JP2010165878A - Photoelectric conversion element, and solar cell using the same - Google Patents

Photoelectric conversion element, and solar cell using the same Download PDF

Info

Publication number
JP2010165878A
JP2010165878A JP2009007135A JP2009007135A JP2010165878A JP 2010165878 A JP2010165878 A JP 2010165878A JP 2009007135 A JP2009007135 A JP 2009007135A JP 2009007135 A JP2009007135 A JP 2009007135A JP 2010165878 A JP2010165878 A JP 2010165878A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
group
layer
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009007135A
Other languages
Japanese (ja)
Other versions
JP4550928B2 (en
Inventor
Hiroshi Kawakami
洋 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009007135A priority Critical patent/JP4550928B2/en
Priority to PCT/JP2010/050454 priority patent/WO2010082642A1/en
Publication of JP2010165878A publication Critical patent/JP2010165878A/en
Application granted granted Critical
Publication of JP4550928B2 publication Critical patent/JP4550928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element stably exhibiting excellent withstand voltage properties and photoelectric conversion efficiency with a good yield. <P>SOLUTION: On a substrate 10 having an anodized film on at least one surface side of a metal base material principally consisting of Al, the photoelectric conversion element 1 includes: a photoelectric conversion layer 30, which contains a compound semiconductor consisting of group Ib elements, group IIIb elements and group VIb elements and generates current by light absorption; and electrodes 20 and 50 for taking out the current. In the metal base material, an Fe content is 0.05-1.0 mass%, a minimum diameter in the cross-section is 0.3 μm or more, and the number of Fe-containing clusters, wherein the value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2 is 0.5-2.5 μm, is 1,500-40,000 pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可撓性基板上に、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含む光電変換層を備えた光電変換素子、及びこれを用いた太陽電池に関するものである。   The present invention relates to a photoelectric conversion element including a photoelectric conversion layer including a compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element on a flexible substrate, and a solar cell using the photoelectric conversion element. .

光吸収により電流を発生する光電変換層と、光電変換層で発生した電流を取り出す電極とを備えた光電変換素子が、太陽電池等の用途に使用されている。
従来、太陽電池においては、バルクの単結晶Si又は多結晶Si、あるいは薄膜のアモルファスSiを用いたSi系太陽電池が主流であったが、Siに依存しない化合物半導体系太陽電池の研究開発がなされている。化合物半導体系太陽電池としては、GaAs系等のバルク系と、Ib族元素とIIIb族元素とVIb族元素とからなるCIS(Cu−In−Se)系あるいはCIGS(Cu−In−Ga−Se)系等の薄膜系とが知られている。CIS系あるいはCIGS系は、光吸収率が高く、高エネルギー変換効率が報告されている。
BACKGROUND ART A photoelectric conversion element including a photoelectric conversion layer that generates current by light absorption and an electrode that extracts current generated in the photoelectric conversion layer is used for applications such as solar cells.
Conventionally, in solar cells, Si-based solar cells using bulk single-crystal Si or polycrystalline Si, or thin-film amorphous Si have been mainstream, but research and development of Si-independent compound semiconductor solar cells has been made. ing. As a compound semiconductor solar cell, CIS (Cu-In-Se) system or CIGS (Cu-In-Ga-Se) composed of a bulk system such as a GaAs system, an Ib group element, an IIIb group element, and a VIb group element is used. And other thin film systems are known. The CIS system or CIGS system has a high light absorption rate, and high energy conversion efficiency has been reported.

現在、太陽電池用基板としてはガラス基板が主に使用されているが、ガラス基板は可撓性に欠け、破損しやすいため、薄型軽量化が難しい。樹脂基板は、可撓性を有し、薄型軽量化が可能であるが、無機基板に比して耐熱温度が低くプロセス温度に制限があり、高光電変換効率の光電変換層を成膜することが難しい。   At present, glass substrates are mainly used as solar cell substrates, but glass substrates lack flexibility and are easily damaged, making it difficult to reduce the thickness and weight. The resin substrate is flexible and can be thin and light, but has a lower heat resistance than the inorganic substrate and has a limited process temperature, and forms a photoelectric conversion layer with high photoelectric conversion efficiency. Is difficult.

太陽電池用基板として、可撓性を有する金属基板を用いることが検討されている。金属基板を用いる場合、基板とその上に形成される電極及び光電変換層との短絡が生じないよう、基板の表面に絶縁膜を設けることが必須である。そして、この絶縁膜は耐電圧性が高いこと、すなわち電圧のかかる使用状況でも絶縁膜の絶縁破壊が起こらないことが重要である。絶縁破壊が起こると漏れ電流が発生するため、光電変換効率が低下してしまう。したがって、歩留まりを向上するには、安定的に耐電圧性に優れた絶縁膜を形成する必要がある。   As a solar cell substrate, the use of a flexible metal substrate has been studied. In the case of using a metal substrate, it is essential to provide an insulating film on the surface of the substrate so as not to cause a short circuit between the substrate and the electrode and photoelectric conversion layer formed thereon. It is important that this insulating film has a high withstand voltage, that is, the dielectric breakdown of the insulating film does not occur even in a usage situation where a voltage is applied. When the dielectric breakdown occurs, a leakage current is generated, so that the photoelectric conversion efficiency is lowered. Therefore, in order to improve the yield, it is necessary to stably form an insulating film having excellent voltage resistance.

熱応力による基板の反り等を抑制するためには基板とその上に形成される各層との間の熱膨張係数差が小さいことが好ましい。金属基板としては、光電変換層及び下部電極(裏面電極)との熱膨張係数差、コスト、及び太陽電池に要求される特性等の観点から、Alを主成分とする基板が好ましい。   In order to suppress warpage of the substrate due to thermal stress, it is preferable that the difference in thermal expansion coefficient between the substrate and each layer formed thereon is small. As the metal substrate, a substrate containing Al as a main component is preferable from the viewpoint of the difference in thermal expansion coefficient from the photoelectric conversion layer and the lower electrode (back electrode), cost, characteristics required for the solar cell, and the like.

特許文献1には、太陽電池用基板として、Al基材の表面に多孔質の陽極酸化膜(Al膜)を形成した基板、あるいはこの基板に対してさらに陽極酸化膜の空孔を酸化物で充填した基板を用いることが提案されている。かかる方法では、大面積基板を用いる場合も、その表面全体にピンホールなく簡易に絶縁膜を形成することができる。 In Patent Document 1, as a substrate for a solar cell, a substrate in which a porous anodic oxide film (Al 2 O 3 film) is formed on the surface of an Al base, or pores of the anodic oxide film are further provided on this substrate. It has been proposed to use a substrate filled with oxide. In this method, even when a large-area substrate is used, an insulating film can be easily formed on the entire surface without pinholes.

特開2000−349320号公報JP 2000-349320 A

上記のように、金属基板を用いた光電変換素子用基板においては、表面に形成された絶縁膜の絶縁特性が高く、耐電圧に優れていること、かつ高温成膜プロセスにおいて軟化や変形等が起こらない耐熱性を有していることが重要である。かかる特性には基板の不純物が影響を与えると考えられるが、特許文献1にはかかる検討が一切なされていない。   As described above, in a photoelectric conversion element substrate using a metal substrate, the insulating film formed on the surface has high insulating properties, excellent withstand voltage, and softening or deformation in a high-temperature film forming process. It is important to have heat resistance that does not occur. Although it is thought that the impurities of the substrate affect such characteristics, Patent Document 1 does not make any such studies.

本発明は上記事情に鑑みてなされたものであり、Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する基板上に、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含む光電変換層を備えた光電変換素子において、不純物の影響に着目して、歩留まり良く安定的に耐電圧性及び光電変換効率に優れた光電変換素子を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and on a substrate having an anodized film on at least one surface side of a metal base material containing Al as a main component, a group Ib element, a group IIIb element, and a group VIb element In a photoelectric conversion element comprising a photoelectric conversion layer containing a compound semiconductor comprising: and focusing on the influence of impurities, the object is to provide a photoelectric conversion element excellent in voltage resistance and photoelectric conversion efficiency with good yield It is what.

本発明の光電変換素子は、Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する基板上に、
Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含み、光吸収により電流を発生する光電変換層と、前記電流を取り出す電極とを備えた光電変換素子において、
前記金属基材中のFe含有量が0.05〜1.0質量%であり、
かつ、前記金属基材の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数が1,500〜40,000個/mmであることを特徴とするものである。
The photoelectric conversion element of the present invention is on a substrate having an anodized film on at least one surface side of a metal base material mainly composed of Al.
In a photoelectric conversion element including a compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element, and including a photoelectric conversion layer that generates a current by light absorption, and an electrode that extracts the current,
Fe content in the metal substrate is 0.05 to 1.0 mass%,
The number of Fe-containing clusters having a minimum diameter of 0.3 μm or more and a value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2 is 0.5 to 2.5 μm in the cross section of the metal substrate. , 500 to 40,000 pieces / mm 2 .

本明細書において、「金属基材の主成分」は、含量98質量%の成分であると定義する。金属基材は、微量元素を含んでいてもよい純Al基板でもよいし、Alと他の金属元素との合金基板でもよい。   In the present specification, the “main component of the metal substrate” is defined as a component having a content of 98% by mass. The metal substrate may be a pure Al substrate that may contain a trace element, or an alloy substrate of Al and another metal element.

本明細書における元素の族の記載は、短周期型周期表に基づくものである。本明細書において、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体は、「I−III−VI族半導体」と略記している箇所がある。I−III−VI族半導体の構成元素であるIb族元素、IIIb族元素、及びVIb族元素はそれぞれ1種でも2種以上でもよい。また、光電変換層に含まれるI−III−VI族半導体は1種でも2種以上でも構わない。   The element group descriptions in this specification are based on the short-period periodic table. In the present specification, a compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element is abbreviated as “I-III-VI group semiconductor”. Each of the Ib group element, the IIIb group element, and the VIb group element that are constituent elements of the I-III-VI group semiconductor may be one type or two or more types. Further, the I-III-VI group semiconductor contained in the photoelectric conversion layer may be one type or two or more types.

本発明の光電変換素子において、前記金属基材は、Al含有量が98.0質量%以上であり、Si含有量が0.25質量%以下であり、Cu含有量が0.20質量%以下であることが好ましい。   In the photoelectric conversion element of the present invention, the metal substrate has an Al content of 98.0% by mass or more, an Si content of 0.25% by mass or less, and a Cu content of 0.20% by mass or less. It is preferable that

「金属基材中の微量成分の定量」は、JIS H 1305〜1307規格に定められたプラズマ発光分析法あるいは原子吸光法により実施することができる。金属基材をスパッタリングしたものを質量分析する方法を併用することもできる。   The “quantification of trace components in the metal substrate” can be performed by a plasma emission analysis method or an atomic absorption method defined in JIS H 1305 to 1307 standards. A method of performing mass spectrometry on a metal substrate sputtered can also be used in combination.

金属基材中の微量成分は、その含有量が僅かな場合は基板全体にほぼ均一に固溶するが、固溶限界を超えた微量成分は、微細なクラスター状のドメインとなって偏在する。本明細書では、Feが偏在する微細なクラスター状のドメインを「Fe含有クラスター」と称している。   The trace component in the metal base material dissolves almost uniformly in the entire substrate when the content is small, but the trace component exceeding the solid solution limit is unevenly distributed as fine cluster-like domains. In the present specification, a fine cluster-like domain in which Fe is unevenly distributed is referred to as “Fe-containing cluster”.

「最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数」の測定は、金属基材の断面を、走査型電子顕微鏡(SEM)と電子プローブマイクロアナライザー(EPMA)とを複合させた表面分析装置で観察することにより行うことができる。圧延方向に対する断面の向きにより観察されるFe含有クラスターの見え方が変わり得るため、金属基材の表面に対し断面は垂直に取り、表面上の任意の方向を基点に30°間隔で6通りの方向の断面を観察する。観察視野は、それぞれの向きに対応する視野の総面積がほぼ均等になるように配分し、1方向につき10−3mm以上の面積を観察すればよい。該当するクラスターの数が多い場合には、積算で250個以上のクラスターが観察される面積としてもよい。 The measurement of “the number of Fe-containing clusters having a minimum diameter of 0.3 μm or more and a value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2” is 0.5 to 2.5 μm. It can be carried out by observing with a surface analyzer combined with a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA). Since the appearance of the Fe-containing clusters observed can vary depending on the direction of the cross section relative to the rolling direction, the cross section is taken perpendicular to the surface of the metal substrate, and six types are provided at 30 ° intervals from any direction on the surface. Observe the cross-section in the direction. The observation visual field may be distributed so that the total area of the visual field corresponding to each direction is substantially uniform, and an area of 10 −3 mm 2 or more per direction may be observed. When the number of applicable clusters is large, an area where 250 or more clusters are observed in total may be used.

各々のクラスターの大きさは、SEM画像で白く写る領域(反射電子の放出量が多い領域)の大きさで評価し、そのクラスターがFeの偏在するクラスターが否かをEPMAの特性X線の応答信号の中にFe由来の成分が含まれるか否かで判別する。   The size of each cluster is evaluated by the size of the white area in the SEM image (area where the amount of reflected electrons emitted is large), and whether or not the cluster is a cluster in which Fe is unevenly distributed is a characteristic X-ray response of EPMA. The determination is made based on whether or not the signal contains an Fe-derived component.

