JP2012222006A - Solar cell, and manufacturing method of solar cell - Google Patents

Solar cell, and manufacturing method of solar cell Download PDF

Info

Publication number
JP2012222006A
JP2012222006A JP2011083184A JP2011083184A JP2012222006A JP 2012222006 A JP2012222006 A JP 2012222006A JP 2011083184 A JP2011083184 A JP 2011083184A JP 2011083184 A JP2011083184 A JP 2011083184A JP 2012222006 A JP2012222006 A JP 2012222006A
Authority
JP
Japan
Prior art keywords
group
light absorption
absorption layer
layer
iiib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011083184A
Other languages
Japanese (ja)
Other versions
JP5808562B2 (en
Inventor
Yasuhiro Aida
康弘 會田
Depredurand Valerie
デプルドゥラント ヴァレリー
Siebentritt Susanne
ジーベントリット スザンヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Universite du Luxembourg
Original Assignee
TDK Corp
Universite du Luxembourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Universite du Luxembourg filed Critical TDK Corp
Priority to JP2011083184A priority Critical patent/JP5808562B2/en
Priority to PCT/JP2012/059125 priority patent/WO2012137793A2/en
Priority to US14/008,821 priority patent/US20140020738A1/en
Publication of JP2012222006A publication Critical patent/JP2012222006A/en
Application granted granted Critical
Publication of JP5808562B2 publication Critical patent/JP5808562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell in which the open voltage is increased when compared with a conventional solar cell and, as a result, the conversion efficiency is increased.SOLUTION: The solar cell has a first light absorption layer 10, and a second light absorption layer 12. The first light absorption layer 10 is a p-type semiconductor layer containing a group Ib element, a group IIIb element, and a group VIb element and including a luminescence peak having a half value width of 1 meV or more and 15 meV or less in photoluminescence spectrum or cathode luminescence spectrum. The second light absorption layer 12 contains a group Ib element, a group IIIb element, and a group VIb element, where the composition ratio of the group Ib element and the group IIIb element is 0.1 or more and less than 1.0, and the second light absorption layer 12 is provided on the light incident surface side of the first light absorption layer.

Description

本発明は、太陽電池、及び太陽電池の製造方法に関する。   The present invention relates to a solar cell and a method for manufacturing a solar cell.

普及が進んできているバルク結晶シリコン太陽電池に替わって、薄膜半導体層を光吸収層として用いる太陽電池の開発が進んでいる。中でも、Cu、Ag又はAu等の周期表Ib族から選ばれる元素とIn、Ga又はAl等の周期表IIIb族から選ばれる元素とO、S、Se又はTe等の周期表VIb族から選ばれる元素とを含む化合物半導体層を吸収層とする薄膜太陽電池は、高いエネルギー変換効率を示し、光劣化の影響も少ないことから、次世代の太陽電池として期待されている。具体的には、Cu、In、SeからなるCuInSe(以下CISeと呼ぶ)もしくはIIIb族であるInの一部をGaで置換したCu(In, Ga)Se(以下CIGSeと呼ぶ)をはじめとするカルコパイライト型p型半導体膜を光吸収層とする薄膜太陽電池において、高い変換効率が得られている。とくに三段階法と呼ばれる蒸着法を用いることで高い変換効率が得られるとされている。(非特許文献1参照) In place of the bulk crystal silicon solar cells that have been widely used, development of solar cells using a thin film semiconductor layer as a light absorption layer is in progress. Among them, an element selected from group Ib of the periodic table such as Cu, Ag or Au, an element selected from group IIIb of the periodic table such as In, Ga or Al, and a group VIb of the periodic table such as O, S, Se or Te are selected. A thin film solar cell using a compound semiconductor layer containing an element as an absorption layer exhibits high energy conversion efficiency and is less affected by light degradation, and thus is expected as a next-generation solar cell. Specifically, CuInSe 2 (hereinafter referred to as CISe) composed of Cu, In, and Se, or Cu (In, Ga) Se 2 (hereinafter referred to as CIGSe) in which a part of In that is a group IIIb is replaced with Ga is used. High conversion efficiency is obtained in the thin film solar cell using the chalcopyrite p-type semiconductor film as a light absorption layer. In particular, it is said that high conversion efficiency can be obtained by using a vapor deposition method called a three-stage method. (See Non-Patent Document 1)

Prog.Photovolt:Res.Appl.(2008),16:235−239Prog. Photovolt: Res. Appl. (2008), 16: 235-239. Wide−Gap Chalcopyrites (Springer Series in MATERIALS SCIENCE)p.146Wide-Gap Chalcopyrites (Springer Series in MATERIALS SCIENCE) p. 146 Applied Physics Letters 63 (24)(1993)p.3294Applied Physics Letters 63 (24) (1993) p. 3294 Wide−Gap Chalcopyrites (Springer Series in MATERIALS SCIENCE)p.130Wide-Gap Chalcopyrites (Springer Series in MATERIALS SCIENCE) p. 130

カルコパイライト型p型半導体に於けるIb族元素およびIIIb族元素の化学量論組成比はそれぞれ、Ib組成(原子%)/IIIb組成(原子%)=1.0である。以下、 Ib組成(原子%)/IIIb組成(原子%)<1.0 をIb−poor組成、 Ib組成(原子%)/IIIb(原子%)>1.0 をIb−rich組成と呼ぶ。一般的なカルコパイライト型p型光吸収層を用いた太陽電池において、光吸収層はIb−poor組成に調整され用いられる。これは光吸収層におけるIb/IIIb元素比が化学量論組成比を超え、Ib−rich組成になると、異相であるIb族元素とVIb族元素間の化合物、IbxVIbの析出が始まるためである。図3に一例として、CuSeおよびInSe間の平衡状態相図を示す。この異相であるIbxVIbは導電性の高い材料であり、この異相が光吸収層中に存在すると下部裏面電極層および上部n型半導体層が短絡してしまい、太陽電池特性が大きく劣化してしまう。従って、これまで一般的にはIb−rich組成のカルコパイライト型p型半導体膜は光吸収層として用いられてこなかった。 The stoichiometric composition ratio of the Ib group element and the IIIb group element in the chalcopyrite p-type semiconductor is Ib composition (atomic%) / IIIb composition (atomic%) = 1.0, respectively. Hereinafter, Ib composition (atomic%) / IIIb composition (atomic%) <1.0 is referred to as Ib-poor composition, and Ib composition (atomic%) / IIIb (atomic%)> 1.0 is referred to as Ib-rich composition. In a solar cell using a general chalcopyrite p-type light absorption layer, the light absorption layer is adjusted to an Ib-poor composition and used. This is because when the Ib / IIIb element ratio in the light absorption layer exceeds the stoichiometric composition ratio and becomes the Ib-rich composition, precipitation of a compound between the Ib group element and the VIb group element which is a different phase, IbxVIb starts. As an example, FIG. 3 shows an equilibrium phase diagram between Cu 2 Se and In 2 Se 3 . This different phase IbxVIb is a highly conductive material. If this different phase is present in the light absorption layer, the lower back electrode layer and the upper n-type semiconductor layer are short-circuited, and the solar cell characteristics are greatly deteriorated. Therefore, a chalcopyrite p-type semiconductor film having an Ib-rich composition has not been generally used as a light absorption layer.

一方、Ib-rich組成をもつカルコパイライト型p型半導体膜はIb−poor組成の膜に比べ、優れた電気的特性を持つという報告がある(非特許文献2参照)。非特許文献2によると、Cu−rich組成で形成されたCIGSe膜は欠陥密度が小さいとされている。この膜を太陽電池の光吸収層に用いた場合、光生成キャリアの輸送特性が高いため、高い変換効率が得られると考えられる。しかし、上述のとおり、Cu−rich組成を持つCISe、CGSe、CIGSeは、異相であるCuxSeを同時に持ち、これにより本来のCu−rich組成膜がもつ良好なキャリア輸送特性を活かすことができない。   On the other hand, there is a report that a chalcopyrite p-type semiconductor film having an Ib-rich composition has superior electrical characteristics as compared with a film having an Ib-poor composition (see Non-Patent Document 2). According to Non-Patent Document 2, a CIGSe film formed with a Cu-rich composition has a low defect density. When this film is used for a light absorption layer of a solar cell, it is considered that high conversion efficiency can be obtained because of the high transport property of photogenerated carriers. However, as described above, CISe, CGSe, and CIGSe having a Cu-rich composition have CuxSe that is a different phase at the same time, thereby making it impossible to make use of the good carrier transport characteristics of the original Cu-rich composition film.

この課題を解決するために、異相であるIbxSeを選択的に除去する技術がある(非特許文献3参照)。シアン化カリウム(KCN)水溶液に浸漬することで選択的に異相であるIb族元素−VIb族元素化合物のみを膜からエッチングする技術である。これによりIb−rich組成で形成されたカルコパイライト型p型半導体膜のみを光吸収層として用いることができる。しかし、このKCNエッチングされた光吸収層、すなわち異相である導電性IbxSe層を持たない光吸収層を用い、太陽電池を作成しても、エッチング前に比べると特性は改善されるものの、本来のIb−rich組成膜がもつ良好なキャリア輸送特性から期待される高い開放電圧は得られず変換効率は低い。   In order to solve this problem, there is a technique for selectively removing IbxSe which is a different phase (see Non-Patent Document 3). In this technique, only the Ib group element-VIb group element compound which is selectively in a different phase by being immersed in an aqueous potassium cyanide (KCN) solution is etched from the film. Thereby, only the chalcopyrite p-type semiconductor film formed with the Ib-rich composition can be used as the light absorption layer. However, even if a solar cell is produced using this KCN-etched light absorption layer, that is, a light absorption layer that does not have a conductive IbxSe layer that is a different phase, the characteristics are improved as compared with those before the etching. The high open-circuit voltage expected from the good carrier transport property of the Ib-rich composition film cannot be obtained, and the conversion efficiency is low.

一般的に、半導体材料に光や電子線を照射するとフォトルミネッセンス(以下PLと呼ぶ)およびカソードルミネセンス(以下CLと呼ぶ)と呼ばれる発光が得られる。太陽電池の光吸収層に用いられるカルコパイライト型p型半導体膜においても同様の発光が得られる。光吸収層に用いるカルコパイライト型半導体は通常ホールを多数キャリアとするp型半導体であるが、ホールを形成するアクセプタだけではなく電子を形成するドナー双方を持つ。PLスペクトル、CLスペクトルの形状はさまざまな要因で変化するが、その要因の一つとして、ドナー濃度およびアクセプタ濃度が挙げられる。これらの発光は二つの準位間でのエネルギー遷移、例えば伝導帯底部エネルギー準位−価電子帯頂部エネルギー準位間、ドナー準位−アクセプタ準位間、自由励起子が形成するエネルギー準位−価電子帯頂部エネルギー準位間などで起こる。p型半導体の多数キャリアはホールであるが、多数キャリア(ホール)に対する少数キャリア(電子)による補償が多くなるとPLスペクトル、CLスペクトルの半値幅は広がってくる。これは先述のエネルギー準位の分布にゆらぎが生じ、各エネルギー準位間のエネルギーが変わり様々なエネルギーを持った発光が重なってくるためである。   In general, when a semiconductor material is irradiated with light or an electron beam, light emission called photoluminescence (hereinafter referred to as PL) and cathode luminescence (hereinafter referred to as CL) is obtained. Similar light emission can be obtained in the chalcopyrite p-type semiconductor film used for the light absorption layer of the solar cell. The chalcopyrite semiconductor used for the light absorption layer is usually a p-type semiconductor having holes as majority carriers, but has both an acceptor that forms holes and a donor that forms electrons. The shapes of the PL spectrum and the CL spectrum vary depending on various factors. One of the factors is the donor concentration and the acceptor concentration. These luminescences are energy transitions between two levels, for example, the conduction band bottom energy level--the valence band top energy level, the donor level-acceptor level, and the energy level formed by free excitons- It occurs between valence band top energy levels. The majority carrier of the p-type semiconductor is a hole. However, when the majority carrier (electron) is compensated for the majority carrier (hole), the full width at half maximum of the PL spectrum and the CL spectrum increases. This is because the energy level distribution described above fluctuates, the energy between the energy levels changes, and light emission with various energies overlaps.

先述のように、PL、CLスペクトルは、半導体材料に存在するエネルギー準位の状態に強く依存する。半値幅の狭いPL、CLを観測できるp型半導体膜を光吸収層に用いた場合、先述のエネルギー準位のゆらぎが小さいため、キャリア再結合確率が減り、光生成キャリアの輸送特性が高くなる。これにより変換効率の改善が期待できる。   As described above, the PL and CL spectra strongly depend on the state of energy levels existing in the semiconductor material. When a p-type semiconductor film capable of observing PL and CL with a narrow half-value width is used for the light absorption layer, the fluctuation of the energy level described above is small, so the probability of carrier recombination decreases and the transport characteristics of photogenerated carriers increase. . This can be expected to improve conversion efficiency.

カルコパイライト型p型半導体における低温(10K以下)測定時のPLスペクトルの半値幅はIb族/IIIb族組成比に影響を受けることが知られている(非特許文献4参照)。通常Ib−rich組成において、半値幅の狭い励起子発光が得られる。   It is known that the half width of the PL spectrum at the time of low temperature (10K or less) measurement in a chalcopyrite p-type semiconductor is affected by the Ib group / IIIb group composition ratio (see Non-Patent Document 4). Usually, in the Ib-rich composition, exciton emission with a narrow half-value width is obtained.

先述のように、PLまたはCLスペクトルの半値幅に寄与する要因のひとつとして、エネルギー準位のゆらぎの度合いがある。Ib−richにする以外にも、高いセレン分圧下における結晶成長によりSe空孔を減らしたり、膜中に混入するナトリウム濃度を低減することで、キャリア補償効果を減らし、半値幅の狭いPLまたはCLを得ることができる。しかし、いずれかの方法で作製したこの狭い半値幅のPLをもつ光吸収層を用い、太陽電池を作成しても、良好なキャリア輸送特性から期待される高い変換効率は得られない。   As described above, one of the factors contributing to the half width of the PL or CL spectrum is the degree of fluctuation of the energy level. In addition to Ib-rich, by reducing Se vacancies by crystal growth under a high partial pressure of selenium, or by reducing the concentration of sodium mixed in the film, the carrier compensation effect is reduced, and PL or CL with a narrow half-value width Can be obtained. However, even if a solar cell is prepared using this light absorption layer having a narrow half-value width PL produced by any method, the high conversion efficiency expected from good carrier transport characteristics cannot be obtained.

本発明者らは、半値幅の狭いPLまたはCLが得られ、なおかつ導電性の高い異相を選択的に光吸収層から除去した光吸収層を用いたにもかかわらず、良好なキャリア輸送特性を活かすことができず変換効率の改善ができない理由として、以下のような問題があることを見出した。   The present inventors have obtained PL or CL with a narrow half-value width, and have good carrier transport characteristics despite using a light absorbing layer in which a highly conductive heterogeneous phase is selectively removed from the light absorbing layer. It has been found that there are the following problems as the reason why the conversion efficiency cannot be improved because it cannot be utilized.

半値幅が狭いPLまたはCLスペクトルを持ちなおかつ異相を含まないカルコパイライトp型半導体を太陽電池の光吸収層に用いた場合の太陽電池特性の一例として、下記にCu−rich CuInSe薄膜に対しKCNエッチングを施すことで異相であるCuxSeを除去した層を光吸収層として用いた太陽電池の逆方向飽和電流密度jおよび並列抵抗Rおよび開放電圧Voc、短絡電流密度Jsc、曲線因子FF、変換効率ηの値の一例を示す。なおこの層の10K(ケルビン)におけるPLスペクトルの半値幅は7meV、CLスペクトルの半値幅は7meVであった。
:5.11x10−8(A/cm)、R:185(Ω・cm)、
OC:0.400(V)、JSC:33.5(mA/cm)、
FF:0.603、η:8.08(%)
As an example of solar cell characteristics when a chalcopyrite p-type semiconductor having a narrow half-value width PL or CL and containing no heterogeneous phase is used for the light absorption layer of the solar cell, the following is shown for KCN-CuCuSeSe 2 reverse saturation current density j 0 and the parallel resistance R P and the open voltage Voc of the solar cell using a layer to remove CuxSe a heterogeneous phase by performing etching as the light-absorbing layer, the short-circuit current density Jsc, fill factor FF, the conversion An example of the value of efficiency η is shown. In addition, the half width of the PL spectrum at 10 K (Kelvin) of this layer was 7 meV, and the half width of the CL spectrum was 7 meV.
j 0 : 5.11 × 10 −8 (A / cm 2 ), R P : 185 (Ω · cm),
V OC : 0.400 (V), J SC : 33.5 (mA / cm 2 ),
FF: 0.603, η: 8.08 (%)

変換効率が高いCuInSe太陽電池は一般的に、jは10−7から10−11(A/cm)オーダーの値を示し、Rpの値は500(Ω・cm)以上である。それに比べ、Cu−rich CuInSe薄膜を光吸収層として用いた太陽電池はjの値が大きく、Rの値が小さいことがわかる。 A CuInSe 2 solar cell with high conversion efficiency generally has a value of j 0 on the order of 10 −7 to 10 −11 (A / cm 2 ) and a value of Rp of 500 (Ω · cm) or more. In comparison, a solar cell using the Cu-rich CuInSe 2 thin film as a light absorbing layer is larger value of j 0 It can be seen that the value of R P is small.

