。 As described above, since the resistance welding control device of the prior art can flow the current obtained by increasing the set value of the secondary current by the amount of the reactive current as the secondary current, the welding current supplied to the welding point is There is no shortage of weld defects that reduce the welding strength. However, since it is necessary to calculate the entire resistance value by supplying a pilot current to each welding point, the number of welding operations is increased and the work efficiency is lowered. Moreover, the workpiece may be incompletely welded by passing a pilot current. In that case, the welding result may be different between when the pilot current is supplied before the current increased by the reactive current is supplied as the secondary current and when the pilot current is not supplied.

また、溶接点の抵抗値を算出するために溶接電流を検出する手段が必要であり、また、被加工物の油汚れ等で抵抗値が変化するが、そのような場合、分流回路が発生して抵抗値が変化しているか、油汚れ等で抵抗値が変化しているのかを区別することができないことがあるので、分流回路に流される無効電流の割合の算出が不正確になるという不具合があった。 In addition, a means for detecting the welding current is required to calculate the resistance value of the welding point, and the resistance value changes due to oil stains on the workpiece. In such a case, a shunt circuit is generated. In some cases, it may not be possible to distinguish whether the resistance value has changed or the resistance value has changed due to oil stains, etc., so the calculation of the ratio of the reactive current flowing in the shunt circuit becomes inaccurate. was there.

本発明は、作業効率を向上させて、被溶接物において発生する分流回路に流れる無効電流を補正することができる抵抗溶接制御装置を提供することを目的としている。 An object of this invention is to provide the resistance welding control apparatus which can improve the working efficiency and can correct the reactive current which flows into the shunt circuit which generate | occur | produces in a to-be-welded object.

上述した課題を解決するために、請求項1の発明は、
インバータ回路と、
このインバータ回路の出力を降圧する溶接トランスと、
この溶接トランスの二次電流を検出する二次電流検出器と、
各溶接点間の距離である各溶接離間距離が設定される溶接離間距離設定器と、
この溶接離間距離設定器の出力信号を入力として二次電流の増加度を算出する電流増加度算出回路と、
二次電流設定器と、
この二次電流設定器の出力信号と前記電流増加度算出回路の出力信号とを入力として、二次電流設定器の設定値に前記増加度を加算させた信号を出力する二次電流設定値加算回路と、
前記二次電流検出器の検出信号と前記二次電流設定値加算回路の出力信号とを入力として、これらの誤差を算出する電流誤差増幅回路と、
この電流誤差増幅回路の出力信号を入力として前記インバータ回路を制御するインバータ駆動回路と、
を備えたことを特徴とする抵抗溶接制御装置である。
In order to solve the above-described problems, the invention of claim 1
An inverter circuit;
A welding transformer that steps down the output of this inverter circuit;
A secondary current detector for detecting the secondary current of the welding transformer;
A welding separation distance setting device in which each welding separation distance which is a distance between each welding point is set;
A current increase degree calculation circuit that calculates the increase degree of the secondary current with the output signal of the welding separation distance setter as an input;
A secondary current setter;
The secondary current set value addition that outputs the signal obtained by adding the increase degree to the set value of the secondary current setter with the output signal of the secondary current setter and the output signal of the current increase degree calculation circuit as inputs. Circuit,
A current error amplifying circuit for calculating an error between the detection signal of the secondary current detector and the output signal of the secondary current set value addition circuit;
An inverter drive circuit for controlling the inverter circuit with an output signal of the current error amplifier circuit as an input;
A resistance welding control apparatus comprising:

請求項2の発明は、
請求項1記載の溶接離間距離設定器は、ティーチングにおいて教示されたデータから各溶接離間距離を算出することを特徴とする抵抗溶接制御装置である。
The invention of claim 2
The welding separation distance setting device according to claim 1 is a resistance welding control device that calculates each welding separation distance from data taught in teaching.

本発明の抵抗溶接制御装置は、従来技術のように溶接点毎にパイロット電流を流すことなく、二次電流の設定値を無効電流の分だけ増加させた電流を二次電流として流すことができるので、従来技術と比較して作業効率を向上させることができる。   The resistance welding control device of the present invention can flow a current obtained by increasing the set value of the secondary current by the amount of the reactive current as a secondary current without flowing a pilot current for each welding point as in the prior art. Therefore, working efficiency can be improved compared with the prior art.