EPMAがエネルギー分散型(EDX)の場合、Fe由来の応答信号は、X線光子のエネルギーが0.69keV付近、6.4keV付近、及び7.1keV付近に観測される。Alを主成分とする金属基材の断面を観察した場合、その信号がSEM画像で白く写る領域以外で観測されることはほとんどない。よって、SEM画像で白く写る領域がFe含有クラスターであるかどうかの判別が前述の方法で可能となる。   When EPMA is energy dispersive (EDX), the response signal derived from Fe is observed when the energy of the X-ray photon is around 0.69 keV, 6.4 keV, and 7.1 keV. When a cross section of a metal base material containing Al as a main component is observed, the signal is rarely observed except in a region that appears white in the SEM image. Therefore, it is possible to determine whether or not a region that appears white in the SEM image is an Fe-containing cluster by the above-described method.

なお、EPMAの応答信号の空間分布画像からFe含有クラスターの大きさを評価することは、EPMAの空間分解能が不十分であるため困難である。また、クラスターの最小径と最大径の和を2で割った値が0.5μm未満になると、EPMAのFe由来の応答信号が弱くなり、明確には検出されなくなる。したがって、本発明ではカウントするFe含有クラスターの最小径と最大径の和を2で割った値の下限を0.5μmとした。また、実際上、最小径と最大径の和を2で割った値が2.5μm超のFe含有クラスターが形成されることは極めて稀であり、しかも最小径と最大径の和を2で割った値が2.5μm超のFe含有クラスターが1個でも存在していれば絶縁膜の絶縁破壊が起こり使用できないため、本発明ではカウントするFe含有クラスターの最小径と最大径の和を2で割った値の上限を2.5μmとした。   Note that it is difficult to evaluate the size of the Fe-containing cluster from the spatial distribution image of the EPMA response signal because the spatial resolution of the EPMA is insufficient. Further, when the value obtained by dividing the sum of the minimum diameter and the maximum diameter of the cluster by 2 is less than 0.5 μm, the response signal derived from Fe of EPMA becomes weak and is not clearly detected. Therefore, in the present invention, the lower limit of the value obtained by dividing the sum of the minimum diameter and the maximum diameter of the Fe-containing cluster to be counted by 2 is set to 0.5 μm. In practice, it is extremely rare that an Fe-containing cluster having a value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2 exceeds 2.5 μm, and the sum of the minimum diameter and the maximum diameter is divided by 2. In the present invention, the sum of the minimum diameter and the maximum diameter of the Fe-containing cluster to be counted is 2 because even if there is even one Fe-containing cluster having a value of more than 2.5 μm, dielectric breakdown of the insulating film occurs and cannot be used. The upper limit of the divided value was 2.5 μm.

本発明の光電変換素子において、
前記光電変換層は、
Cu及びAgからなる群より選択された少なくとも1種のIb族元素と、
Al,Ga及びInからなる群より選択された少なくとも1種のIIIb族元素と、
S,Se,及びTeからなる群から選択された少なくとも1種のVIb族元素とからなる化合物半導体を含むことが好ましい。
In the photoelectric conversion element of the present invention,
The photoelectric conversion layer is
At least one group Ib element selected from the group consisting of Cu and Ag;
At least one group IIIb element selected from the group consisting of Al, Ga and In;
It is preferable to include a compound semiconductor composed of at least one VIb group element selected from the group consisting of S, Se, and Te.

本発明の太陽電池は、上記の本発明の光電変換素子を備えたことを特徴とするものである。   The solar cell of the present invention comprises the above-described photoelectric conversion element of the present invention.

本発明によれば、Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する基板上に、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含む光電変換層を備えた光電変換素子において、歩留まり良く安定的に耐電圧性及び光電変換効率に優れた光電変換素子を提供することができる。   According to the present invention, an optoelectronic device comprising a compound semiconductor comprising a group Ib element, a group IIIb element, and a group VIb element on a substrate having an anodized film on at least one surface side of a metal base material mainly composed of Al. In the photoelectric conversion element including the conversion layer, it is possible to provide a photoelectric conversion element that is stable with high yield and excellent in voltage resistance and photoelectric conversion efficiency.

本発明に係る一実施形態の光電変換素子の短手方向の模式断面図1 is a schematic cross-sectional view in a short direction of a photoelectric conversion element according to an embodiment of the present invention 本発明に係る一実施形態の光電変換素子の長手方向の模式断面図1 is a schematic sectional view in a longitudinal direction of a photoelectric conversion element according to an embodiment of the present invention. 基板の構成を示す模式断面図Schematic cross-sectional view showing the configuration of the substrate 基板の製造方法を示す斜視図The perspective view which shows the manufacturing method of a board | substrate I−III−VI化合物半導体における格子定数とバンドギャップとの関係を示す図Diagram showing the relationship between lattice constant and band gap in I-III-VI compound semiconductors 基板のSEM断面写真の例Example of SEM cross-section photograph of substrate EDXチャートの例Example of EDX chart

「光電変換素子」
図面を参照して、本発明に係る一実施形態の光電変換素子の構造について説明する。図1Aは光電変換素子の短手方向の模式断面図、図1Bは光電変換素子の長手方向の模式断面図、図2は基板の構成を示す模式断面図、図3は基板の製造方法を示す斜視図である。視認しやすくするため、図中、各構成要素の縮尺等は実際のものとは適宜異ならせてある。
"Photoelectric conversion element"
With reference to drawings, the structure of the photoelectric conversion element of one Embodiment which concerns on this invention is demonstrated. 1A is a schematic cross-sectional view in the short direction of the photoelectric conversion element, FIG. 1B is a schematic cross-sectional view in the longitudinal direction of the photoelectric conversion element, FIG. 2 is a schematic cross-sectional view illustrating the configuration of the substrate, and FIG. 3 illustrates a method for manufacturing the substrate. It is a perspective view. In order to facilitate visual recognition, the scale of each component in the figure is appropriately different from the actual one.

光電変換素子1は、基板10上に、下部電極(裏面電極)20と光電変換層30とバッファ層40と上部電極50とが順次積層された素子である。
光電変換素子1には、短手方向断面視において、下部電極20のみを貫通する第1の開溝部61、光電変換層30とバッファ層40とを貫通する第2の開溝部62、及び上部電極50のみを貫通する第3の開溝部63が形成されており、長手方向断面視において、光電変換層30とバッファ層40と上部電極50とを貫通する第4の開溝部64が形成されている。
The photoelectric conversion element 1 is an element in which a lower electrode (back electrode) 20, a photoelectric conversion layer 30, a buffer layer 40, and an upper electrode 50 are sequentially stacked on a substrate 10.
The photoelectric conversion element 1 includes a first groove 61 that penetrates only the lower electrode 20, a second groove 62 that penetrates the photoelectric conversion layer 30 and the buffer layer 40, and A third groove portion 63 penetrating only the upper electrode 50 is formed, and a fourth groove portion 64 penetrating the photoelectric conversion layer 30, the buffer layer 40, and the upper electrode 50 in the longitudinal sectional view is formed. Is formed.

上記構成では、第1〜第4の開溝部61〜64によって素子が多数のセルCに分離された構造が得られる。また、第2の開溝部62内に上部電極50が充填されることで、あるセルCの上部電極50が隣接するセルCの下部電極20に直列接続した構造が得られる。   With the above configuration, a structure in which the element is separated into a large number of cells C by the first to fourth groove portions 61 to 64 is obtained. Further, by filling the second groove 62 with the upper electrode 50, a structure in which the upper electrode 50 of a certain cell C is connected in series to the lower electrode 20 of the adjacent cell C is obtained.

(基板)
本実施形態において、基板10はAlを主成分とする金属基材11の少なくとも一方の面側を陽極酸化して得られた基板である。基板10は、図2の左図に示すように、金属基材11の両面側に陽極酸化膜12が形成されたものでもよいし、図2の右図に示すように、金属基材11の片面側に陽極酸化膜12が形成されたものでもよい。陽極酸化膜12はAlを主成分とする膜である。
(substrate)
In the present embodiment, the substrate 10 is a substrate obtained by anodizing at least one surface side of a metal base 11 mainly composed of Al. The substrate 10 may have an anodized film 12 formed on both sides of the metal base 11 as shown in the left diagram of FIG. 2, or the substrate 10 of the metal base 11 as shown in the right diagram of FIG. 2. One having an anodized film 12 formed on one side may be used. The anodic oxide film 12 is a film containing Al 2 O 3 as a main component.

デバイスの製造過程において、AlとAlとの熱膨張係数差に起因した基板の反り、及びこれによる膜剥がれ等を抑制するには、図2の左図に示すように金属基材11の両面側に陽極酸化膜12が形成されたものが好ましい。両面の陽極酸化方法としては、片面に絶縁材料を塗布して片面ずつ両面を陽極酸化する方法、及び両面を同時に陽極酸化する方法が挙げられる。 In order to suppress the warpage of the substrate due to the difference in thermal expansion coefficient between Al and Al 2 O 3 and the film peeling due to this in the device manufacturing process, as shown in the left diagram of FIG. It is preferable that the anodic oxide film 12 is formed on both sides of the film. Examples of the anodic oxidation method on both sides include a method of applying an insulating material on one side and anodizing both sides of each side, and a method of anodizing both sides simultaneously.

基板10の両面側に陽極酸化膜12を形成する場合、基板両面の熱応力のバランスを考慮して、2つの陽極酸化膜12の膜厚がほぼ等しくする、若しくは光電変換層等が形成されない面側の陽極酸化膜12を他方の陽極酸化膜12よりもやや厚めとすることが好ましい。   When the anodic oxide films 12 are formed on both sides of the substrate 10, the two anodic oxide films 12 have substantially the same thickness in consideration of the balance of thermal stresses on both sides of the substrate, or a surface on which no photoelectric conversion layer or the like is formed. The anodic oxide film 12 on the side is preferably slightly thicker than the other anodic oxide film 12.

金属基材11としては、日本工業規格(JIS)の1000系純Alでもよいし、Al−Mn系合金、Al−Mg系合金、Al−Mn−Mg系合金、Al−Zr系合金、Al−Si系合金、及びAl−Mg−Si系合金等のAlと他の金属元素との合金でもよい(「アルミニウムハンドブック第4版」(1990年、軽金属協会発行)を参照)。金属基材11には、Fe、Si、Mn、Cu、Mg、Cr、Zn、Bi、Ni、及びTi等の各種微量金属元素が含まれていてもよい。   The metal substrate 11 may be Japanese Industrial Standard (JIS) 1000 series pure Al, Al—Mn alloy, Al—Mg alloy, Al—Mn—Mg alloy, Al—Zr alloy, Al— An alloy of Al and other metal elements such as an Si-based alloy and an Al—Mg—Si-based alloy may be used (see “Aluminum Handbook 4th Edition” (1990, published by Light Metal Association)). The metal substrate 11 may contain various trace metal elements such as Fe, Si, Mn, Cu, Mg, Cr, Zn, Bi, Ni, and Ti.

陽極酸化は、必要に応じて洗浄処理・研磨平滑化処理等が施された金属基材11を陽極とし陰極と共に電解質に浸漬させ、陽極陰極間に電圧を印加することで実施できる。陰極としてはカーボンやアルミニウム等が使用される。電解質としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、及びアミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。   Anodization can be performed by immersing the metal base material 11 that has been subjected to cleaning treatment, polishing smoothing treatment, and the like as needed as an anode together with a cathode and applying a voltage between the anode and the cathode. Carbon, aluminum, or the like is used as the cathode. The electrolyte is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.

陽極酸化条件は使用する電解質の種類にもより特に制限されない。条件としては例えば、電解質濃度1〜80質量%、液温5〜70℃、電流密度0.005〜0.60A/cm、電圧1〜200V、電解時間3〜500分の範囲にあれば適当である。 The anodizing conditions are not particularly limited by the type of electrolyte used. As conditions, for example, an electrolyte concentration of 1 to 80% by mass, a liquid temperature of 5 to 70 ° C., a current density of 0.005 to 0.60 A / cm 2 , a voltage of 1 to 200 V, and an electrolysis time of 3 to 500 minutes are appropriate. It is.

電解質としては、硫酸、リン酸、シュウ酸、若しくはこれらの混合液が好ましい。かかる電解質を用いる場合、電解質濃度4〜30質量%、液温10〜30℃、電流密度0.05〜0.30A/cm、及び電圧30〜150Vが好ましい。 As the electrolyte, sulfuric acid, phosphoric acid, oxalic acid, or a mixture thereof is preferable. When such an electrolyte is used, an electrolyte concentration of 4 to 30% by mass, a liquid temperature of 10 to 30 ° C., a current density of 0.05 to 0.30 A / cm 2 , and a voltage of 30 to 150 V are preferable.

陽極酸化処理の開始直後は金属基材11に流す電流量を小さくしておき、その後徐々に所望の値まで電流量を増大させるプロファイルとなるように電流量を制御すると、陽極酸化処理時に発生する局所的な斑の数を少なくすることができ、好ましい。   Immediately after the start of the anodizing treatment, the amount of current flowing through the metal substrate 11 is reduced, and then the current amount is controlled so that the current amount is gradually increased to a desired value. The number of local plaques can be reduced, which is preferable.