一般的に、pn接合型太陽電池の等価回路は下式(1)で表される。このモデルを以下、単一ダイオードモデルと呼ぶ。

Figure 2012222006

j:電流密度
0:逆方向飽和電流密度
ph:光電流密度
e:電気素量
V:電圧
A:理想ダイオード因子
:ボルツマン定数
T:温度
:直列抵抗
:並列抵抗 In general, an equivalent circuit of a pn junction solar cell is represented by the following formula (1). This model is hereinafter referred to as a single diode model.
Figure 2012222006

j: current density j 0 : reverse saturation current density j ph : photocurrent density e: elementary electric charge V: voltage A: ideal diode factor k B : Boltzmann constant T: temperature R S : series resistance R P : parallel resistance

ここで、狭い半値幅のPL、CLが得られ、異相除去のためのKCNエッチングを施したCu−rich CuInSe薄膜を光吸収層として用いた太陽電池のVOCが低い原因を明らかにするため、式1を用いてシミュレーションを行った。パラメータとして、jを変化させた場合の結果を図4、Rpを変化させた場合の結果を図5に示す。本発明者らは、この結果からVOCが低い原因は逆方向飽和電流jが大きいことが主要因であることを見出した。 Here, in order to clarify the cause of the low VOC of a solar cell using a Cu-rich CuInSe 2 thin film as a light-absorbing layer, in which PL and CL with a narrow half-value width are obtained and KCN etching for removing a different phase is performed. A simulation was performed using Equation 1. As a parameter indicating the results of the case of changing the j 0 in FIG. 5 results in the case of changing the Figure 4, Rp. The present inventors have found from this result that the cause of the low V OC is that the reverse saturation current j 0 is large.

一般的に、pn接合型半導体太陽電池において、逆方向飽和電流jは、空乏層内での光生成キャリアの再結合、もしくはpn接合界面における光生成キャリアの再結合に起因する、と言われている。したがってKCNエッチングを施したIb−richカルコパイライト光吸収層を用いた太陽電池の効率が低い主要因は接合付近における光生成キャリアの再結合が大きいためと考えられる。 In general, in a pn junction type semiconductor solar cell, the reverse saturation current j 0 is said to be caused by recombination of photogenerated carriers in the depletion layer or recombination of photogenerated carriers at the pn junction interface. ing. Therefore, it is considered that the main factor that the efficiency of the solar cell using the Ib-rich chalcopyrite light absorption layer subjected to KCN etching is low is the recombination of photogenerated carriers in the vicinity of the junction.

以上のように、単層では電気的特性が良好で、半値幅の狭いPL、CLが得られる高いキャリア輸送特性が期待されるカルコパイライト型p型半導体膜であるが、光吸収層に応用し太陽電池を形成しても、n型半導体層との接合界面における光生成キャリアの再結合が高く、高いVOCが得ることが困難であるため、高い変換効率は達成されていない。 As described above, a single layer is a chalcopyrite p-type semiconductor film that is expected to have high carrier transport characteristics that can provide PL and CL with good electrical characteristics and narrow half-value widths. Even when a solar cell is formed, high conversion efficiency is not achieved because recombination of photogenerated carriers at the junction interface with the n-type semiconductor layer is high and it is difficult to obtain high V OC .

上記目的を達成するために、本発明に係る太陽電池は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一の光吸収層を備え、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素とIIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一の光吸収層上に備える。   In order to achieve the above object, a solar cell according to the present invention includes a group Ib element, a group IIIb element, and a group VIb element, and emits light having a half width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or cathodoluminescence spectrum. A first light absorption layer which is a p-type semiconductor layer including a peak, includes a group Ib element, a group IIIb element, and a group VIb element, and a composition ratio of the group Ib element to the group IIIb element is 0.1 or more; A second light absorption layer that is less than 0 is provided on the first light absorption layer.

上記本発明によれば、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層のみを光吸収層として備える従来の太陽電池に比べ、開放電圧を増加させ、結果的に変換効率を増加させることが可能となる。   According to the present invention, an open-circuit voltage is higher than that of a conventional solar cell having only a p-type semiconductor layer including a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or a cathodoluminescence spectrum as a light absorption layer. As a result, the conversion efficiency can be increased.

本発明者らは、上記Ib−poorの組成をもつ第二の光吸収層をフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層の上に形成し、その上にn型半導体層を形成することによってpn接合界面における光生成キャリアの再結合を低減することができ、その結果本発明の効果が得られる、と考える。下記に具体的な理由を示す。   The inventors of the present invention are a p-type semiconductor layer in which the second light-absorbing layer having the Ib-poor composition is a p-type semiconductor layer including a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or a cathodoluminescence spectrum. By forming on one p-type light absorption layer and forming an n-type semiconductor layer thereon, recombination of photogenerated carriers at the pn junction interface can be reduced, resulting in the effects of the present invention. I think. Specific reasons are shown below.

図6に、従来のフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層のみを光吸収層として備える太陽電池のバンド構造の概略図、図7に本発明で得られる太陽電池のバンド構造の一例の概略図を示す。図7に示すように、第二の光吸収層によって光吸収層表面のバンドギャップを拡大することができる。これは価電子帯底部エネルギー位置(E)が第一の光吸収層よりも低いことによるものである。これにより、この領域はn型半導体層との接合界面におけるホール注入に対する障壁層として働き、接合界面における光生成キャリアの再結合を低減することができ、その結果本発明の効果が得られる。 FIG. 6 is a schematic diagram of a band structure of a solar cell provided with only a p-type semiconductor layer including a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a conventional photoluminescence spectrum or cathodoluminescence spectrum as a light absorption layer. The schematic of an example of the band structure of the solar cell obtained by this invention is shown. As shown in FIG. 7, the band gap of the light absorption layer surface can be expanded by the second light absorption layer. This is because the valence band bottom energy position (E V ) is lower than that of the first light absorption layer. Thus, this region serves as a barrier layer against hole injection at the junction interface with the n-type semiconductor layer, and recombination of photogenerated carriers at the junction interface can be reduced. As a result, the effect of the present invention can be obtained.

上記本発明では、前記第一の光吸収層に含まれるIb族元素とIIIb族元素の組成比が1.0であることが好ましい。Ib族元素/IIIb族元素比が1.0より大きいと異相である導電性Ibx族−VIb族化合物の析出が起こり、太陽電池素子が短絡し特性が劣化しやすくなり本発明の効果が小さくなる傾向がある。1.0より小さいと先述のエネルギー準位のゆらぎが大きくなり、本発明の効果が小さくなる傾向がある。   In the said invention, it is preferable that the composition ratio of the Ib group element and the IIIb group element contained in said 1st light absorption layer is 1.0. When the Ib group element / IIIb group element ratio is larger than 1.0, the conductive Ibx group-VIb group compound, which is a different phase, is precipitated, the solar cell element is short-circuited and the characteristics are easily deteriorated, and the effect of the present invention is reduced. Tend. If it is less than 1.0, the aforementioned fluctuation of the energy level tends to be large, and the effect of the present invention tends to be small.

上記本発明では、前記第二の光吸収層に含まれるIb族元素およびIIIb族元素が第一の光吸収層に含まれるIb族元素およびIIIb族元素と同一であることが好ましい。これにより本発明の効果が顕著となる。   In the present invention, the Ib group element and the IIIb group element contained in the second light absorption layer are preferably the same as the Ib group element and the IIIb group element contained in the first light absorption layer. Thereby, the effect of the present invention becomes remarkable.

上記本発明では、前記第一の光吸収層および第二の光吸収層に含まれるIb族元素がCuであることが好ましい。これにより本発明の効果がより顕著となる。   In the said invention, it is preferable that the Ib group element contained in said 1st light absorption layer and 2nd light absorption layer is Cu. Thereby, the effect of the present invention becomes more remarkable.

上記本発明では、前記第一の光吸収層上に形成される第二の光吸収層の厚さが1nm以上100nm以下の範囲であることが好ましい。これにより本発明の効果がさらに顕著となる。   In the said invention, it is preferable that the thickness of the 2nd light absorption layer formed on said 1st light absorption layer is the range of 1 nm or more and 100 nm or less. As a result, the effect of the present invention becomes more remarkable.

前記フォトルミネッセンス測定において励起光依存性を測定したときに励起光強度Iex とフォトルミネッセンス強度IPLの関係を下式(2)

Figure 2012222006

で表したとき1<k<2であることが好ましい。これにより本発明の効果は顕著となる。 The relationship between the excitation light intensity I ex k and the photoluminescence intensity I PL when the excitation light dependency is measured in the photoluminescence measurement is expressed by the following equation (2).
Figure 2012222006

It is preferable that 1 <k <2. Thereby, the effect of the present invention becomes remarkable.

前記第一の光吸収層の製造工程において、いったんIb−rich成長させたのちに、過剰に析出するIb族−VIb族化合物を除去する工程を含むことが好ましい。これにより導電性の異相であるIb族−VIb族間化合物を光吸収層から除去することができ、本発明の効果が顕著となる。   It is preferable that the manufacturing process of the first light absorption layer includes a step of removing an excessively precipitated lb group-VIb group compound after the lb-rich growth once. Thereby, the intermetallic compound of group Ib-VIb which is a different conductive phase can be removed from the light absorption layer, and the effect of the present invention becomes remarkable.

前記第二の光吸収層は真空蒸着法、スパッタリング法の中から選ばれる一種の方法により形成することが好ましい。これにより大面積に容易に均一な組成、膜厚分布を持ち、特性劣化の要因となる不純物成分の少ない第二の光吸収層を形成することができるため、本発明の効果が顕著となる。   The second light absorption layer is preferably formed by a kind of method selected from a vacuum deposition method and a sputtering method. This makes it possible to form a second light absorption layer that has a uniform composition and film thickness distribution easily over a large area and has few impurity components that cause deterioration in characteristics, and thus the effect of the present invention becomes remarkable.

前記第二の光吸収層は真空蒸着法、スパッタリング法の中から選ばれる一種の方法に加え、続く工程で熱処理を施すことにより形成することが好ましい。これにより、第一のp型光吸収層から第二の光吸収層へのIb族元素の拡散量を正確に制御できるようになるとともに、第二の光吸収層の膜厚の値を正確に制御できるようになるため、本発明の効果が顕著となる。   The second light absorption layer is preferably formed by performing a heat treatment in a subsequent step in addition to a kind of method selected from a vacuum deposition method and a sputtering method. This makes it possible to accurately control the amount of Ib group diffusion from the first p-type light absorption layer to the second light absorption layer, and to accurately set the thickness of the second light absorption layer. Since the control becomes possible, the effect of the present invention becomes remarkable.

本発明によれば、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むカルコパイライトp型半導体膜を光吸収層として備える従来の太陽電池に比べ、開放電圧を増加させ、結果的に変換効率を増加させることができる太陽電池、および太陽電池の製造方法を提供することができる。   According to the present invention, the open-circuit voltage is higher than that of a conventional solar cell including a light-absorbing layer of a chalcopyrite p-type semiconductor film including a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or a cathodoluminescence spectrum. It is possible to provide a solar cell that can increase the conversion efficiency as a result, and a method for manufacturing the solar cell.

従来のフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15meV以下の発光ピークを含むカルコパイライトp型半導体膜を光吸収層として備える太陽電池の概略断面図である。It is a schematic sectional drawing of a solar cell provided with the chalcopyrite p-type semiconductor film containing the light emission peak whose half value width is 1 meV or more and 15 meV or less in the conventional photoluminescence spectrum or cathodoluminescence spectrum as a light absorption layer. 本発明の一実施形態に係る太陽電池の概略断面図である。It is a schematic sectional drawing of the solar cell which concerns on one Embodiment of this invention. CuSeおよびInSe間の平衡状態相図である。It is an equilibrium state phase diagram between Cu 2 Se and In 2 Se 3 . pn接合太陽電池において単一ダイオードモデルを仮定し、逆方向飽和電流jをパラメータとした場合の電流電圧特性のシミュレーション結果である。assumes a single diode model in the pn junction solar cell, a simulation result of current-voltage characteristics when the reverse saturation current j 0 as a parameter. pn接合太陽電池において単一ダイオードモデルを仮定し、並列抵抗成分Rをパラメータとした場合の電流電圧特性のシミュレーション結果である。assumes a single diode model in the pn junction solar cell, a simulation result of current-voltage characteristics when the parallel resistance component R P as a parameter. 従来のフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むカルコパイライトp型半導体膜を光吸収層として備える太陽電池のバンド構造の概略図である。It is the schematic of the band structure of a solar cell provided with the chalcopyrite p-type semiconductor film containing the light emission peak whose half value width is 1 meV or more and 15 meV or less in the conventional photoluminescence spectrum or cathodoluminescence spectrum. 本発明で得られる太陽電池のバンド構造の一例の概略図である。It is the schematic of an example of the band structure of the solar cell obtained by this invention.

以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、図面において、同一又は同等の要素については同一の符号を付す。また、上下左右の位置関係は図面に示す通りである。また、説明が重複する場合にはその説明を省略する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals. Also, the positional relationship between the top, bottom, left and right is as shown in the drawing. Further, when the description overlaps, the description is omitted.

(太陽電池)
図2に示すように、本実施形態に係る太陽電池4は、ソーダライムガラス6と、ソーダライムガラス6上に形成された裏面電極層8と、裏面電極層8上に形成された第一のp型光吸収層10と、第一のp型光吸収層10上に形成された第二の光吸収層12と、第二の光吸収層12上に形成されたn型バッファ層14と、n型バッファ層14上に形成された半絶縁層16と、半絶縁層16上に形成された窓層18(透明導電層)と、窓層18上に形成された上部電極20(取り出し電極)と、を備える薄膜型太陽電池である。
(Solar cell)
As shown in FIG. 2, the solar cell 4 according to this embodiment includes a soda lime glass 6, a back electrode layer 8 formed on the soda lime glass 6, and a first electrode formed on the back electrode layer 8. a p-type light absorption layer 10, a second light absorption layer 12 formed on the first p-type light absorption layer 10, an n-type buffer layer 14 formed on the second light absorption layer 12, A semi-insulating layer 16 formed on the n-type buffer layer 14, a window layer 18 (transparent conductive layer) formed on the semi-insulating layer 16, and an upper electrode 20 (extraction electrode) formed on the window layer 18 And a thin film solar cell.

第一のp型光吸収層10は、Cu、Ag又はAu等のIb族元素、In、Ga又はAl等のIIIb族元素、さらにO、S、Se又はTe等のVIb族元素から構成されるp型化合物半導体層である。   The first p-type absorber layer 10 is composed of a group Ib element such as Cu, Ag or Au, a group IIIb element such as In, Ga or Al, and a group VIb element such as O, S, Se or Te. It is a p-type compound semiconductor layer.

第一のp型光吸収層10の上に形成された第二の光吸収層12は、Cu、Ag又はAu等のIb族元素、In、Ga又はAl等のIIIb族元素、さらにO、S、Se又はTe等のVIb族元素から構成される層である。   The second light absorption layer 12 formed on the first p-type light absorption layer 10 includes a group Ib element such as Cu, Ag, or Au, a group IIIb element such as In, Ga, or Al, and further O, S. , Se or Te, and the like.

第一のp型光吸収層10のフォトルミネッセンススペクトルまたはカソードルミネッセンススペクトルはその発光ピークの半値幅が1meV以上15meV以下の発光ピークを含む。この発光スペクトルは10K(ケルビン)以下の低温で観測されるものである。   The photoluminescence spectrum or cathodoluminescence spectrum of the first p-type light absorption layer 10 includes an emission peak whose half-value width of the emission peak is 1 meV or more and 15 meV or less. This emission spectrum is observed at a low temperature of 10K (Kelvin) or less.

第一のp型光吸収層10から得られるフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルの半値幅が15meVより大きい場合、p型光吸収層のキャリア輸送特性は劣化してしまい、本発明の効果が得られなくなる。   When the half width of the photoluminescence spectrum or cathodoluminescence spectrum obtained from the first p-type light absorption layer 10 is larger than 15 meV, the carrier transport property of the p-type light absorption layer is deteriorated, and the effect of the present invention is obtained. It becomes impossible.

第一のp型光吸収層10から得られるフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルの半値幅が1meVより小さい場合、その検出は困難であり、ノイズとの識別ができない。   When the half width of the photoluminescence spectrum or cathodoluminescence spectrum obtained from the first p-type light absorption layer 10 is smaller than 1 meV, it is difficult to detect and cannot be distinguished from noise.

以下では、第一のp型光吸収層10または第二の光吸収層12におけるIb族元素の含有率(原子%)とIIIb族元素の含有率(原子%)の比をIb族元素/IIIb族元素比と記す。   In the following, the ratio of the lb group element content (atomic%) to the IIIb group element content (atomic%) in the first p-type light absorbing layer 10 or the second light absorbing layer 12 is expressed as lb group element / IIIb. It is written as group element ratio.

この発光を含む第一のp型光吸収層10上に形成された、第二の光吸収層12はCu、Ag又はAu等のIb族元素、In、Ga又はAl等のIIIb族元素、さらにO、S、Se又はTe等のVIb族元素から構成される層である。第二の光吸収層12におけるIb族元素/IIIb族元素比は0.1以上1.0未満である。第二の光吸収層に含まれるIb族元素/IIIb族元素比が0.1より小さい場合、IIIb族元素とVIb族元素間のみで化合物が生成され、光吸収およびキャリア輸送の妨げとなり特性が劣化してしまう。Ib族元素/IIIb族元素比が1.0より大きい場合、Ib族元素とVIb族元素間で導電性の化合物が生成され特性が劣化してしまう。またバンドギャップエネルギーが第一のp型光吸収層10と同一になってしまうため、目的であるホール障壁層としての役割を果たさなくなり、本発明の効果が得られなくなる。   The second light-absorbing layer 12 formed on the first p-type light-absorbing layer 10 containing this light emission is an Ib group element such as Cu, Ag or Au, an IIIb group element such as In, Ga or Al, and It is a layer composed of a VIb group element such as O, S, Se or Te. The Ib group element / IIIb group element ratio in the second light absorption layer 12 is 0.1 or more and less than 1.0. When the ratio of the group Ib element / group IIIb element contained in the second light absorption layer is smaller than 0.1, a compound is formed only between the group IIIb element and the group VIb element, hindering light absorption and carrier transport, It will deteriorate. When the Ib group element / IIIb group element ratio is larger than 1.0, a conductive compound is generated between the Ib group element and the VIb group element, and the characteristics deteriorate. Further, since the band gap energy becomes the same as that of the first p-type light absorption layer 10, it does not serve as the intended hole barrier layer, and the effect of the present invention cannot be obtained.

