JP2012222417A - 画像符号化装置 - Google Patents

画像符号化装置 Download PDF

Info

Publication number
JP2012222417A
JP2012222417A JP2011083290A JP2011083290A JP2012222417A JP 2012222417 A JP2012222417 A JP 2012222417A JP 2011083290 A JP2011083290 A JP 2011083290A JP 2011083290 A JP2011083290 A JP 2011083290A JP 2012222417 A JP2012222417 A JP 2012222417A
Authority
JP
Japan
Prior art keywords
intra
image
partition
macroblock partition
intra macroblock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011083290A
Other languages
English (en)
Inventor
Daisuke Sakamoto
大輔 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011083290A priority Critical patent/JP2012222417A/ja
Publication of JP2012222417A publication Critical patent/JP2012222417A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】
少ない演算量で、符号化効率が良い予測モードを決定する。
【解決手段】
特徴抽出部(116)は、入力画像の特徴を抽出し、画像特徴情報をイントラ予測部(105)に供給する。QP制御部(117)は、量子化部(107)の量子化パラメータを制御し、その量子化パラメータをイントラ予測部(105)に供給する。イントラ予測部(105)は、画像特徴情報と量子化パラメータに従いイントラマクロブロックパーティションを決定し、決定したイントラマクロブロックパーティションに従って、符号化に適用すべき予測モードを決定する。
【選択図】 図1