図3に示すように、Alを主成分とする金属基材11を陽極酸化すると、表面11sから該面に対して略垂直方向に酸化反応が進行し、Alを主成分とする陽極酸化膜12が生成される。陽極酸化により生成される陽極酸化膜12は、多数の平面視略正六角形状の微細柱状体12aが隙間なく配列した構造を有するものとなる。各微細柱状体12aの略中心部には、表面11sから深さ方向に略ストレートに延びる微細孔12bが開孔され、各微細柱状体12aの底面は丸みを帯びた形状となる。通常、微細柱状体12aの底部には微細孔12bのないバリア層(通常、厚み0.01〜0.4μm)が形成される。陽極酸化条件を工夫すれば、微細孔12bのない陽極酸化膜12を形成することもできる。 As shown in FIG. 3, when the metal base material 11 mainly composed of Al is anodized, an oxidation reaction proceeds in a direction substantially perpendicular to the surface from the surface 11s, and the anode mainly composed of Al 2 O 3. An oxide film 12 is generated. The anodic oxide film 12 produced by anodic oxidation has a structure in which a number of fine columnar bodies 12a having a substantially regular hexagonal shape in plan view are arranged without gaps. A minute hole 12b extending substantially straight from the surface 11s in the depth direction is opened at a substantially central portion of each fine columnar body 12a, and the bottom surface of each fine columnar body 12a has a rounded shape. Usually, a barrier layer (usually 0.01 to 0.4 μm in thickness) having no fine holes 12b is formed at the bottom of the fine columnar body 12a. If the anodic oxidation conditions are devised, the anodic oxide film 12 without the fine holes 12b can be formed.

陽極酸化膜12の微細孔12bの径は特に制限されない。表面平滑性及び絶縁特性の観点から、微細孔12bの径は好ましくは200nm以下であり、より好ましくは100nm以下である。微細孔12bの径は10nm程度まで小さくすることが可能である。   The diameter of the fine hole 12b of the anodic oxide film 12 is not particularly limited. From the viewpoint of surface smoothness and insulating properties, the diameter of the fine holes 12b is preferably 200 nm or less, and more preferably 100 nm or less. The diameter of the fine hole 12b can be reduced to about 10 nm.

陽極酸化膜12の微細孔12bの開孔密度は特に制限されない。絶縁特性の観点から、微細孔12bの開孔密度は好ましくは100〜10000個/μmであり、より好ましくは100〜5000個/μmであり、特に好ましくは100〜1000個/μmである。 The hole density of the fine holes 12b of the anodic oxide film 12 is not particularly limited. From the viewpoint of insulating properties, hole density of the micropores 12b is preferably 100 to 10000 pieces / [mu] m 2, more preferably 100 to 5,000 pieces / [mu] m 2, particularly preferably at 100 to 1000 / [mu] m 2 is there.

陽極酸化膜12の表面粗さRaは特に制限されない。上層の光電変換層30を均一に形成する観点から、陽極酸化膜12の表面平滑性は高い方が好ましい。表面粗さRaは好ましくは0.3μm以下、より好ましくは0.1μm以下である。   The surface roughness Ra of the anodic oxide film 12 is not particularly limited. From the viewpoint of uniformly forming the upper photoelectric conversion layer 30, it is preferable that the surface smoothness of the anodic oxide film 12 is higher. The surface roughness Ra is preferably 0.3 μm or less, more preferably 0.1 μm or less.

金属基材11及び陽極酸化膜12の厚みは特に制限されない。基板10の機械的強度及び薄型軽量化等を考慮すれば、陽極酸化前の金属基材11の厚みは例えば0.05〜0.6mmが好ましく、0.1〜0.3mmがより好ましい。基板の絶縁性、機械的強度、及び薄型軽量化を考慮すれば、陽極酸化膜12の厚みは例えば0.1〜100μmが好ましい。   The thickness of the metal substrate 11 and the anodic oxide film 12 is not particularly limited. Considering the mechanical strength and reduction in thickness and weight of the substrate 10, the thickness of the metal base 11 before anodization is preferably 0.05 to 0.6 mm, for example, and more preferably 0.1 to 0.3 mm. Considering the insulating properties, mechanical strength, and reduction in thickness and weight of the substrate, the thickness of the anodic oxide film 12 is preferably 0.1 to 100 μm, for example.

微細孔12bの配列及び径のばらつきを抑制するなどを目的として、微細孔12bの生成の起点となる窪みを形成させてから、陽極酸化を実施してもよい。また、陽極酸化膜12の微細孔12bには、必要に応じて公知の封孔処理を施してもよい。封孔処理により、耐電圧及び絶縁特性を向上させることが可能である。また、アルカリ金属イオンを含む材料を用いて封孔を行うと、CIGS等からなる光電変換層30のアニール時にアルカリ金属イオン、好ましくはNaイオンが光電変換層30に拡散し、そのことにより光電変換層30の結晶性が向上し、光電変換効率が向上する場合がある。   For the purpose of suppressing variations in the arrangement and diameter of the micropores 12b, anodization may be performed after forming a recess that is a starting point for generating the micropores 12b. Moreover, you may perform a well-known sealing process to the fine hole 12b of the anodic oxide film 12 as needed. The withstand voltage and the insulation characteristics can be improved by the sealing treatment. In addition, when sealing is performed using a material containing alkali metal ions, alkali metal ions, preferably Na ions, diffuse into the photoelectric conversion layer 30 during annealing of the photoelectric conversion layer 30 made of CIGS or the like, whereby photoelectric conversion is performed. The crystallinity of the layer 30 may be improved and the photoelectric conversion efficiency may be improved.

光電変換素子用基板においては、表面に形成された絶縁膜の絶縁特性が高く、耐電圧に優れていること、かつ高温成膜プロセスにおいて軟化や変形等が起こらない耐熱性を有していることが重要である。かかる特性には基板の不純物量が影響を与えると考えられるが、過去に具体的に検討された例はない。   In the substrate for photoelectric conversion elements, the insulating film formed on the surface has high insulating properties, excellent withstand voltage, and heat resistance that does not cause softening or deformation in a high-temperature film forming process. is important. Although it is considered that the amount of impurities on the substrate affects such characteristics, there has been no specific example in the past.

Alを主成分とする金属基材11において、Fe含有量が増えると耐熱性が向上する傾向にある。しかしながら、Fe含有量が高くなりすぎると、陽極酸化膜12の耐電圧性が低下する傾向にある。本発明者はFe含有量だけでなく、金属基材11中におけるFeの存在形態に注目した。Feはなるべく小さい粒で分散している方が金属基材11の耐熱性が高く好ましい。また、Feが粒の大きいクラスターの形態で存在していると、陽極酸化膜12の絶縁破壊が起こりやすい。   In the metal substrate 11 containing Al as a main component, the heat resistance tends to be improved as the Fe content increases. However, if the Fe content becomes too high, the voltage resistance of the anodic oxide film 12 tends to decrease. The inventor paid attention not only to the Fe content but also to the form of Fe in the metal substrate 11. It is preferable that Fe is dispersed in as small particles as possible because the heat resistance of the metal substrate 11 is high. In addition, when Fe is present in the form of clusters having large grains, dielectric breakdown of the anodic oxide film 12 is likely to occur.

本発明者は、金属基材11中のFe含有量が0.05〜1.0質量%であり、かつ、金属基材11の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数が1,500〜40,000個/mmであるときに、歩留まり良く安定的に耐電圧性及び光電変換効率に優れた光電変換素子1を提供できることを見出した。本発明者は、金属基材11がかかる特性を充足していると、470〜550℃の高温プロセスにおいても、歩留まり良く安定的に耐電圧性及び光電変換効率に優れた光電変換素子1を提供できることを見出した。 The inventor has a Fe content in the metal substrate 11 of 0.05 to 1.0% by mass, and a minimum diameter in the cross section of the metal substrate 11 is 0.3 μm or more. When the number of Fe-containing clusters having a value obtained by dividing the sum of the maximum diameters by 2 is 0.5 to 2.5 μm is 1,500 to 40,000 pieces / mm 2 , the voltage resistance is stable with good yield. And it discovered that the photoelectric conversion element 1 excellent in the photoelectric conversion efficiency could be provided. When the metal substrate 11 satisfies such characteristics, the present inventor provides the photoelectric conversion element 1 that is stable in yield and stable in voltage resistance and photoelectric conversion efficiency even in a high-temperature process at 470 to 550 ° C. I found out that I can do it.

金属基材11中のFe含有量は好ましくは0.1〜0.7質量%である。金属基材11の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数は、好ましくは3,000〜24,000個/mmである。 The Fe content in the metal substrate 11 is preferably 0.1 to 0.7% by mass. The number of Fe-containing clusters having a minimum diameter of 0.3 μm or more in the cross section of the metal substrate 11 and a value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2 is preferably 0.5 to 2.5 μm. 3,000 to 24,000 pieces / mm 2 .

Fe含有量及びFe含有クラスター数は、Alを主成分とする金属基材11を製造する際の微量成分の量及び製造条件を調整することによって、上記範囲に制御することができる。   The Fe content and the number of Fe-containing clusters can be controlled within the above ranges by adjusting the amount of trace components and the production conditions when producing the metal substrate 11 containing Al as a main component.

Alを主成分とする金属基材11は、組成に応じて調製され、必要に応じて清浄化処理が施された溶湯を鋳造し、その後圧延することで製造される。溶湯の清浄化処理としては、溶湯中の水素等の不要ガスを除去する脱ガス処理、異物等を除くフィルタリング処理、及びこれらの組み合わせが挙げられる。鋳造方法としては、DC鋳造法、及び連続鋳造法等がある。   The metal substrate 11 containing Al as a main component is manufactured by casting a molten metal prepared according to the composition and subjected to a cleaning treatment as necessary, and then rolling. Examples of the cleaning process for the molten metal include a degassing process for removing unnecessary gas such as hydrogen in the molten metal, a filtering process for removing foreign substances, and a combination thereof. Examples of the casting method include a DC casting method and a continuous casting method.

DC鋳造においては、冷却速度が0.5〜30℃/秒の範囲で凝固する。得られた鋳塊には必要に応じて、表層の1〜30mmを切削する面削が施される。その前後において必要に応じて、均熱化処理が行われる。均熱化処理を行う場合、金属間化合物が粗大化しないように、450〜620℃で1〜48時間の熱処理が行われる。   In DC casting, solidification occurs at a cooling rate of 0.5 to 30 ° C./second. The obtained ingot is subjected to face cutting for cutting 1 to 30 mm of the surface layer as necessary. Before and after that, soaking treatment is performed as necessary. When performing the soaking process, heat treatment is performed at 450 to 620 ° C. for 1 to 48 hours so that the intermetallic compound does not become coarse.

DC鋳造後、熱間圧延及び冷間圧延が実施されて、圧延板が得られる。熱間圧延の開始温度は350〜500℃が適当である。熱間圧延の前もしくは後、またはその途中において、中間焼鈍処理を行ってもよい。中間焼鈍処理の条件は、バッチ式焼鈍炉を用いて280〜600℃で2〜20時間加熱するか、連続焼鈍炉を用いて400〜600℃で6分以下加熱するかである。連続焼鈍炉を用いて10〜200℃/秒の昇温速度で加熱して、結晶組織を細かくすることもできる。   After DC casting, hot rolling and cold rolling are performed to obtain a rolled sheet. An appropriate starting temperature for hot rolling is 350 to 500 ° C. An intermediate annealing treatment may be performed before or after hot rolling or in the middle thereof. The conditions for the intermediate annealing treatment are heating at 280 to 600 ° C. for 2 to 20 hours using a batch annealing furnace or heating at 400 to 600 ° C. for 6 minutes or less using a continuous annealing furnace. The crystal structure can be made finer by heating at a heating rate of 10 to 200 ° C./second using a continuous annealing furnace.

連続鋳造法としては、双ロール法(ハンター法)、及び3C法に代表される冷却ロールを用いる方法、あるいは双ベルト法(ハズレー法)及びアルスイスキャスターII型に代表される冷却ベルトや冷却ブロックを用いる方法が、工業的に行われている。連続鋳造法を用いる場合には、冷却速度が100〜1000℃/秒の範囲で凝固する。   As a continuous casting method, a method using a cooling roll represented by the twin roll method (Hunter method) and the 3C method, or a cooling belt or a cooling block represented by the twin belt method (Hasley method) and the Al Swiss Caster II type The method using is industrially performed. When the continuous casting method is used, it solidifies at a cooling rate of 100 to 1000 ° C./second.

連続鋳造を行った場合において、例えば、ハンター法等の冷却ロールを用いる方法を用いると、板厚1〜10mmの鋳造板を直接連続鋳造することができ、熱間圧延の工程を省略することができる。ハズレー法等の冷却ベルトを用いる方法を用いると、板厚10〜50mmの鋳造板を鋳造することができ、一般的に、鋳造直後に熱間圧延ロールを配置し連続的に圧延することで、板厚1〜10mmの連続鋳造圧延板が得られる。いずれの方法においても、その後に冷間圧延が実施されて、圧延板が得られる。連続鋳造の場合も、中間焼鈍処理を行ってもよい。   When continuous casting is performed, for example, if a method using a cooling roll such as a Hunter method is used, a cast plate having a thickness of 1 to 10 mm can be directly continuously cast, and the hot rolling step can be omitted. it can. When using a method using a cooling belt such as the Husley method, a cast plate having a thickness of 10 to 50 mm can be cast. Generally, a hot rolling roll is arranged immediately after casting and continuously rolled. A continuous cast and rolled plate having a thickness of 1 to 10 mm is obtained. In either method, cold rolling is subsequently performed to obtain a rolled sheet. Also in the case of continuous casting, intermediate annealing treatment may be performed.