前記第一のp型光吸収層10におけるIb族元素/IIIb族元素比は1.0であることが好ましい。Ib族元素/IIIb族元素比が1.0より大きいと異相である導電性Ibx族−VIb族化合物の析出が起こり、太陽電池素子が短絡し特性が劣化しやすくなり本発明の効果が小さくなる傾向がある。1.0より小さいと先述のエネルギー準位のゆらぎが大きくなり、本発明の効果が小さくなる傾向がある。   The Ib group element / IIIb group element ratio in the first p-type absorber layer 10 is preferably 1.0. When the Ib group element / IIIb group element ratio is larger than 1.0, the conductive Ibx group-VIb group compound, which is a different phase, is precipitated, the solar cell element is short-circuited and the characteristics are easily deteriorated, and the effect of the present invention is reduced. Tend. If it is less than 1.0, the aforementioned fluctuation of the energy level tends to be large, and the effect of the present invention tends to be small.

前記第一のp型光吸収層10上に形成される第二の光吸収層12に含まれるIb族元素およびIIIb族元素が第一のp型光吸収層10に含まれるIb族元素およびIIIb族元素と同一であることが好ましい。また、複数のIb族元素をそれぞれの層に用いる場合、その比率も同一であることが好ましい。同様に複数のIIIb族元素をそれぞれの層に用いる場合、その比率も同一であることが好ましい。これにより、本発明の効果を得やすくなる。   The Ib group element and the IIIb group element contained in the second light absorption layer 12 formed on the first p type light absorption layer 10 are the Ib group element and IIIb contained in the first p type light absorption layer 10. It is preferably the same as the group element. Moreover, when using several Ib group elements for each layer, it is preferable that the ratio is also the same. Similarly, when a plurality of group IIIb elements are used in each layer, the ratio is preferably the same. This makes it easier to obtain the effects of the present invention.

第一のp型光吸収層10上に形成される第二の光吸収層12に含まれるIb族元素およびIIIb族元素が第一のp型光吸収層10に含まれるIb族元素およびIIIb族元素と同一でない場合、第一のp型光吸収層10と第二の光吸収層12のバンドギャップエネルギーが異なるものになる。これは主に伝導帯底部エネルギーEcの位置が変わることによるものである。第二の光吸収層12の伝導帯底部エネルギーEcの位置が第一のp型光吸収層10より小さい場合、接合界面の欠陥準位を介して多数キャリアの再結合が増加し開放電圧が低下してしまう。一方、第二の光吸収層12の伝導帯底部エネルギーEcの位置が第一のp型光吸収層10より大きい場合、このエネルギー差が光生成キャリアの障壁として働く。これにより取り出せるキャリアの数が減少してしまい、短絡電流密度Jscが低下してしまう。   The Ib group element and IIIb group element contained in the second light absorption layer 12 formed on the first p type light absorption layer 10 are the Ib group element and IIIb group contained in the first p type light absorption layer 10. When not the same as the element, the band gap energy of the first p-type absorber layer 10 and the second absorber layer 12 is different. This is mainly due to the change in the position of the conduction band bottom energy Ec. When the position of the conduction band bottom energy Ec of the second light absorption layer 12 is smaller than the first p-type light absorption layer 10, the recombination of majority carriers increases through the defect level at the junction interface and the open circuit voltage decreases. Resulting in. On the other hand, when the position of the conduction band bottom energy Ec of the second light absorption layer 12 is larger than that of the first p-type light absorption layer 10, this energy difference works as a barrier for photogenerated carriers. As a result, the number of carriers that can be taken out decreases, and the short circuit current density Jsc decreases.

前記第一のp型光吸収層10および第二の光吸収層12に含まれるIb族元素がCuである場合、両層のバンドギャップエネルギーを約1.0eVから約3.5eVの広い範囲で調整することができ好ましい。第一のp型光吸収層10に含まれるVIb族元素がSeの場合、III族元素はInもしくはGa、またはInとGa、またはInとAlの組み合わせから選ばれる元素であることが好ましい。これにより太陽電池用光吸収層として適しているとされるバンドギャップエネルギー約1.0eV〜約1.8eV間で調整することができる。第一のp型光吸収層10に含まれるVIb族元素がSの場合、IIIb族元素はInまたはInとGaの組み合わせであることが好ましい。これにより太陽電池用光吸収層として適しているとされるバンドギャップエネルギー約1.0eV〜約1.8eV間で調整することができる。   When the group Ib element contained in the first p-type light absorption layer 10 and the second light absorption layer 12 is Cu, the band gap energy of both layers is in a wide range from about 1.0 eV to about 3.5 eV. It can be adjusted and is preferable. When the group VIb element contained in the first p-type light absorption layer 10 is Se, the group III element is preferably an element selected from In or Ga, or In and Ga, or a combination of In and Al. Thereby, it is possible to adjust the band gap energy, which is considered to be suitable as a light absorption layer for solar cells, between about 1.0 eV to about 1.8 eV. When the VIb group element contained in the first p-type light absorption layer 10 is S, the IIIb group element is preferably In or a combination of In and Ga. Thereby, it is possible to adjust the band gap energy, which is considered to be suitable as a light absorption layer for solar cells, between about 1.0 eV to about 1.8 eV.

前記第一のp型光吸収層10上に形成される第二の光吸収層の厚さは1nm以上100nm以下であることが好ましい。1nmより薄い場合、トンネリング現象によりホール注入の障壁層としての機能が低下してしまう。また薄すぎるため形成が困難である。100nmより厚い場合、この第二の光吸収層の中でキャリア再結合が起こってしまうため特性が劣化しやすい傾向になる。   The thickness of the second light absorption layer formed on the first p-type light absorption layer 10 is preferably 1 nm or more and 100 nm or less. When the thickness is smaller than 1 nm, the function as a hole injection barrier layer is deteriorated due to a tunneling phenomenon. Moreover, since it is too thin, formation is difficult. When the thickness is larger than 100 nm, carrier recombination occurs in the second light absorption layer, and the characteristics tend to deteriorate.

第一のp型光吸収層10に対するフォトルミネッセンス測定において励起光依存性または励起電子線強度依存性を測定したときに 励起光強度または励起電子線強度Iex とフォトルミネッセンス強度IPLの関係を下式(2)

Figure 2012222006

で表したとき 、kは1<k<2であることが好ましい。 The relationship between the excitation light intensity or the excitation electron beam intensity I ex k and the photoluminescence intensity I PL when the excitation light dependency or the excitation electron beam intensity dependency is measured in the photoluminescence measurement for the first p-type light absorption layer 10 The following formula (2)
Figure 2012222006

K is preferably 1 <k <2.

前記フォトルミネッセンス測定におけるkの値は、発光の起源を表すものであり、k値が前記範囲内にある発光は励起子発光である。励起子発光は、結晶性がきわめて良好な薄膜から得られるものである。結晶性がきわめて良好である薄膜は高いキャリア輸送特性を持つ。したがってk値が前記範囲内にあるフォトルミネッセンス発光が得られる膜を光吸収層に用いることで高い変換効率が得られる。   The value of k in the photoluminescence measurement represents the origin of light emission, and light emission having a k value within the above range is exciton light emission. Exciton luminescence is obtained from a thin film with very good crystallinity. Thin films with very good crystallinity have high carrier transport properties. Therefore, high conversion efficiency can be obtained by using, as the light absorption layer, a film from which photoluminescence emission having a k value within the above range can be obtained.

(太陽電池の製造方法)
本実施形態では、まず、ソーダライムガラス6上に裏面電極層8を形成する。裏面電極層8は、通常、Moから構成される金属層である。裏面電極層6の形成方法としては、例えばMoターゲットのスパッタリング等が挙げられる。
(Method for manufacturing solar cell)
In the present embodiment, first, the back electrode layer 8 is formed on the soda lime glass 6. The back electrode layer 8 is a metal layer usually made of Mo. Examples of the method for forming the back electrode layer 6 include sputtering of a Mo target.

ソーダライムガラス6上に裏面電極層8を形成した後、第一のp型光吸収層10を裏面電極層8上に形成する。第一のp型光吸収層10の形成方法としては、一段階同時真空蒸着法、二段階真空蒸着法、固相セレン化法又は気相セレン化法等が挙げられる。   After forming the back electrode layer 8 on the soda lime glass 6, the first p-type light absorption layer 10 is formed on the back electrode layer 8. Examples of the method for forming the first p-type absorber layer 10 include a one-step simultaneous vacuum deposition method, a two-step vacuum deposition method, a solid phase selenization method, and a gas phase selenization method.

第一のp型光吸収層10はいったんIb族−VIb族組成が1.0より大きい値、すなわちIb−rich組成になるよう成膜することが好ましい。   The first p-type absorber layer 10 is preferably formed once such that the Ib group-VIb group composition is larger than 1.0, that is, the Ib-rich composition.

例えば、一段階真空蒸着法を用いる場合、IIIb族の蒸発圧力(フラックス)をIb族の蒸発圧力(フラックス)の7倍以下にすることが好ましい。7倍より大きい値にすると、Ib−rich組成は得られず、本発明の効果が小さくなる。   For example, when the one-stage vacuum deposition method is used, it is preferable to set the group IIIb evaporation pressure (flux) to 7 times or less of the group Ib evaporation pressure (flux). If the value is larger than 7 times, the Ib-rich composition cannot be obtained, and the effect of the present invention is reduced.

例えば、二段階真空蒸着法を用いる場合、第一段階においてはIIIb族元素およびVIb族元素を同時に蒸着する。第二段階においてはIb族元素とVIb族元素を同時に蒸着し、Ib−rich組成になった時点で成膜を終了する。   For example, when a two-stage vacuum vapor deposition method is used, the IIIb group element and the VIb group element are vapor-deposited simultaneously in the first stage. In the second stage, the Ib group element and the VIb group element are vapor-deposited at the same time.

例えば、固相セレン化法、気相セレン化法を用いる場合、その前躯体としてCuSe、CuS、AgSe、AgSをはじめとするIb族−VIb族元素化合物膜またはCu、AgをはじめとするIb族元素膜、およびInSe、In、GaSe、Ga、AlSe、AlをはじめとするIIIb族−VIb族元素化合物膜、またはIn、Ga、AlをはじめとするIIIb族元素膜を成膜する。その後固体Seまたは固体Sもしくはセレン化水素雰囲気または硫化水素を含む雰囲気下で熱処理を施し、第一のp型光吸収層10を形成する。前躯体の形成には真空蒸着法、スパッタリング法、電析法、印刷法などを用いる。Ib族−VIb族元素化合物膜またはIb族元素膜と、IIIb族−VIb族元素化合物膜またはIIIb族元素膜の膜厚の比により、Ib−rich組成になるよう調整する。 For example, when a solid phase selenization method or a vapor phase selenization method is used, the precursor is Cu 2 Se, Cu 2 S, Ag 2 Se, Ag 2 S or other group Ib-VIb group element compound film or Cu. Group Ib elements including Ag, and Group IIIb-VIb including In 2 Se 3 , In 2 S 3 , Ga 2 Se 3 , Ga 2 S 3 , Al 2 Se 3 , Al 2 S 3 An element compound film or a group IIIb element film including In, Ga, and Al is formed. Thereafter, heat treatment is performed in an atmosphere containing solid Se, solid S, hydrogen selenide, or hydrogen sulfide to form the first p-type absorber layer 10. For the formation of the precursor, vacuum deposition, sputtering, electrodeposition, printing, or the like is used. The Ib-rich composition is adjusted by the ratio of the film thickness of the Ib group-VIb group element compound film or the Ib group element film and the IIIb group-VIb group element compound film or the IIIb group element film.

前記の方法で作製する第一のp型光吸収層10のIb族元素/IIIb族元素比はいったん1.1から1.6の範囲まで到達することが好ましい。これにより本発明の効果は顕著となる。比が1.1より小さい場合、キャリア輸送特性が比較的小さい膜となり、本発明の効果は小さい。比が1.6より大きい場合、通常膜表面のみに析出する導電性Ib族−VI族化合物が、膜中結晶粒界にも析出し、後の工程で完全に除去することが困難となり、本発明の効果が小さくなる傾向がある。   It is preferable that the Ib group element / IIIb group element ratio of the first p-type absorber layer 10 produced by the above method once reaches the range of 1.1 to 1.6. Thereby, the effect of the present invention becomes remarkable. When the ratio is smaller than 1.1, the film has a relatively small carrier transport property and the effect of the present invention is small. When the ratio is larger than 1.6, the conductive group Ib-VI group compound, which usually precipitates only on the film surface, also precipitates at the crystal grain boundaries in the film, making it difficult to completely remove in the subsequent steps. There exists a tendency for the effect of invention to become small.

前記第一のp型光吸収層10の形成後、過剰なIb族−VIb族化合物を除去することが好ましい。異相であるIb族−VIb族化合物の除去方法としてはシアン化カリウム水溶液への浸漬によるエッチング処理、または電気化学エッチングやフォーミングガス雰囲気下での熱処理による方法などが挙げられる。またはIIIb族とVIb族の同時蒸着を行うことで過剰なIb族−VIb族化合物と反応、消費させIb族−IIIb族−VIb族化合物を形成する方法を用いても良い。これらの方法により導電性であるIb−VIb族化合物、例えばCuxSe、CuxS、AgxSe、AgxSをはじめとする異相を第一のp型光吸収層10から除去することができ、本発明の効果は顕著となる。   After the first p-type absorber layer 10 is formed, it is preferable to remove excess group Ib-VIb group compounds. Examples of a method for removing the Ib group-VIb group compound which is a different phase include an etching treatment by immersion in an aqueous potassium cyanide solution, a method by electrochemical etching or a heat treatment in a forming gas atmosphere, and the like. Alternatively, a method may be used in which a group Ib group and a group VIb compound are formed by reacting and consuming with an excessive group Ib group-VIb group compound by co-deposition of group IIIb and group VIb. By these methods, different phases including conductive Ib-VIb group compounds such as CuxSe, CuxS, AgxSe, and AgxS can be removed from the first p-type light absorption layer 10, and the effect of the present invention is remarkable. It becomes.

前記の方法で異相を除去した後、すなわち最終的に第一のp型光吸収層10として用いる層のIb族/IIIb族比は1.0であることが好ましい。この方法を取ることにより、導電性の異相であるIb族−VIb族化合物を含まず、なおかつ半値幅が狭いフォトルミネッセンスまたはカソードルミネッセンススペクトルをもつキャリア輸送特性の高い層を形成することができ、その層を本発明の太陽電池の第一のp型光吸収層10に用いることで良好な変換効率を得やすくなる。   It is preferable that the Ib group / IIIb group ratio of the layer finally used as the first p-type absorber layer 10 after removing the heterogeneous phase by the above method is 1.0. By adopting this method, it is possible to form a layer having a high carrier transport property having a photoluminescence or cathodoluminescence spectrum having a narrow half-value width, which does not contain a group Ib-VIb compound which is a conductive heterogeneous phase. It becomes easy to obtain good conversion efficiency by using the layer for the first p-type light absorption layer 10 of the solar cell of the present invention.

第一のp型光吸収層10形成後、第二の光吸収層12を第一のp型光吸収層10上に形成する。第二の光吸収層12の形成方法としては、以下の方法が挙げられる。   After forming the first p-type light absorption layer 10, the second light absorption layer 12 is formed on the first p-type light absorption layer 10. Examples of the method for forming the second light absorption layer 12 include the following methods.

第一の方法では、真空蒸着法により第一のp型光吸収層10上に第二の光吸収層12を形成する。具体例としては、ソーダライムガラス6、裏面電極層8および第一のp型光吸収層10を備える積層体(以下「基板」と記す。)を蒸着装置内に設置し、真空排気を行う。その後、基板を加熱しながらIIIb族元素およびVIb族元素を同時に蒸着する。   In the first method, the second light absorption layer 12 is formed on the first p-type light absorption layer 10 by vacuum deposition. As a specific example, a laminated body (hereinafter referred to as “substrate”) including soda lime glass 6, back electrode layer 8 and first p-type light absorption layer 10 is placed in a vapor deposition apparatus and evacuated. Thereafter, the group IIIb element and the group VIb element are simultaneously deposited while heating the substrate.

第一の方法では、第一のp型光吸収層10から表面方向に拡散されるIb族元素と、蒸着されたIIIb族元素およびVIb族元素の反応により第二の光吸収層12を形成する。   In the first method, the second light absorption layer 12 is formed by a reaction between the group Ib element diffused from the first p-type light absorption layer 10 in the surface direction and the deposited group IIIb element and group VIb element. .

第一の方法では、蒸着装置内へ供給する各元素の蒸発量(フラックス)を調整することで組成、膜厚を前記の範囲内で適宜制御することが可能となる。   In the first method, the composition and film thickness can be appropriately controlled within the above ranges by adjusting the evaporation amount (flux) of each element supplied into the vapor deposition apparatus.

第一の方法では、基板の温度を100〜550℃とすることが好ましい。基板の温度が低すぎる場合、IIIb族元素とVIb族元素の反応が起こりにくく、所望の第二の光吸収層12の組成、膜厚が得にくい傾向がある。一方、基板の温度が高過ぎる場合、基板が軟化して変形したり、溶解したりする傾向があり、また、成膜速度が著しく低下する傾向がある。これらの傾向は、基板の温度を上記の範囲内とすることにより抑制することができる。   In the first method, the temperature of the substrate is preferably 100 to 550 ° C. When the temperature of the substrate is too low, the reaction between the IIIb group element and the VIb group element hardly occurs, and the desired composition and film thickness of the second light absorption layer 12 tend to be difficult to obtain. On the other hand, when the temperature of the substrate is too high, the substrate tends to be softened and deformed or dissolved, and the film forming rate tends to be remarkably reduced. These tendencies can be suppressed by setting the temperature of the substrate within the above range.