Description

本発明は、画像符号化装置に関し、特に画像をブロック化して圧縮符号化する符号化装置に関する。
近年、音声信号及び映像信号など所謂マルチメディアに関連する情報のデジタル化が急進しており、これに対応して映像信号の圧縮符号化復号化技術が注目されている。圧縮符号化及び復号化技術により、映像信号の格納に必要な記憶容量や伝送に必要な帯域を低減できるので、マルチメディア産業には極めて重要な技術である。
これらの圧縮符号化復号化技術は、多くの映像信号が有する自己相関性の高さ(すなわち、冗長性)を利用して情報量/データ量を圧縮している。映像信号が有する冗長性には、時間冗長性及び二次元の空間冗長性がある。時間冗長性は、ブロック単位の動き検出及び動き補償を用いて低減でき、空間冗長性は、離散コサイン変換(DCT)を用いて低減できる。
これらの技術を用いた符号化方式の中で現状、最も高能率符号化を実現しているといわれるのが、H.264/MPEG−4 PART10(AVC)(以下、H.264と呼ぶ)である。この圧縮符号化方式に導入された技術のひとつとして、フレーム内の相関を利用し、フレーム内画素値を用いて同一フレーム内の画素値を予測するイントラ予測がある。
H.264におけるイントラ予測には複数の予測ブロックサイズ・予測方向(以下、イントラ予測モード)が存在する。例えば、16×16画素のブロックデータを基に予測方向を決定するイントラ16×16予測には、4種類の予測方向がある。また、8×8画素のブロックデータを基に予測方向を決定するイントラ8×8予測には、9種類の予測方向がある。4×4画素のブロックデータを基に予測方向を決定するイントラ4×4予測には、9種類の予測方向がある。
H.264では、これらのイントラ予測モードから適切なものを選択することで高能率な符号化を実現している。イントラ予測モードの選択方法として、特許文献1には、撮影情報を用いて最適なイントラ予測モードを選択する技術が記載されている。
特開2006−217158号公報
ITU−T SG16やISO/IECが提供するH.264のリファレンスソフトモデルJM(Joint Model)では、全てのイントラ予測モードに対して演算を行って、最適なイントラ予測モードを選択している。
しかし、この方法では、符号化対象ブロックに対してイントラ16×16予測、イントラ8×8予測及びイントラ4×4予測で定められる全てのイントラ予測モードに対して演算を行うので、膨大な処理時間を必要とする。
演算負荷の増大は消費電力の増大に結びつく。従って、ビデオカメラなどのモバイル機器の場合には、機器の動作可能時間が短くなってしまう。
さらに、特許文献1に記載の技術では、撮影情報の入手が必須であり、撮影情報を入手できない環境では利用できない。
本発明は、これらの問題点に鑑みてなされたものであり、従来よりも少ない演算量によって符号化効率が良いイントラ予測モードで符号化できる画像符号化装置を提示することを目的とする。
本発明の請求項1記載の画像符号化装置は、動画像のフレームをブロック単位で符号化する符号化手段であって、各ブロックについて、周辺の画素値を用いてイントラ予測を行うイントラ予測手段と、前記イントラ予測された後の画像データを量子化パラメータに従って量子化する量子化手段とを有する符号化手段と、符号化対象ブロックの画像データから画像特徴情報を抽出する特徴抽出手段と、前記特徴抽出手段により抽出される前記画像特徴情報と前記符号化対象ブロックに対する前記量子化パラメータとに従い、前記符号化対象ブロックの前記イントラ予測のためのイントラマクロブロックパーティションを決定するイントラマクロブロックパーティション決定手段とを有することを特徴とする。
本発明によれば、すべてのイントラ予測モードに対して演算を行うことなく適切なイントラ予測モードを選択することができる。これにより、演算処理を削減しながらも符号化効率が良い予測モードで符号化することが可能となり、消費電力を削減することができる。
本発明の一実施例の概略構成ブロック図である。 イントラマクロブロックパーティション決定部の動作を示すフローチャートである。 イントラマクロブロックパーティション決定部の動作を示すフローチャートである。 イントラ予測部の概略構成ブロック図である。 量子化パラメータ及び画像特徴情報とマクロブロックパーティションとの対応表である。 イントラマクロブロックパーティション決定部の別の動作を示すフローチャートである。 イントラマクロブロックパーティション決定部の別の動作を示すフローチャートである。 図5A及び図5Bに対応する、量子化パラメータ及び画像特徴情報とマクロブロックパーティションとの対応表である。
以下、図面を参照して、本発明の実施例を詳細に説明する。
図1は、本発明の一実施例の概略構成ブロック図を示す。図1に示す画像符号化装置は、動画像のフレームをブロック単位に符号化する。フレームメモリ101には表示順に入力画像(原画像)が格納され、符号化順に符号化対象ブロックが、動き予測部103、イントラ予測部105、減算器112及び特徴抽出部116に順次、読み出される。
フィルタ後参照フレームメモリ102には、フィルタ処理された符号化済み画像が参照画像として格納され、符号化順に符号化対象ブロックの参照画像が動き予測部103及に動き補償部104に順次読み出される。
減算器112は、フレームメモリ101からの符号化対象ブロックからスイッチ111からの予測画像ブロックを減算し、画像残差データを出力する。直交変換部106は、減算器112から出力された画像残差データを直交変換処理し、変換係数を量子化部107に供給する。
特徴抽出部116は、フレームメモリ101からの符号化対象ブロックの画像の特徴を解析し、平坦部、エッジ部、肌色部、分散値が高いが劣化が目立つ画像部、テクスチャ部、及びその他の画像部の特徴情報に分類する。特徴抽出部116は、分類した特徴情報に応じた量子化パラメータ修正情報をQP制御部117に供給し、画像特徴情報をイントラ予測部105に供給する。
なお、各特徴情報を検出する方法は、特定の方法に限定されない。例えば、平坦部は、符号化対象ブロックの分散値が小さいかどうかで判定できる。エッジ部は、空間フィルタや周波数変換で検出できる。肌色部は、色差情報を使って検出できる。分散値が高いが劣化が目立つ画像部は、分散値は高いが動き検出を行った際の差分が少ないかどうかで検出できる。テクスチャ部は、これらのいずれにも当てはまらない分散値が高い領域に当てはめる。
量子化パラメータを修正する際には、画像の視覚特性に応じて値を上げ下げする。具体的には、平坦部、エッジ部及び肌色部などは、画質の劣化が視覚的に目立つので、量子化パラメータを下げる方向に修正する。テクスチャ部は、画質の劣化が視覚的に目立たないので、量子化パラメータを上げる方向に修正する。
符号量制御部118は、ビットレート及びピクチャタイプなどに応じてピクチャの目標符号量を設定し、QP制御部117に供給する。
QP制御部117は、ピクチャの目標符号量と量子化パラメータ修正情報を基に符号化対象マクロブロックの量子化パラメータを決定し、量子化部107及びイントラ予測部105に供給する。