DC鋳造法と連続鋳造法のいずれの鋳造法を実施した場合においても、得られた圧延板には、必要に応じて、表面平滑化処理等の後処理が実施される。   In either case of performing the DC casting method or the continuous casting method, the obtained rolled plate is subjected to a post-treatment such as a surface smoothing treatment as necessary.

微量成分の量、鋳造、圧延、中間焼鈍の条件等を適宜選択することにより、金属基材11中の組成及び結晶組織の状態を制御することができ、Fe含有量及びFe含有クラスター数を本発明の規定範囲内に制御することができる。   By appropriately selecting the amount of trace components, conditions for casting, rolling, intermediate annealing, etc., the composition and crystal structure state in the metal substrate 11 can be controlled, and the Fe content and the number of Fe-containing clusters can be controlled. It can be controlled within the specified range of the invention.

定性的には、Fe含有クラスターの平均体積は、鋳造、圧延、及び焼鈍の各工程において、高温である時間が長い程、また降温速度が遅い程、増大する。このとき、Fe含有クラスターの総数は平均体積に反比例する形で減少する。鋳造及び圧延の工程では、DC鋳造→熱間圧延→冷間圧延の方が、連続鋳造→冷間圧延よりも高温である時間が長く降温速度が遅いため、Fe含有クラスターの平均体積は大きく、数は少なくなる傾向がある。また、中間焼鈍の工程を加えると、Fe含有クラスターの平均体積は大きく、数は少なくなる。それ故、この性質を利用して、同じFe含有量であっても、特定のサイズ域のFe含有クラスターの数を調節することができる。   Qualitatively, the average volume of the Fe-containing cluster increases as the time during which the temperature is high and the rate of temperature decrease are slow in the casting, rolling, and annealing processes. At this time, the total number of Fe-containing clusters decreases in a manner that is inversely proportional to the average volume. In the casting and rolling process, the DC casting → hot rolling → cold rolling is longer than the continuous casting → cold rolling and the temperature lowering rate is longer and the average volume of the Fe-containing cluster is larger. The number tends to decrease. Further, when an intermediate annealing step is added, the average volume of Fe-containing clusters is large, and the number is reduced. Therefore, this property can be used to adjust the number of Fe-containing clusters in a specific size range even with the same Fe content.

金属基材11中のFe以外の微量成分量は特に制限されない。金属基材11は、Al含有量が98.0質量%以上であり、Si含有量が0.25質量%以下であり、Cu含有量が0.20質量%以下であることが好ましい。Al含有量はより好ましくは99.0質量%以上である。Si含有量はより好ましくは0.15質量%以下であり、特に好ましくは0.03〜0.15質量%である。Cu含有量はより好ましくは0.15質量%以下であり、特に好ましくは0.02〜0.15質量%である。Fe以外の微量成分量がかかる範囲内であれば、耐電圧性の高い光電変換素子用基板10が得られ、歩留まり良く高光電変換効率の光電変換素子1が安定的に得られる。   The amount of trace components other than Fe in the metal substrate 11 is not particularly limited. The metal substrate 11 preferably has an Al content of 98.0% by mass or more, an Si content of 0.25% by mass or less, and a Cu content of 0.20% by mass or less. The Al content is more preferably 99.0% by mass or more. The Si content is more preferably 0.15% by mass or less, and particularly preferably 0.03 to 0.15% by mass. The Cu content is more preferably 0.15% by mass or less, and particularly preferably 0.02 to 0.15% by mass. If the amount of trace components other than Fe is within such a range, the substrate 10 for photoelectric conversion elements having high voltage resistance can be obtained, and the photoelectric conversion element 1 having high yield and high photoelectric conversion efficiency can be stably obtained.

(光電変換層)
光電変換層30は、少なくとも1種のIb族元素と少なくとも1種のIIIb族元素と少なくとも1種のVIb族元素とからなる1種又は2種以上の化合物半導体(I−III−VI族半導体)を含み、光吸収により電流を発生する層である。
(Photoelectric conversion layer)
The photoelectric conversion layer 30 is composed of one or more compound semiconductors (I-III-VI group semiconductors) composed of at least one type Ib element, at least one type IIIb element, and at least one type VIb element. And a layer that generates current by light absorption.

光電変換層30は、
Cu及びAgからなる群より選択された少なくとも1種のIb族元素と、
B,Al,Ga,及びInからなる群より選択された少なくとも1種のIIIb族元素と、
O,S,Se,及びTeからなる群より選択された少なくとも1種のVIb族元素とからなる1種又は2種以上の化合物半導体を含む層であることが好ましい。
The photoelectric conversion layer 30 is
At least one group Ib element selected from the group consisting of Cu and Ag;
At least one group IIIb element selected from the group consisting of B, Al, Ga, and In;
A layer containing at least one compound semiconductor composed of at least one VIb group element selected from the group consisting of O, S, Se, and Te is preferable.

光吸収率が高く、高い光電変換効率が得られることから、
光電変換層30は、
Cu及びAgからなる群より選択された少なくとも1種のIb族元素と、
Al,Ga及びInからなる群より選択された少なくとも1種のIIIb族元素と、
S,Se,及びTeからなる群から選択された少なくとも1種のVIb族元素とからなる1種又は2種以上の化合物半導体を含むことが好ましい。
Because the light absorption rate is high and high photoelectric conversion efficiency is obtained,
The photoelectric conversion layer 30 is
At least one group Ib element selected from the group consisting of Cu and Ag;
At least one group IIIb element selected from the group consisting of Al, Ga and In;
It is preferable to include one or more compound semiconductors composed of at least one VIb group element selected from the group consisting of S, Se, and Te.

上記化合物半導体としては、
CuAlS,CuGaS,CuInS
CuAlSe,CuGaSe,CuInSe(CIS),
AgAlS,AgGaS,AgInS
AgAlSe,AgGaSe,AgInSe
AgAlTe,AgGaTe,AgInTe
Cu(In1−xGa)Se(CIGS),Cu(In1−xAl)Se,Cu(In1−xGa)(S,Se)
Ag(In1−xGa)Se,及びAg(In1−xGa)(S,Se)等が挙げられる。
As the compound semiconductor,
CuAlS 2 , CuGaS 2 , CuInS 2 ,
CuAlSe 2 , CuGaSe 2 , CuInSe 2 (CIS),
AgAlS 2 , AgGaS 2 , AgInS 2 ,
AgAlSe 2 , AgGaSe 2 , AgInSe 2 ,
AgAlTe 2 , AgGaTe 2 , AgInTe 2 ,
Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x) Se 2, Cu (In 1-x Ga x) (S, Se) 2,
Ag (In 1-x Ga x ) Se 2, and Ag (In 1-x Ga x ) (S, Se) 2 , and the like.

光電変換層30は、CuInSe(CIS)、及び/又はこれにGaを固溶したCu(In,Ga)Se(CIGS)を含むことが特に好ましい。CIS及びCIGSはカルコパイライト結晶構造を有する半導体であり、光吸収率が高く、高エネルギー変換効率が報告されている。また、光照射等による効率の劣化が少なく、耐久性に優れている。 The photoelectric conversion layer 30 particularly preferably includes CuInSe 2 (CIS) and / or Cu (In, Ga) Se 2 (CIGS) in which Ga is dissolved. CIS and CIGS are semiconductors having a chalcopyrite crystal structure, have high light absorption, and high energy conversion efficiency has been reported. Moreover, there is little degradation of efficiency by light irradiation etc. and it is excellent in durability.

光電変換層30には、所望の半導体導電型を得るための不純物が含まれる。不純物は隣接する層からの拡散、及び/又は積極的なドープによって、光電変換層30中に含有させることができる。   The photoelectric conversion layer 30 contains impurities for obtaining a desired semiconductor conductivity type. Impurities can be contained in the photoelectric conversion layer 30 by diffusion from adjacent layers and / or active doping.

光電変換層30中において、I−III−VI族半導体の構成元素及び/又は不純物には濃度分布があってもよく、n型,p型,及びi型等の半導体性の異なる複数の層領域が含まれていても構わない。例えば、CIGS系においては、光電変換層30中のGa量に厚み方向の分布を持たせると、バンドギャップの幅/キャリアの移動度等を制御でき、光電変換効率を高く設計することができる。   In the photoelectric conversion layer 30, the constituent elements and / or impurities of the I-III-VI group semiconductor may have a concentration distribution, and a plurality of layer regions having different semiconductor properties such as n-type, p-type, and i-type May be included. For example, in the CIGS system, when the Ga amount in the photoelectric conversion layer 30 has a distribution in the thickness direction, the band gap width / carrier mobility and the like can be controlled, and the photoelectric conversion efficiency can be designed high.

光電変換層30は、I−III−VI族半導体以外の1種又は2種以上の半導体を含んでいてもよい。I−III−VI族半導体以外の半導体としては、Si等のIVb族元素からなる半導体(IV族半導体)、GaAs等のIIIb族元素及びVb族元素からなる半導体(III−V族半導体)、及びCdTe等のIIb族元素及びVIb族元素からなる半導体(II−VI族半導体)等が挙げられる。   The photoelectric conversion layer 30 may include one or more semiconductors other than the I-III-VI group semiconductor. As a semiconductor other than the I-III-VI group semiconductor, a semiconductor composed of a group IVb element such as Si (group IV semiconductor), a semiconductor composed of a group IIIb element such as GaAs and a group Vb element (group III-V semiconductor), and Examples thereof include semiconductors (II-VI group semiconductors) composed of IIb group elements such as CdTe and VIb group elements.

光電変換層30には、特性に支障のない限りにおいて、半導体、所望の導電型とするための不純物以外の任意成分が含まれていても構わない。光電変換層30中のI−III−VI族半導体の含有量は特に制限されず、75質量%以上が好ましく、95質量%以上がより好ましく、99質量%以上が特に好ましい。   The photoelectric conversion layer 30 may contain an optional component other than a semiconductor and impurities for obtaining a desired conductivity type as long as the characteristics are not hindered. Content in particular of the I-III-VI group semiconductor in the photoelectric converting layer 30 is not restrict | limited, 75 mass% or more is preferable, 95 mass% or more is more preferable, 99 mass% or more is especially preferable.

CIGS層の成膜方法としては、1)多源同時蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、及び5)メカノケミカルプロセス法等が知られている。   As CIGS layer deposition methods, 1) multi-source co-evaporation, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.

1)多源同時蒸着法としては、
3段階法(J.R.Tuttle et.al,Mat.Res.Soc.Symp.Proc.,Vol.426(1996)p.143.等)と、
ECグループの同時蒸着法(L.Stolt et al.:Proc.13th ECPVSEC(1995,Nice)1451.等)とが知られている。
前者の3段階法は、高真空中で最初にIn、Ga、及びSeを基板温度300℃で同時蒸着し、次に500〜560℃に昇温してCu及びSeを同時蒸着後、In、Ga、及びSeをさらに同時蒸着する方法である。後者のECグループの同時蒸着法は、蒸着初期にCu過剰CIGS、後半でIn過剰CIGSを蒸着する方法である。
1) As a multi-source simultaneous vapor deposition method,
A three-step method (JRTuttle et.al, Mat. Res. Soc. Symp. Proc., Vol. 426 (1996) p. 143, etc.);
The EC group co-evaporation method (L. Stolt et al .: Proc. 13th ECPVSEC (1995, Nice) 1451. etc.) is known.
In the former three-stage method, In, Ga, and Se are first co-deposited at a substrate temperature of 300 ° C. in a high vacuum, and then heated to 500 to 560 ° C., and Cu and Se are co-evaporated. In this method, Ga and Se are further vapor-deposited. The latter EC group simultaneous vapor deposition method is a method in which Cu-excess CIGS is vapor-deposited in the early stage of vapor deposition and In-rich CIGS is vapor-deposited in the latter half.

CIGS膜の結晶性を向上させるため、上記方法に改良を加えた方法として、
a)イオン化したGaを使用する方法(H.Miyazaki, et.al, phys.stat.sol.(a),Vol.203(2006)p.2603.等)、
b)クラッキングしたSeを使用する方法(第68回応用物理学会学術講演会 講演予稿集(2007秋 北海道工業大学)7P−L−6等)、
c)ラジカル化したSeを用いる方法(第54回応用物理学会学術講演会 講演予稿集(2007春 青山学院大学)29P−ZW−10等)、
d)光励起プロセスを利用した方法(第54回応用物理学会学術講演会 講演予稿集(2007春 青山学院大学)29P−ZW−14等)等が知られている。
In order to improve the crystallinity of the CIGS film, as a method of improving the above method,
a) a method using ionized Ga (H. Miyazaki, et.al, phys.stat.sol. (a), Vol.203 (2006) p.2603, etc.),
b) Method of using cracked Se (68th Japan Society of Applied Physics Academic Lecture Proceedings (Autumn 2007, Hokkaido Institute of Technology) 7P-L-6 etc.),
c) Method using radicalized Se (Proceedings of the 54th Japan Society of Applied Physics (Aoyama Gakuin University) 29P-ZW-10 etc.)
d) A method using a photoexcitation process (the 54th Japan Society of Applied Physics Academic Lecture Proceedings (Spring 2007 Aoyama Gakuin University) 29P-ZW-14 etc.) is known.

2)セレン化法は2段階法とも呼ばれ、最初にCu層/In層あるいは(Cu−Ga)層/In層等の積層膜の金属プレカーサをスパッタ法、蒸着法、あるいは電着法などで成膜し、これをセレン蒸気またはセレン化水素中で450〜550℃程度に加熱することにより、熱拡散反応によってCu(In1−xGa)Se等のセレン化合物を生成する方法である。この方法を気相セレン化法と呼ぶ。このほか、金属プリカーサ膜の上に固相セレンを堆積し、この固相セレンをセレン源とした固相拡散反応によりセレン化させる固相セレン化法がある。 2) The selenization method is also called a two-step method. First, a metal precursor of a laminated film such as a Cu layer / In layer or a (Cu—Ga) layer / In layer is formed by sputtering, vapor deposition, or electrodeposition. This is a method of forming a selenium compound such as Cu (In 1-x Ga x ) Se 2 by a thermal diffusion reaction by forming a film and heating it in selenium vapor or hydrogen selenide to about 450 to 550 ° C. . This method is called a vapor phase selenization method. In addition, there is a solid-phase selenization method in which solid-phase selenium is deposited on a metal precursor film and selenized by a solid-phase diffusion reaction using the solid-phase selenium as a selenium source.

セレン化法においては、セレン化の際に生ずる急激な体積膨張を回避するために、金属プリカーサ膜に予めセレンをある割合で混合しておく方法(T.Nakada et.al,, Solar Energy Materials and Solar Cells 35(1994)204-214.等)、及び金属薄層間にセレンを挟み(例えばCu層/In層/Se層…Cu層/In層/Se層と積層する)多層化プリカーサ膜を形成する方法(T.Nakada et.al,, Proc. of 10th European Photovoltaic Solar Energy Conference(1991)887-890. 等)が知られている。   In the selenization method, in order to avoid the rapid volume expansion that occurs during selenization, a method of previously mixing selenium in a metal precursor film at a certain ratio (T. Nakada et.al, Solar Energy Materials and Solar Cells 35 (1994) 204-214, etc.), and a multilayered precursor film with selenium sandwiched between thin metal layers (for example, a Cu layer / In layer / Se layer ... stacked with a Cu layer / In layer / Se layer) The forming method (T. Nakada et.al, Proc. Of 10th European Photovoltaic Solar Energy Conference (1991) 887-890. Etc.) is known.

また、グレーデッドバンドギャップCIGS膜の成膜方法として、最初にCu−Ga合金膜を堆積し、その上にIn膜を堆積し、これをセレン化する際に、自然熱拡散を利用してGa濃度を膜厚方向で傾斜させる方法がある(K.Kushiya et.al, Tech.Digest 9th Photovoltaic Science and Engineering Conf. Miyazaki, 1996(Intn.PVSEC-9,Tokyo,1996)p.149.等)。   In addition, as a method for forming a graded band gap CIGS film, a Cu—Ga alloy film is first deposited, an In film is deposited thereon, and when this is selenized, natural thermal diffusion is used to form Ga. There is a method in which the concentration is inclined in the film thickness direction (K. Kushiya et.al, Tech.Digest 9th Photovoltaic Science and Engineering Conf. Miyazaki, 1996 (Intn. PVSEC-9, Tokyo, 1996) p.149.).

3)スパッタ法としては、
CuInSe多結晶をターゲットとした方法、
CuSeとInSeをターゲットとし、スパッタガスにHSe/Ar混合ガスを用いる2源スパッタ法(J.H.Ermer,et.al, Proc.18th IEEE Photovoltaic Specialists Conf.(1985)1655-1658.等)、
Cuターゲットと、Inターゲットと、SeまたはCuSeターゲットとをArガス中でスパッタする3源スパッタ法(T.Nakada,et.al, Jpn.J.Appl.Phys.32(1993)L1169-L1172.等)が知られている。
3) As a sputtering method,
A method targeting CuInSe 2 polycrystal,
Two-source sputtering method using Cu 2 Se and In 2 Se 3 as targets and using H 2 Se / Ar mixed gas as sputtering gas (JHErmer, et.al, Proc. 18th IEEE Photovoltaic Specialists Conf. (1985) 1655-1658. etc),
Three-source sputtering method (T. Nakada, et.al, Jpn. J. Appl. Phys. 32 (1993) L1169-L1172. Etc.) in which a Cu target, an In target, and a Se or CuSe target are sputtered in Ar gas. )It has been known.

4)ハイブリッドスパッタ法としては、前述のスパッタ法において、CuとIn金属は直流スパッタで、Seのみは蒸着とするハイブリッドスパッタ法(T.Nakada,et.al., Jpn.Appl.Phys.34(1995)4715-4721.等)が知られている。   4) As the hybrid sputtering method, in the sputtering method described above, Cu and In metal are DC sputtering, and only Se is vapor deposition (T. Nakada, et.al., Jpn.Appl.Phys.34 ( 1995) 4715-4721.

5)メカノケミカルプロセス法は、CIGSの組成に応じた原料を遊星ボールミルの容器に入れ、機械的なエネルギーによって原料を混合してCIGS粉末を得、その後、スクリーン印刷によって基板上に塗布し、アニールを施して、CIGSの膜を得る方法である(T.Wada et.al, Phys.stat.sol.(a), Vol.203(2006)p2593等)。   5) In the mechanochemical process method, raw materials corresponding to the CIGS composition are put into a planetary ball mill container, and the raw materials are mixed by mechanical energy to obtain CIGS powder, which is then applied onto the substrate by screen printing and annealed. To obtain a CIGS film (T. Wada et.al, Phys.stat.sol. (A), Vol.203 (2006) p2593, etc.).

6)その他のCIGS成膜法としては、スクリーン印刷法、近接昇華法、MOCVD法、及びスプレー法などが挙げられる。例えば、スクリーン印刷法あるいはスプレー法等で、Ib族元素、IIIb族元素、及びVIb族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、VIb族元素雰囲気での熱分解処理でもよい)を実施するなどにより、所望の組成の結晶を得ることができる(特開平9−74065号公報、特開平9−74213号公報等)。   6) Other CIGS film forming methods include screen printing, proximity sublimation, MOCVD, and spraying. For example, a fine particle film containing an Ib group element, an IIIb group element, and a VIb group element is formed on a substrate by a screen printing method or a spray method, and a thermal decomposition process (in this case, a thermal decomposition process in an VIb group element atmosphere). For example, Japanese Patent Application Laid-Open No. 9-74065 and Japanese Patent Application Laid-Open No. 9-74213).

図4は、主なI−III−VI化合物半導体における格子定数とバンドギャップとの関係を示す図である。組成比を変えることにより様々な禁制帯幅(バンドギャップ)を得ることができる。バンドギャップよりエネルギーの大きな光子が半導体に入射した場合、バンドギャップを超える分のエネルギーは熱損失となる。太陽光のスペクトルとバンドギャップの組合せで変換効率が最大になるのがおよそ1.4〜1.5eVであることが理論計算で分かっている。   FIG. 4 is a diagram showing the relationship between the lattice constant and the band gap in main I-III-VI compound semiconductors. Various forbidden band widths (band gaps) can be obtained by changing the composition ratio. When a photon having energy larger than the band gap is incident on the semiconductor, the energy exceeding the band gap becomes a heat loss. It is known from theoretical calculation that the conversion efficiency is about 1.4 to 1.5 eV at the combination of the spectrum of sunlight and the band gap.

光電変換効率を上げるために、例えばCu(In,Ga)Se(CIGS)のGa濃度を上げたり、Cu(In,Al)SeのAl濃度を上げたり、Cu(In,Ga)(S,Se)のS濃度を上げたりしてバンドギャップを大きくすることで、変換効率の高いバンドギャップを得ることができる。CIGSの場合、1.04〜1.68eVの範囲で調整できる。 In order to increase the photoelectric conversion efficiency, for example, the Ga concentration of Cu (In, Ga) Se 2 (CIGS) is increased, the Al concentration of Cu (In, Al) Se 2 is increased, or Cu (In, Ga) (S , Se) By increasing the S concentration of 2 or increasing the band gap, a band gap with high conversion efficiency can be obtained. In the case of CIGS, it can be adjusted in the range of 1.04 to 1.68 eV.

組成比を膜厚方向に変えることでバンド構造に傾斜を付けることができる。傾斜バンド構造としては、光の入射窓側から反対側の電極方向にバンドギャップを大きくするシングルグレーデットバンドギャップ、あるいは、光の入射窓からPN接合部に向かってバンドギャップが小さくなりPN接合部を過ぎるとバンドギャップが大きくなるダブルグレーデッドバンドギャップの2種類がある(T.Dullweber et.al, Solar Energy Materials & Solar Cells, Vol.67, p.145-150(2001)等)。いずれもバンド構造の傾斜によって内部に発生する電界のため、光に誘起されたキャリアが加速され電極に到達しやすくなり、再結合中心との結合確率を下げるため、発電効率が向上する(WO2004/090995号パンフレット等)。   The band structure can be inclined by changing the composition ratio in the film thickness direction. The tilted band structure is a single graded band gap that increases the band gap from the light incident window side to the opposite electrode direction, or the band gap decreases from the light incident window toward the PN junction, and the PN junction is There are two types of double graded band gaps that become larger after passing (T. Dullweber et.al, Solar Energy Materials & Solar Cells, Vol. 67, p.145-150 (2001), etc.). In both cases, the electric field generated inside due to the inclination of the band structure accelerates the carriers induced in the light to easily reach the electrode, and lowers the probability of coupling with the recombination center, thereby improving the power generation efficiency (WO2004 / 090995 pamphlet).

スペクトルの範囲別にバンドギャップの異なる半導体を複数使うと、光子エネルギーとバンドギャップの乖離による熱損失を小さくし、発電効率を向上することができる。このような複数の光電変換層を重ねて用いるものをタンデム型という。2層タンデムの場合、例えば1.1eVと1.7eVの組合せを用いることにより発電効率を向上することができる。   When a plurality of semiconductors having different band gaps are used for each spectrum range, heat loss due to the difference between photon energy and band gap can be reduced, and power generation efficiency can be improved. Such a layer using a plurality of photoelectric conversion layers is called a tandem type. In the case of a two-layer tandem, for example, the power generation efficiency can be improved by using a combination of 1.1 eV and 1.7 eV.

(電極、バッファ層)
下部電極20及び上部電極50はいずれも導電性材料からなる。光入射側の上部電極50は透光性を有する必要がある。光の有効利用を考えた場合、基板側の下部電極20は光反射性を有することが好ましい。
(Electrode, buffer layer)
Both the lower electrode 20 and the upper electrode 50 are made of a conductive material. The upper electrode 50 on the light incident side needs to have translucency. In consideration of effective use of light, the lower electrode 20 on the substrate side preferably has light reflectivity.

光電変換層30のバッファ層40の近傍領域を除く主層がp型半導体である場合、下部電極20をプラス電極、上部電極50をマイナス電極とする。光電変換層30の主層がn型半導体である場合、下部電極20と上部電極50の±は逆になる。   When the main layer excluding the region near the buffer layer 40 of the photoelectric conversion layer 30 is a p-type semiconductor, the lower electrode 20 is a positive electrode and the upper electrode 50 is a negative electrode. When the main layer of the photoelectric conversion layer 30 is an n-type semiconductor, ± of the lower electrode 20 and the upper electrode 50 is reversed.

下部電極20の主成分としては、Mo,Cr,W,及びこれらの組合わせが好ましい。上部電極50の主成分としては、ZnO,ITO(インジウム錫酸化物),SnO,及びこれらの組合わせが好ましい。下部電極20及び/又は上部電極50は、単層構造でもよいし、2層構造等の積層構造もよい。バッファ層40としては、CdS,ZnS,ZnO,ZnMgO,ZnS(O,OH) ,及びこれらの組合わせが好ましい。電極及びバッファ層の主成分は50質量%以上の成分と定義する。
好ましい組成の組合わせとしては例えば、Mo下部電極/CdSバッファ層/CIGS光電変換層/ZnO上部電極が挙げられる。
As the main component of the lower electrode 20, Mo, Cr, W, and combinations thereof are preferable. As the main component of the upper electrode 50, ZnO, ITO (indium tin oxide), SnO 2 , and combinations thereof are preferable. The lower electrode 20 and / or the upper electrode 50 may have a single layer structure or a laminated structure such as a two-layer structure. The buffer layer 40 is preferably CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof. The main component of the electrode and the buffer layer is defined as a component of 50% by mass or more.
As a combination of preferable compositions, for example, Mo lower electrode / CdS buffer layer / CIGS photoelectric conversion layer / ZnO upper electrode may be mentioned.

ソーダライムガラス基板を用いた光電変換素子においては、基板中のアルカリ金属元素(Na元素)がCIGS膜に拡散し、エネルギー変換効率が高くなることが報告されている。本実施形態においても、アルカリ金属をCIGS膜に拡散させることは好ましい。アルカリ金属元素の拡散方法としては、Mo下部電極上に蒸着法またはスパッタリング法によってアルカリ金属元素を含有する層を形成する方法(特開平8−222750号公報等)、Mo下部電極上に浸漬法によりNaS等からなるアルカリ層を形成する方法(WO03/069684号パンフレット等)、Mo下部電極上に、In、Cu及びGa金属元素を含有成分としたプリカーサを形成した後このプリカーサに対して例えばモリブデン酸ナトリウムを含有した水溶液を付着させる方法等が挙げられる。 In a photoelectric conversion element using a soda lime glass substrate, it has been reported that the alkali metal element (Na element) in the substrate diffuses into the CIGS film, resulting in high energy conversion efficiency. Also in this embodiment, it is preferable to diffuse the alkali metal into the CIGS film. As a method for diffusing the alkali metal element, a method of forming a layer containing an alkali metal element on the Mo lower electrode by vapor deposition or sputtering (JP-A-8-222750, etc.), or an immersion method on the Mo lower electrode. A method of forming an alkali layer made of Na 2 S or the like (WO03 / 0669684 pamphlet, etc.), a precursor containing In, Cu, and Ga metal elements as components on the Mo lower electrode is formed on the precursor. Examples include a method of attaching an aqueous solution containing sodium molybdate.

また、下部電極20を積層構造とし、下部電極20の積層構造の間に、NaS,NaSe,NaCl,NaF,及びモリブデン酸ナトリウム塩等の1種又は2種以上のアルカリ金属化合物を含む層を設ける構成も好ましい。この層は、酸化アルミニウム等のアルカリ金属を含まない材料を含んでいてもよい。 Further, the lower electrode 20 has a laminated structure, and one or more alkali metal compounds such as Na 2 S, Na 2 Se, NaCl, NaF, and sodium molybdate are placed between the laminated structures of the lower electrode 20. A structure in which a layer including the same is provided is also preferable. This layer may contain a material not containing an alkali metal such as aluminum oxide.

光電変換層30〜上部電極50の導電型は特に制限されない。通常、光電変換層30はp層、バッファ層40はn層(n−CdS等)、上部電極50はn層(n−ZnO層等 )あるいはi層とn層との積層構造(i−ZnO層とn−ZnO層との積層等)とされる。かかる導電型では、光電変換層30と上部電極50との間に、pn接合、あるいはpin接合が形成されると考えられる。また、光電変換層30の上にCdSからなるバッファ層40を設けると、Cdが拡散して、光電変換層30の表層にn層が形成され、光電変換層30内にpn接合が形成されると考えられる。光電変換層30内のn層の下層にi層を設けて光電変換層30内にpin接合を形成してもよいと考えられる。   The conductivity type of the photoelectric conversion layer 30 to the upper electrode 50 is not particularly limited. Usually, the photoelectric conversion layer 30 is a p-layer, the buffer layer 40 is an n-layer (n-CdS, etc.), and the upper electrode 50 is an n-layer (n-ZnO layer, etc.) or a laminated structure of i-layer and n-layer (i-ZnO). Layer and n-ZnO layer). With this conductivity type, it is considered that a pn junction or a pin junction is formed between the photoelectric conversion layer 30 and the upper electrode 50. Further, when the buffer layer 40 made of CdS is provided on the photoelectric conversion layer 30, Cd diffuses to form an n layer on the surface layer of the photoelectric conversion layer 30, and a pn junction is formed in the photoelectric conversion layer 30. it is conceivable that. It is considered that an i layer may be provided below the n layer in the photoelectric conversion layer 30 to form a pin junction in the photoelectric conversion layer 30.

(その他の層)
光電変換素子1は必要に応じて、上記で説明した以外の任意の層を備えることができる。例えば、基板10と下部電極20との間、及び/又は下部電極20と光電変換層30との間に、必要に応じて、層同士の密着性を高めるための密着層(緩衝層)を設けることができる。また、必要に応じて、基板10と下部電極20との間に、アルカリイオンの拡散を抑制するアルカリバリア層を設けることができる。アルカリバリア層については、特開平8−222750号公報を参照されたい。
(Other layers)
The photoelectric conversion element 1 can be provided with arbitrary layers other than what was demonstrated above as needed. For example, an adhesion layer (buffer layer) is provided between the substrate 10 and the lower electrode 20 and / or between the lower electrode 20 and the photoelectric conversion layer 30 as necessary to enhance the adhesion between the layers. be able to. Moreover, an alkali barrier layer that suppresses diffusion of alkali ions can be provided between the substrate 10 and the lower electrode 20 as necessary. For the alkali barrier layer, see JP-A-8-222750.

本実施形態の光電変換素子1は、以上のように構成されている。
本実施形態の光電変換素子1は、Alを主成分とする金属基材11の少なくとも一方の面側に陽極酸化膜12を有する基板10上に、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含む光電変換層30を備えた素子であり、
金属基材11中のFe含有量が0.05〜1.0質量%であり、かつ、金属基材11の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数が1,500〜40,000個/mmであることを特徴とするものである。
本実施形態によれば、歩留まり良く安定的に耐電圧性及び光電変換効率に優れた光電変換素子1を提供することができる。
光電変換素子1は、太陽電池等に好ましく使用することができる。光電変換素子1に対して必要に応じて、カバーガラス、保護フィルム等を取り付けて、太陽電池とすることができる。
The photoelectric conversion element 1 of this embodiment is configured as described above.
The photoelectric conversion element 1 according to the present embodiment includes a group Ib element, a group IIIb element, and a group VIb element on a substrate 10 having an anodized film 12 on at least one surface side of a metal base material 11 mainly composed of Al. An element including a photoelectric conversion layer 30 including a compound semiconductor comprising:
The Fe content in the metal substrate 11 is 0.05 to 1.0% by mass, and the minimum diameter in the cross section of the metal substrate 11 is 0.3 μm or more, and the sum of the minimum diameter and the maximum diameter is The number of Fe-containing clusters whose value divided by 2 is 0.5 to 2.5 μm is 1,500 to 40,000 pieces / mm 2 .
According to the present embodiment, it is possible to provide the photoelectric conversion element 1 that is stable with high yield and excellent in voltage resistance and photoelectric conversion efficiency.
The photoelectric conversion element 1 can be preferably used for a solar cell or the like. If necessary, a cover glass, a protective film, or the like can be attached to the photoelectric conversion element 1 to obtain a solar cell.

(設計変更)
本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、適宜設計変更可能である。
本発明はCIGS系光電変換素子の任意のプロセスに適用可能である。例えば、ポリイミド等の樹脂基板を用いたCIGS系光電変換素子の研究が行われている。樹脂基板を用いる場合には、樹脂の耐熱温度以下で光電変換層の成膜を行う必要があり、400℃程度のプロセスが限界である。この温度では高特性の光電変換層を成膜することは難しいため、エネルギーアシスト層を設けるなどの工夫がなされている。本発明は、かかる低温プロセスの光電変換素子にも適用可能である。ただし、本発明は、基板に対してより高い耐熱性が要求される高温プロセス、具体的には470℃以上のプロセスにより有効である。
(Design changes)
The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate without departing from the spirit of the present invention.
The present invention can be applied to any process of a CIGS photoelectric conversion element. For example, a CIGS photoelectric conversion element using a resin substrate such as polyimide has been studied. In the case of using a resin substrate, it is necessary to form a photoelectric conversion layer at a temperature lower than the heat resistant temperature of the resin, and a process of about 400 ° C. is the limit. Since it is difficult to form a high-performance photoelectric conversion layer at this temperature, a device such as an energy assist layer has been devised. The present invention is also applicable to such a low-temperature process photoelectric conversion element. However, the present invention is effective in a high temperature process that requires higher heat resistance to the substrate, specifically, a process at 470 ° C. or higher.

本発明に係る実施例及び比較例について説明する。   Examples and comparative examples according to the present invention will be described.

(光電変換素子用基板の製造 SUB1〜SUB15)
<金属基材の製造>
微量成分の量と、鋳造、圧延、及び中間焼鈍の条件とを変えて、計15種類のAl圧延板(いずれもAl純度98.0質量%以上)を得た。得られた各Al基板に対して、付着している圧延油の除去、及び30質量%のHSO水溶液中でデスマット処理を施した後、その表面を以下の3段階で研磨した。Al基板は5cm角サンプルとし、これを両面テープにて鏡面仕上げの金属ブロックに貼着して、研磨に供した。
(Manufacture of substrates for photoelectric conversion elements SUB1 to SUB15)
<Manufacture of metal substrate>
A total of 15 types of Al rolled plates (all with an Al purity of 98.0% by mass or more) were obtained by changing the amount of trace components and the conditions of casting, rolling, and intermediate annealing. After removing the adhering rolling oil and applying a desmut treatment in a 30% by mass H 2 SO 4 aqueous solution to each of the obtained Al substrates, the surface was polished in the following three stages. The Al substrate was a 5 cm square sample, which was adhered to a mirror-finished metal block with a double-sided tape and subjected to polishing.

1)研磨紙による機械研磨
研磨盤 丸本ストルアス(株)製 商品名:ラボポール‐5、
研磨紙:商品名 丸本ストルアス(株)製 耐水研磨紙。
研磨盤上に研磨紙を取り付けて回転させ、これに各Al基板(5cm角サンプル)を接触させて、表面研磨を実施した。#80→#240→#500→#1000→#1200→#1500と順次、研磨紙の番手を上げ、Al基板表面の凹凸が目視確認できなくなるまで、研磨した。
1) Mechanical polishing with abrasive paper Polishing machine Marumoto Struers Co., Ltd. Trade name: Labopol-5,
Abrasive paper: Trade name Marumoto Struers Co., Ltd.
Abrasive paper was mounted on a polishing board and rotated, and each Al substrate (5 cm square sample) was brought into contact therewith to perform surface polishing. # 80 → # 240 → # 500 → # 1000 → # 1200 → # 1500 In this order, the count of the polishing paper was increased, and polishing was performed until the irregularities on the surface of the Al substrate could not be visually confirmed.

2)ダイヤモンドスラリーによる機械研磨
研磨盤 同上、
研磨布:丸本ストルアス(株)製 琢磨布 No773(研磨剤の粒径10μm以上)、No751(研磨剤の粒径10μm未満)、
研磨剤:商品名 丸本ストルアス(株)製 ダイヤモンド研磨剤 DP-スプレーP。
研磨盤上に研磨布を取り付けてそこに研磨剤を供給して回転させ、これに研磨紙による機械研磨を終えた上記Al基板(5cm角サンプル)を接触させて、表面研磨を実施した。順次、以下のように研磨剤を換え、Al基板表面の凹凸部分が目視確認できなくなるまで、研磨した。研磨布は研磨剤を替えるたびに交換した。
SPRIR(粒径45μm)→SPRAM(粒径25μm)→SPRUF(粒径15μm)→SPRAC(粒径9μm)→SPRIX(粒径6μm)→SPRRET(粒径3μm)→SPRON(粒径1μm)→SPRYT(粒径0.25μm)。
2) Mechanical polishing with diamond slurry.
Abrasive cloth: Marumoto Struers Co., Ltd. Polished cloth No773 (Abrasive particle size of 10 μm or more), No751 (Abrasive particle size of less than 10 μm),
Abrasive: Brand name Diamond abrasive DP-spray P manufactured by Marumoto Struers Co., Ltd.
A polishing cloth was mounted on a polishing board, and an abrasive was supplied thereto and rotated. The Al substrate (5 cm square sample) that had been mechanically polished with abrasive paper was brought into contact therewith to carry out surface polishing. Sequentially, the polishing agent was changed as follows, and polishing was performed until the uneven portions on the surface of the Al substrate could not be visually confirmed. The polishing cloth was changed every time the abrasive was changed.
SPRI (particle size 45 μm) → SPRAM (particle size 25 μm) → SPRUF (particle size 15 μm) → SPRAC (particle size 9 μm) → SPRIX (particle size 6 μm) → SPRET (particle size 3 μm) → SPRON (particle size 1 μm) → SPRYT (Particle size 0.25 μm).

3)電解研摩
電解液:燐酸、硫酸、エチレングリコール、モノエチルエーテル、水の混合液、
温度:50℃、
時間:5分、
通電条件:直流15V。
3) Electropolishing Electrolyte: Phosphoric acid, sulfuric acid, ethylene glycol, monoethyl ether, water mixture,
Temperature: 50 ° C
Time: 5 minutes
Energizing condition: DC 15V.

上記3段階の研磨により、Al基板の表面を、ふくれの残留密度:0個/dm2、表面粗さRa:0.1μm、平均光沢度:75%の状態に仕上げた。研磨工程の途上で適宜、以下の手段で表面粗さRaを評価した。 By the above three-step polishing, the surface of the Al substrate was finished in a state of residual density of blisters: 0 / dm 2 , surface roughness Ra: 0.1 μm, and average glossiness: 75%. In the course of the polishing process, the surface roughness Ra was evaluated appropriately by the following means.

まず、JIS−B601−1994記載に準拠した触針式粗さ計で計測後、表面粗さRaが0.1μm以下になった場合に、AFMにてRaを計測した。
粗さ計によるRaの測定条件は以下の通りである。
機種:(株)東京精密製 サーフコム 575A、
測定条件:カットオフ 0.8mm、傾斜補正 FLAT-ML、測定長 2.5mm、T-speed 0.3mm/s、Polarity positive、
測定針:先端径10μmのサファイヤ針。
測定で得られた粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって得られた面積を長さLで割った値(μm)がRaである。
First, after measurement with a stylus type roughness meter according to JIS-B601-1994, Ra was measured with AFM when the surface roughness Ra was 0.1 μm or less.
The conditions for measuring Ra with a roughness meter are as follows.
Model: Surfcom 575A manufactured by Tokyo Seimitsu Co., Ltd.
Measurement conditions: Cut-off 0.8 mm, tilt correction FLAT-ML, measurement length 2.5 mm, T-speed 0.3 mm / s, Polarity positive,
Measuring needle: A sapphire needle with a tip diameter of 10 μm.
Ra is a value (μm) obtained by folding the roughness curve obtained by the measurement from the center line and dividing the area obtained by the roughness curve and the center line by the length L.

AFMによるRa測定は、DFMサイクリックコンタクトモードで、以下の条件で行った。
走査エリア 3000nm、
走査周波数 0.5Hz、
振幅減衰率 -0.16、
Iゲイン 0.0749/Pゲイン 0.0488、
Qカーブゲイン 2.00、
加振電圧 0.044V、
共振周波数 318.5kHz、
測定周波数 318.2kHz、
振動振幅 0.995V、
Q値 460付近、
測定針 先端径10nmのSi針(セイコーインスツルメンツ製、商品名:カンチレバー SI DF40P)。
Ra measurement by AFM was performed in the DFM cyclic contact mode under the following conditions.
Scanning area 3000nm,
Scan frequency 0.5Hz,
Amplitude decay rate -0.16,
I gain 0.0749 / P gain 0.0488,
Q curve gain 2.00,
Excitation voltage 0.044V,
Resonance frequency 318.5kHz,
Measurement frequency 318.2kHz,
Vibration amplitude 0.995V,
Q value near 460,
Measuring needle A Si needle having a tip diameter of 10 nm (product name: cantilever SI DF40P, manufactured by Seiko Instruments Inc.).

基板の製造条件、Al純度、微量成分の含有量、及び基板断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数を表1に示す。表中、「%」は質量%を示す。表中、Fe含有量及びFe含有クラスター数が本発明の規定外の数値には×を付してある。   Substrate manufacturing conditions, Al purity, trace component content, and substrate cross section minimum diameter is 0.3 μm or more, and the sum of minimum diameter and maximum diameter divided by 2 is 0.5 to 2.5 μm Table 1 shows the number of Fe-containing clusters. In the table, “%” indicates mass%. In the table, “x” is added to the numerical values of the Fe content and the number of Fe-containing clusters that are not defined in the invention.

微量成分の含有量は、JIS H 1305の光電測光法による発光分光分析で測定した。Fe含有クラスターの数はSEM/EDXが一体となった解析装置で、加速電圧15kVの条件で求めた。図5A及び図5Bに、SEM断面写真とEDXチャートの測定例を示す。EDXチャートは、SEM断面写真中のFeリッチ部分004とFeプアー部分007のデータである。   The content of the trace component was measured by emission spectroscopic analysis by photoelectric photometry according to JIS H 1305. The number of Fe-containing clusters was determined under the condition of an accelerating voltage of 15 kV using an analysis apparatus in which SEM / EDX was integrated. 5A and 5B show measurement examples of SEM cross-sectional photographs and EDX charts. The EDX chart is data of the Fe rich portion 004 and the Fe poor portion 007 in the SEM cross-sectional photograph.

<陽極酸化>
上記のようにして得られた各Al基板(厚み0.30mm)の両面側に、23℃とした10質量%硫酸の電解液中において直流で陽極酸化処理を行い、陽極酸化膜を形成した。陽極酸化処理の開始直後にAl基板に流す電流量を0.02A/cmとし、その後徐々に0.20A/cmまで電流量を増大させるプロファイルとなるように、Al基板に流す電流量を制御した。陽極酸化膜の厚みが9.0μm(そのうちバリア層の厚みが0.38μm)、微細孔の孔径が100nm前後の陽極酸化膜を形成した。以上のようにして、光電変換素子用基板SUB1〜SUB15を得た。
<Anodic oxidation>
Anodizing film was formed on both sides of each Al substrate (thickness 0.30 mm) obtained as described above by direct current anodic oxidation in an electrolytic solution of 10% by mass sulfuric acid at 23 ° C. Immediately after the start of the anodizing treatment, the amount of current flowing through the Al substrate is set to 0.02 A / cm 2, and then the amount of current flowing through the Al substrate is set so as to gradually increase the amount of current to 0.20 A / cm 2. Controlled. An anodic oxide film having an anodized film thickness of 9.0 μm (of which the barrier layer thickness is 0.38 μm) and a fine pore diameter of about 100 nm was formed. Thus, photoelectric conversion element substrates SUB1 to SUB15 were obtained.

<光電変換素子用基板の耐電圧性評価>
各光電変換素子用基板SUB1〜SUB15に対して、試験片の1箇所に変圧器の端子をつなぎ、絶縁体膜(陽極酸化膜)の膜面に水銀粒を置き、これに電圧調整器の端子をつないだ銅線端を入れ、電圧を上昇させ破壊導通させ、耐電圧測定を行った。結果を表1に合わせて示す。
<Evaluation of voltage resistance of substrate for photoelectric conversion element>
For each photoelectric conversion element substrate SUB1 to SUB15, the terminal of the transformer is connected to one place of the test piece, and mercury particles are placed on the film surface of the insulator film (anodized film). The end of the copper wire connected to was inserted, the voltage was raised to cause break conduction, and the withstand voltage was measured. The results are shown in Table 1.

(実施例1−1〜1−8、比較例1−1〜1−8)
各例において、光電変換素子用基板の種類を変える以外は、同一条件で光電変換素子を製造した。各例において用いた基板を表2に示す。基板としては、上記で作成したSUB1〜SUB15の他、太陽電池用基板として一般に用いられる厚さ0.50mmのソーダライムガラス基板も用いた。
(Examples 1-1 to 1-8, Comparative Examples 1-1 to 1-8)
In each example, the photoelectric conversion element was manufactured on the same conditions except changing the kind of substrate for photoelectric conversion elements. Table 2 shows the substrates used in each example. As the substrate, in addition to the SUB1 to SUB15 created above, a soda lime glass substrate having a thickness of 0.50 mm generally used as a substrate for solar cells was also used.

光電変換素子用基板上に、RFスパッタリング(高周波スパッタリング)法によって、Mo層、NaF層、及びMo層を順次成膜し、これらの積層構造からなる下部電極を形成した。下部電極の総厚みは約1.0μmとした。基板がソーダライムガラスの場合は、基板にNa含まれるため、NaF層形成は行わなかった。下部電極成膜後にスクライブ加工を行い、第1の開溝部を形成した。   On the photoelectric conversion element substrate, a Mo layer, a NaF layer, and a Mo layer were sequentially formed by RF sputtering (high frequency sputtering) to form a lower electrode having a laminated structure thereof. The total thickness of the lower electrode was about 1.0 μm. When the substrate was soda lime glass, NaF was not formed because the substrate contained Na. After forming the lower electrode, scribing was performed to form a first groove.

次いで、下部電極上に、多源同時蒸着法にて、光電変換層として2層構造のCu(In1−xGa)Se薄膜を蒸着した。Cu(In1−xGa)Se薄膜の蒸着は、真空容器内部にCuの蒸着源、Inの蒸着源、Gaの蒸着源、およびSeの蒸着源を用意し、真空度約10−4Pa(10−7Torr)のもとで、実施した。その際、蒸着ルツボの温度は適宜調節した。 Then, on the lower electrode, at a multi-source coevaporation, the two-layer structure as the photoelectric conversion layer Cu (In 1-x Ga x ) was deposited Se 2 thin film. Cu (In 1-x Ga x ) Se 2 deposition of the thin film deposition source of vacuum inside the container Cu, In evaporation source, Ga evaporation source, and providing a Se deposition source, the vacuum degree of about 10-4 The test was carried out under Pa (10 −7 Torr). At that time, the temperature of the vapor deposition crucible was appropriately adjusted.

1層目はInとGaの合計の原子組成に対してCuの原子組成が過剰になるように膜を形成し、続く2層目はCuの原子組成に対してInとGaの合計の原子組成が過剰になるように膜を形成した。基板温度は530℃で一定とした。1層目の厚みは約2μmとした。1層目の組成比(モル比)はCu/(In+Ga)=約1.0〜1.2であった。次に2層目を約1μm蒸着し、最終的な原子組成比(モル比)がCu/(In+Ga)=0.8〜0.9になるよう蒸着した。   The first layer forms a film so that the atomic composition of Cu is excessive with respect to the total atomic composition of In and Ga, and the second layer is the total atomic composition of In and Ga with respect to the atomic composition of Cu. A film was formed so as to be excessive. The substrate temperature was constant at 530 ° C. The thickness of the first layer was about 2 μm. The composition ratio (molar ratio) of the first layer was Cu / (In + Ga) = about 1.0 to 1.2. Next, the second layer was evaporated by about 1 μm, and the final atomic composition ratio (molar ratio) was Cu / (In + Ga) = 0.8 to 0.9.

次に、バッファ層として、積層構造の半導体膜を形成した。まず、約50nmの厚さのCdS膜を化学析出法により堆積した。化学析出法は、硝酸Cd、チオ尿素およびアンモニアを含む水溶液を約80℃に温め、上記光電変換層をこの水溶液に浸漬することにより行った。さらに、CdS膜の上に約80nmの厚さのZnO膜をMOCVD法で形成した。バッファ層の成膜後に、光電変換層とバッファ層の積層に対してスクライブ加工を行い、第2の開溝部を形成した。   Next, a semiconductor film having a stacked structure was formed as a buffer layer. First, a CdS film having a thickness of about 50 nm was deposited by chemical precipitation. The chemical precipitation method was performed by warming an aqueous solution containing Cd nitrate, thiourea and ammonia to about 80 ° C. and immersing the photoelectric conversion layer in this aqueous solution. Further, a ZnO film having a thickness of about 80 nm was formed on the CdS film by MOCVD. After the formation of the buffer layer, scribing was performed on the stacked layer of the photoelectric conversion layer and the buffer layer to form a second groove portion.

次に、MOCVD法により、上部電極として、約500nmの厚さのAl添加ZnO膜を堆積した。上部電極の成膜後に、上部電極に対してスクライブ加工を行い、第3の開溝部を形成した。さらに、光電変換層とバッファ層と上部電極の積層に対してスクライブ加工を行い、第4の開溝部を形成した。   Next, an Al-added ZnO film having a thickness of about 500 nm was deposited as an upper electrode by MOCVD. After forming the upper electrode, scribing was performed on the upper electrode to form a third groove portion. Further, a scribe process was performed on the stack of the photoelectric conversion layer, the buffer layer, and the upper electrode to form a fourth groove portion.

その後、取出し外部電極としてAlを蒸着して、光電変換素子を得た。最後に、封止用の透明樹脂のラミネートを行い、太陽電池モジュールを得た。同一条件で計20個の太陽電池モジュールを製造した。各モジュールは、24個のセルが直列接続されたセルユニットが3列並列接続された構造とした。   Then, Al was vapor-deposited as a taking-out external electrode, and the photoelectric conversion element was obtained. Finally, a sealing transparent resin was laminated to obtain a solar cell module. A total of 20 solar cell modules were manufactured under the same conditions. Each module has a structure in which three rows of cell units in which 24 cells are connected in series are connected in parallel.

<光電変換効率および歩留まり率の評価>
作製した太陽電池モジュールは、Air Mass(AM)=1.5、100mW/cm2の擬似太陽光を用いて光電変換効率を評価した。20個のサンプルについて光電変換効率を測定し、その中での最高値に対して80%以上の光電変換効率のサンプルを合格品とし、それ以外のものを不合格品とした。合格品の光電変換効率の平均値を光電変換効率として求めた。また、下記式により歩留まり率を求めた。
歩留まり率=合格品数/評価サンプル総数(%)
<Evaluation of photoelectric conversion efficiency and yield rate>
The produced solar cell module evaluated the photoelectric conversion efficiency using the artificial sunlight of Air Mass (AM) = 1.5 and 100 mW / cm 2 . The photoelectric conversion efficiency was measured for 20 samples, and a sample having a photoelectric conversion efficiency of 80% or more with respect to the maximum value among the samples was regarded as an acceptable product, and the other samples were regarded as unacceptable products. The average value of the photoelectric conversion efficiencies of the accepted products was obtained as the photoelectric conversion efficiency. Moreover, the yield rate was calculated | required by the following formula.
Yield rate = number of accepted products / total number of evaluation samples (%)

(実施例2−1〜2−8、比較例2−1〜2−8)
セレン化法により光電変換層を成膜した以外は、実施例1−1〜1−8、比較例1−1〜1−8と同様にして、光電変換素子を製造し評価した。用いた基板と評価結果を表3に示す。
光電変換層の形成は、まず(Cu−Ga)層/In層の積層膜を、トータルのCu/(In+Ga)組成比(モル比)が0.9前後となるようにスパッタ法で成膜し、次いで、セレン蒸気を導入した雰囲気下で、基板温度を470℃〜480℃の範囲になるように加熱することにより、熱拡散反応によって実質的な組成がCu(In1−xGa)Seである光電変換層を作製した。
(Examples 2-1 to 2-8, Comparative Examples 2-1 to 2-8)
A photoelectric conversion element was produced and evaluated in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-8, except that a photoelectric conversion layer was formed by a selenization method. Table 3 shows the substrates used and the evaluation results.
For the formation of the photoelectric conversion layer, first, a (Cu—Ga) layer / In layer laminated film is formed by sputtering so that the total Cu / (In + Ga) composition ratio (molar ratio) is about 0.9. Then, under an atmosphere in which selenium vapor is introduced, the substrate temperature is heated so as to be in the range of 470 ° C. to 480 ° C., so that the substantial composition becomes Cu (In 1-x Ga x ) Se by a thermal diffusion reaction. A photoelectric conversion layer 2 was produced.