本発明の抵抗溶接制御装置のブロック図である。It is a block diagram of the resistance welding control apparatus of this invention. 溶接離間距離D[mm](横軸)と、二次電流設定値の増加度G[%](縦軸)との関係を示す図である。It is a figure which shows the relationship between the welding separation distance D [mm] (horizontal axis) and the increase degree G [%] (vertical axis) of a secondary current setting value.

発明の実施の形態を実施例に基づき図面を参照して説明する。図1は、本発明の抵抗溶接制御装置のブロック図であり、インバータ制御方式の場合であって、溶接電流は直流と成る。同図において、抵抗溶接制御装置1は、交流電源2によって発生される商用周波数の交流電力が整流回路3によって整流される。この整流回路3から出力された直流電力がインバータ回路4に入力される。このインバータ回路4は、図示を省略した複数のスイッチング素子から成るブリッジ回路から構成されていて、入力された直流電力が高周波のスイッチング動作によってパルス状の高周波交流電力に変換される。このインバータ回路4のスイッチング動作は、後述するインバータ駆動回路5からの制御信号によって制御される。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a block diagram of a resistance welding control apparatus according to the present invention, which is a case of an inverter control system, in which a welding current is a direct current. In the figure, the resistance welding control apparatus 1 rectifies commercial power AC power generated by an AC power source 2 by a rectifier circuit 3. The DC power output from the rectifier circuit 3 is input to the inverter circuit 4. The inverter circuit 4 is composed of a bridge circuit made up of a plurality of switching elements (not shown), and the input DC power is converted into pulsed high-frequency AC power by a high-frequency switching operation. The switching operation of the inverter circuit 4 is controlled by a control signal from an inverter drive circuit 5 described later.

溶接トランス6は、一次コイル7と二次コイル8とコア9とから成り、一次コイル7がインバータ回路4の出力側に接続され、二次コイル8の出力端子が第1整流素子10及び第2整流素子11をそれぞれ介して上部アーム12に接続されるとともに、二次コイル8のセンタータップ14が下部アーム13に接続されている。上部アーム12及び下部アーム13の先端部に第1溶接チップ15及び第2溶接チップ16がそれぞれ取り付けられている。 The welding transformer 6 includes a primary coil 7, a secondary coil 8, and a core 9. The primary coil 7 is connected to the output side of the inverter circuit 4. The output terminal of the secondary coil 8 is the first rectifying element 10 and the second coil. The rectifier element 11 is connected to the upper arm 12, and the center tap 14 of the secondary coil 8 is connected to the lower arm 13. A first welding tip 15 and a second welding tip 16 are attached to the distal ends of the upper arm 12 and the lower arm 13, respectively.

インバータ回路4から出力された高周波交流電力は、溶接トランス6の一次コイル7に印加され、溶接トランス6の二次コイル8には電圧が降圧された大電流の高周波交流電力が発生する。この二次コイル8に発生した高周波交流電力が第1整流素子10及び第2整流素子11によって半周期毎に交互に整流され、上部アーム12及び下部アーム13との間に直流電力が供給される。複数枚の被溶接物17が上部アーム12及び下部アーム13によって加圧されて直流電流が流れ、溶接部がジュール熱によって冶金的に接合される。 The high-frequency AC power output from the inverter circuit 4 is applied to the primary coil 7 of the welding transformer 6, and a high-current high-frequency AC power with a reduced voltage is generated in the secondary coil 8 of the welding transformer 6. The high-frequency AC power generated in the secondary coil 8 is alternately rectified every half cycle by the first rectifying element 10 and the second rectifying element 11, and DC power is supplied between the upper arm 12 and the lower arm 13. . A plurality of workpieces 17 are pressed by the upper arm 12 and the lower arm 13 to cause a direct current to flow, and the welds are metallurgically joined by Joule heat.