量子化部107は、直交変換部106からの変換係数をQP制御部117から供給される量子化パラメータを用いて量子化し、エントロピー符号化部108及び逆量子化部109に供給する。
エントロピー符号化部108は、量子化部107で量子化された変換係数にCAVLC又はCABACなどのエントロピー符号化を施し、その結果を符号化データとして出力する。
量子化部107で量子化された変換係数を用いて参照画像データを生成する手順を説明する。逆量子化部109は、量子化部107からの量子化された変換係数を逆量子化する。逆直交変換部110は、逆量子化部109で逆量子化された変換係数を逆直交変換し、得られた復号残差データを加算器113に供給する。加算器113は、復号残差データに後述する予測画像データを加算して参照画像データを生成し、フィルタ前参照フレームメモリ114に格納する。ループフィルタ115は、フィルタ前参照フレームメモリ114からの参照画像データをフィルタリングしてノイズを除去する。ループフィルタ115の出力は、フィルタ後の参照画像データとしてフィルタ後参照フレームメモリ102に格納される。
入力画像データ、フィルタ前参照画像データ及フィルタ後参照画像データを用いて予測画像データを生成する手順を説明する。
動き予測部103は、フレームメモリ101からの符号化対象ブロックと、フィルタ後参照フレームメモリ102からのフィルタ後参照画像データとから動きベクトルを検出する。動き予測部103は、検出した動きベクトルをフィルタ後参照フレーム画像データ番号と共に動き補償部104に供給する。
動き補償部104は、動き予測部103からの動きベクトルを用いて、フィルタ後参照フレームメモリ102中のフィルタ後参照フレーム画像データ番号で示される参照フレーム画像を参照し、各ブロックの予測画像データを生成する。動き補償部104は、生成した予測画像データをスイッチ111に供給する。
イントラ予測部105は、符号化対象ブロック周辺の復号化済みデータ(周辺の画素値)を用いてイントラ予測モード別にイントラ予測画像データを生成する。イントラ予測部105は、フレームメモリ101からの符号化対象ブロックと生成した予測画像データとを用いてイントラ予測を行い、適切なイントラ予測モードを選択し、予測画像データをスイッチ111に供給する。適切なイントラ予測モードの選択手順は、後で詳細に説明する。
スイッチ111は、動き補償部104からの予測画像データとイントラ予測部105からの予測画像データのうち、適切な予測画像データを選択して減算器112に供給する。
図2A及び図2Bは、イントラ予測部105のマクロブロックパーティション決定手順及びイントラ予測モードの決定手順のフローチャートを示す。図3は、イントラ予測部105の概略構成ブロック図を示す。以下、イントラマクロブロックパーティションを、MBパーティションと略す。
イントラマクロブロックパーティション決定部301は、特徴抽出部116から特徴情報とQP制御部117からの量子化パラメータ(以下、QPと略す)からMBパーティションを決定する。QPが小さいときは、画像の差分値の符号量(以下、coeff符号量と言う。)がマクロブロック全体の符号量に占める割合が大きくなる。逆にQPが大きいときは、イントラ予測モードなど画像の差分値以外の符号量(以下、coeff以外の符号量という。)がマクロブロック全体の符号量に占める割合が大きくなる。さらに、画像の特徴に応じてcoeff符号量とcoeff以外の符号量のマクロブロック全体の符号量に占める割合が変動する。
これらを考慮し、イントラマクロブロックパーティション決定部301は、図4に示す条件に従って、イントラマクロブロックパーティションを決定する。一般的には、イントラマクロブロックパーティション決定部301は、量子化パラメータが大きいほど、MBパーティションのサイズを大きくする。
画像特徴情報が平坦を示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が小さく、また、パーティションを細かく分割しなくても予測が当たりやすい。そのため、coeff以外の符号量の占める割合が小さく、QPが小さいうちは、MBパーティションとして8×8を選択し、QPが中以上のときには、MBパーティションとして16×16を選択する(S201〜S204)。
画像特徴情報がエッジを示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。そこで、QPが小又は中まではMBパーティションとして4×4を選択し、coeff以外の符号量の占める割合が大きくなり、QPが大以上の場合には、MBパーティションとして8×8を選択する(S205〜S208)。
画像特徴情報がテクスチャを示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。QPが小又は中まではMBパーティションとして4×4を選択し、QPが大以上の場合にはMBパーティションとして8×8を選択する(S209〜S212)。
画像特徴情報が、分散値が高く劣化が目立つ画像を示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。QPが小又は中まではMBパーティションとして4×4を選択し、QPが大以上の場合にはMBパーティションとして8×8を選択する(S213〜S216)。
画像特徴情報が肌色を示す場合、人間の顔であることが多いので、平坦に近い。この場合、coeff符号量のマクロブロック全体の符号量に占める割合が小さく、また、パーティションを細かく分割しなくても予測が比較的当たりやすい。QPが小又は中まではMBパーティションとして8×8を選択し、QPが大以上の場合にはMBパーティションとして16×16を選択する(S217〜S220)。
画像特徴情報がその他を示す場合、QPが小又は中まではMBパーティションとして8×8を選択し、QPが大以上のときにはMBパーティションとして16×16を選択する(S221〜S223)。
イントラマクロブロックパーティション決定部301で決定したMBパーティションが4×4である場合、イントラ4×4予測モード決定部302は、予測モードごとに予測画像を生成する。イントラ4×4予測モード決定部302は、符号化対象マクロブロック画像を4×4単位に分割した対応ブロックとの差分絶対値和が最も小さくなる予測モードをイントラ4×4予測モードとして決定する。
イントラマクロブロックパーティション決定部301で決定したMBパーティションが8×8である場合、イントラ8×8予測モード決定部303は、予測モードごとに予測画像を生成する。イントラ8×8予測モード決定部303は、符号化対象マクロブロック画像を8×8単位に分割した対応ブロックとの差分絶対値和が最も小さくなる予測モードをイントラ8×8予測モードとして決定する。