第一の方法において、基板温度は250〜350℃にすることがより好ましい。この範囲以下の温度で第二の光吸収層12を形成すると、IIIb族元素とVIb族元素間のみで化合物が生成されやすくなる、光吸収およびキャリア輸送の妨げとなり特性が劣化してしまう傾向がある。また第二の光吸収層12の結晶性が劣化し、良好な特性が得られない傾向がある。この範囲以上の温度で第二の光吸収層12を形成すると、第一のp型光吸収層10からのIb族元素の表面方向への過剰な拡散が起こりやすく、第一のp型光吸収層10のIb族/IIIb族元素比が減少する傾向があるとともに、第二の光吸収層12のIb族/IIIb族元素比が増加する傾向があり、組成制御が比較的困難となる。   In the first method, the substrate temperature is more preferably 250 to 350 ° C. When the second light absorption layer 12 is formed at a temperature below this range, a compound is likely to be generated only between the group IIIb element and the group VIb element, which tends to hinder light absorption and carrier transport and deteriorate characteristics. is there. In addition, the crystallinity of the second light absorption layer 12 is deteriorated and good characteristics tend not to be obtained. When the second light absorption layer 12 is formed at a temperature higher than this range, excessive diffusion of the Ib group element from the first p-type light absorption layer 10 in the surface direction tends to occur, and the first p-type light absorption. The Ib group / IIIb group element ratio of the layer 10 tends to decrease and the Ib group / IIIb group ratio of the second light absorption layer 12 tends to increase, making composition control relatively difficult.

第一の方法において、基板温度を350〜550℃とする場合、IIIb族元素およびVIb族元素に加え、Ib族元素を合わせて蒸着することが好ましい。これにより、第一のp型光吸収層10から第二の光吸収層12へのIb族元素の過剰な拡散を抑えることができる。第一のp型光吸収層10からのIb族元素の表面方向への過剰な拡散が起こった場合、第一のp型光吸収層10のIb族/IIIb族元素比が減少する傾向があるとともに、第二の光吸収層12のIb族/IIIb族元素比が増加する傾向があり、組成制御が比較的困難となる。また、第一のp型光吸収層10からのIb族元素の膜表面方向すなわち第二の光吸収層12への過剰な拡散が起こった場合、第一のp型光吸収層から得られるフォトルミネッセンスまたはカソードルミネッセンススペクトルの半値幅が大きくなる傾向がある。これによりキャリア輸送特性が劣化しやすくなる。この傾向は第二の光吸収層12形成のための蒸着の際Ib族元素を添加することにより抑制することができる。   In the first method, when the substrate temperature is set to 350 to 550 ° C., it is preferable to deposit the Ib group element in addition to the IIIb group element and the VIb group element. Thereby, excessive diffusion of the Ib group element from the first p-type light absorption layer 10 to the second light absorption layer 12 can be suppressed. When excessive diffusion of the Ib group element from the first p-type light absorption layer 10 in the surface direction occurs, the Ib group / IIIb group ratio of the first p-type light absorption layer 10 tends to decrease. At the same time, the Ib group / IIIb group element ratio of the second light absorption layer 12 tends to increase, making composition control relatively difficult. Further, when excessive diffusion of the group Ib element from the first p-type light absorption layer 10 to the film surface direction, that is, the second light absorption layer 12, occurs, the photo obtained from the first p-type light absorption layer There is a tendency that the full width at half maximum of the luminescence or cathodoluminescence spectrum is increased. As a result, carrier transport characteristics are likely to deteriorate. This tendency can be suppressed by adding an Ib group element during vapor deposition for forming the second light absorption layer 12.

第一の方法において用いるIIIb族元素は第一のp型光吸収層10に含まれるIIIb族元素と同一であることが好ましい。第一の方法においてIb族元素も併せて使用する場合は、第一のp型光吸収層10に含まれるIb族元素と同一であることが好ましい。これにより本発明の効果は顕著となる。   The group IIIb element used in the first method is preferably the same as the group IIIb element contained in the first p-type absorber layer 10. When the Ib group element is also used in the first method, it is preferably the same as the Ib group element contained in the first p-type absorber layer 10. Thereby, the effect of the present invention becomes remarkable.

第二の方法では、スパッタリング法により第一のp型光吸収層10上に第二の光吸収層12を形成する。具体例としては、ソーダライムガラス6、裏面電極層8および第一のp型光吸収層10を備える積層体(以下「基板」と記す。)およびIIIb族−VIb族化合物からなるスパッタリングターゲットを装置内に設置し、真空排気を行う。その後、基板を加熱しながら前記ターゲットをスパッタリングし第二の光吸収層12を形成する。   In the second method, the second light absorption layer 12 is formed on the first p-type light absorption layer 10 by sputtering. As a specific example, a stack (hereinafter referred to as “substrate”) including soda lime glass 6, back electrode layer 8 and first p-type light absorption layer 10, and a sputtering target composed of a IIIb group-VIb group compound are provided. Install inside and evacuate. Thereafter, the second light absorption layer 12 is formed by sputtering the target while heating the substrate.

第二の方法では、スパッタリング装置内へ設置するスパッタリングターゲットの各元素の組成を調整することで組成を前記の範囲内で適宜制御することが可能となる。   In the second method, the composition can be appropriately controlled within the above range by adjusting the composition of each element of the sputtering target installed in the sputtering apparatus.

第二の方法では、基板の温度を100〜550℃とすることが好ましい。基板の温度が低すぎる場合、IIIb族元素とVIb族元素の反応が起こりにくく、所望の第二の光吸収層12の組成、膜厚が得にくい傾向がある。一方、基板の温度が高過ぎる場合、基板が軟化して変形したり、溶解したりする傾向があり、また、成膜速度が著しく低下する傾向がある。これらの傾向は、基板の温度を上記の範囲内とすることにより抑制することができる。   In the second method, the temperature of the substrate is preferably 100 to 550 ° C. When the temperature of the substrate is too low, the reaction between the IIIb group element and the VIb group element hardly occurs, and the desired composition and film thickness of the second light absorption layer 12 tend to be difficult to obtain. On the other hand, when the temperature of the substrate is too high, the substrate tends to be softened and deformed or dissolved, and the film forming rate tends to be remarkably reduced. These tendencies can be suppressed by setting the temperature of the substrate within the above range.

第二の方法において、基板温度は250〜350℃にすることがより好ましい。この範囲以下の温度で第二の光吸収層12を形成すると、IIIb族元素とVIb族元素間のみで化合物が生成されやすくなる、光吸収およびキャリア輸送の妨げとなり特性が劣化してしまう傾向がある。また第二の光吸収層12の結晶性が劣化し、良好な特性が得られない傾向がある。この範囲以上の温度で第二の光吸収層12を形成すると、第一のp型光吸収層10からのIb族元素の表面方向への過剰な拡散が起こった場合、第一のp型光吸収層10のIb族/IIIb族元素比が減少する傾向があるとともに、第二の光吸収層12のIb族/IIIb族元素比が増加する傾向があり、組成制御が比較的困難となる。   In the second method, the substrate temperature is more preferably 250 to 350 ° C. When the second light absorption layer 12 is formed at a temperature below this range, a compound is likely to be generated only between the group IIIb element and the group VIb element, which tends to hinder light absorption and carrier transport and deteriorate characteristics. is there. In addition, the crystallinity of the second light absorption layer 12 is deteriorated and good characteristics tend not to be obtained. When the second light absorption layer 12 is formed at a temperature higher than this range, the first p-type light is absorbed when excessive diffusion of the group Ib element from the first p-type light absorption layer 10 toward the surface occurs. The Ib group / IIIb group element ratio of the absorption layer 10 tends to decrease, and the Ib group / IIIb group element ratio of the second light absorption layer 12 tends to increase, making composition control relatively difficult.

第二の方法において、基板温度を350〜550℃とする場合、スパッタリングターゲットにIIIb族元素およびVIb族元素に加えてIb族元素を含むものを用いることが好ましい。これにより、第一のp型光吸収層10から第二の光吸収層12へのIb族元素の過剰な拡散を抑えることができる。第一のp型光吸収層10からのIb族元素の過剰な拡散が起こった場合、第一のp型光吸収層から得られるフォトルミネッセンスまたはカソードルミネッセンススペクトルの半値幅が大きくなる傾向がある。これによりキャリア輸送特性が劣化しやすくなる。この傾向はターゲットにIb族元素を添加することにより抑制することができる。   In the second method, when the substrate temperature is set to 350 to 550 ° C., it is preferable to use a sputtering target containing a group Ib element in addition to a group IIIb element and a group VIb element. Thereby, excessive diffusion of the Ib group element from the first p-type light absorption layer 10 to the second light absorption layer 12 can be suppressed. When excessive diffusion of the group Ib element from the first p-type light absorption layer 10 occurs, the half width of the photoluminescence or cathodoluminescence spectrum obtained from the first p-type light absorption layer tends to increase. As a result, carrier transport characteristics are likely to deteriorate. This tendency can be suppressed by adding a group Ib element to the target.

第二の方法において、スパッタリングターゲットに含まれるIIIb族元素は第一のp型光吸収層10に含まれるIIIb族元素と同一であることが好ましい。第二の方法において、スパッタリングターゲットにIb族元素を加える場合は、Ib族元素も第一のp型光吸収層10に含まれるIb族元素と同一であることが好ましい。これにより本発明の効果は顕著となる。   In the second method, the group IIIb element contained in the sputtering target is preferably the same as the group IIIb element contained in the first p-type absorber layer 10. In the second method, when the lb group element is added to the sputtering target, the lb group element is preferably the same as the lb group element contained in the first p-type absorber layer 10. Thereby, the effect of the present invention becomes remarkable.

第三の方法では、前記第一の方法または第二の方法と同様の構成の装置を用いた真空蒸着法またはスパッタリング法により、IIIb族およびVIb族元素を含む層(以下、「表面前躯体層」と記す)を形成した後に熱処理を施すことにより第二の光吸収層12を形成する。   In the third method, a layer containing a group IIIb element and a group VIb element (hereinafter referred to as “surface precursor layer”) is formed by a vacuum deposition method or a sputtering method using an apparatus having the same configuration as the first method or the second method. The second light absorption layer 12 is formed by performing a heat treatment after the formation.

第三の方法において、熱処理は固体VIb族元素またはセレン化水素または硫化水素を含む雰囲気で行うことが好ましい。第一のp型光吸収層10を加熱するとVIb族元素が脱離し、p型からn型に変化してしまう傾向がある。この傾向は熱処理を固体VIb族元素またはセレン化水素または硫化水素を含む雰囲気で行うことにより抑制することができる。   In the third method, the heat treatment is preferably performed in an atmosphere containing a solid VIb group element, hydrogen selenide, or hydrogen sulfide. When the first p-type absorber layer 10 is heated, the VIb group element tends to be desorbed and changed from p-type to n-type. This tendency can be suppressed by performing the heat treatment in an atmosphere containing a solid VIb group element, hydrogen selenide, or hydrogen sulfide.

第三の方法において、真空蒸着法またはスパッタリング法による成膜時の温度は200℃以下であることが好ましい。これにより第二の光吸収層の厚さの制御を行いやすくなる。   In the third method, the temperature during film formation by vacuum deposition or sputtering is preferably 200 ° C. or lower. This makes it easier to control the thickness of the second light absorption layer.

第三の方法においては熱処理温度は250〜550℃とすることが好ましい。さらに250〜350℃とすることがより好ましい。熱処理温度が低すぎる場合、表面前躯体層が残留してしまう傾向がある。熱処理温度が高すぎる場合、基板が軟化して変形したり、溶解したりする傾向がある。また軟化や溶解しない程度の温度である350〜550℃においても、第一のp型光吸収層10からのIb族元素の表面方向への過剰な拡散が起こりやすくなる。第一のp型光吸収層10のIb族/IIIb族元素比が減少する傾向があるとともに、第二の光吸収層12のIb族/IIIb族元素比が増加する傾向があり、組成制御が比較的困難となる。第一のp型光吸収層10からのIb族元素の過剰な拡散が起こった場合、第一のp型光吸収層から得られるフォトルミネッセンスまたはカソードルミネッセンススペクトルの半値幅が大きくなる傾向がある。これによりキャリア輸送特性が劣化しやすくなる。これらの傾向は、基板の温度を上記の範囲内とすることにより抑制することができる。   In the third method, the heat treatment temperature is preferably 250 to 550 ° C. Furthermore, it is more preferable to set it as 250-350 degreeC. If the heat treatment temperature is too low, the surface precursor layer tends to remain. If the heat treatment temperature is too high, the substrate tends to soften and deform or dissolve. Further, even at 350 to 550 ° C., which is a temperature that does not soften or dissolve, excessive diffusion of the Ib group element from the first p-type light absorption layer 10 toward the surface tends to occur. The Ib group / IIIb group element ratio of the first p-type light absorption layer 10 tends to decrease, and the Ib group / IIIb group element ratio of the second light absorption layer 12 tends to increase. Relatively difficult. When excessive diffusion of the group Ib element from the first p-type light absorption layer 10 occurs, the half width of the photoluminescence or cathodoluminescence spectrum obtained from the first p-type light absorption layer tends to increase. As a result, carrier transport characteristics are likely to deteriorate. These tendencies can be suppressed by setting the temperature of the substrate within the above range.

第三の方法において、熱処理温度を350〜550℃とする場合、真空蒸着法またはスパッタリング法による成膜時にIIIb族元素およびVIb族元素に加えてIb族元素を含ませることが好ましい。これにより、第一のp型光吸収層10から第二の光吸収層12へのIb族元素の過剰な拡散を抑えることができる。第一のp型光吸収層10からのIb族元素の過剰な拡散が起こった場合、第一のp型光吸収層から得られるフォトルミネッセンスまたはカソードルミネッセンススペクトルの半値幅が大きくなる傾向がある。これによりキャリア輸送特性が劣化しやすくなる。この傾向はターゲットにIb族元素を添加することにより抑制することができる。   In the third method, when the heat treatment temperature is 350 to 550 ° C., it is preferable to include an Ib group element in addition to the IIIb group element and the VIb group element at the time of film formation by a vacuum deposition method or a sputtering method. Thereby, excessive diffusion of the Ib group element from the first p-type light absorption layer 10 to the second light absorption layer 12 can be suppressed. When excessive diffusion of the group Ib element from the first p-type light absorption layer 10 occurs, the half width of the photoluminescence or cathodoluminescence spectrum obtained from the first p-type light absorption layer tends to increase. As a result, carrier transport characteristics are likely to deteriorate. This tendency can be suppressed by adding a group Ib element to the target.

第三の方法において、真空蒸着法において用いるIIIb族元素またはスパッタリングターゲットに含まれるIIIb族元素は第一のp型光吸収層10に含まれるIIIb族元素と同一であることが好ましい。第三の方法において、真空蒸着に用いる蒸着源またはスパッタリングターゲットにIb族元素を加える場合は、Ib族元素も第一のp型光吸収層10に含まれるIb族元素と同一であることが好ましい。これにより本発明の効果は顕著となる。   In the third method, the group IIIb element used in the vacuum deposition method or the group IIIb element contained in the sputtering target is preferably the same as the group IIIb element contained in the first p-type absorber layer 10. In the third method, when adding a group Ib element to a vapor deposition source or sputtering target used for vacuum deposition, the group Ib element is also preferably the same as the group Ib element contained in the first p-type light absorption layer 10. . Thereby, the effect of the present invention becomes remarkable.

本実施形態では、第二の光吸収層12に含まれるIb族元素/IIIb族元素比は0.1以上1.0未満になるように形成条件を設定する。   In the present embodiment, the formation conditions are set so that the ratio of the Ib group element / IIIb group element contained in the second light absorption layer 12 is 0.1 or more and less than 1.0.

第一の方法の場合、基板の温度、各元素のフラックス量を調整することで、第二の光吸収層12の組成を前記の範囲内で適宜制御することが可能となる。   In the case of the first method, the composition of the second light absorption layer 12 can be appropriately controlled within the above range by adjusting the temperature of the substrate and the flux amount of each element.

第二の方法の場合、基板の温度、ターゲットに含まれる各元素の組成比を調整することで、第二の光吸収層12の組成を前記の範囲内で適宜制御することが可能となる。   In the case of the second method, the composition of the second light absorption layer 12 can be appropriately controlled within the above range by adjusting the temperature of the substrate and the composition ratio of each element included in the target.

第三の方法の場合も第一の方法、第二の方法同様の方法で第二の光吸収層12の組成を前記の範囲内で制御可能である。   Also in the case of the third method, the composition of the second light absorption layer 12 can be controlled within the above range by the same method as the first method and the second method.

本実施形態では、第二の光吸収層12の厚さは1nm以上100nm以下になるように形成条件を設定することが好ましい。   In the present embodiment, it is preferable to set the formation conditions so that the thickness of the second light absorption layer 12 is 1 nm or more and 100 nm or less.

第一の方法の場合、基板の温度、各元素のフラックス量、成膜時間を調整することで第二の光吸収層12の厚さを上記の範囲内で適宜制御することが可能となる。   In the case of the first method, the thickness of the second light absorption layer 12 can be appropriately controlled within the above range by adjusting the substrate temperature, the flux amount of each element, and the film formation time.

第二の方法の場合、基板の温度、基板とターゲットの距離、スパッタリング電力、成膜時間を調整することで第二の光吸収層12の厚さを上記の範囲内で適宜制御することが可能となる。   In the case of the second method, the thickness of the second light absorption layer 12 can be appropriately controlled within the above range by adjusting the substrate temperature, the distance between the substrate and the target, the sputtering power, and the film formation time. It becomes.

第三の方法の場合も第一の方法、第二の方法同様の方法で第二の光吸収層12の厚さを前記の範囲内で制御可能である。それに加えて、熱処理温度および熱処理時間を調整することで第二の光吸収層12の厚さを前記の範囲内で適宜制御することが可能となる。   Also in the case of the third method, the thickness of the second light absorption layer 12 can be controlled within the above range by the same method as the first method and the second method. In addition, the thickness of the second light absorption layer 12 can be appropriately controlled within the above range by adjusting the heat treatment temperature and the heat treatment time.