二次電流設定器22は二次電流が設定され、溶接離間距離設定器29は、スポット溶接を行う点と、この溶接点から一番近い既に溶接した点との距離である溶接離間距離が設定される。電流増加度算出回路28には、溶接離間距離D[mm]と二次電流設定値の増加度G[%]との関係を示す関数が保存されている。この関数は、種々の被加工物の材質及び板厚において、溶接離間距離を変化させてナゲット径を実測して、所望のナゲット径が得られるときの二次電流の増加度が求められ決定される。二次電流設定値加算回路30は、二次電流設定器22の出力信号と電流増加度算出回路28の出力信号とを入力として、二次電流設定器22の設定値に、電流増加度算出回路28によって算出された増加度を加算させた設定値を電流誤差増幅回路23へ出力する。 The secondary current setter 22 is set with a secondary current, and the welding separation distance setting device 29 sets a welding separation distance that is a distance between a spot welding point and an already welded point closest to the welding point. Is done. The current increase degree calculation circuit 28 stores a function indicating the relationship between the welding separation distance D [mm] and the increase degree G [%] of the secondary current set value. This function is determined by determining the degree of increase in secondary current when the desired nugget diameter is obtained by actually measuring the nugget diameter by changing the welding separation distance for various workpiece materials and plate thicknesses. The The secondary current set value addition circuit 30 receives the output signal of the secondary current setter 22 and the output signal of the current increase calculation circuit 28 as inputs, and sets the current increase calculation circuit to the set value of the secondary current setter 22. A set value obtained by adding the degree of increase calculated by 28 is output to the current error amplifier circuit 23.

二次電流検出器21は溶接トランス6の二次側の電流である溶接電流を検出する。電流誤差増幅回路23は、二次電流検出器21の検出信号と二次電流設定値加算回路30の出力信号とを入力として、これらの誤差を増幅して誤差信号をインバータ駆動回路5へ出力する。溶接時間設定器24は1回当たりの溶接時間を設定する。溶接開始回路25は、溶接を開始するときにHighレベルに成る信号を出力する。起動回路26は溶接時間設定器24の出力信号と溶接開始回路25の出力信号とを入力として、溶接開始回路25の出力信号がHighレベルに成ってから溶接時間設定器24によって設定された時間だけHighレベルに成る信号を出力する。 The secondary current detector 21 detects a welding current that is a current on the secondary side of the welding transformer 6. The current error amplification circuit 23 receives the detection signal of the secondary current detector 21 and the output signal of the secondary current set value addition circuit 30 as input, amplifies these errors, and outputs the error signal to the inverter drive circuit 5. . The welding time setter 24 sets the welding time per time. The welding start circuit 25 outputs a signal that becomes a high level when welding is started. The starting circuit 26 receives the output signal of the welding time setter 24 and the output signal of the welding start circuit 25 as input, and only the time set by the welding time setter 24 after the output signal of the welding start circuit 25 becomes high level. A signal that is at a high level is output.

以下、動作を説明する。例えば板厚が1[mm]の軟鋼を2枚重ね合わせて二次電流の設定値が10、000[A]で、溶接ロボットの先端部に取り付けられた溶接トーチが、各溶接点を一方向に向かって連続して移動しながらスポット溶接する場合を説明する。この場合、電流増加度算出回路28に保存された関数として、例えば図2に示す関数を利用する。図2は、溶接離間距離D[mm](横軸)と、二次電流設定値の増加度G[%](縦軸)との関数を示す図である。同図において、溶接離間距離Dが20[mm]のときの二次電流設定値の増加度Gが15[%]、溶接離間距離Dが40[mm]のときの二次電流設定値の増加度Gが10[%]、溶接離間距離Dが60[mm]のときの二次電流設定値の増加度Gが5[%]である。   The operation will be described below. For example, a welding torch attached to the tip of a welding robot has a set value of 10,000 [A] with two sheets of mild steel with a thickness of 1 [mm] overlapped, and the welding current is set in one direction. A case where spot welding is performed while continuously moving toward the surface will be described. In this case, for example, the function shown in FIG. 2 is used as the function stored in the current increase calculation circuit 28. FIG. 2 is a diagram showing a function of the welding separation distance D [mm] (horizontal axis) and the increase degree G [%] (vertical axis) of the secondary current set value. In the figure, when the welding separation distance D is 20 [mm], the secondary current setting value increase degree G is 15 [%], and when the welding separation distance D is 40 [mm], the secondary current setting value increase. When the degree G is 10 [%] and the welding separation distance D is 60 [mm], the increase degree G of the secondary current set value is 5 [%].

溶接ロボットによってスポット溶接を行う場合、ティーチングによって教示された各溶接点の位置から各溶接点間の溶接離間距離が算出されて、この算出された溶接離間距離が溶接離間距離設定器29に設定される。また、各溶接点において教示された二次電流の設定値が二次電流設定器22に設定される。例えば、ティーチングにおいて、1打点目と2打点目との溶接点の位置から溶接離間距離が20[mm]と算出され、1打点目と2打点目の二次電流の設定値が10、000[A]と教示される。このとき、溶接離間距離設定器29に1打点目と2打点目の溶接離間距離が20[mm]と設定され、二次電流設定器22に1打点目と2打点目の二次電流の設定値が10、000[A]と設定される。   When spot welding is performed by the welding robot, the welding separation distance between the welding points is calculated from the position of each welding point taught by teaching, and the calculated welding separation distance is set in the welding separation distance setting unit 29. The Further, the set value of the secondary current taught at each welding point is set in the secondary current setter 22. For example, in teaching, the welding separation distance is calculated as 20 [mm] from the position of the weld point between the first and second strike points, and the set value of the secondary current at the first and second strike points is 10,000 [ A]. At this time, the welding separation distance of the first and second strike points is set to 20 [mm] in the welding separation distance setting device 29, and the secondary current setting of the first and second strike points is set in the secondary current setting device 22. The value is set to 10,000 [A].

図示を省略したロボット制御装置からの動作制御信号が溶接ロボットに入力されて、溶接ロボットに取り付けられた溶接トーチの先端部が被加工物の1打点目に達する。そのとき、ロボット制御装置からの溶接制御信号が抵抗溶接制御装置1に入力され、二次電流の設定値が10、000[A]でスポット溶接が行われる。その後、溶接トーチの先端部が被加工物の2打点目に移動される。   An operation control signal from a robot controller (not shown) is input to the welding robot, and the tip of the welding torch attached to the welding robot reaches the first hit point on the workpiece. At that time, a welding control signal from the robot control device is input to the resistance welding control device 1, and spot welding is performed when the set value of the secondary current is 10,000 [A]. Thereafter, the tip of the welding torch is moved to the second strike point of the workpiece.

溶接トーチの先端部が被加工物の2打点目に到達したとき、電流増加度算出回路28は、図2に示した関数から溶接離間距離設定器29の設定値が20[mm]に対応した二次電流設定値の増加度Gとして15[%]を算出する。二次電流設定値加算回路30は、二次電流設定器22の出力信号を入力として、二次電流設定器22の設定値に、電流増加度算出回路28によって算出された増加度を加算させた設定値を電流誤差増幅回路23へ出力する。 When the tip of the welding torch reaches the second strike point of the workpiece, the current increase calculation circuit 28 corresponds to the set value of the welding separation distance setting device 29 corresponding to 20 [mm] from the function shown in FIG. 15 [%] is calculated as the increase degree G of the secondary current set value. The secondary current set value addition circuit 30 receives the output signal of the secondary current setter 22 as an input, and adds the increase calculated by the current increase calculation circuit 28 to the set value of the secondary current setter 22. The set value is output to the current error amplifier circuit 23.

即ち、二次電流設定器22の設定値が15[%]増加されて、11、500[A]の設定信号が電流誤差増幅回路23に出力される。インバータ駆動回路5は、電流誤差増幅回路23の出力信号を入力として、二次電流検出器21の検出値が二次電流設定値加算回路30の出力値である11、500[A]に成るようにインバータ回路4を制御する。以後、同様にして最終打点目のスポット溶接が終了すると、溶接ロボット及び抵抗溶接制御装置1は停止する。 That is, the set value of the secondary current setter 22 is increased by 15 [%], and a set signal of 11,500 [A] is output to the current error amplifier circuit 23. The inverter drive circuit 5 receives the output signal of the current error amplification circuit 23 as an input, and the detection value of the secondary current detector 21 becomes 11, 500 [A] which is the output value of the secondary current set value addition circuit 30. The inverter circuit 4 is controlled. Thereafter, when spot welding at the final spot is completed in the same manner, the welding robot and the resistance welding control device 1 are stopped.