イントラマクロブロックパーティション決定部301で決定したMBパーティションが16×16である場合、イントラ16×16予測モード決定部304は、予測モードごとに予測画像を生成する。イントラ16×16予測モード決定部304は、符号化対象マクロブロック画像を16×16単位に分割した対応ブロックとの差分絶対値和が最も小さくなる予測モードをイントラ16×16予測モードとして決定する。
本実施例では、全てのMBブロックに対して予測モードを演算する必要がなくなるので、処理を削減でき、リアルタイムの符号化も可能となる。また、消費電力を削減することができる。QPを決定する際に用いる特徴抽出部で求めた特徴情報を用いているので、回路規模の増加も少ない。
本実施例では、画像特徴情報の例として、平坦、エッジ、肌色、分散値が高いが劣化が目立つ領域及びテクスチャを挙げたが、その他の特徴を用いて適切なMBパーティションを設定しても良い。QPの値として大まかに、大、中及び小と3種のみ設定しているが、特徴ごとにより細かく設定しても良い。
イントラマクロブロックパーティション決定部301は、全特徴情報に対して、MBパーティションの決定に全部の特徴情報を考慮しているが、特徴情報の内容によってはその決定に考慮しなくてもよい。例えば、その他の特徴に含まれる画像については、画像の特徴が曖昧でMBパーティションを決め辛いことがある。このような場合には、全MBパーティションに対して演算を行い、適切なパーティションを決定してもよい。その際でも、他の特徴、すなわち、平坦、エッジ、肌色、分散値が高いが劣化が目立つ領域、及びテクスチャについては、予測モード決定の演算を削減することにより、全体として演算量を大幅に削減できる。
イントラ予測部105の別の動作を説明する。図5A及び図5Bは、イントラ予測部105のマクロブロックパーティション決定手順及びイントラ予測モードの決定手順の別のフローチャートを示す。
イントラマクロブロックパーティション決定部301は、特徴抽出部116からの画像特徴情報とQP制御部117からのQPを用いて、後述するようにMBパーティションを決定する。QPが小さいときは、coeff符号量がマクロブロック全体の符号量に占める割合が大きくなる。逆にQPが大きいときは、イントラ予測モードなど画像の差分値以外の符号量(以下、coeff以外の符号量という。)がマクロブロック全体の符号量に占める割合が大きくなる。さらに、画像の特徴に応じてcoeff符号量とcoeff以外の符号量のマクロブロック全体の符号量に占める割合が変動する。図5A及び図5Bに示すフローでは、更に、画像の特徴には、符号化劣化が目立つ特徴と目立たない特徴があることも考慮する。すなわち、本実施例では、画像の特徴により視覚的な劣化が目立つかどうかといった主観画質的な観点を取り入れて、MBパーティションを決定する。
図6は、符号量的な観点と主観画質的な観点を複合的に取り入れたMBパーティション決定条件を示す。図5A及び図5Bに示すフローは、図6の条件に従って、MBパーティションを決定する。
画像特徴情報が平坦を示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が小さく、また、パーティションを細かく分割しなくても予測が当たりやすい。そのため、coeff以外の符号量の占める割合が小さく、QPが小さいうちは、MBパーティションとして8×8を選択し、QPが中以上のときには、MBパーティションとして16×16を選択する(S501〜S504)。
画像特徴情報がエッジを示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。また、視覚的に劣化が目立ちやすい特徴であるので、符号量が多少、多くなっても、MBパーティションを細かくする。そこで、QPが小又は中まではMBパーティションとして4×4を選択し、QPが大以上の場合には、MBパーティションとして8×8を選択する(S505〜S508)。
画像特徴情報がテクスチャを示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。しかし、視覚的に劣化が目立ちにくい特徴であるので、予測が多少、外れても、符号量が少なくなるようにパーティションを選択するのが良い。QPが小ではMBパーティションとして4×4を選択し、coeff以外の符号量の占める割合が大きくなってくるQPが中ではMBパーティションとして8×8を選択し、QPが大以上ではMBパーティションとして16×16を選択する(S509〜S512)。
画像特徴情報が、分散値が高く劣化が目立つ画像を示すとき、coeff符号量のマクロブロック全体の符号量に占める割合が大きく、また、パーティションを細かく分割しないと予測が当たりにくい。また、エッジ程では無いが劣化が視覚的に目立つことが多い。そこで、QPが小まではMBパーティションとして4×4を選択し、QPが中以上の場合にはMBパーティションとして8×8を選択する(S513〜S516)。
画像特徴情報が肌色を示す場合、人間の顔であることが多いので、平坦に近い。この場合、coeff符号量のマクロブロック全体の符号量に占める割合が小さく、また、パーティションを細かく分割しなくても予測が比較的当たりやすい。ところが、顔は注目領域であるので、劣化があると目立ちやすい。そこで、coeff以外の符号量が多少増えても、QPが小又は中まではMBパーティションとして4×4を選択し、QPが大以上のMBパーティションとして8×8を選択する(S517〜S520)。
画像特徴情報がその他を示す場合、QPが小又は中まではMBパーティションとして8×8を選択し、QPが大以上のときには、MBパーティションとして16×16を選択する(S521〜S523)。
各決定部302,303,304は、イントラマクロブロックパーティション決定部301の決定に従い、実施例1で説明資したように、それぞれの予測モードを決定する。
符号量のみならず、画像の特徴が劣化の目立つものか否かを考慮して、MBパーティションを決定することで、主観画質をより向上させることが出来る。なお、画像特徴情報の例として、平坦、エッジ、肌色、分散値が高いが劣化が目立つ領域及びテクスチャを挙げたが、その他の特徴を用いて適切なMBパーティションを設定しても良い。QPの値として大まかに、大、中及び小と3種のみ設定しているが、特徴ごとにより細かく設定しても良い。
ピクチャタイプ又はスライスタイプに応じて画質重視か符号量重視かを設定しても良い。例えば、参照ピクチャになるIピクチャ又はPピクチャでは画質を重視し、参照ピクチャにならないBピクチャでは符号量を重視することなどが考えられる。
イントラマクロブロックパーティション決定部301は、全特徴情報に対して、MBパーティションの決定に全部の特徴情報を考慮しているが、特徴情報の内容によってはその決定に考慮しなくてもよい。例えば、その他の特徴に含まれる画像については、画像の特徴が曖昧でMBパーティションを決め辛いことがある。このような場合には、全MBパーティションに対して演算を行い、適切なパーティションを決定してもよい。その際でも、他の特徴、すなわち、平坦、エッジ、肌色、分散値が高いが劣化が目立つ領域、及びテクスチャについては、予測モード決定の演算を削減することにより、全体として演算量を大幅に削減できる。