(結果)
表1の結果から明らかなように、高純度で微量成分量の少ないAl基板を用いた光電変換素子用基板は耐電圧が高く、微量成分量の増加に伴って耐電圧が低下する傾向が見られた。耐電圧の観点だけで考えると、Al基板の純度を極力高くすればよいことになる。しかしながら、表2,3に示すように、高純度にすることだけを重視して製造されたAl基板を用いる場合には光電変換素子のデバイス形成の際に高温に加熱されると、高い光電変換効率を有する光電変換素子を製造することができず、歩留まりが悪く品質の安定した光電変換素子を製造できなかった。具体的には、Al純度99.99質量%のAl基板を用いた光電変換素子用基板SUB1〜SUB3を用いた比較例1−1〜1−3、2−1〜2−3は、光電変換効率が低く歩留まりも悪かった。
(result)
As is clear from the results in Table 1, a substrate for a photoelectric conversion element using an Al substrate having a high purity and a small amount of trace components has a high withstand voltage, and the withstand voltage tends to decrease as the amount of trace components increases. It was. From the standpoint of withstand voltage alone, the purity of the Al substrate should be as high as possible. However, as shown in Tables 2 and 3, when using an Al substrate manufactured with an emphasis only on high purity, high photoelectric conversion occurs when heated to a high temperature during device formation of the photoelectric conversion element. An efficient photoelectric conversion element could not be manufactured, and a photoelectric conversion element with poor yield and stable quality could not be manufactured. Specifically, Comparative Examples 1-1 to 1-3 and 2-1 to 2-3 using photoelectric conversion element substrates SUB1 to SUB3 using an Al substrate having an Al purity of 99.99% by mass are photoelectric conversions. The efficiency was low and the yield was bad.

また、Fe含量またはFe含有クラスター数が過剰なAl基板を用いた光電変換素子用基板SUB12〜SUB15を用いた比較例1−4〜1−7、2−4〜2−7についても、光電変換効率が低く歩留まりも悪かった。   Moreover, also in Comparative Examples 1-4 to 1-7 and 2-4 to 2-7 using photoelectric conversion element substrates SUB12 to SUB15 using an Al substrate with an excessive Fe content or Fe-containing cluster number, photoelectric conversion The efficiency was low and the yield was bad.

Al基板中のFe含有量が0.05〜1.0質量%であり、かつ、Al基板の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数が1,500〜40,000個/mmであるAl基板を用いた光電変換素子用基板SUB4〜SUB11は、比較的高い耐電圧を有していた。また、SUB4〜SUB11を用いて光電変換素子を製造した実施例1−1〜1−8、2−1〜2−8においては、光電変換素子のデバイス形成の際に高温に加熱しても、高い光電変換効率を有する光電変換素子を安定して製造することができた。実施例1−1〜1−8、2−1〜2−8では、12〜16%の高い光電変換効率が得られた。 The Fe content in the Al substrate is 0.05 to 1.0 mass%, and the minimum diameter in the cross section of the Al substrate is 0.3 μm or more, and the sum of the minimum diameter and the maximum diameter is divided by 2. The photoelectric conversion element substrates SUB4 to SUB11 using Al substrates having a value of 0.5 to 2.5 μm and Fe-containing clusters of 1,500 to 40,000 pieces / mm 2 are relatively high withstand voltage. Had. In Examples 1-1 to 1-8 and 2-1 to 2-8 in which photoelectric conversion elements were manufactured using SUB4 to SUB11, even when heated to a high temperature during device formation of the photoelectric conversion elements, A photoelectric conversion element having high photoelectric conversion efficiency could be stably produced. In Examples 1-1 to 1-8 and 2-1 to 2-8, a high photoelectric conversion efficiency of 12 to 16% was obtained.

多源同時蒸着法で光電変換層を成膜した実施例1−1〜1−8においては、14%以上の高い光電変換効率が得られた。この結果は、基板温度を530℃で行った場合の結果であるが、基板温度を550℃とすると、比較例に対する本発明の優位性が更に顕著になった。光電変換層の成膜をセレン化法で行った実施例2−1〜2−8においても、12%以上の高い光電変換効率が得られた。この結果は、VIb族元素存在下で加熱する際の基板温度を470℃〜480℃の範囲で行った場合の結果であるが、基板温度を500〜510℃とした条件に変更すると、比較例に対する本発明の優位性が更に顕著になった。これらの結果から、本発明の高い光電変換効率および歩留まり率は、用いた基板の高温環境下での安定性が向上することにより得られた効果と推定される。   In Examples 1-1 to 1-8 in which the photoelectric conversion layer was formed by the multi-source simultaneous vapor deposition method, a high photoelectric conversion efficiency of 14% or more was obtained. This result is a result when the substrate temperature is 530 ° C., but when the substrate temperature is 550 ° C., the superiority of the present invention over the comparative example becomes more remarkable. Also in Examples 2-1 to 2-8 in which the photoelectric conversion layer was formed by the selenization method, a high photoelectric conversion efficiency of 12% or more was obtained. This result is the result when the substrate temperature when heating in the presence of the VIb group element is in the range of 470 ° C. to 480 ° C. When the substrate temperature is changed to 500 to 510 ° C., the comparative example The superiority of the present invention over From these results, it is presumed that the high photoelectric conversion efficiency and yield rate of the present invention are the effects obtained by improving the stability of the used substrate in a high temperature environment.

光電変換素子のセルの重さを、実施例の光電変換素子と、ソーダライムガラスを基板として用いた光電変換素子とで比較すると、前者が390g/m2であるのに対し、後者は1.3kg/m2であり、実施例の光電変換素子は、一般のガラス基板の光電変換素子に対し大幅な軽量化を達成できることが分かった。更に、実施例の光電変換素子は、厚みが300μm余りのAl基板を用いた太陽電池であることから、可撓性に優れ、割れにくいという点でも、一般のガラス基板の太陽電池に比べて優れる。 Comparing the weight of the photoelectric conversion element cell between the photoelectric conversion element of the example and the photoelectric conversion element using soda lime glass as a substrate, the former is 390 g / m 2 whereas the latter is 1. It was 3 kg / m 2 , and it was found that the photoelectric conversion element of the example can achieve significant weight reduction compared to the photoelectric conversion element of a general glass substrate. Furthermore, since the photoelectric conversion element of the example is a solar cell using an Al substrate with a thickness of about 300 μm or more, it is superior to a general glass substrate solar cell in that it is excellent in flexibility and hard to break. .

本発明の光電変換素子は、太陽電池、及び赤外センサ等の用途に好ましく利用できる。   The photoelectric conversion element of this invention can be preferably utilized for uses, such as a solar cell and an infrared sensor.

1 光電変換素子(太陽電池)
10 基板
11 金属基材
12 陽極酸化膜
20 下部電極
30 バッファ層
40 光電変換層
50 上部電極
1 Photoelectric conversion element (solar cell)
DESCRIPTION OF SYMBOLS 10 Substrate 11 Metal base material 12 Anodized film 20 Lower electrode 30 Buffer layer 40 Photoelectric conversion layer 50 Upper electrode

Claims (4)

Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する基板上に、
Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を含み、光吸収により電流を発生する光電変換層と、前記電流を取り出す電極とを備えた光電変換素子において、
前記金属基材中のFe含有量が0.05〜1.0質量%であり、
かつ、前記金属基材の断面における、最小径が0.3μm以上であり、最小径と最大径の和を2で割った値が0.5〜2.5μmであるFe含有クラスターの数が1,500〜40,000個/mmであることを特徴とする光電変換素子。
On a substrate having an anodized film on at least one surface side of a metal base material mainly composed of Al,
In a photoelectric conversion element including a compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element, and including a photoelectric conversion layer that generates a current by light absorption, and an electrode that extracts the current,
Fe content in the metal substrate is 0.05 to 1.0 mass%,
The number of Fe-containing clusters having a minimum diameter of 0.3 μm or more and a value obtained by dividing the sum of the minimum diameter and the maximum diameter by 2 is 0.5 to 2.5 μm in the cross section of the metal substrate. 500 to 40,000 pieces / mm 2 .
前記金属基材は、Al含有量が98.0質量%以上であり、Si含有量が0.25質量%以下であり、Cu含有量が0.20質量%以下であることを特徴とする請求項1に記載の光電変換素子。   The metal substrate has an Al content of 98.0% by mass or more, an Si content of 0.25% by mass or less, and a Cu content of 0.20% by mass or less. Item 2. The photoelectric conversion element according to Item 1. 前記光電変換層は、
Cu及びAgからなる群より選択された少なくとも1種のIb族元素と、
Al,Ga及びInからなる群より選択された少なくとも1種のIIIb族元素と、
S,Se,及びTeからなる群から選択された少なくとも1種のVIb族元素とからなる化合物半導体を含むことを特徴とする請求項1又は2に記載の光電変換素子。
The photoelectric conversion layer is
At least one group Ib element selected from the group consisting of Cu and Ag;
At least one group IIIb element selected from the group consisting of Al, Ga and In;
3. The photoelectric conversion device according to claim 1, comprising a compound semiconductor comprising at least one VIb group element selected from the group consisting of S, Se, and Te.
請求項1〜3のいずれかに記載の光電変換素子を備えたことを特徴とする太陽電池。   A solar cell comprising the photoelectric conversion element according to claim 1.
JP2009007135A 2009-01-16 2009-01-16 Photoelectric conversion element and solar cell using the same Expired - Fee Related JP4550928B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009007135A JP4550928B2 (en) 2009-01-16 2009-01-16 Photoelectric conversion element and solar cell using the same
PCT/JP2010/050454 WO2010082642A1 (en) 2009-01-16 2010-01-08 Photoelectric conversion device and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007135A JP4550928B2 (en) 2009-01-16 2009-01-16 Photoelectric conversion element and solar cell using the same

Publications (2)

Publication Number Publication Date
JP2010165878A true JP2010165878A (en) 2010-07-29
JP4550928B2 JP4550928B2 (en) 2010-09-22

Family

ID=42339895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007135A Expired - Fee Related JP4550928B2 (en) 2009-01-16 2009-01-16 Photoelectric conversion element and solar cell using the same

Country Status (2)

Country Link
JP (1) JP4550928B2 (en)
WO (1) WO2010082642A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222006A (en) * 2011-04-04 2012-11-12 Tdk Corp Solar cell, and manufacturing method of solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230973B1 (en) * 2011-11-22 2013-02-07 한국에너지기술연구원 Cis/cigs based-thin film solar cell having back side tco layer and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170766A (en) * 1984-09-14 1986-04-11 Matsushita Electric Ind Co Ltd Thin-film solar cell
JPH07224338A (en) * 1994-02-10 1995-08-22 Sky Alum Co Ltd Formation of hard anodically oxidized film and aluminum alloy for forming hard anodically oxidized film
JPH10135593A (en) * 1996-10-31 1998-05-22 Shirai Denshi Kogyo Kk Printed circuit substrate
JPH1197724A (en) * 1997-09-25 1999-04-09 Citizen Watch Co Ltd Solar cell and its manufacture
JP2000349320A (en) * 1999-06-08 2000-12-15 Kobe Steel Ltd Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2007502536A (en) * 2003-08-12 2007-02-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170766A (en) * 1984-09-14 1986-04-11 Matsushita Electric Ind Co Ltd Thin-film solar cell
JPH07224338A (en) * 1994-02-10 1995-08-22 Sky Alum Co Ltd Formation of hard anodically oxidized film and aluminum alloy for forming hard anodically oxidized film
JPH10135593A (en) * 1996-10-31 1998-05-22 Shirai Denshi Kogyo Kk Printed circuit substrate
JPH1197724A (en) * 1997-09-25 1999-04-09 Citizen Watch Co Ltd Solar cell and its manufacture
JP2000349320A (en) * 1999-06-08 2000-12-15 Kobe Steel Ltd Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2007502536A (en) * 2003-08-12 2007-02-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222006A (en) * 2011-04-04 2012-11-12 Tdk Corp Solar cell, and manufacturing method of solar cell

Also Published As

Publication number Publication date
JP4550928B2 (en) 2010-09-22
WO2010082642A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4629151B2 (en) Photoelectric conversion element, solar cell, and method for manufacturing photoelectric conversion element
JP5229901B2 (en) Photoelectric conversion element and solar cell
JP5318236B2 (en) Al substrate, metal substrate with insulating layer using the same, semiconductor element and solar cell
JP5480782B2 (en) Solar cell and method for manufacturing solar cell
JP4629153B1 (en) Solar cell and method for manufacturing solar cell
WO2011093065A1 (en) Insulating metal substrate and semiconductor device
US20110186102A1 (en) Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
JP2010212336A (en) Photoelectric converting element and method of manufacturing the same, and solar cell
JP4745449B2 (en) Photoelectric conversion element and manufacturing method thereof, solar cell, and target
US20110186103A1 (en) Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
JP2009099973A (en) Solar cell
US8686281B2 (en) Semiconductor device and solar battery using the same
JP4550928B2 (en) Photoelectric conversion element and solar cell using the same
US20110186123A1 (en) Substrate with insulation layer and thin-film solar cell
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
JP2011124538A (en) Insulating-layer-attached metal substrate, methods for manufacturing semiconductor device using the same and solar cell using the same, and solar cell
JP2010258255A (en) Anodic oxidation substrate, method of manufacturing photoelectric conversion element using the same, the photoelectric conversion element, and solar cell
JP2011176286A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
JP2011159685A (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees