JP2012221849A - Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery - Google Patents

Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery Download PDF

Info

Publication number
JP2012221849A
JP2012221849A JP2011088537A JP2011088537A JP2012221849A JP 2012221849 A JP2012221849 A JP 2012221849A JP 2011088537 A JP2011088537 A JP 2011088537A JP 2011088537 A JP2011088537 A JP 2011088537A JP 2012221849 A JP2012221849 A JP 2012221849A
Authority
JP
Japan
Prior art keywords
molten salt
electrode
positive electrode
battery
salt battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011088537A
Other languages
Japanese (ja)
Inventor
Koji Nitta
耕司 新田
Shinji Inazawa
信二 稲澤
Shoichiro Sakai
将一郎 酒井
Atsushi Fukunaga
篤史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011088537A priority Critical patent/JP2012221849A/en
Publication of JP2012221849A publication Critical patent/JP2012221849A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of the electrode of a molten salt battery in which the electrode can be impregnated easily with a molten salt, and to provide a manufacturing method of a molten salt battery, and the electrode of a molten salt battery.SOLUTION: When the positive electrode (electrode) of a molten salt battery is manufactured, solid powder of the molten salt to be contained in the electrolyte of the molten salt battery is mixed with a powdery positive electrode material (electrode) containing a positive electrode active material, i.e. NaCrO. Furthermore, the molten salt battery is manufactured while omitting a step for impregnating the positive electrode with the molten salt. Since the molten salt is contained previously in the positive electrode, a molten salt battery in which the interior of the positive electrode is impregnated uniformly with the molten salt can be obtained easily and reliably by adjusting the temperature in the molten salt battery above the melting point of the molten salt.

Description

本発明は、電解質として溶融塩を用いた溶融塩電池の電極の製造方法、溶融塩電池の製造方法及び溶融塩電池の電極に関する。   The present invention relates to a method for manufacturing an electrode for a molten salt battery using a molten salt as an electrolyte, a method for manufacturing a molten salt battery, and an electrode for a molten salt battery.

近年、太陽光又は風力等の自然エネルギーの利用が進められている。自然エネルギーを利用して発電を行った場合は発電量が変動し易いので、発電した電力を供給するためには、蓄電池を用いた充電・放電により、供給電力を平準化することが必要となる。このため、自然エネルギーの利用を促進させるためには、高エネルギー密度・高効率の蓄電池が不可欠である。このような蓄電池として、特許文献1に開示されたナトリウム−硫黄電池がある。他の高エネルギー密度・高効率の蓄電池として、溶融塩電池がある。   In recent years, utilization of natural energy such as sunlight or wind power has been promoted. When power is generated using natural energy, the amount of power generation is likely to fluctuate. Therefore, in order to supply the generated power, it is necessary to level the supplied power by charging and discharging using a storage battery. . For this reason, in order to promote utilization of natural energy, a storage battery with high energy density and high efficiency is indispensable. As such a storage battery, there is a sodium-sulfur battery disclosed in Patent Document 1. Another high energy density and high efficiency storage battery is a molten salt battery.

特開2007−273297号公報JP 2007-273297 A

溶融塩電池は、溶融塩を電解質に用いた電池であり、溶融塩が溶融した状態で動作する。溶融塩電池の動作中は、溶融塩電池内の温度は溶融塩の融点以上に保たれている。溶融塩電池の電極は、溶融塩との間で電荷を交換する活物質を主成分とし、溶融塩を含浸させてある。従来、この電極は、NaCrO2 等の活物質を含む電極材料と、有機溶媒等の液体分散媒とを混合し、混合物を金属製の集電体に担持させ、混合物を乾燥させ、乾燥した混合物をプレスすることにより、製造される。製造した電極と、他極性の電極と、電極間に配置されるセパレータとを電池容器内に配置した後に、最後の段階で、両電極及びセパレータに溶融塩を含浸させ、溶融塩電池が組み立てられる。通常、溶融塩は室温では固体であるので、電極及びセパレータを配置した電池容器内には、最初は固体状態の溶融塩が組み込まれることとなる。 The molten salt battery is a battery using a molten salt as an electrolyte, and operates in a state where the molten salt is melted. During operation of the molten salt battery, the temperature in the molten salt battery is maintained at or above the melting point of the molten salt. The electrode of the molten salt battery is mainly composed of an active material that exchanges electric charge with the molten salt, and is impregnated with the molten salt. Conventionally, this electrode is made by mixing an electrode material containing an active material such as NaCrO 2 and a liquid dispersion medium such as an organic solvent, supporting the mixture on a metal current collector, drying the mixture, and then drying the mixture. It is manufactured by pressing. After the manufactured electrode, the other polarity electrode, and the separator disposed between the electrodes are disposed in the battery container, in the final stage, both the electrode and the separator are impregnated with the molten salt, and the molten salt battery is assembled. . Usually, since the molten salt is solid at room temperature, the molten salt in the solid state is first incorporated in the battery container in which the electrode and the separator are arranged.

溶融塩電池の電解質である溶融塩は、電極の内部まで均一に含浸されている必要がある。電極への溶融塩の含浸が不十分である場合は、電池の動作に必要な電極内での反応が不十分となり、溶融塩電池の容量は低くなる。他方、溶融塩を用いた電解質には高いイオン伝導性を有する利点があり、溶融塩電池では、電極の厚みを厚くして容量密度を上げることができる。即ち、イオン伝導度が高いことにより、電極内部の活物質へ充放電に関わるイオンを行き渡らせやすくなり、他の電池より電極の厚みを厚くしても、充放電電流を落とす必要がない。従って、溶融塩電池には、他の電池よりも厚い電極の内部まで固体状態の電解質を含浸させる必要があるという技術課題がある。   The molten salt that is the electrolyte of the molten salt battery needs to be uniformly impregnated to the inside of the electrode. When the impregnation of the molten salt into the electrode is insufficient, the reaction in the electrode necessary for the operation of the battery becomes insufficient, and the capacity of the molten salt battery becomes low. On the other hand, an electrolyte using a molten salt has an advantage of high ion conductivity. In a molten salt battery, the thickness of the electrode can be increased to increase the capacity density. That is, since the ion conductivity is high, ions related to charge / discharge are easily distributed to the active material inside the electrode, and even if the electrode is thicker than other batteries, it is not necessary to reduce the charge / discharge current. Therefore, the molten salt battery has a technical problem that it is necessary to impregnate a solid state electrolyte into the thicker electrode than other batteries.

従来の溶融塩電池では、電極に十分に溶融塩を含浸させるために、電池容器全体の温度を上げて溶融塩を溶融させた状態で、真空中で数日間かけて含浸を行い、更に、溶融塩電池を充電した状態である程度の期間放置するエージングの処理を行う等、手間と時間がかかるという問題がある。   In the conventional molten salt battery, in order to sufficiently impregnate the electrode with the molten salt, the temperature of the entire battery container is raised and the molten salt is melted, and the impregnation is performed for several days in a vacuum. There is a problem that it takes time and effort, such as performing an aging process in which the salt battery is charged for a certain period of time.

本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、電極の製造時に溶融塩を混合することによって、容易に電極内に溶融塩を含浸させることができる溶融塩電池の電極の製造方法、溶融塩電池の製造方法及び溶融塩電池の電極を提供することにある。   The present invention has been made in view of such circumstances, and its object is to provide a molten salt that can be easily impregnated in the electrode by mixing the molten salt at the time of manufacturing the electrode. It is providing the manufacturing method of the electrode of a salt battery, the manufacturing method of a molten salt battery, and the electrode of a molten salt battery.

本発明に係る溶融塩電池の電極の製造方法は、一又は複数種類の溶融塩からなる電解質を有する溶融塩電池の電極を製造する方法であって、前記電解質に含有される溶融塩の一部又は全部と同じ種類の溶融塩と液体分散媒とを、活物質を含む電極材料に加えて混合物を作製し、作製した混合物を集電体に塗布し、前記混合物から液体分散媒を除去することを特徴とする。   A method for producing an electrode for a molten salt battery according to the present invention is a method for producing an electrode for a molten salt battery having an electrolyte composed of one or more types of molten salts, and a part of the molten salt contained in the electrolyte. Alternatively, a mixture is prepared by adding the same type of molten salt and a liquid dispersion medium to the electrode material containing the active material, and the prepared mixture is applied to a current collector, and the liquid dispersion medium is removed from the mixture. It is characterized by.

本発明に係る溶融塩電池の製造方法は、請求項1に記載の溶融塩電池の電極の製造方法で製造した電極を少なくとも一方の電極として溶融塩電池を組み立てることを特徴とする。   A method for producing a molten salt battery according to the present invention is characterized in that a molten salt battery is assembled using at least one of the electrodes produced by the method for producing an electrode of a molten salt battery according to claim 1.

本発明に係る溶融塩電池の製造方法は、電解質である溶融塩を電極に含浸させる工程を実行しないことを特徴とする。   The method for manufacturing a molten salt battery according to the present invention is characterized in that the step of impregnating an electrode with molten salt as an electrolyte is not performed.

本発明に係る溶融塩電池の電極は、一又は複数種類の溶融塩からなる電解質を有する溶融塩電池の電極であって、溶融塩電池に組み込まれる前の状態で前記電解質含有される溶融塩の一部又は全部と同じ種類の溶融塩の固体物を含有していることを特徴とする。   An electrode of a molten salt battery according to the present invention is an electrode of a molten salt battery having an electrolyte composed of one or a plurality of types of molten salt, and the molten salt battery contains an electrolyte in a state before being incorporated in the molten salt battery. It is characterized by containing a solid substance of a molten salt of the same kind as part or all.