Claims (7)

  1. 動画像のフレームをブロック単位で符号化する符号化手段であって、各ブロックについて、周辺の画素値を用いてイントラ予測を行うイントラ予測手段と、前記イントラ予測された後の画像データを量子化パラメータに従って量子化する量子化手段とを有する符号化手段と、
    符号化対象ブロックの画像データから画像特徴情報を抽出する特徴抽出手段と、
    前記特徴抽出手段により抽出される前記画像特徴情報と前記符号化対象ブロックに対する前記量子化パラメータとに従い、前記符号化対象ブロックの前記イントラ予測のためのイントラマクロブロックパーティションを決定するイントラマクロブロックパーティション決定手段
    とを有することを特徴とする画像符号化装置。
  2. 前記特徴情報が、エッジ部を示す情報、平坦部を示す情報、肌色部を示す情報、及びテクスチャ部を示す情報の何れかを含むことを特徴とする請求項1に記載の画像符号化装置。
  3. 前記イントラマクロブロックパーティション決定手段は、前記エッジ部を示す情報に従い、画質を上げるように前記イントラマクロブロックパーティションを決定することを特徴とする請求項2に記載の画像符号化装置。
  4. 前記イントラマクロブロックパーティション決定手段は、前記平坦部を示す情報に従い、画質を上げるように前記イントラマクロブロックパーティションを決定することを特徴とする請求項2に記載の画像符号化装置。
  5. 前記イントラマクロブロックパーティション決定手段は、前記肌色部を示す情報に従い、画質を上げるように前記イントラマクロブロックパーティションを決定することを特徴とする請求項2に記載の画像符号化装置。
  6. 前記イントラマクロブロックパーティション決定手段は、前記テクスチャ部を示す情報に従い、符号量を減らすように前記イントラマクロブロックパーティションを決定することを特徴とする請求項2に記載の画像符号化装置。
  7. 前記イントラマクロブロックパーティション決定手段は、前記量子化パラメータが大きいほど前記イントラマクロブロックパーティションのサイズを大きくすることを特徴とする請求項1乃至5の何れか1項に記載の画像符号化装置。
JP2011083290A 2011-04-05 2011-04-05 画像符号化装置 Withdrawn JP2012222417A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083290A JP2012222417A (ja) 2011-04-05 2011-04-05 画像符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083290A JP2012222417A (ja) 2011-04-05 2011-04-05 画像符号化装置

Publications (1)

Publication Number Publication Date
JP2012222417A true JP2012222417A (ja) 2012-11-12

Family

ID=47273526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083290A Withdrawn JP2012222417A (ja) 2011-04-05 2011-04-05 画像符号化装置

Country Status (1)

Country Link
JP (1) JP2012222417A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382371B1 (ko) 2013-10-18 2014-04-09 주식회사 아나패스 움직임 추정 방법 및 이를 이용한 화상 처리 장치
WO2015133320A1 (ja) * 2014-03-05 2015-09-11 ソニー株式会社 画像符号化装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382371B1 (ko) 2013-10-18 2014-04-09 주식회사 아나패스 움직임 추정 방법 및 이를 이용한 화상 처리 장치
WO2015133320A1 (ja) * 2014-03-05 2015-09-11 ソニー株式会社 画像符号化装置および方法
JPWO2015133320A1 (ja) * 2014-03-05 2017-04-06 ソニー株式会社 画像符号化装置および方法

Similar Documents

Publication Publication Date Title
EP2678944B1 (en) Methods and devices for data compression using offset-based adaptive reconstruction levels
EP2755388B1 (en) Method, device, and program for encoding and decoding image
KR20220025271A (ko) 영상을 부호화 또는 복호화하는 방법 및 장치
US20120044990A1 (en) Data Compression For Video
EP3849187A1 (en) Moving image encoding apparatus, moving image decoding apparatus, data structure, moving image encoding method and moving image decoding method
JP2014082639A (ja) 画像符号化装置およびその方法
WO2014117048A1 (en) Spatially adaptive video coding
JP2006229411A (ja) 画像復号化装置及び画像復号化方法
KR101615643B1 (ko) 픽처들의 압축
US9532076B2 (en) Apparatus and method for encoding combined image including different images
KR20140008984A (ko) 영상 부호화 방법 및 장치
US8891616B1 (en) Method and apparatus for entropy encoding based on encoding cost
JP2022172137A (ja) 適応乗算係数を用いた画像フィルタリングのための方法および装置
US8687910B2 (en) Image filtering method using pseudo-random number filter and apparatus thereof
JP2010183162A (ja) 動画像符号化装置
JP2024019542A (ja) 復号装置、プログラム、及び復号方法
JP2014007469A (ja) 画像符号化装置及び画像符号化方法
US8442338B2 (en) Visually optimized quantization
JP2009055236A (ja) 映像符号化装置及び方法
JP2012222417A (ja) 画像符号化装置
KR101419689B1 (ko) H.264/avc 복호기에서 역양자화 및 역변환을 수행하는 복호화 장치 및 이를 이용한 복호화 방법
JP5295089B2 (ja) 画像符号化装置
JP6200220B2 (ja) 画像処理装置、符号化装置、復号装置、及びプログラム
KR20150096353A (ko) 이미지 인코딩 시스템, 디코딩 시스템 및 그 제공방법
JP2007266861A (ja) 画像符号化装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701