第二の光吸収層12の形成後、第二の光吸収層12上にn型バッファ層14を形成する。n型バッファ層14としては、例えば、CdS層、Zn(S,O,OH)層、ZnMgO層又はZn(O,S1−x)層(xは1未満の正の実数)等が挙げられる。CdS層及びZn(S,O,OH)層は、溶液成長法(Chemical Bath Deposition)により形成することができる。ZnMgO層は、MOCVD(Metal Organic Chemical Vapor Deposition)等の化学蒸着法又はスパッタリングにより形成することができる。Zn(O,S1−x)層はALD法(Atomic layer deposition)等により形成することができる。 After the formation of the second light absorption layer 12, the n-type buffer layer 14 is formed on the second light absorption layer 12. Examples of the n-type buffer layer 14 include a CdS layer, a Zn (S, O, OH) layer, a ZnMgO layer, or a Zn (O x , S 1-x ) layer (x is a positive real number less than 1). It is done. The CdS layer and the Zn (S, O, OH) layer can be formed by a solution growth method (Chemical Bath Deposition). The ZnMgO layer can be formed by chemical vapor deposition such as MOCVD (Metal Organic Chemical Vapor Deposition) or sputtering. The Zn (O x , S 1-x ) layer can be formed by an ALD method (Atomic layer deposition) or the like.

n型バッファ層14の形成後、n型バッファ層14上に半絶縁層16を形成し、半絶縁層16上に窓層18を形成し、窓層18上に上部電極20を形成する。   After the formation of the n-type buffer layer 14, the semi-insulating layer 16 is formed on the n-type buffer layer 14, the window layer 18 is formed on the semi-insulating layer 16, and the upper electrode 20 is formed on the window layer 18.

半絶縁層16としては、例えば、ZnO層、ZnMgO層等が挙げられる。   Examples of the semi-insulating layer 16 include a ZnO layer and a ZnMgO layer.

窓層18はZnO:Al、ZnO:B、ZnO:Ga、ITO等が挙げられる。   Examples of the window layer 18 include ZnO: Al, ZnO: B, ZnO: Ga, and ITO.

半絶縁層16および窓層18はMOCVD(Metal Organic Chemical Vapor Deposition)等の化学蒸着法又はスパッタリングにより形成することができる。   The semi-insulating layer 16 and the window layer 18 can be formed by chemical vapor deposition such as MOCVD (Metal Organic Chemical Vapor Deposition) or sputtering.

上部電極20は例えばAl又はNi等の金属から構成される。上部電極20は抵抗加熱蒸着、電子ビーム蒸着またはスパッタリングにより形成することができる。これにより、薄膜型太陽電池4が得られる。なお、窓層18上に反射防止層を形成してもよい。反射防止層としては、たとえばMgF、TiO、SiO等が挙げられる。窓層18は抵抗加熱蒸着または電子ビーム蒸着、スパッタリング法などにより形成することができる。 The upper electrode 20 is made of a metal such as Al or Ni. The upper electrode 20 can be formed by resistance heating vapor deposition, electron beam vapor deposition, or sputtering. Thereby, the thin film type solar cell 4 is obtained. An antireflection layer may be formed on the window layer 18. The antireflection layer, for example MgF 2, TiO 2, SiO 2 and the like. The window layer 18 can be formed by resistance heating vapor deposition, electron beam vapor deposition, sputtering, or the like.

以上、本発明の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば第一のp型光吸収層10および第二の光吸収層12を印刷法、電析法、化学溶液成長法、気相セレン化法、気相硫化法、固相セレン化法、固相硫化法またはそれらを組み合わせた方法により形成してもよい。上記実施形態に係る太陽電池4を製造することができる。   As mentioned above, although one suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment. For example, the first p-type light absorption layer 10 and the second light absorption layer 12 are formed by printing, electrodeposition, chemical solution growth, gas phase selenization, gas phase sulfidation, solid phase selenization, solid phase You may form by the sulfurization method or the method which combined them. The solar cell 4 according to the above embodiment can be manufactured.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
縦10cm×横10cm×厚さ1mmのソーダライムガラスを洗浄、乾燥した後、Mo単体から構成される膜状の裏面電極をDCスパッタリング法によりソーダライムガラス上に形成した。裏面電極の膜厚は1μmとした。
Example 1
After washing and drying soda lime glass having a length of 10 cm, a width of 10 cm, and a thickness of 1 mm, a film-like back electrode composed of Mo alone was formed on the soda lime glass by a DC sputtering method. The film thickness of the back electrode was 1 μm.

なお、実施例1において、「基板」とは、各工程における被蒸着体または被測定物を意味する。   In Example 1, “substrate” means an object to be deposited or an object to be measured in each step.

引き続き、第一のp型光吸収層の形成を真空蒸着法によりPhysical Vapor deposition(物理蒸着、以下PVDと呼ぶ)装置にて行った。なおPVD装置における各工程の成膜前に、あらかじめ各原料元素のフラックス比と得られる膜に含まれる組成の関係を測定しておくことで、膜組成の調整を行った。各元素のフラックスは各Kセルの温度を調整することにより適宜変更した。実施例1の第一のp型光吸収層形成工程においては成膜直後のIb族/IIIb族組成比が1.01となるように各元素のフラックスを設定した。   Subsequently, the first p-type absorber layer was formed by a physical vapor deposition (physical vapor deposition, hereinafter referred to as PVD) apparatus by a vacuum vapor deposition method. The film composition was adjusted by measuring the relationship between the flux ratio of each raw material element and the composition contained in the obtained film before film formation in each step in the PVD apparatus. The flux of each element was appropriately changed by adjusting the temperature of each K cell. In the first p-type absorber layer forming step of Example 1, the flux of each element was set so that the lb group / IIIb group composition ratio immediately after film formation was 1.01.

ソーダライムガラス上に形成された裏面電極をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8torrとした。 The back electrode formed on the soda lime glass was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

その後、基板を540℃まで加熱し温度が安定した後に、Cu、In、及びSeの各Kセルのシャッターを開き、Cu、In、及びSeを基板上に蒸着させた。この蒸着により基板上に約2μmの厚さの層が形成された時点で、Cu及びInの各Kセルのシャッターを閉じた。その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第一のp型半導体層の成膜を終了した。   Then, after the substrate was heated to 540 ° C. and the temperature was stabilized, the shutter of each Cu, In, and Se K cell was opened to deposit Cu, In, and Se on the substrate. When a layer having a thickness of about 2 μm was formed on the substrate by this deposition, the shutters of the Cu and In K cells were closed. Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the first p-type semiconductor layer was completed.

第一のp型光吸収層が含む各元素の組成分析をエネルギー分散型X線分光(Energy Dispersive Spectroscopy:EDX)法により行った。成膜直後における第一のp型光吸収層のCu/In組成比は1.01であった。   Composition analysis of each element included in the first p-type light absorption layer was performed by energy dispersive X-ray spectroscopy (EDX). The Cu / In composition ratio of the first p-type light absorption layer immediately after film formation was 1.01.

第一のp型光吸収層の形成後、基板をシアン化カリウム水溶液(10wt%)に5分間浸漬し、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。   After the formation of the first p-type light absorption layer, the substrate is immersed in an aqueous potassium cyanide solution (10 wt%) for 5 minutes to remove the Ib group-VIb group compound which is a different phase contained in the first p-type light absorption layer. It was.

異相除去処理後の第一のp型光吸収層が含む各元素の組成分析をエネルギー分散型X線分光(Energy Dispersive X−Ray Spectroscopy:EDX)法により行った。異相除去処理後のp型光吸収層のCu/In組成比は0.98であった。   The composition analysis of each element included in the first p-type light absorption layer after the heterogeneous phase removal treatment was performed by an energy dispersive X-ray spectroscopy (EDX) method. The Cu / In composition ratio of the p-type absorber layer after the heterogeneous removal treatment was 0.98.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層を第一のp型光吸収層上に形成した。以下、第二の光吸収層形成について説明する。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the first p-type light absorption layer by vacuum deposition. Hereinafter, the formation of the second light absorption layer will be described.

基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8 torr とした。 The substrate was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

その後、基板を300℃まで加熱し温度が安定した後に、In、及びSeの各Kセルのシャッターを開き、In、及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、InのKセルのシャッターを閉じた。 Then, after the substrate was heated to 300 ° C. and the temperature was stabilized, the shutters of the K cells of In and Se were opened, and In and Se were deposited on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this vapor deposition, the shutter of the In K cell was closed.

本工程では第一のp型光吸収層から膜表面方向に拡散するIb族元素と本蒸着工程による表面からのIIIb族元素およびVIb族元素の供給によりIb族、IIIb族、VIb族の化合物からなる第二の光吸収層を形成した。   In this step, the lb group element diffused from the first p-type light absorption layer toward the film surface and the IIIb group element and the VIb group element from the surface by the main vapor deposition step are supplied from the Ib group, IIIb group, and VIb group compounds. A second light absorption layer was formed.

その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。   Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

第二の光吸収層が含む各元素の組成分析をオージェ電子分光(Auger Electron Spectroscopy:AES)法により行った。第二の光吸収層のCu/In組成比は0.35であった。   The composition analysis of each element included in the second light absorption layer was performed by Auger Electron Spectroscopy (AES). The Cu / In composition ratio of the second light absorption layer was 0.35.

第二の光吸収層の形成後、50nmの厚さのn型半導体層であるCdSバッファ層を第二の光吸収層上に化学溶液成長(Chemical Bath Deposition:CBD)法により形成した。   After the formation of the second light absorption layer, a CdS buffer layer, which is an n-type semiconductor layer having a thickness of 50 nm, was formed on the second light absorption layer by a chemical solution deposition (CBD) method.

n型半導体層の形成後、50nmの厚さのi−ZnO層(半絶縁層)をn型半導体層上に形成した。引き続き同一のチャンバー内において0.5μmの厚さのZnO:Al層(窓層)をi−ZnO層上に形成した。   After the formation of the n-type semiconductor layer, an i-ZnO layer (semi-insulating layer) having a thickness of 50 nm was formed on the n-type semiconductor layer. Subsequently, a ZnO: Al layer (window layer) having a thickness of 0.5 μm was formed on the i-ZnO layer in the same chamber.

窓層形成後に、第一のp型光吸収層のフォトルミネッセンス測定を行った。測定に用いる励起光源には514.5nmの波長を持つArイオンレーザを用いるとともに、測定時にはクライオスタッドにより基板を10K(ケルビン)まで冷却した。励起光強度を1mW/cmから100mW/cmまで変化させフォトルミネッセンス強度の励起光強度依存性の測定を行った。 After the window layer was formed, photoluminescence measurement of the first p-type light absorption layer was performed. An Ar ion laser having a wavelength of 514.5 nm was used as an excitation light source used for measurement, and the substrate was cooled to 10 K (Kelvin) by a cryostat during measurement. The excitation light intensity was changed from 1 mW / cm 2 to 100 mW / cm 2 and the dependence of the photoluminescence intensity on the excitation light intensity was measured.

10mW/cm測定時に得られたフォトルミネッセンススペクトルにおいて最も半値幅が狭い発光の半値幅は15meVであった。 In the photoluminescence spectrum obtained at the time of measuring 10 mW / cm 2 , the half width of light emission having the narrowest half width was 15 meV.

測定により得られたフォトルミネッセンス強度IPLと励起光強度Iex の関係を下式(2)で表したとき、kの値は1.03であった。

Figure 2012222006
When the relationship between the photoluminescence intensity I PL and the excitation light intensity I ex k obtained by the measurement was expressed by the following formula (2), the value of k was 1.03.
Figure 2012222006

さらに、基板の一部を切断し、破断面から第一のp型光吸収層のカソードルミネッセンス測定を行った。測定はフォトルミネッセンス同様10K(ケルビン)において行った。測定により得られたカソードルミネッセンススペクトルにおいて最も半値幅が狭い発光の半値幅は15meVであった。   Further, a part of the substrate was cut, and the cathodoluminescence measurement of the first p-type absorber layer was performed from the fracture surface. The measurement was performed at 10 K (Kelvin) as in the case of photoluminescence. In the cathodoluminescence spectrum obtained by the measurement, the half-value width of light emission with the narrowest half-value width was 15 meV.

窓層形成後に50nmの厚さのNi、およびその上の1μmの厚さのAlから構成される上部電極を、ZnO:Al層上に形成した。i−ZnO層、ZnO:Al層及び上部電極は、それぞれスパッタリング法により形成した。これにより、実施例1の薄膜型太陽電池を得た。   After the window layer was formed, an upper electrode composed of Ni having a thickness of 50 nm and Al having a thickness of 1 μm thereon was formed on the ZnO: Al layer. The i-ZnO layer, the ZnO: Al layer, and the upper electrode were each formed by sputtering. Thereby, the thin film type solar cell of Example 1 was obtained.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表1に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 1 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表2に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 2 shows the manufacturing method and film forming temperature.

(比較例1)
第一のp型光吸収層成膜工程において、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比が1.25になるようにフラックスを設定した。また第二の光吸収層は設けなかった。
(Comparative Example 1)
In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio of the first p-type absorber layer immediately after the deposition was 1.25. The second light absorbing layer was not provided.

以上の事項以外は実施例1と同様の方法により比較例1の太陽電池を作製した。   Except for the above, a solar cell of Comparative Example 1 was produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表1に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 1 shows the foreign phase removal method.

(比較例2)
第一のp型光吸収層成膜工程において、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比が0.90となるようにフラックスを設定した。また異相除去処理を行わなかった。
(Comparative Example 2)
In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio of the first p-type absorber layer immediately after the film formation was 0.90. In addition, the foreign phase removal treatment was not performed.

以上の事項以外は実施例1と同様の方法により比較例2の太陽電池を作製した。   Except for the above, a solar cell of Comparative Example 2 was produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表1に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 1 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表2に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 2 shows the manufacturing method and film forming temperature.

(実施例2〜6)
第一のp型光吸収層成膜工程において、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比が表1に示す値になるようにフラックスを設定した。
(Examples 2 to 6)
In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio of the first p-type absorber layer immediately after the film formation was the value shown in Table 1.

以上の事項以外は実施例1と同様の方法により実施例2〜6の太陽電池を作製した。   Except for the above matters, solar cells of Examples 2 to 6 were produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表1に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 1 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表2に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 2 shows the manufacturing method and film forming temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例7〜11、比較例3)
第一のp型光吸収層成膜工程において、成膜直後におけるIb族/IIIb族組成比が表3に示す値になるようにフラックスを設定した。
(Examples 7 to 11, Comparative Example 3)
In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 3.

第二の光吸収層成膜工程において、成膜温度を表4に示す値に設定した。   In the second light absorption layer deposition step, the deposition temperature was set to the values shown in Table 4.

以上の事項以外は実施例1と同様の方法により実施例7〜11および比較例3の太陽電池を作製した。   Except for the above matters, solar cells of Examples 7 to 11 and Comparative Example 3 were produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表3に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 3 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表4に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 4 shows the manufacturing method and the film formation temperature.

(実施例12〜14、比較例4)
第一のp型光吸収層成膜工程において、成膜直後におけるIb族/IIIb族組成比が表3に示す値になるようにフラックスを設定した。
(Examples 12 to 14, Comparative Example 4)
In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 3.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層を第一のp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the first p-type light absorption layer by vacuum deposition.

基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8 torr とした。 The substrate was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

第二の光吸収層のIb族/IIIb族組成比が表4に示した値になるようにあらかじめ各元素のフラックスを設定した。   The flux of each element was set in advance so that the Ib group / IIIb group composition ratio of the second light absorption layer became the value shown in Table 4.

その後、基板を表4に示す温度まで加熱し温度が安定した後に、Cu、In、及びSeの各Kセルのシャッターを開き、Cu、In、及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、CuおよびInのKセルのシャッターを閉じた。   Then, after the substrate was heated to the temperature shown in Table 4 and the temperature was stabilized, the shutter of each K cell of Cu, In, and Se was opened, and Cu, In, and Se were deposited on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this deposition, the shutters of the Cu and In K cells were closed.

その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。   Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

以上の事項以外は実施例1と同様の方法により実施例12〜14および比較例4の太陽電池を作製した。   Except for the above items, solar cells of Examples 12 to 14 and Comparative Example 4 were produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表3に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 3 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の層の膜厚、第二の光吸収層の製法および成膜温度を表4に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second layer, production method of second light absorption layer Table 4 shows the film formation temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例15〜21)
第一のp型光吸収層として表5に示す材料を用いた。
(Examples 15 to 21)
The materials shown in Table 5 were used as the first p-type light absorption layer.

第一のp型光吸収層成膜工程において、成膜直後におけるIb族/IIIb族組成比が表5に示す値になるようにフラックスを設定した。   In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 5.

第一のp型光吸収層が複数のIIIb族元素を含む場合、その組成が表5に示す値になるようにフラックスを設定した。   When the first p-type light absorbing layer contains a plurality of group IIIb elements, the flux was set so that the composition thereof had the values shown in Table 5.

基板を540℃まで加熱した後に、表5に示す第一のp型光吸収層材料の元素のシャッターをそれぞれ開き、基板上に蒸着させた。   After the substrate was heated to 540 ° C., the shutters of the elements of the first p-type light absorption layer material shown in Table 5 were each opened and deposited on the substrate.

以上の事項以外は実施例1と同様の方法により実施例15〜21の太陽電池を作製した。   Except for the above matters, solar cells of Examples 15 to 21 were produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表5に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-width emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 5 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表6に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 6 shows the manufacturing method and film forming temperature.

(比較例5〜11)
p型光吸収層として表5に示す材料を用いた。
(Comparative Examples 5-11)
The materials shown in Table 5 were used for the p-type light absorption layer.

第二の光吸収層は設けなかった。   The second light absorption layer was not provided.

以上の事項以外は実施例15〜21と同様の方法により比較例5〜11の太陽電池を作製した。   Except for the above matters, solar cells of Comparative Examples 5 to 11 were produced in the same manner as in Examples 15 to 21.

p型光吸収層に用いた化合物、成膜直後におけるp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、p型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表5に示す。   Compound used for p-type light absorption layer, Ib group / IIIb group composition ratio of p-type light absorption layer immediately after film formation, Ib group / IIIb group composition ratio after heterophasic removal treatment, photoluminescence spectrum of p-type light absorption layer Table 5 shows the half-value width of the light emission with the narrowest half-value width in the cathodoluminescence spectrum, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the method for removing the different phases.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例22)
第一のp型光吸収層として表7に示す材料を用いた。
(Example 22)
The materials shown in Table 7 were used as the first p-type light absorption layer.

第一のp型光吸収層成膜工程において、成膜直後におけるIb族/IIIb族組成比が表7に示す値になるようにフラックスを設定した。   In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 7.