この結果、本発明の抵抗溶接制御装置1は、従来技術のように溶接点毎にパイロット電流を流すことなく、二次電流の設定値を無効電流の分だけ増加させた電流を二次電流として流すことができるので、従来技術と比較して作業効率を向上させることができる。   As a result, the resistance welding control apparatus 1 according to the present invention uses the current obtained by increasing the set value of the secondary current by the amount of the reactive current as the secondary current without causing the pilot current to flow for each welding point as in the prior art. Since it can flow, working efficiency can be improved compared with the prior art.

上述した本発明の抵抗溶接制御装置1のスポット溶接においては、スポット溶接を行う点から最も近い既に溶接した点に分流回路が発生して無効電流が流れるが、その前の既に溶接した点、つまりスポット溶接を行う点から遠い側の溶接点へは無効電流が流れることは少ない。 In the spot welding of the resistance welding control apparatus 1 of the present invention described above, a shunt circuit is generated at the already welded point closest to the spot welding point, and a reactive current flows. The reactive current rarely flows to the welding point far from the spot welding point.

上述した本発明の抵抗溶接制御装置1は、溶接トランス6の二次電流を検出してフィードバック制御を行う場合について説明したが、溶接トランス6の一次電流を検出してフィードバック制御を行う場合も動作及び効果は同様であるので説明を省略する。 The above-described resistance welding control apparatus 1 of the present invention has been described with respect to the case where feedback control is performed by detecting the secondary current of the welding transformer 6, but the operation is also performed when feedback control is performed by detecting the primary current of the welding transformer 6. Since the effects are the same, the description thereof is omitted.

また上述した本発明の抵抗溶接制御装置1は、ティーチングによって教示された各溶接点の位置から各溶接点間の溶接離間距離が算出されて、この算出された溶接離間距離が溶接離間距離設定器29に設定される場合を説明した。この代わりに、溶接作業者が個々の溶接離間距離を溶接離間距離設定器29で設定するようにしても良い。 Further, the resistance welding control apparatus 1 of the present invention described above calculates the welding separation distance between the welding points from the position of each welding point taught by teaching, and the calculated welding separation distance is used as the welding separation distance setting device. The case of setting to 29 has been described. Instead, the welding operator may set individual welding separation distances with the welding separation distance setting device 29.

1 抵抗溶接制御装置
2 交流電源
3 整流回路
4 インバータ回路
5 インバータ駆動回路
6 溶接トランス
7 一次コイル
8 二次コイル
9 コア
10 第1整流素子
11 第2整流素子
12 上部アーム
13 下部アーム
14 センタータップ
15 第1溶接チップ
16 第2溶接チップ
17 被溶接物
21 二次電流検出器
22 二次電流設定器
23 電流誤差増幅回路
24 溶接時間設定器
25 溶接開始回路
26 起動回路
28 電流増加度算出回路
29 溶接離間距離設定器
30 二次電流設定値加算回路
D 溶接離間距離
G 二次電流設定値の増加度
DESCRIPTION OF SYMBOLS 1 Resistance welding control apparatus 2 AC power supply 3 Rectifier circuit 4 Inverter circuit 5 Inverter drive circuit 6 Welding transformer 7 Primary coil 8 Secondary coil 9 Core 10 1st rectifier 11 Second rectifier 12 Upper arm 13 Lower arm 14 Center tap 15 First welding tip 16 Second welding tip 17 Workpiece 21 Secondary current detector 22 Secondary current setting device 23 Current error amplification circuit 24 Welding time setting device 25 Welding start circuit 26 Start-up circuit 28 Current increase calculation circuit 29 Welding Separation distance setter 30 Secondary current set value addition circuit D Welding separation distance G Increasing degree of secondary current set value

Claims (2)

インバータ回路と、
このインバータ回路の出力を降圧する溶接トランスと、
この溶接トランスの二次電流を検出する二次電流検出器と、
各溶接点間の距離である各溶接離間距離が設定される溶接離間距離設定器と、
この溶接離間距離設定器の出力信号を入力として二次電流設定値の増加度を算出する電流増加度算出回路と、
二次電流設定器と、
この二次電流設定器の出力信号と前記電流増加度算出回路の出力信号とを入力として、二次電流設定器の設定値に前記増加度を加算させた信号を出力する二次電流設定値加算回路と、
前記二次電流検出器の検出信号と前記二次電流設定値加算回路の出力信号とを入力として、これらの誤差を算出する電流誤差増幅回路と、
この電流誤差増幅回路の出力信号を入力として前記インバータ回路を制御するインバータ駆動回路と、
を備えたことを特徴とする抵抗溶接制御装置。
An inverter circuit;
A welding transformer that steps down the output of this inverter circuit;
A secondary current detector for detecting the secondary current of the welding transformer;
A welding separation distance setting device in which each welding separation distance which is a distance between each welding point is set;
A current increase degree calculation circuit that calculates the increase degree of the secondary current set value with the output signal of the welding distance setting device as an input;
A secondary current setter;
The secondary current set value addition that outputs the signal obtained by adding the increase degree to the set value of the secondary current setter with the output signal of the secondary current setter and the output signal of the current increase degree calculation circuit as inputs. Circuit,
A current error amplifying circuit for calculating an error between the detection signal of the secondary current detector and the output signal of the secondary current set value addition circuit;
An inverter drive circuit for controlling the inverter circuit with an output signal of the current error amplifier circuit as an input;
A resistance welding control device comprising:
請求項1記載の溶接離間距離設定器は、ティーチングにおいて教示されたデータから各溶接離間距離を算出することを特徴とする抵抗溶接制御装置。 The resistance welding control apparatus according to claim 1, wherein the welding separation distance setting device calculates each welding separation distance from data taught in teaching.
JP2011055087A 2011-03-14 2011-03-14 Resistance welding control device Withdrawn JP2012187621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055087A JP2012187621A (en) 2011-03-14 2011-03-14 Resistance welding control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055087A JP2012187621A (en) 2011-03-14 2011-03-14 Resistance welding control device

Publications (1)

Publication Number Publication Date
JP2012187621A true JP2012187621A (en) 2012-10-04

Family

ID=47081366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055087A Withdrawn JP2012187621A (en) 2011-03-14 2011-03-14 Resistance welding control device

Country Status (1)

Country Link
JP (1) JP2012187621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149734A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Optimization analysis method and device for joined position of structure
JP2019136748A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Resistance spot welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149734A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Optimization analysis method and device for joined position of structure
JP2019136748A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Resistance spot welding method
US11135671B2 (en) 2018-02-13 2021-10-05 Toyota Jidosha Kabushiki Kaisha Resistance spot welding method
JP7010720B2 (en) 2018-02-13 2022-01-26 トヨタ自動車株式会社 Resistance spot welding method

Similar Documents

Publication Publication Date Title
CN102139405A (en) Resistance welding method
JP5634911B2 (en) Multi-electrode gas shield arc automatic welding equipment
JP2013121616A (en) Resistance welding machine and resistance welding method
JP5234233B1 (en) Welding machine
JP2012187621A (en) Resistance welding control device
CN104439613A (en) Arc welding apparatus, arc welding method, arc welding system, and welded article
JP5236420B2 (en) Arc spot welding equipment
JP5584026B2 (en) Resistance welding control method
CN103687688B (en) A kind of method and source of welding current operating the source of welding current
KR101221052B1 (en) Resistance spot welding method
WO2018192038A1 (en) Direct contact- and alternating current trapezoidal wave-based electric resistance welding process method of aluminum
WO2021153011A1 (en) Output control method for gas-shielded arc welding, welding system, welding power source, and welding control device
JP2006095572A (en) Resistance welding control method
JP6189734B2 (en) Resistance welding method, resistance welding apparatus and control apparatus therefor
JP2012254472A (en) Welding robot system
CN105127567A (en) Welding method of chrome-molybdenum vanadium steel for super-thick pressure vessels
JP2016150349A (en) Welding system
JP5511462B2 (en) Plasma MIG welding method
JP6054184B2 (en) Power supply device for arc welding and output voltage monitoring method for power supply device for arc welding
JP5825665B2 (en) Resistance welding control device
JP5851711B2 (en) Resistance welding control device
JP6583958B2 (en) Power supply apparatus for welding and control method
JP2012143766A (en) Device for controlling resistance welding
KR101412049B1 (en) Apparatus for detecting of defective welding and re-welding
JP2005334903A (en) Resistance welding control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603