本発明においては、溶融塩を電解質として用いる溶融塩電池の電極を製造する際に、電解質を電極材料に混合した上で電極を製造することにより、電極内に均一に溶融塩を含ませる。   In the present invention, when manufacturing an electrode of a molten salt battery using a molten salt as an electrolyte, the molten salt is uniformly contained in the electrode by manufacturing the electrode after mixing the electrolyte with the electrode material.

また本発明においては、溶融塩電池を製造する際に、電極に溶融塩を含浸させる工程を省略する。溶融塩電池内の温度を溶融塩の融点以上に調整することにより、電極に溶融塩を含浸させる工程を必要とせずに、電極に溶融塩が含浸される。   Further, in the present invention, when manufacturing the molten salt battery, the step of impregnating the electrode with the molten salt is omitted. By adjusting the temperature in the molten salt battery to be equal to or higher than the melting point of the molten salt, the electrode is impregnated with the molten salt without requiring a step of impregnating the electrode with the molten salt.

本発明にあっては、電極の製造時に溶融塩が電極内に混合されているので、電解質となる溶融塩が電極の内部に均一に含浸させた溶融塩電池を従来よりも容易にしかも確実に得ることが可能となる等、優れた効果を奏する。   In the present invention, since the molten salt is mixed in the electrode at the time of manufacturing the electrode, a molten salt battery in which the molten salt serving as an electrolyte is uniformly impregnated inside the electrode is easier and more reliable than before. It is possible to obtain an excellent effect.

溶融塩電池の構成例を示す模式的断面図である。It is typical sectional drawing which shows the structural example of a molten salt battery. 正極及び溶融塩電池の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of a positive electrode and a molten salt battery.

以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、溶融塩電池の構成例を示す模式的断面図である。図1には、溶融塩電池を縦に切断した模式的断面図を示している。溶融塩電池は、上面が開口した直方体の箱状の電池容器51内に、正極1、セパレータ3及び負極2を並べて配置し、電池容器51に蓋部52を冠着して構成されている。電池容器51及び蓋部52はアルミニウムで形成されている。正極1及び負極2は矩形平板状に形成されており、セパレータ3はシート状に形成されている。セパレータ3は正極1及び負極2の間に介装されている。正極1、セパレータ3及び負極2は、重ねられ、電池容器51の底面に対して縦に配置されている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a schematic cross-sectional view showing a configuration example of a molten salt battery. FIG. 1 shows a schematic cross-sectional view of a molten salt battery cut longitudinally. The molten salt battery is configured such that a positive electrode 1, a separator 3, and a negative electrode 2 are arranged side by side in a rectangular parallelepiped box-shaped battery container 51 whose upper surface is open, and a lid 52 is attached to the battery container 51. The battery container 51 and the lid 52 are made of aluminum. The positive electrode 1 and the negative electrode 2 are formed in a rectangular flat plate shape, and the separator 3 is formed in a sheet shape. The separator 3 is interposed between the positive electrode 1 and the negative electrode 2. The positive electrode 1, the separator 3, and the negative electrode 2 are stacked and arranged vertically with respect to the bottom surface of the battery container 51.

負極2と電池容器51の内側壁との間には、波板状の金属からなるバネ41が配されている。バネ41は、アルミニウム合金からなり非可撓性を有する平板状の押え板42を付勢して負極2をセパレータ3及び正極1側へ押圧させる。正極1は、バネ41の反作用により、バネ41とは逆側の内側壁からセパレータ3及び負極2側へ押圧される。バネ41は、金属製のスプリング等に限定されず、例えばゴム等の弾性体であってもよい。充放電により正極1又は負極2が膨脹又は収縮した場合は、バネ41の伸縮によって正極1又は負極2の体積変化が吸収される。   A spring 41 made of corrugated metal is disposed between the negative electrode 2 and the inner wall of the battery case 51. The spring 41 is made of an aluminum alloy and biases a flat plate-like presser plate 42 having inflexibility to press the negative electrode 2 toward the separator 3 and the positive electrode 1 side. The positive electrode 1 is pressed by the reaction of the spring 41 from the inner wall opposite to the spring 41 to the separator 3 and the negative electrode 2 side. The spring 41 is not limited to a metal spring or the like, and may be an elastic body such as rubber, for example. When the positive electrode 1 or the negative electrode 2 expands or contracts due to charge / discharge, the volume change of the positive electrode 1 or the negative electrode 2 is absorbed by the expansion and contraction of the spring 41.

正極1は、正極活物質であるNaCrO2 を含む正極材12を、アルミニウム製の多孔質体でなる矩形板状の正極集電体11と一体に成形して構成されている。正極1は本発明の電極である。正極1の詳細な製造方法は後述する。負極2は、アルミニウムからなる矩形板状の負極集電体21上に、錫からなる負極活物質を含む負極材22をメッキによって形成してある。負極集電体21上に負極材22をメッキする際には、ジンケート処理として下地に亜鉛をメッキした後に錫メッキを施すようにしてある。負極活物質はメッキによる錫に限定されず、例えば、錫を金属ナトリウム、珪素、インジウム、黒鉛若しくは難黒鉛化炭素等の炭素、又はチタン酸リチウム(Li4 Ti512)に置き換えてもよい。負極材22は、例えば負極活物質の粉末に結着剤を含ませて、銅製の負極集電体21上に塗布することによって形成してもよい。セパレータ3は、ケイ酸ガラス又は樹脂等の絶縁性の材料で、内部に電解質を保持でき、またナトリウムイオンが通過できるような形状に形成されている。セパレータ3は、例えばガラスクロス又は多孔質の形状に形成された樹脂である。 The positive electrode 1 is formed by integrally forming a positive electrode material 12 containing NaCrO 2 as a positive electrode active material with a rectangular plate-shaped positive electrode current collector 11 made of an aluminum porous body. The positive electrode 1 is an electrode of the present invention. A detailed manufacturing method of the positive electrode 1 will be described later. In the negative electrode 2, a negative electrode material 22 containing a negative electrode active material made of tin is formed on a rectangular negative electrode current collector 21 made of aluminum by plating. When the negative electrode material 22 is plated on the negative electrode current collector 21, tin plating is performed after zinc is plated on the base as a zincate treatment. The negative electrode active material is not limited to tin by plating. For example, tin may be replaced with metal such as sodium metal, silicon, indium, graphite or non-graphitizable carbon, or lithium titanate (Li 4 Ti 5 O 12 ). . The negative electrode material 22 may be formed by, for example, including a binder in a negative electrode active material powder and applying the powder onto the negative electrode current collector 21 made of copper. The separator 3 is an insulating material such as silicate glass or resin, and is formed in a shape capable of holding an electrolyte therein and allowing sodium ions to pass therethrough. The separator 3 is a resin formed in, for example, a glass cloth or a porous shape.

電池容器51内では、正極材12と負極材22とを向かい合わせにし、正極1と負極2との間にセパレータ3を介装してある。正極1、負極2及びセパレータ3には、溶融塩からなる電解質を含浸させてある。電池容器51の内面は、正極1と負極2との短絡を防止するために、絶縁性の樹脂で被覆する等の方法により絶縁性の構造となっている。蓋部52の外側には、外部に接続するための正極端子53及び負極端子54が設けられている。正極端子53と負極端子54との間は絶縁されており、また蓋部52の電池容器51内に対向する部分も絶縁皮膜等によって絶縁されている。正極集電体11の一端部は、正極端子53にリード線で接続され、負極集電体21の一端部は、負極端子54にリード線で接続される。リード線は、蓋部52から絶縁してある。蓋部52は、溶接によって電池容器51に冠着されている。   In the battery container 51, the positive electrode material 12 and the negative electrode material 22 face each other, and the separator 3 is interposed between the positive electrode 1 and the negative electrode 2. The positive electrode 1, the negative electrode 2, and the separator 3 are impregnated with an electrolyte made of a molten salt. In order to prevent a short circuit between the positive electrode 1 and the negative electrode 2, the inner surface of the battery container 51 has an insulating structure by a method such as coating with an insulating resin. A positive terminal 53 and a negative terminal 54 for connecting to the outside are provided on the outside of the lid 52. The positive electrode terminal 53 and the negative electrode terminal 54 are insulated from each other, and the portion of the lid 52 facing the inside of the battery container 51 is also insulated by an insulating film or the like. One end of the positive electrode current collector 11 is connected to the positive electrode terminal 53 with a lead wire, and one end portion of the negative electrode current collector 21 is connected to the negative electrode terminal 54 with a lead wire. The lead wire is insulated from the lid portion 52. The lid 52 is attached to the battery container 51 by welding.

電解質は、溶融状態で導電性液体となる溶融塩である。溶融塩の融点以上の温度で、溶融塩は溶融して電解液となり、溶融塩電池は二次電池として動作する。融点を低下させるために、電解質は、複数種類の溶融塩が混合していることが望ましい。例えば、電解質は、ナトリウムイオンをカチオンとしFSA(ビスフルオロスルフォニルアミド;(FSO22)をアニオンとしたNaFSAと、カリウムイオンをカチオンとしFSAをアニオンとしたKFSAとの混合塩である。なお、電解質である溶融塩は、TFSA(ビストリフルオロメチルスルフォニルアミド;(CF3 SO22)又はFTA(フルオロトリフルオロメチルスルフォニルアミド;(FSO2 )(CF3 SO2 )N)等の他のアニオンを含んでいてもよく、有機イオン等の他のカチオンを含んでいてもよい。この形態では、電解質中でナトリウムイオンが電荷のキャリアとなる。また、図1に示した溶融塩電池の構成は模式的な構成であり、溶融塩電池内には、内部を加熱するヒータ、又は温度センサ等、図示しないその他の構成物が含まれていてもよい。また、図1には正極1及び負極2を一対備える形態を示したが、本発明の溶融塩電池は、セパレータ3を間に介して複数の正極1及び負極2を交互に重ねてある形態であってもよい。 The electrolyte is a molten salt that becomes a conductive liquid in a molten state. At a temperature equal to or higher than the melting point of the molten salt, the molten salt melts into an electrolytic solution, and the molten salt battery operates as a secondary battery. In order to lower the melting point, it is desirable that the electrolyte is a mixture of a plurality of types of molten salts. For example, the electrolyte is a mixed salt of NaFSA with sodium ion as a cation and FSA (bisfluorosulfonylamide; (FSO 2 ) 2 N ) as an anion, and KFSA with potassium ion as a cation and FSA as an anion. Note that the molten salt that is an electrolyte is TFSA (bistrifluoromethylsulfonylamide; (CF 3 SO 2 ) 2 N ) or FTA (fluorotrifluoromethylsulfonylamide; (FSO 2 ) (CF 3 SO 2 ) N ). Other anions may be included, and other cations such as organic ions may be included. In this form, sodium ions serve as charge carriers in the electrolyte. Moreover, the structure of the molten salt battery shown in FIG. 1 is a schematic structure, and the molten salt battery may include other components (not shown) such as a heater for heating the inside or a temperature sensor. Good. Moreover, although the form provided with one pair of the positive electrode 1 and the negative electrode 2 was shown in FIG. 1, the molten salt battery of this invention is a form with which the some positive electrode 1 and the negative electrode 2 were piled up alternately via the separator 3. There may be.

図2は、正極1及び溶融塩電池の製造方法を説明する説明図である。正極活物質の原料であるCr23 (III)及びNa2 CO3 を混合し、混合物をアルゴン雰囲気中で950℃の温度で5時間焼成する。Cr23 (III)とNa2 CO3 とが反応し、発生したCO2 が離脱し、NaCrO2 が生成される。焼成により生成したNaCrO2 を粉砕することにより、正極活物質であるNaCrO2 の粉末が得られる。NaCrO2 の粉末に、アセチレンブラック等のカーボンの粉末と、PVDF等のバインダの粉末とを混合する。この混合物が正極材12であり、本発明における電極材料である。更に、正極材12に、溶融塩の固体粉末を混合する。正極材12に混合する溶融塩は、溶融塩電池の電解質として用いられる溶融塩である。溶融塩の温度を融点より低温にすることにより、溶融塩は固体となる。この固体状の溶融塩を粉末にしたものを正極材12に混合する。溶融塩を混合する工程は、溶融塩の融点より低温で行う。更に、正極材12に、有機溶媒等の液体分散媒を混合する。液体分散媒を混合した正極材12は、流体状となる。 FIG. 2 is an explanatory view for explaining a method of manufacturing the positive electrode 1 and the molten salt battery. Cr 2 O 3 (III) and Na 2 CO 3 which are raw materials for the positive electrode active material are mixed, and the mixture is fired at a temperature of 950 ° C. for 5 hours in an argon atmosphere. Cr 2 O 3 (III) reacts with Na 2 CO 3, and the generated CO 2 is released to produce NaCrO 2 . By pulverizing NaCrO 2 produced by firing, a powder of NaCrO 2 that is a positive electrode active material is obtained. Carbon powder such as acetylene black and binder powder such as PVDF are mixed with NaCrO 2 powder. This mixture is the positive electrode material 12 and is an electrode material in the present invention. Further, a solid powder of molten salt is mixed into the positive electrode material 12. The molten salt mixed with the positive electrode material 12 is a molten salt used as an electrolyte of a molten salt battery. By making the temperature of the molten salt lower than the melting point, the molten salt becomes a solid. The powdered solid molten salt is mixed with the positive electrode material 12. The step of mixing the molten salt is performed at a temperature lower than the melting point of the molten salt. Further, a liquid dispersion medium such as an organic solvent is mixed with the positive electrode material 12. The positive electrode material 12 mixed with the liquid dispersion medium is fluid.

次に、流体状の正極材12を、アルミニウム製の多孔質体でなる矩形板状の正極集電体11に塗布する。流体状の正極材12は、正極集電体11の多孔質体の空洞に充填される。次に、正極集電体11に充填した正極材12を乾燥させる。乾燥により、液体分散媒は蒸発して除去され、正極材12は固化する。次に、固化した正極材12をプレスすることにより、矩形板状に成形する。以上の作業により、本発明の電極である正極1が製造される。本発明の電極である正極1は、正極材12が正極集電体11と一体に成形された構成となっている。正極集電体11は矩形板状に成形された正極材12の内部に埋め込まれている。正極材12には、溶融塩電池の電解質となるべき溶融塩の固体粉末が混合している。   Next, the fluid positive electrode material 12 is applied to the rectangular plate-shaped positive electrode current collector 11 made of an aluminum porous body. The fluid positive electrode material 12 is filled in the cavity of the porous body of the positive electrode current collector 11. Next, the positive electrode material 12 filled in the positive electrode current collector 11 is dried. By drying, the liquid dispersion medium is evaporated and removed, and the positive electrode material 12 is solidified. Next, the solidified positive electrode material 12 is pressed into a rectangular plate shape. The positive electrode 1 which is an electrode of this invention is manufactured by the above operation | work. A positive electrode 1 that is an electrode of the present invention has a configuration in which a positive electrode material 12 is formed integrally with a positive electrode current collector 11. The positive electrode current collector 11 is embedded in a positive electrode material 12 formed into a rectangular plate shape. The positive electrode material 12 is mixed with a solid powder of a molten salt to be an electrolyte of a molten salt battery.

次に、製造した正極1と負極2及びセパレータ3等の溶融塩電池に必要な他の構成要素とを用いて、図1に示すように溶融塩電池を組み立てることにより、溶融塩電池を製造する。溶融塩電池を組み立てた後、正極材12に混合している溶融塩の融点以上に内部温度を調整することにより、溶融塩は溶融する。溶融した溶融塩は、溶融塩電池の電解液として働き、溶融塩電池は動作可能となる。即ち、本実施の形態に係る溶融塩電池の製造方法では、正極1に溶融塩を含浸させる工程を省略している。   Next, the molten salt battery is manufactured by assembling the molten salt battery as shown in FIG. 1 using the manufactured positive electrode 1, the negative electrode 2, and other components necessary for the molten salt battery such as the separator 3. . After assembling the molten salt battery, the molten salt is melted by adjusting the internal temperature to be equal to or higher than the melting point of the molten salt mixed in the positive electrode material 12. The molten salt melted acts as an electrolyte for the molten salt battery, and the molten salt battery becomes operable. That is, in the molten salt battery manufacturing method according to the present embodiment, the step of impregnating the positive electrode 1 with the molten salt is omitted.

以上説明したように、本実施の形態では、正極活物質であるNaCrO2 を含む粉末状の正極材12に溶融塩の固体粉末を混合した上で正極1を製造し、正極1に溶融塩を含浸させる工程を省略して溶融塩電池を製造する。正極材12に混合された溶融塩は、融点以上の温度で溶融して溶融塩電池の電解液となる。正極1を製造する際に粉末状の正極材12に溶融塩の固体粉末が混合しているので、正極1には最初から均一に溶融塩が含まれている。このため、溶融塩電池内の温度を溶融塩の融点以上の温度に調整することにより、内部まで均一に液体の溶融塩が含浸された正極1が得られる。即ち、数日間をかけた含浸及びエージング等、従来のような時間及び手間をかけた含浸の作業が不必要となり、正極1の内部に均一に溶融塩を含浸させた溶融塩電池を、容易にしかも確実に得ることが可能となる。また、正極1に溶融塩を含浸させる工程を省略することにより、正極1を製造する方法及び溶融塩電池を製造する方法が簡略化される。また、正極1には内部まで均一に溶融塩が含浸されているので、充電時及び放電時に正極活物質と電解質との反応が正極1の全体で行われるようになり、溶融塩電池の容量が向上する。 As described above, in the present embodiment, the positive electrode 1 is manufactured after mixing the solid powder of the molten salt with the powdered positive electrode material 12 containing NaCrO 2 which is the positive electrode active material, and the molten salt is added to the positive electrode 1. A molten salt battery is manufactured by omitting the impregnation step. The molten salt mixed with the positive electrode material 12 is melted at a temperature equal to or higher than the melting point to become an electrolytic solution of a molten salt battery. Since the molten salt solid powder is mixed with the powdered cathode material 12 when the cathode 1 is manufactured, the cathode 1 contains the molten salt uniformly from the beginning. For this reason, by adjusting the temperature in the molten salt battery to a temperature equal to or higher than the melting point of the molten salt, the positive electrode 1 uniformly impregnated with the liquid molten salt is obtained. That is, impregnation and aging that takes several days, such as conventional impregnation work that takes time and labor, are unnecessary, and a molten salt battery in which the molten salt is uniformly impregnated into the positive electrode 1 can be easily obtained. And it becomes possible to obtain reliably. Further, by omitting the step of impregnating the positive electrode 1 with the molten salt, the method for manufacturing the positive electrode 1 and the method for manufacturing the molten salt battery are simplified. Moreover, since the positive electrode 1 is uniformly impregnated with the molten salt to the inside, the reaction between the positive electrode active material and the electrolyte is performed in the whole of the positive electrode 1 during charging and discharging, and the capacity of the molten salt battery is increased. improves.

なお、本発明では、正極1に含有されている溶融塩に加えて、更に溶融塩電池内に溶融塩を添加する工程を行うことも可能である。溶融塩の添加の工程では、正極1とセパレータ3と負極2とを図1に示すように重ねて電池容器51内に配置した状態で、更に電池容器51内に溶融塩の固体物を投入する。投入する溶融塩は、溶融塩電池の電解質の一部として用いる溶融塩である。投入する溶融塩は、正極材12に混合されている溶融塩と同じ溶融塩でもよく、電解質として用いる溶融塩から正極材12に混合されている溶融塩を除いたものでもよく、正極材12に混合されている溶融塩を含む複数種類の溶融塩を混合したものでもよい。溶融塩電池を組み立てた後、溶融塩の融点以上に内部温度を調整することにより、正極1に含有されている溶融塩及び添加した溶融塩は溶融して混合し、溶融塩電池の電解液として働く。溶融塩の工程を行う形態においても、正極材12に既に溶融塩が混合されているので、従来に比べて容易にしかも確実に正極1の内部に均一に溶融塩が含浸される。即ち、従来のような時間及び手間をかけた含浸の作業を必要とすること無く、正極1の内部に均一に溶融塩を含浸させた溶融塩電池を、容易にしかも確実に得ることが可能となる。   In the present invention, in addition to the molten salt contained in the positive electrode 1, it is also possible to perform a step of adding the molten salt into the molten salt battery. In the molten salt addition step, the solid body of the molten salt is further introduced into the battery container 51 in a state where the positive electrode 1, the separator 3, and the negative electrode 2 are stacked in the battery container 51 as shown in FIG. 1. . The molten salt to be added is a molten salt used as a part of the electrolyte of the molten salt battery. The molten salt to be added may be the same molten salt as the molten salt mixed in the positive electrode material 12 or may be a molten salt used as an electrolyte excluding the molten salt mixed in the positive electrode material 12. It may be a mixture of a plurality of types of molten salts including mixed molten salts. After assembling the molten salt battery, the molten salt contained in the positive electrode 1 and the added molten salt are melted and mixed by adjusting the internal temperature to be equal to or higher than the melting point of the molten salt. work. Even in the form of performing the molten salt step, since the molten salt is already mixed in the positive electrode material 12, the molten salt is uniformly and uniformly impregnated in the positive electrode 1 more easily and reliably than in the past. That is, it is possible to easily and surely obtain a molten salt battery in which the molten salt is uniformly impregnated in the positive electrode 1 without requiring time-consuming and troublesome impregnation work. Become.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、以上の実施の形態においては、正極集電体11はアルミニウム製の多孔質体であるとしたが、これに限るものではなく、本発明では、正極集電体11はアルミニウム製の箔でなる形態であってもよい。また以上の実施の形態においては、正極集電体11及び負極集電体21はアルミニウム製であるとしたが、他の導電体製であってもよい。また以上の実施の形態においては、正極活物質はNaCrO2 であるとしたが、これに限るものではなく、本発明で製造する溶融塩電池はその他の物質を正極活物質とした形態であってもよい。また、溶融塩電池の形状は直方体の形状に限るものではなく、その他の形状であってもよい。例えば、溶融塩電池の形状は円柱状であってもよい。また、以上の実施の形態においては、本発明の電極を正極1として用いる形態を示したが、本発明は、製造した本発明の電極を負極2として用いた溶融塩電池を製造する形態であってもよい。更に、正極1の製造方法における正極活物質の粉末を、負極活物質の粉末に置き換えることにより、本実施の形態における正極1の製造方法と同様の製造方法で負極2を製造し、この負極2を備えた溶融塩電池を製造することができる。このように負極2及び溶融塩電池を製造する形態においても、本発明により正極1を製造した場合と同様の効果を得ることができる。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. For example, in the above embodiment, the positive electrode current collector 11 is an aluminum porous body. However, the present invention is not limited to this, and in the present invention, the positive electrode current collector 11 is an aluminum foil. The form which becomes may be sufficient. In the above embodiment, the positive electrode current collector 11 and the negative electrode current collector 21 are made of aluminum, but may be made of other conductors. In the above embodiment, the positive electrode active material is NaCrO 2. However, the present invention is not limited to this, and the molten salt battery produced in the present invention has a form in which other materials are used as the positive electrode active material. Also good. Further, the shape of the molten salt battery is not limited to a rectangular parallelepiped shape, and may be other shapes. For example, the shape of the molten salt battery may be cylindrical. Moreover, in the above embodiment, although the form which uses the electrode of this invention as the positive electrode 1 was shown, this invention is a form which manufactures the molten salt battery which used the manufactured electrode of this invention as the negative electrode 2. FIG. May be. Further, by replacing the positive electrode active material powder in the method for manufacturing positive electrode 1 with the negative electrode active material powder, negative electrode 2 is manufactured by the same manufacturing method as the positive electrode 1 manufacturing method in the present embodiment. Can be produced. Thus, also in the form which manufactures the negative electrode 2 and a molten salt battery, the effect similar to the case where the positive electrode 1 is manufactured by this invention can be acquired.

1 正極(電極)
11 正極集電体
12 正極材(電極材料)
2 負極
21 負極集電体
22 負極材
3 セパレータ
1 Positive electrode (electrode)
11 Positive current collector 12 Positive electrode material (electrode material)
2 Negative electrode 21 Negative electrode current collector 22 Negative electrode material 3 Separator

Claims (4)

一又は複数種類の溶融塩からなる電解質を有する溶融塩電池の電極を製造する方法であって、
前記電解質に含有される溶融塩の一部又は全部と同じ種類の溶融塩と液体分散媒とを、活物質を含む電極材料に加えて混合物を作製し、作製した混合物を集電体に塗布し、前記混合物から液体分散媒を除去すること
を特徴とする溶融塩電池の電極の製造方法。
A method for producing an electrode of a molten salt battery having an electrolyte composed of one or more types of molten salt,
A molten salt of the same type as part or all of the molten salt contained in the electrolyte and a liquid dispersion medium are added to an electrode material containing an active material to prepare a mixture, and the prepared mixture is applied to a current collector. A method for producing an electrode of a molten salt battery, wherein the liquid dispersion medium is removed from the mixture.
請求項1に記載の溶融塩電池の電極の製造方法で製造した電極を少なくとも一方の電極として溶融塩電池を組み立てることを特徴とする溶融塩電池の製造方法。   A method for producing a molten salt battery, comprising assembling a molten salt battery using at least one of the electrodes produced by the method for producing an electrode for a molten salt battery according to claim 1. 電解質である溶融塩を電極に含浸させる工程を実行しないことを特徴とする請求項2に記載の溶融塩電池の製造方法。   The method for manufacturing a molten salt battery according to claim 2, wherein the step of impregnating the electrode with molten salt as an electrolyte is not performed. 一又は複数種類の溶融塩からなる電解質を有する溶融塩電池の電極であって、
溶融塩電池に組み込まれる前の状態で前記電解質含有される溶融塩の一部又は全部と同じ種類の溶融塩の固体物を含有していることを特徴とする溶融塩電池の電極。
An electrode of a molten salt battery having an electrolyte composed of one or more types of molten salt,
An electrode of a molten salt battery, comprising a solid material of the same type of molten salt as a part or all of the molten salt contained in the electrolyte before being incorporated in the molten salt battery.
JP2011088537A 2011-04-12 2011-04-12 Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery Withdrawn JP2012221849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088537A JP2012221849A (en) 2011-04-12 2011-04-12 Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088537A JP2012221849A (en) 2011-04-12 2011-04-12 Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery

Publications (1)

Publication Number Publication Date
JP2012221849A true JP2012221849A (en) 2012-11-12

Family

ID=47273111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088537A Withdrawn JP2012221849A (en) 2011-04-12 2011-04-12 Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery

Country Status (1)

Country Link
JP (1) JP2012221849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174827A (en) * 2017-05-22 2017-09-28 京セラ株式会社 Sodium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174827A (en) * 2017-05-22 2017-09-28 京セラ株式会社 Sodium secondary battery

Similar Documents

Publication Publication Date Title
EP2648268B1 (en) Molten salt battery
JP5775330B2 (en) Molten salt battery
US8023251B2 (en) Hybrid energy storage device and method of making same
JP5664114B2 (en) Molten salt battery
WO2011148864A1 (en) Molten salt battery
US11539071B2 (en) Sulfide-impregnated solid-state battery
US11217826B2 (en) Methods of making sulfide-impregnated solid-state battery
JP2015526859A (en) Sustainable current collector for lithium batteries
CN103430354A (en) Battery electrode and battery
US20140234685A1 (en) Molten salt battery
KR20220156571A (en) High-energy-density lithium metal-based anodes for solid-state lithium-ion batteries
JP5471905B2 (en) Molten salt battery
KR101416277B1 (en) Electrode using 3-dimensional porous current collector, battery using thereof and fabrication of the same
WO2013146454A1 (en) Electrode material, all-solid-state lithium secondary battery, and manufacturing method
JP2012221849A (en) Manufacturing method of electrode of molten salt battery, manufacturing method of molten salt battery, and electrode of molten salt battery
JP2012221935A (en) Manufacturing method of electrode of battery, and manufacturing method of battery
JP2012243417A (en) Molten salt battery
WO2013099816A1 (en) Molten salt battery and method for manufacturing molten salt battery
CN103181020B (en) Molten salt electrolyte battery
JP2012248320A (en) Electrode manufacturing method, battery manufacturing method, electrode and battery
RU2581849C2 (en) Lithium-carbon electrochemical capacitor and method for production thereof
KR20210090168A (en) Rechargeable electrochemical cell containing metal electrodes assembled in a discharged state
JP2012174606A (en) Molten salt battery
JP2000323168A (en) Sodium/sulfur secondary battery
JP2012221850A (en) Molten salt battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701