以上の事項以外は実施例1と同様の方法により実施例22の太陽電池を作製した。   Except for the above, a solar cell of Example 22 was produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 7 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

(実施例23)
第一のp型光吸収層として表7に示す材料を用いた。
(Example 23)
The materials shown in Table 7 were used as the first p-type light absorption layer.

第一のp型光吸収層成膜工程において、成膜直後におけるIb族/IIIb族組成比が表7に示す値になるようにフラックスを設定した。   In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 7.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層をp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the p-type light absorption layer by vacuum deposition.

基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8 torr とした。 The substrate was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

その後、基板を300℃まで加熱し温度が安定した後に、Ga、及びSeの各Kセルのシャッターを開き、Ga、及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、GaのKセルのシャッターを閉じた。   Then, after the substrate was heated to 300 ° C. and the temperature was stabilized, the shutters of the Ga and Se K cells were opened to deposit Ga and Se on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this vapor deposition, the shutter of the Ga K cell was closed.

本工程では第一のp型光吸収層から膜表面方向に拡散するIb族元素と本蒸着工程による表面からのIIIb族元素およびVIb族元素の供給により第二の光吸収層を形成した。   In this step, a second light absorption layer was formed by supplying a group Ib element diffusing from the first p-type light absorption layer toward the film surface and a group IIIb element and a group VIb element from the surface in this vapor deposition step.

その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。   Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

以上の事項以外は実施例1と同様の方法により実施例23の太陽電池を作製した。   Except for the above, a solar cell of Example 23 was produced in the same manner as in Example 1.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 7 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

(実施例24)
第一のp型光吸収層として表7に示す材料を用いた。
(Example 24)
The materials shown in Table 7 were used as the first p-type light absorption layer.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層をp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the p-type light absorption layer by vacuum deposition.

第一のp型光吸収層の異相除去処理後、基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8torr とした。 After the heterogeneous phase removal treatment of the first p-type absorber layer, the substrate was placed in the chamber of the PVD apparatus and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

その後、基板を300℃まで加熱し温度が安定した後に、Cu、In、及びSeの各Kセルのシャッターを開き、Cu、In、及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、Cu、InのKセルのシャッターを閉じた。   Then, after the substrate was heated to 300 ° C. and the temperature was stabilized, the shutters of the Cu, In, and Se K cells were opened, and Cu, In, and Se were deposited on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this vapor deposition, the shutter of the Cu and In K cells was closed.

本工程では第一のp型光吸収層から膜表面方向に拡散するIb族元素と本蒸着工程による表面からのIIIb族元素およびVIb族元素の供給により第二の光吸収層を形成した。   In this step, a second light absorption layer was formed by supplying a group Ib element diffusing from the first p-type light absorption layer toward the film surface and a group IIIb element and a group VIb element from the surface in this vapor deposition step.

その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。   Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

以上の事項以外は実施例15と同様の方法により実施例24の太陽電池を作製した。   A solar cell of Example 24 was made in the same manner as in Example 15 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 7 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

(実施例25)
第一のp型光吸収層として表7に示す材料を用いた。
(Example 25)
The materials shown in Table 7 were used as the first p-type light absorption layer.

以上の事項以外は実施例15と同様の方法により実施例25の太陽電池を作製した。   Except for the above, a solar cell of Example 25 was produced in the same manner as in Example 15.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、p型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   Compound used for first p-type light absorption layer, Ib group / IIIb group composition ratio of first p-type light absorption layer immediately after film formation, Ib group / IIIb group composition ratio after heterophase removal treatment, p-type light Table 7 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the absorption layer, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the method for removing the different phases.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

(実施例26)
第一のp型光吸収層として表7に示す材料を用いた。表7に示す組成になるように各元素のフラックスを設定した。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表7に示す値になるようにフラックスを設定した。
(Example 26)
The materials shown in Table 7 were used as the first p-type light absorption layer. The flux of each element was set so as to have the composition shown in Table 7. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 7.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層をp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the p-type light absorption layer by vacuum deposition.

第一のp型光吸収層の異相除去処理後、基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8torr とした。 After the heterogeneous phase removal treatment of the first p-type absorber layer, the substrate was placed in the chamber of the PVD apparatus and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

In、Gaの各フラックスの比を第一のp型光吸収層成膜工程と同じになるように各Kセルの温度を設定した。その後、基板を表8に示す温度まで加熱し温度が安定した後に、In、Ga、Seの各Kセルのシャッターを開き、In、Ga,及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、InおよびGaのKセルのシャッターを閉じた。
その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。
The temperature of each K cell was set so that the ratio of each flux of In and Ga was the same as that in the first p-type absorber layer film forming step. Thereafter, the substrate was heated to the temperature shown in Table 8 and the temperature was stabilized. Then, the shutter of each K cell of In, Ga, and Se was opened, and In, Ga, and Se were deposited on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this vapor deposition, the shutters of the In and Ga K cells were closed.
Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

以上の事項以外は実施例15と同様の方法により実施例26の太陽電池を作製した。   Except for the above, a solar cell of Example 26 was produced in the same manner as in Example 15.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 7 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

(実施例27)
第二の光吸収層形成工程におけるIn、Gaの各フラックスの比を、第二の光吸収層における組成比Ga/(In+Ga)が0.3になるように設定した。
(Example 27)
The ratio of each flux of In and Ga in the second light absorption layer forming step was set so that the composition ratio Ga / (In + Ga) in the second light absorption layer was 0.3.

以上の事項以外は実施例26と同様の方法により実施例27の太陽電池を作製した。   A solar cell of Example 27 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表7に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 7 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表8に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 8 shows the manufacturing method and film forming temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例28〜29)
第一のp型光吸収層として表9に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表9に示す値になるようにフラックスを設定した。複数のIIIb族元素の比が表9に示す値になるようにフラックスを設定した。
(Examples 28 to 29)
The materials shown in Table 9 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 9. The flux was set so that the ratio of the plurality of group IIIb elements was the value shown in Table 9.

以上の事項以外は実施例26と同様の方法により実施例28〜29の太陽電池を作製した。   Except for the above items, solar cells of Examples 28 to 29 were produced in the same manner as in Example 26.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表9に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 9 shows the half-value width of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表10に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 10 shows the manufacturing method and the film formation temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例30〜36)
第一のp型光吸収層として表11に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表11に示す値になるようにフラックスを設定した。
(Examples 30 to 36)
The material shown in Table 11 was used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 11.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層を第一のp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the first p-type light absorption layer by vacuum deposition.

基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8 torr とした。 The substrate was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

In、Gaの各フラックスの比を第一のp型光吸収層成膜工程と同じになるように各Kセルの温度を設定した。その後、基板を表12に示す温度まで加熱し温度が安定した後に、In、Ga、Seの各Kセルのシャッターを開き、In、Ga及びSeを基板上に蒸着させた。この蒸着により基板上に表12に示す厚さの層が形成された時点で、In、GaのKセルのシャッターを閉じた。
その後基板を200℃まで冷却した後、SeのKセルのシャッターを閉じて、第二の光吸収層の成膜を終了した。
The temperature of each K cell was set so that the ratio of each flux of In and Ga was the same as that in the first p-type absorber layer film forming step. Then, after the substrate was heated to the temperature shown in Table 12 and the temperature was stabilized, the shutter of each K cell of In, Ga, and Se was opened, and In, Ga, and Se were deposited on the substrate. When a layer having the thickness shown in Table 12 was formed on the substrate by this vapor deposition, the shutters of the In and Ga K cells were closed.
Then, after cooling the substrate to 200 ° C., the shutter of the Se K cell was closed, and the film formation of the second light absorption layer was completed.

以上の事項以外は実施例26と同様の方法により実施例30〜36の太陽電池を作製した。   Except for the above matters, solar cells of Examples 30 to 36 were produced in the same manner as in Example 26.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表11に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 11 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the heterophase removal method. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表12に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 12 shows the production method and film formation temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例37)
第一のp型光吸収層として表13に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表13に示す値になるようにフラックスを設定した。
(Example 37)
The materials shown in Table 13 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 13.

第一のp型光吸収層の形成後、異相除去処理は行わず、第一のp型光吸収層の上に第二の光吸収層を形成した。   After the formation of the first p-type light absorption layer, the second phase light absorption layer was formed on the first p-type light absorption layer without performing the different phase removal treatment.

以上の事項以外は実施例26と同様の方法により実施例37の太陽電池を作製した。   A solar cell of Example 37 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表13に示す。   Compound used for first p-type light absorption layer, Ib group / IIIb group composition ratio of first p-type light absorption layer immediately after film formation, photoluminescence spectrum and cathodoluminescence spectrum of first p-type light absorption layer Table 13 shows the value of the half-value width of the light emission with the narrowest half-value width in k, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the heterophase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表14に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 14 shows the manufacturing method and film forming temperature.

(実施例38)
第一のp型光吸収層として表13に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表13に示す値になるようにフラックスを設定した。
(Example 38)
The materials shown in Table 13 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 13.

以上の事項以外は実施例26と同様の方法により実施例38の太陽電池を作製した。   A solar cell of Example 38 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表13に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 13 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表14に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 14 shows the manufacturing method and film forming temperature.

(実施例39)
第一のp型光吸収層として表13に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表13に示す値になるようにフラックスを設定した。
(Example 39)
The materials shown in Table 13 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 13.

第一のp型光吸収層成膜後、基板を急速加熱熱処理炉の中に設置した。フォーミングガス(H95%、N5%)を200sccmの流速で炉内に供給しながら加熱処理を行った。温度は400℃、昇温速度は400℃/min、熱処理時間は30sとした。熱処理後50℃/minの速度で50℃まで冷却し、基板を取り出した。この処理により、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。 After the first p-type absorber layer was formed, the substrate was placed in a rapid heating heat treatment furnace. Heating treatment was performed while forming gas (H 2 95%, N 2 5%) was supplied into the furnace at a flow rate of 200 sccm. The temperature was 400 ° C., the temperature increase rate was 400 ° C./min, and the heat treatment time was 30 s. After the heat treatment, the substrate was cooled to 50 ° C. at a rate of 50 ° C./min, and the substrate was taken out. By this treatment, the Ib group-VIb group compound, which is a different phase contained in the first p-type absorber layer, was removed.

以上の事項以外は実施例26と同様の方法により実施例39の太陽電池を作製した。   A solar cell of Example 39 was made by the same method as that in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表13に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 13 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表14に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 14 shows the manufacturing method and film forming temperature.

(実施例40)
第一のp型光吸収層として表13に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表13に示す値になるようにフラックスを設定した。
(Example 40)
The materials shown in Table 13 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 13.

第一のp型光吸収層成膜後、基板を3電極セルを備えた電解槽内に設置した。Pt板をカウンター電極、飽和カロメル電極を基準電極、基板上に露出させたMo裏面電極を作用極とした。電解槽内に0.1MのHSO溶液(pH=1.2)を満たし、電位を−0.5Vから+0.5Vまで10mV/sのスキャンレートで変化させ電気化学エッチングを行った。この処理により、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。 After forming the first p-type absorber layer, the substrate was placed in an electrolytic cell equipped with a three-electrode cell. The Pt plate was the counter electrode, the saturated calomel electrode was the reference electrode, and the Mo back electrode exposed on the substrate was the working electrode. The electrolytic bath was filled with 0.1 M H 2 SO 4 solution (pH = 1.2), and electrochemical etching was performed by changing the potential from −0.5 V to +0.5 V at a scan rate of 10 mV / s. By this treatment, the Ib group-VIb group compound, which is a different phase contained in the first p-type absorber layer, was removed.

以上の事項以外は実施例26と同様の方法により実施例40の太陽電池を作製した。   A solar cell of Example 40 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、p型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表13に示す。   Compound used for first p-type light absorption layer, Ib group / IIIb group composition ratio of first p-type light absorption layer immediately after film formation, Ib group / IIIb group composition ratio after heterophase removal treatment, p-type light Table 13 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the absorption layer, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the method for removing the different phases.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表14に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 14 shows the manufacturing method and film forming temperature.

(実施例41)
第一のp型光吸収層として表13に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表13に示す値になるようにフラックスを設定した。
(Example 41)
The materials shown in Table 13 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 13.

第一のp型光吸収層成膜後、基板はそのまま同一のPVD装置の真空チャンバーに設置したままにし、基板温度を300度まで下げた。In、Gaの各フラックスの比を第一のp型光吸収層成膜工程と同じになるように各Kセルの温度を設定した。その後、In、Ga、Seの各Kセルのシャッターを開き、In、Ga,及びSeを基板上に蒸着させた。この蒸着により第一のp型光吸収層に存在する異相であるCuxSe相とInおよびGaを反応させ、異相を除去した。異相がなくなった時点で、InおよびGaのKセルのシャッターを閉じた。異相の存在のモニタリングはレーザ光による表面粗さ測定により行った。   After the first p-type absorber layer was formed, the substrate was left as it was in the vacuum chamber of the same PVD apparatus, and the substrate temperature was lowered to 300 degrees. The temperature of each K cell was set so that the ratio of each flux of In and Ga was the same as that in the first p-type absorber layer film forming step. Then, the shutter of each K cell of In, Ga, and Se was opened, and In, Ga, and Se were vapor-deposited on the board | substrate. By this vapor deposition, the CuxSe phase, which is a different phase present in the first p-type light absorption layer, was reacted with In and Ga to remove the different phase. When the heterogeneous phase disappeared, the shutters of the In and Ga K cells were closed. The presence of the foreign phase was monitored by measuring the surface roughness with a laser beam.

異相除去工程後、引き続きPVD装置において第二の光吸収層の成膜を行った。   After the heterogeneous phase removal step, the second light absorption layer was continuously formed in the PVD apparatus.

以上の事項以外は実施例26と同様の方法により実施例41の太陽電池を作製した。   A solar cell of Example 41 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、p型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表13に示す。   Compound used for first p-type light absorption layer, Ib group / IIIb group composition ratio of first p-type light absorption layer immediately after film formation, Ib group / IIIb group composition ratio after heterophase removal treatment, p-type light Table 13 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the absorption layer, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the method for removing the different phases.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表14に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 14 shows the manufacturing method and film forming temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例42)
第一のp型光吸収層として表15に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表15に示す値になるようにフラックスを設定した。
(Example 42)
The materials shown in Table 15 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 15.

以上の事項以外は実施例26と同様の方法により実施例42の太陽電池を作製した。   A solar cell of Example 42 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後の第一のp型光吸収層のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表15に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group of the first p-type light absorption layer after the different phase removal treatment / IIIb group composition ratio, the half-width value of the narrowest half-value emission in the photoluminescence spectrum and cathodoluminescence spectrum of the first p-type light absorption layer, and the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity Table 15 shows the foreign phase removal method.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表16に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 16 shows the manufacturing method and the film formation temperature.

(実施例43)
第一のp型光吸収層として表15に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表15に示す値になるようにフラックスを設定した。
(Example 43)
The materials shown in Table 15 were used as the first p-type light absorption layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 15.

第一のp型光吸収層の形成後、基板をシアン化カリウム水溶液(10wt%)に5分間浸漬し、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。   After the formation of the first p-type light absorption layer, the substrate is immersed in an aqueous potassium cyanide solution (10 wt%) for 5 minutes to remove the Ib group-VIb group compound which is a different phase contained in the first p-type light absorption layer. It was.

その後第一のp型光吸収層が形成された基板をスパッタリング装置に設置し、スパッタリング法により第二の光吸収層の形成を行った。   Thereafter, the substrate on which the first p-type light absorption layer was formed was placed in a sputtering apparatus, and the second light absorption layer was formed by a sputtering method.

以下スパッタリング法による第二の光吸収層形成の詳細を説明する。   Details of the formation of the second light absorption layer by sputtering will be described below.

スパッタリング装置内に基板を設置し、装置内を脱気した。到達圧力は1.0×10−6 torrとした。脱気後、基板を300℃に加熱した。その後Arガスをチャンバー内に供給し続けながら、チャンバー内で(In0.5Ga0.5Seから構成されるターゲットをスパッタし対向して設置された基板に成膜した。成膜中はチャンバー内の気圧が1PaとなるようにArガスの流量を設定した。p型光吸収層から膜表面方向に拡散するIb族元素と本スパッタリング工程による(In0.5Ga0.5Seの供給により第二の光吸収層を形成した。第二の光吸収層の厚さが20nmになったところでスパッタリングを終了した。この工程により、第二の光吸収層を形成した。 A substrate was placed in the sputtering apparatus, and the inside of the apparatus was evacuated. The ultimate pressure was 1.0 × 10 −6 torr. After deaeration, the substrate was heated to 300 ° C. After that, while continuing to supply Ar gas into the chamber, a target composed of (In 0.5 Ga 0.5 ) 2 Se 3 was sputtered in the chamber to form a film on a substrate placed oppositely. During film formation, the flow rate of Ar gas was set so that the pressure in the chamber was 1 Pa. A second light absorption layer was formed by supplying the Ib group element diffusing from the p-type light absorption layer toward the film surface and (In 0.5 Ga 0.5 ) 2 Se 3 by this sputtering process. Sputtering was terminated when the thickness of the second light absorption layer reached 20 nm. By this step, a second light absorption layer was formed.

以上の事項以外は実施例26と同様の方法により実施例43の太陽電池を作製した。   Except for the above, a solar cell of Example 43 was produced in the same manner as in Example 26.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表15に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 15 shows the half-value width of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the excitation light intensity dependence of the photoluminescence intensity, and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表16に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 16 shows the manufacturing method and the film formation temperature.

(比較例12)
第一のp型光吸収層をスパッタリング法およびそれに引き続く熱処理により形成した。以下に詳細を示す。
(Comparative Example 12)
The first p-type absorber layer was formed by sputtering and subsequent heat treatment. Details are shown below.

裏面電極が形成された基板をスパッタリング装置に設置し、スパッタリング法により前駆体層形成を行った。その後アニール炉に基板を設置し、加熱処理をすることにより第一のp型半導体層の形成を行った。以下スパッタリング法およびそれに引き続く熱処理による第一のp型半導体層形成の詳細を説明する。   The substrate on which the back electrode was formed was placed in a sputtering apparatus, and a precursor layer was formed by a sputtering method. Thereafter, the substrate was placed in an annealing furnace, and a first p-type semiconductor layer was formed by heat treatment. Details of the first p-type semiconductor layer formation by sputtering and subsequent heat treatment will be described below.

スパッタリング工程において、Arガスをチャンバー内に供給し続けながら、チャンバー内でCu−Ga合金(Cu50%Ga50at%)から構成されるターゲットをスパッタした後、Inメタルから構成されるターゲットをスパッタした。このスパッタリング工程により、Cu−Ga合金層、In層が順に積層する前駆体層を得た。なお、スパッタリング工程では、Cu−Ga層の厚さを670nm、In層の厚さを330nmとした。また、スパッタリング工程では、基板温度を200℃とし、チャンバー内の気圧が1PaとなるようにArガスの流量を設定した。   In the sputtering step, a target composed of a Cu—Ga alloy (Cu50% Ga50at%) was sputtered in the chamber while continuing to supply Ar gas into the chamber, and then a target composed of In metal was sputtered. By this sputtering step, a precursor layer in which a Cu—Ga alloy layer and an In layer were sequentially laminated was obtained. Note that in the sputtering step, the thickness of the Cu—Ga layer was 670 nm, and the thickness of the In layer was 330 nm. Further, in the sputtering process, the substrate temperature was set to 200 ° C., and the flow rate of Ar gas was set so that the atmospheric pressure in the chamber was 1 Pa.

スパッタリング工程後の熱処理工程では、550℃のHSe雰囲気中で前駆体層を1時間加熱することにより、前駆体層のセレン化を行い、厚さが2μmである第一のp型半導体層を形成した。 In the heat treatment process after the sputtering process, the precursor layer is selenized by heating the precursor layer for 1 hour in an H 2 Se atmosphere at 550 ° C., and the first p-type semiconductor layer having a thickness of 2 μm. Formed.

異相除去処理後、第二の光吸収層は設けなかった。   The second light absorption layer was not provided after the foreign phase removal treatment.

以上の事項以外は実施例26と同様の方法により比較例12の太陽電池を作製した。   A solar cell of Comparative Example 12 was produced in the same manner as in Example 26 except for the above items.

p型光吸収層に用いた化合物、成膜直後におけるp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、p型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表15に示す。   Compound used for p-type light absorption layer, Ib group / IIIb group composition ratio of p-type light absorption layer immediately after film formation, Ib group / IIIb group composition ratio after heterophasic removal treatment, photoluminescence spectrum of p-type light absorption layer Table 15 shows the half-width value of the light emission with the narrowest half-value width in the cathodoluminescence spectrum, the value of k in the measurement of the dependence of the photoluminescence intensity on the excitation light intensity, and the method for removing the different phases.

(実施例44)
第一のp型光吸収層を比較例12と同様にスパッタリング法およびそれに引き続く熱処理により形成した。
(Example 44)
The first p-type light absorption layer was formed by the sputtering method and the subsequent heat treatment as in Comparative Example 12.

第二の光吸収層を実施例43と同様にスパッタリング法により形成した。   A second light absorption layer was formed by the sputtering method in the same manner as in Example 43.

以上の事項以外は実施例26と同様の方法により実施例44の太陽電池を作製した。   A solar cell of Example 44 was made in the same manner as in Example 26 except for the above items.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表15に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 15 shows the half-value width of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the excitation light intensity dependence of the photoluminescence intensity, and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表16に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 16 shows the manufacturing method and the film formation temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(実施例45〜49)
第一のp型光吸収層として表17に示す材料を用いた。p型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表17に示す値になるようにフラックスを設定した。
(Examples 45-49)
The material shown in Table 17 was used for the first p-type absorber layer. In the p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 17.

第一のp型光吸収層の形成後、基板をシアン化カリウム水溶液(10wt%)に5分間浸漬し、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。   After the formation of the first p-type light absorption layer, the substrate is immersed in an aqueous potassium cyanide solution (10 wt%) for 5 minutes to remove the Ib group-VIb group compound which is a different phase contained in the first p-type light absorption layer. It was.

第一のp型光吸収層の異相除去処理後、真空蒸着法により第二の光吸収層を第一のp型光吸収層上に形成した。   After the heterogeneous phase removal treatment of the first p-type light absorption layer, a second light absorption layer was formed on the first p-type light absorption layer by vacuum deposition.

基板をPVD装置のチャンバー内に設置し、チャンバー内を脱気した。真空装置内の到達圧力は1.0×10−8 torr とした。 The substrate was placed in the chamber of the PVD apparatus, and the inside of the chamber was evacuated. The ultimate pressure in the vacuum apparatus was 1.0 × 10 −8 torr.

その後、基板を200℃まで加熱し温度が安定した後に、In、Ga及びSeの各Kセルのシャッターを開き、In、Ga及びSeを基板上に蒸着させた。この蒸着により基板上に約20nmの厚さの層が形成された時点で、In及びGaのKセルのシャッターを閉じた。Seは引き続き供給を続けた。   Then, after the substrate was heated to 200 ° C. and the temperature was stabilized, the shutter of each K cell of In, Ga, and Se was opened to deposit In, Ga, and Se on the substrate. When a layer having a thickness of about 20 nm was formed on the substrate by this deposition, the shutters of the In and Ga K cells were closed. Se continued to supply.

その後チャンバー内で基板を表18に示す熱処理温度まで加熱し熱処理を行った。熱処理時間は2minとした。その後基板を200℃まで冷却した後にSeのKセルのシャッターを閉じて、第二の層の形成を終了した。   Thereafter, the substrate was heated to a heat treatment temperature shown in Table 18 in the chamber to perform heat treatment. The heat treatment time was 2 min. Thereafter, the substrate was cooled to 200 ° C., the shutter of the Se K cell was closed, and the formation of the second layer was completed.

以上の事項以外は実施例26と同様の方法により実施例45〜49の太陽電池を作製した。   Except for the above items, solar cells of Examples 45 to 49 were produced in the same manner as in Example 26.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表17に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 17 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the excitation light intensity dependence of the photoluminescence intensity, and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表18に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 18 shows the manufacturing method and the film formation temperature.

(実施例50〜54)
第一のp型光吸収層として表17に示す材料を用いた。第一のp型光吸収層成膜工程においては、成膜直後におけるIb族/IIIb族組成比が表17に示す値になるようにフラックスを設定した。
(Examples 50 to 54)
The material shown in Table 17 was used for the first p-type absorber layer. In the first p-type absorber layer film forming step, the flux was set so that the Ib group / IIIb group composition ratio immediately after the film formation was a value shown in Table 17.

第一のp型光吸収層の形成後、基板をシアン化カリウム水溶液(10wt%)に5分間浸漬し、第一のp型光吸収層に含まれる異相であるIb族−VIb族化合物の除去を行った。   After the formation of the first p-type light absorption layer, the substrate is immersed in an aqueous potassium cyanide solution (10 wt%) for 5 minutes to remove the Ib group-VIb group compound which is a different phase contained in the first p-type light absorption layer. It was.

その後第一のp型光吸収層が形成された基板をスパッタリング装置に設置し、スパッタリング法により第二の光吸収層の形成を行った。   Thereafter, the substrate on which the first p-type light absorption layer was formed was placed in a sputtering apparatus, and the second light absorption layer was formed by a sputtering method.

以下スパッタリング法による第二の光吸収層形成の詳細を説明する。   Details of the formation of the second light absorption layer by sputtering will be described below.

スパッタリング装置内に基板を設置し、装置内を脱気した。到達圧力は1.0x10−6 torrとした。脱気後、基板温度は室温(30℃)に保った。その後Arガスをチャンバー内に供給し続けながら、チャンバー内で(In0.5Ga0.5Seから構成されるターゲットをスパッタし対向して設置された基板に成膜した。 A substrate was placed in the sputtering apparatus, and the inside of the apparatus was evacuated. The ultimate pressure was 1.0 × 10 −6 torr. After deaeration, the substrate temperature was kept at room temperature (30 ° C.). After that, while continuing to supply Ar gas into the chamber, a target composed of (In 0.5 Ga 0.5 ) 2 Se 3 was sputtered in the chamber to form a film on a substrate placed oppositely.

成膜終了後、基板を熱処理炉に移し熱処理を行った。熱処理工程では、HSe雰囲気中で表18に示す温度で基板を2min加熱することにより、厚さが20nmである第二の光吸収層を形成した。熱処理後基板を50℃まで冷却し取り出し第二の光吸収層形成工程を終了した。 After film formation, the substrate was transferred to a heat treatment furnace and heat treatment was performed. In the heat treatment step, the substrate was heated at a temperature shown in Table 18 for 2 minutes in an H 2 Se atmosphere, thereby forming a second light absorption layer having a thickness of 20 nm. After the heat treatment, the substrate was cooled to 50 ° C. and taken out to finish the second light absorption layer forming step.

以上の事項以外は実施例26と同様の方法により実施例50〜54の太陽電池を作製した。   Except for the above matters, solar cells of Examples 50 to 54 were produced in the same manner as in Example 26.

第一のp型光吸収層に用いた化合物、成膜直後における第一のp型光吸収層のIb族/IIIb族組成比、異相除去処理後のIb族/IIIb族組成比、第一のp型光吸収層のフォトルミネッセンススペクトルおよびカソードルミネッセンススペクトルにおける最も半値幅の狭い発光の半値幅の値、およびフォトルミネッセンス強度の励起光強度依存性測定におけるkの値、異相除去方法、を表17に示す。   The compound used for the first p-type light absorption layer, the Ib group / IIIb group composition ratio of the first p-type light absorption layer immediately after film formation, the Ib group / IIIb group composition ratio after the heterophase removal treatment, Table 17 shows the half-width value of the light emission with the narrowest half-value width in the photoluminescence spectrum and the cathodoluminescence spectrum of the p-type light absorption layer, and the value of k in the measurement of the excitation light intensity dependence of the photoluminescence intensity, and the method for removing the different phases. Show.

第二の光吸収層に用いた化合物、AES測定により得られた第二の光吸収層に含まれるIb族/IIIb族組成比、第二の光吸収層の膜厚、第二の光吸収層の製法および成膜温度を表18に示す。   Compound used for second light absorption layer, Ib group / IIIb group composition ratio contained in second light absorption layer obtained by AES measurement, film thickness of second light absorption layer, second light absorption layer Table 18 shows the manufacturing method and the film formation temperature.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

(薄膜型太陽電池の評価)
実施例1〜54、および比較例1〜12の各太陽電池の特性を表19および表20に示す。
(Evaluation of thin-film solar cells)
Tables 19 and 20 show the characteristics of the solar cells of Examples 1 to 54 and Comparative Examples 1 to 12.

第一の光吸収層と、第二の光吸収層と、を有し、前記第一の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層であり、前記第二の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、前記Ib族元素と前記IIIb族元素の組成比が0.1以上1.0未満であり、前記第一の光吸収層の光入射面側に設けられている実施例1〜54の太陽電池の変換効率は、前記第一のp型光吸収層または第二の光吸収層を備えない比較例1〜12に比べ、大きいことが確認された。   A first light absorption layer and a second light absorption layer, wherein the first light absorption layer includes a group Ib element, a group IIIb element, and a group VIb element, and a photoluminescence spectrum or cathodoluminescence. A p-type semiconductor layer having a light emission peak having a half-value width of 1 meV or more and 15 meV or less in the sense spectrum, wherein the second light absorption layer contains a group Ib element, a group IIIb element, and a group VIb element; The conversion ratio of the solar cells of Examples 1 to 54 in which the composition ratio of the element and the group IIIb element is 0.1 or more and less than 1.0 and provided on the light incident surface side of the first light absorption layer is It was confirmed that it was larger than Comparative Examples 1 to 12 that did not include the first p-type light absorption layer or the second light absorption layer.

第一の光吸収層と、第二の光吸収層と、を有し、前記第一の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層であり、前記第二の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、前記Ib族元素と前記IIIb族元素の組成比が0.1以上1.0未満であり、前記第一の光吸収層の光入射面側に設けられている実施例1〜6の太陽電池の開放電圧および変換効率は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含む第一のp型半導体層を備えるものの、第二の光吸収層を備えていない比較例1の太陽電池、およびIb族元素、IIIb族元素、およびVIb族元素を含み、該Ib族元素と該IIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一のp型光吸収層上に備えるものの、第一のp型光吸収層のフォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が前記範囲1meV以上15meV以下の範囲外の40meVである比較例2の太陽電池に比べ、大きいことが確認された。   A first light absorption layer and a second light absorption layer, wherein the first light absorption layer includes a group Ib element, a group IIIb element, and a group VIb element, and a photoluminescence spectrum or cathodoluminescence. A p-type semiconductor layer having a light emission peak having a half-value width of 1 meV or more and 15 meV or less in the sense spectrum, wherein the second light absorption layer contains a group Ib element, a group IIIb element, and a group VIb element; The open-circuit voltage of the solar cells of Examples 1 to 6 in which the composition ratio of the element and the group IIIb element is 0.1 or more and less than 1.0, and provided on the light incident surface side of the first light absorption layer; The conversion efficiency includes a group Ib element, a group IIIb element, and a group VIb element, and the half width in the photoluminescence spectrum or cathodoluminescence spectrum is 1 meV or more and 15 m. A solar cell of Comparative Example 1 that includes a first p-type semiconductor layer including an emission peak of V or less but does not include a second light absorption layer, and includes a group Ib element, a group IIIb element, and a group VIb element The first p-type light-absorbing layer has a second light-absorbing layer on the first p-type light-absorbing layer, the composition ratio of the group Ib element and the group IIIb element being 0.1 or more and less than 1.0. It was confirmed that the half width in the photoluminescence spectrum or cathodoluminescence spectrum of the light absorption layer was larger than that of the solar cell of Comparative Example 2 having 40 meV outside the range of 1 meV to 15 meV.

第一の光吸収層と、第二の光吸収層と、を有し、前記第一の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素/IIIb族元素比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である実施例2〜5、および実施例7〜54の太陽電池の開放電圧および変換効率は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層であるものの、Ib族元素/IIIb族元素比が1.00でない実施例1および実施例6に比べ大きいことが確認された。   A first light absorption layer and a second light absorption layer, wherein the first light absorption layer includes a group Ib element, a group IIIb element, and a group VIb element, and includes a group Ib element / group IIIb Examples 2 to 5 and Examples 7 to 54, which are p-type semiconductor layers having an element ratio of 1.00 and including a light emission peak having a half width of 1 meV or more and 15 meV or less in the photoluminescence spectrum or cathodoluminescence spectrum The open-circuit voltage and conversion efficiency of a solar cell include a group Ib element, a group IIIb element, and a group VIb element, and a p-type semiconductor including a light emission peak having a half width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or cathodoluminescence spectrum Although it is a layer, the ratio of the group Ib element / group IIIb element is not 1.00, which is larger than those of Example 1 and Example 6. It has been confirmed.

第一の光吸収層と、第二の光吸収層と、を有し、前記第一の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素/IIIb族元素比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素とIIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一のp型光吸収層上に備える実施例7〜14の太陽電池の開放電圧および変換効率は、第二の層が含むIb族元素と該IIIb族元素の組成比が前記範囲外である比較例3〜4の太陽電池に比べ、大きいことが確認された。   A first light absorption layer and a second light absorption layer, wherein the first light absorption layer includes a group Ib element, a group IIIb element, and a group VIb element, and includes a group Ib element / group IIIb A first p-type light absorption layer which is a p-type semiconductor layer having an element ratio of 1.00 and having a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or a cathodoluminescence spectrum; , A group IIIb element, and a group VIb element, and a composition ratio of the group Ib element to the group IIIb element is 0.1 or more and less than 1.0 on the first p-type light absorption layer The open-circuit voltage and conversion efficiency of the solar cells of Examples 7 to 14 included in the solar cell of Comparative Examples 3 to 4 in which the composition ratio of the Ib group element and the IIIb group element included in the second layer is outside the above range. It is confirmed that it is bigger than It was.

種々のIb族元素、IIIb族元素、およびVIb族元素を含みIb族元素/IIIb族元素比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素とIIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一のp型光吸収層上に備える実施例15〜21の太陽電池の開放電圧および変換効率は、それぞれ同一の組成、同一のフォトルミネッセンスまたはカソードルミネッセンススペクトルの発光半値幅を持つ第一のp型光吸収層を備えるものの、第二の光吸収層を持たない比較例5〜11の太陽電池に比べ、大きいことが確認された。   Light emission including various group Ib elements, group IIIb elements, and group VIb elements, the ratio of group Ib elements / group IIIb elements is 1.00, and the half-value width is 1 meV or more and 15 meV or less in the photoluminescence spectrum or cathodoluminescence spectrum A first p-type absorber layer that is a p-type semiconductor layer including a peak, a group Ib element, a group IIIb element, and a group VIb element, and a composition ratio of the group Ib element to the group IIIb element is 0.1 or more and 1 The open-circuit voltage and conversion efficiency of the solar cells of Examples 15 to 21 provided with the second light-absorbing layer that is less than 0.0 on the first p-type light-absorbing layer have the same composition, the same photoluminescence, or Although the first p-type light absorption layer having the emission half-value width of the cathodoluminescence spectrum is provided, the thicknesses of Comparative Examples 5 to 11 having no second light absorption layer It was confirmed to be larger than the positive battery.

種々のIb族元素、IIIb族元素、およびVIb族元素を含みIb族元素/IIIb族元素比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、前記第一のp型光吸収層と同一のIb族元素、IIIb族元素を第二の光吸収層に用いた実施例22、25の太陽電池の開放電圧および変換効率は、それぞれ同一の組成、同一のフォトルミネッセンスまたはカソードルミネッセンススペクトルの発光半値幅を持つ第一のp型光吸収層を備えるものの前記第一のp型光吸収層と異なるIb族元素、またはIIIb族元素を第二の光吸収層に用いた実施例23、24の太陽電池に比べ、大きいことが確認された。   Light emission including various group Ib elements, group IIIb elements, and group VIb elements, the ratio of group Ib elements / group IIIb elements is 1.00, and the half-value width is 1 meV or more and 15 meV or less in the photoluminescence spectrum or cathodoluminescence spectrum Example in which first p-type light absorption layer, which is a p-type semiconductor layer including a peak, and the same Ib group element and IIIb group element as the first p-type light absorption layer are used for the second light absorption layer The open circuit voltage and the conversion efficiency of the solar cells 22 and 25 are the first p-type light-absorbing layers having the same composition, the same photoluminescence or cathodoluminescence spectrum emission half width, respectively. Compared with the solar cells of Examples 23 and 24, in which a Group Ib element or Group IIIb element different from the light absorption layer was used for the second light absorption layer, It was confirmed.

Ib族元素/IIIb族元素比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、前記第一のp型光吸収層と同一のIb族元素、IIIb族元素を第二の光吸収層に用い、なおかつ複数のIIIb族元素の組成比を第一のp型光吸収層と同一にした第二の光吸収層を備える実施例26の太陽電池の開放電圧および変換効率は、第二の層に含まれる複数のIIIb族元素の組成比が、第一のp型光吸収層と異なる実施例27に比べ、大きいことが確認された。   First p-type light absorption, which is a p-type semiconductor layer having an lb group element / IIIb group element ratio of 1.00 and a light emission peak having a half-value width of 1 meV to 15 meV in the photoluminescence spectrum or cathodoluminescence spectrum And the same Ib group element and IIIb group element as the first p-type light absorption layer in the second light absorption layer, and the composition ratio of the plurality of group IIIb elements is the first p-type light absorption layer The open-circuit voltage and conversion efficiency of the solar cell of Example 26 having the same second light absorption layer as that of the first p-type light absorption is the composition ratio of the plurality of group IIIb elements contained in the second layer. Compared with Example 27 different from the layer, it was confirmed to be large.

Cu、IIIb族元素、およびVIb族元素を含み、CuとIIIb族元素の組成比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、Cu、IIIb族元素、およびVIb族元素を含み、Cuと該IIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一のp型光吸収層上に備える実施例28の太陽電池の変換効率は、光吸収層および第二の層に含まれるIb元素がCuでない実施例29の太陽電池に比べ、大きいことが確認された。   Cu, a group IIIb element, and a group VIb element, a composition ratio of Cu and a group IIIb element is 1.00, and includes a light emission peak having a half-value width of 1 meV or more and 15 meV or less in a photoluminescence spectrum or a cathodoluminescence spectrum. a first p-type light-absorbing layer that is a p-type semiconductor layer, Cu, a group IIIb element, and a group VIb element, and a composition ratio of Cu and the group IIIb element is 0.1 or more and less than 1.0 The conversion efficiency of the solar cell of Example 28 provided with two light absorption layers on the first p-type light absorption layer is that of the solar cell of Example 29 in which the Ib element contained in the light absorption layer and the second layer is not Cu. It was confirmed that it was larger than the battery.

Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素とIIIb族元素の組成比が1.00であり、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15 meV以下の発光ピークを含むp型半導体層である第一のp型光吸収層と、Ib族元素、IIIb族元素、およびVIb族元素を含み、Ib族元素とIIIb族元素の組成比が0.1以上1.0未満である第二の光吸収層を前記第一のp型光吸収層上に備え、前記第二の光吸収層の膜厚が1nm以上100nm以下である実施例31〜35の太陽電池の開放電圧および変換効率は、膜厚が前記範囲外である実施例30、36の太陽電池に比べ、大きいことが確認された。   It contains an Ib group element, an IIIb group element, and a VIb group element, the composition ratio of the Ib group element and the IIIb group element is 1.00, and the half width in the photoluminescence spectrum or cathodoluminescence spectrum is 1 meV or more and 15 meV or less A first p-type absorber layer that is a p-type semiconductor layer including an emission peak, a group Ib element, a group IIIb element, and a group VIb element, and a composition ratio of the group Ib element and the group IIIb element is 0.1 or more The sun of Examples 31-35, in which a second light absorption layer that is less than 1.0 is provided on the first p-type light absorption layer, and the film thickness of the second light absorption layer is 1 nm or more and 100 nm or less. It was confirmed that the open circuit voltage and the conversion efficiency of the battery were larger than those of the solar cells of Examples 30 and 36 whose film thickness was outside the above range.

前記フォトルミネッセンス測定において励起光依存性または励起電子線強度依存性を測定したときに 励起光強度または励起電子線強度Iex とフォトルミネッセンス強度IPLの関係を下式(2)

Figure 2012222006

で表したとき kの値が1<k<2の範囲内である実施例1〜6の太陽電池の開放電圧および変換効率は、前記範囲外である比較例2の太陽電池にくらべ、大きいことが確認された。 When the excitation light dependency or excitation electron beam intensity dependency is measured in the photoluminescence measurement, the relationship between the excitation light intensity or excitation electron beam intensity I ex k and the photoluminescence intensity I PL is expressed by the following equation (2):
Figure 2012222006

The open-circuit voltage and conversion efficiency of the solar cells of Examples 1 to 6 in which the value of k is in the range of 1 <k <2 are larger than the solar cell of Comparative Example 2 that is outside the above range. Was confirmed.

前記第一のp型光吸収層の形成工程において、いったんIb族元素とIIIb族元素の比が1.0より大きくなるように成膜した後に、異相であるIb族−VIb族化合物を除去する工程を含む実施例38〜41の太陽電池の開放電圧、変換効率は、異相除去工程を含まない実施例37の太陽電池に比べ、大きいことが確認された。   In the step of forming the first p-type absorber layer, after forming a film so that the ratio of the group Ib element to the group IIIb element is larger than 1.0, the heterogeneous group Ib-VIb group compound is removed. It was confirmed that the open-circuit voltage and conversion efficiency of the solar cells of Examples 38 to 41 including the steps were larger than those of the solar cell of Example 37 not including the heterogeneous phase removal step.

Figure 2012222006
Figure 2012222006

Figure 2012222006
Figure 2012222006

2・・・従来の太陽電池、4・・・本発明の一実施形態に係る太陽電池、6・・・ソーダライムガラス、8・・・裏面電極層、10・・・p型光吸収層、12・・・第二の層、14・・・n型半導体層、16・・・半絶縁層、18・・・窓層(透明導電層)、20・・・上部電極(取り出し電極)。   DESCRIPTION OF SYMBOLS 2 ... Conventional solar cell, 4 ... Solar cell which concerns on one Embodiment of this invention, 6 ... Soda lime glass, 8 ... Back electrode layer, 10 ... p-type light absorption layer, 12 ... second layer, 14 ... n-type semiconductor layer, 16 ... semi-insulating layer, 18 ... window layer (transparent conductive layer), 20 ... upper electrode (extraction electrode).

Claims (8)

第一の光吸収層と、第二の光吸収層と、を有し、
前記第一の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、フォトルミネッセンススペクトルまたはカソードルミネセンススペクトルにおいて半値幅が1meV以上15meV以下の発光ピークを含むp型半導体層であり、
前記第二の光吸収層は、Ib族元素、IIIb族元素、およびVIb族元素を含み、前記Ib族元素と前記IIIb族元素の組成比が0.1以上1.0未満であり、前記第一の光吸収層の光入射面側に設けられている、
ことを特徴とする太陽電池。
Having a first light absorbing layer and a second light absorbing layer,
The first light absorption layer is a p-type semiconductor layer that includes a group Ib element, a group IIIb element, and a group VIb element, and includes a light emission peak having a half-value width of 1 meV to 15 meV in a photoluminescence spectrum or a cathodoluminescence spectrum. Yes,
The second light absorption layer includes a group Ib element, a group IIIb element, and a group VIb element, and a composition ratio of the group Ib element to the group IIIb element is 0.1 or more and less than 1.0, Provided on the light incident surface side of one light absorption layer,
A solar cell characterized by that.
前記第一の光吸収層に含まれるIb族元素と前記IIIb族元素の組成比が1.0であることを特徴とする請求項1記載の太陽電池。   2. The solar cell according to claim 1, wherein the composition ratio of the Ib group element and the IIIb group element contained in the first light absorption layer is 1.0. 前記第一の光吸収層上に形成される第二の層に含まれるIb族元素およびIIIb族元素が第一の光吸収層に含まれるIb族元素およびIIIb族元素と同一であることを特徴とする請求項1または2いずれか一項に記載の太陽電池。   The Group Ib element and Group IIIb element contained in the second layer formed on the first light absorption layer are the same as the Group Ib element and Group IIIb element contained in the first light absorption layer The solar cell according to any one of claims 1 and 2. 前記第一の光吸収層および第二の光吸収層に含まれるIb族元素がCuであることを特徴とする請求項1〜3いずれか一項に記載の太陽電池。   The solar cell according to claim 1, wherein the group Ib element contained in the first light absorption layer and the second light absorption layer is Cu. 前記第一の光吸収層上に形成される第二の光吸収層の厚さが1nm以上100nm以下の範囲であることを特徴とする請求項1〜4いずれか一項に記載の太陽電池。   The thickness of the 2nd light absorption layer formed on said 1st light absorption layer is the range of 1 nm or more and 100 nm or less, The solar cell as described in any one of Claims 1-4 characterized by the above-mentioned. Ib族元素とIIIb族元素の比が1.0より大きくなるように形成した後に、異相であるIb族−VIb族化合物を除去することにより形成される層を前記第一の光吸収層として用いる請求項1〜5いずれか一項に記載の太陽電池。   A layer formed by removing the Ib group-VIb group compound which is a different phase after forming so that the ratio of the Ib group element to the IIIb group element is larger than 1.0 is used as the first light absorption layer. The solar cell as described in any one of Claims 1-5. 前記第二の光吸収層を真空蒸着法、スパッタリング法の中から選ばれる一種の方法により形成することを特徴とする請求項1〜6いずれか一項に記載の太陽電池の製造方法。   The method for producing a solar cell according to any one of claims 1 to 6, wherein the second light absorption layer is formed by a kind of method selected from a vacuum deposition method and a sputtering method. 前記第二の層を真空蒸着法、スパッタリング法の中から選ばれる一種の方法に加え、続く工程で熱処理を施すことにより形成することを特徴とする請求項1〜7いずれか一項に記載の太陽電池の製造方法。   The second layer is formed by performing a heat treatment in a subsequent process in addition to a kind of method selected from a vacuum deposition method and a sputtering method. A method for manufacturing a solar cell.
JP2011083184A 2011-04-04 2011-04-04 Solar cell and method for manufacturing solar cell Expired - Fee Related JP5808562B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011083184A JP5808562B2 (en) 2011-04-04 2011-04-04 Solar cell and method for manufacturing solar cell
PCT/JP2012/059125 WO2012137793A2 (en) 2011-04-04 2012-03-28 Solar cell, and process for producing solar cell
US14/008,821 US20140020738A1 (en) 2011-04-04 2012-03-28 Solar cell, and process for producing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083184A JP5808562B2 (en) 2011-04-04 2011-04-04 Solar cell and method for manufacturing solar cell

Publications (2)

Publication Number Publication Date
JP2012222006A true JP2012222006A (en) 2012-11-12
JP5808562B2 JP5808562B2 (en) 2015-11-10

Family

ID=45955068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083184A Expired - Fee Related JP5808562B2 (en) 2011-04-04 2011-04-04 Solar cell and method for manufacturing solar cell

Country Status (3)

Country Link
US (1) US20140020738A1 (en)
JP (1) JP5808562B2 (en)
WO (1) WO2012137793A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126164A1 (en) * 2016-01-19 2017-07-27 株式会社村田製作所 Light emitter, method for producing light emitter, and biological substance-labeling agent
JP2020202730A (en) * 2019-06-13 2020-12-17 株式会社日立パワーソリューションズ Parallel resistance calculation device, solar cell control system, and parallel resistance calculation method
US11165034B2 (en) 2016-05-23 2021-11-02 Lg Chem, Ltd. Organic-inorganic hybrid solar cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079321B2 (en) * 2016-06-30 2018-09-18 International Business Machines Corporation Technique for achieving large-grain Ag2ZnSn(S,Se)4thin films
US10361331B2 (en) * 2017-01-18 2019-07-23 International Business Machines Corporation Photovoltaic structures having multiple absorber layers separated by a diffusion barrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243169A (en) * 1991-01-18 1992-08-31 Fuji Electric Co Ltd Method for forming cuinse2 thin film
JPH07258881A (en) * 1994-03-23 1995-10-09 Yazaki Corp Production of cuinse2 film
JPH08111425A (en) * 1994-10-07 1996-04-30 Matsushita Electric Ind Co Ltd Production of semiconductor thin film having chalcopyrite structure
JPH08195499A (en) * 1995-01-13 1996-07-30 Asahi Chem Ind Co Ltd Manufacture of chalcopyrite compound film
JP2010165878A (en) * 2009-01-16 2010-07-29 Fujifilm Corp Photoelectric conversion element, and solar cell using the same
JP2011119478A (en) * 2009-12-03 2011-06-16 Kaneka Corp Compound semiconductor solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344608B2 (en) * 1998-06-30 2002-02-05 Canon Kabushiki Kaisha Photovoltaic element
GB0127113D0 (en) * 2001-11-10 2002-01-02 Univ Sheffield Copper indium based thin film photovoltaic devices and methods of making the same
US20050271827A1 (en) * 2004-06-07 2005-12-08 Malle Krunks Solar cell based on CulnS2 absorber layer prepared by chemical spray pyrolysis
US8110428B2 (en) * 2008-11-25 2012-02-07 Sunlight Photonics Inc. Thin-film photovoltaic devices
US8969719B2 (en) * 2008-12-19 2015-03-03 Zetta Research and Development LLC—AQT Series Chalcogenide-based photovoltaic devices and methods of manufacturing the same
KR20110023007A (en) * 2009-08-28 2011-03-08 삼성전자주식회사 Thin film solar cell and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243169A (en) * 1991-01-18 1992-08-31 Fuji Electric Co Ltd Method for forming cuinse2 thin film
JPH07258881A (en) * 1994-03-23 1995-10-09 Yazaki Corp Production of cuinse2 film
JPH08111425A (en) * 1994-10-07 1996-04-30 Matsushita Electric Ind Co Ltd Production of semiconductor thin film having chalcopyrite structure
JPH08195499A (en) * 1995-01-13 1996-07-30 Asahi Chem Ind Co Ltd Manufacture of chalcopyrite compound film
JP2010165878A (en) * 2009-01-16 2010-07-29 Fujifilm Corp Photoelectric conversion element, and solar cell using the same
JP2011119478A (en) * 2009-12-03 2011-06-16 Kaneka Corp Compound semiconductor solar cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015004397; Kenji Yoshino, Mutsumi Sugiyama, Daisuke Maruoka, Shigefusa F Chichibu, Hironori Komaki, Kenta Umeda: 'Photoluminescence spectra of CuGaSe2 crystals' Physica B Vol. 302-303, 2001, p. 357-363 *
JPN6015004400; Yasuhiro Aida, Valerie Depredurand, Jes K Larsen, Hitoshi Arai, Daisuke Tanaka, Masato Kurihara and: 'Cu-rich CuInSe2 solar cells with a Cu-poor surface' Progress in Photovoltaics: Research and Applications , 2014 *
JPN7015000330; R. Scheer, T. Walter, H. W. Schock, M. L. Fearheiley and H. J. Lewerenz: 'CuInS2 based thin film solar cell with 10.2% efficiency' Applied Physics Letters Vol. 63, 1993, p. 3294-3296 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126164A1 (en) * 2016-01-19 2017-07-27 株式会社村田製作所 Light emitter, method for producing light emitter, and biological substance-labeling agent
JPWO2017126164A1 (en) * 2016-01-19 2018-09-20 株式会社村田製作所 Luminescent body, luminous body manufacturing method, and biological substance labeling agent
US11111434B2 (en) 2016-01-19 2021-09-07 Murata Manufacturing Co., Ltd. Light emitter, method for producing light emitter, and biological substance labeling agent
US11165034B2 (en) 2016-05-23 2021-11-02 Lg Chem, Ltd. Organic-inorganic hybrid solar cell
JP2020202730A (en) * 2019-06-13 2020-12-17 株式会社日立パワーソリューションズ Parallel resistance calculation device, solar cell control system, and parallel resistance calculation method
JP7217674B2 (en) 2019-06-13 2023-02-03 株式会社日立パワーソリューションズ Parallel Resistance Calculator, Solar Cell Control System, Parallel Resistance Calculation Method

Also Published As

Publication number Publication date
WO2012137793A2 (en) 2012-10-11
JP5808562B2 (en) 2015-11-10
US20140020738A1 (en) 2014-01-23
WO2012137793A3 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Moholkar et al. Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US8012546B2 (en) Method and apparatus for producing semiconductor films and related devices
JP5003698B2 (en) Solar cell and method for manufacturing solar cell
JP5709662B2 (en) CZTS thin film solar cell manufacturing method
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
JP5808562B2 (en) Solar cell and method for manufacturing solar cell
JP2005228975A (en) Solar battery
US20110232762A1 (en) Method for manufacturing photoelectric conversion element, and photoelectric conversion element and thin-film solar cell
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
Cai et al. Efficiency enhancement of Cu2ZnSn (S, Se) 4 solar cells by S-modified surface layer
Kim et al. Effect of Na-doped Mo layer as a controllable sodium reservoir and diffusion barrier for flexible Cu (In, Ga) Se2 solar cells
JP6297038B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
KR20140066964A (en) Solar cell and manufacturing method thereof
US20100210065A1 (en) Method of manufacturing solar cell
US20150027538A1 (en) Compound semiconductor solar battery and method of manufacturing light absorption layer of compound semiconductor solar battery
KR101708282B1 (en) Solar cell using -based film and preparing method of the same
US20150087107A1 (en) Method for manufacturing photoelectric conversion device
US20130316490A1 (en) Solar cell and solar cell production method
US10446703B1 (en) Method for manufacturing CIGS thin film for solar cell
Yang et al. Photoluminescence study of the defect-induced recombination in Cu (In, Ga) Se2 solar cell
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
TW201824579A (en) Compound-based solar cell and manufacturing method of light absorption layer
Sood et al. Electrical barriers and their elimination by tuning (Zn, Mg) O composition in Cu (In, Ga) S2: Systematic approach to achieve over 14% power conversion efficiency
JP2003179237A (en) Forming method of semiconductor thin film and solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5808562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees