JP2012221301A - Electronic apparatus, control method for the same, and semiconductor integrated circuit - Google Patents

Electronic apparatus, control method for the same, and semiconductor integrated circuit Download PDF

Info

Publication number
JP2012221301A
JP2012221301A JP2011087431A JP2011087431A JP2012221301A JP 2012221301 A JP2012221301 A JP 2012221301A JP 2011087431 A JP2011087431 A JP 2011087431A JP 2011087431 A JP2011087431 A JP 2011087431A JP 2012221301 A JP2012221301 A JP 2012221301A
Authority
JP
Japan
Prior art keywords
semiconductor integrated
integrated circuit
temperature
voltage
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087431A
Other languages
Japanese (ja)
Other versions
JP2012221301A5 (en
JP5296136B2 (en
Inventor
Takeshi Inoue
武 井上
Shinji Takashima
伸次 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment Inc
Original Assignee
Sony Computer Entertainment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc filed Critical Sony Computer Entertainment Inc
Priority to JP2011087431A priority Critical patent/JP5296136B2/en
Priority to EP12771976.3A priority patent/EP2698684B1/en
Priority to PCT/JP2012/059818 priority patent/WO2012141182A1/en
Priority to US14/009,593 priority patent/US8975951B2/en
Priority to CN201280016549.9A priority patent/CN103460159B/en
Publication of JP2012221301A publication Critical patent/JP2012221301A/en
Publication of JP2012221301A5 publication Critical patent/JP2012221301A5/ja
Application granted granted Critical
Publication of JP5296136B2 publication Critical patent/JP5296136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electronic apparatus capable of keeping an operation voltage of a built-in semiconductor integrated circuit low.SOLUTION: An electronic apparatus 1 includes: a power circuit 13; a semiconductor integrated circuit 10 that operates by a supply voltage to be supplied from the power circuit 13; and a temperature sensor 11 that measures the temperature of the semiconductor integrated circuit 10. The power circuit 13 decreases the supply voltage in accordance with a rise in the temperature to be measured.

Description

本発明は、CMOSを内蔵する半導体集積回路、当該半導体集積回路を備える電子機器、及びその制御方法に関する。   The present invention relates to a semiconductor integrated circuit having a built-in CMOS, an electronic apparatus including the semiconductor integrated circuit, and a control method thereof.

例えば中央処理装置(CPU)やSOC(System-on-a-chip)等、CMOSを備える半導体集積回路が電子機器の部品として広く用いられている(例えば特許文献1参照)。   For example, a semiconductor integrated circuit including a CMOS such as a central processing unit (CPU) or an SOC (System-on-a-chip) is widely used as a component of an electronic device (see, for example, Patent Document 1).

米国特許第6518823号明細書US Pat. No. 6,518,823

近年、CMOSの微細化に伴って、その性能の温度依存性に従来品とは異なる傾向が現れるようになっている。しかしながら、このような特徴に応じて半導体集積回路を効率的に使用する方法については、未だ十分考慮されていない。   In recent years, with the miniaturization of CMOS, a tendency different from the conventional product appears in the temperature dependence of the performance. However, a method for efficiently using a semiconductor integrated circuit in accordance with such characteristics has not yet been sufficiently considered.

本発明は上記実情を考慮してなされたものであって、その目的の一つは、動作電圧を低く抑えることのできる半導体集積回路、当該半導体集積回路を備える電子機器、及びその制御方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a semiconductor integrated circuit capable of keeping operating voltage low, an electronic device including the semiconductor integrated circuit, and a control method thereof. There is to do.

本発明に係る電子機器は、電源回路と、前記電源回路から供給される供給電圧により動作する半導体集積回路と、前記半導体集積回路の温度を計測する温度センサと、を含み、前記電源回路は、前記計測される温度の上昇に応じて、前記供給電圧を下げることを特徴とする。   An electronic apparatus according to the present invention includes a power supply circuit, a semiconductor integrated circuit that operates with a supply voltage supplied from the power supply circuit, and a temperature sensor that measures a temperature of the semiconductor integrated circuit, and the power supply circuit includes: The supply voltage is lowered in accordance with an increase in the measured temperature.

前記電子機器において、前記電源回路は、前記計測される温度が所定の閾値以上になったときに、所定の下げ幅だけ前記供給電圧を下げることとしてもよい。   In the electronic device, the power supply circuit may lower the supply voltage by a predetermined decrease width when the measured temperature becomes a predetermined threshold value or more.

また、本発明に係る電子機器の制御方法は、電源回路と、前記電源回路から供給される供給電圧により動作する半導体集積回路と、前記半導体集積回路の温度を計測する温度センサと、を含む電子機器の制御方法であって、前記計測される温度を取得するステップと、前記取得した温度の上昇に応じて、前記電源回路が前記半導体集積回路に供給する供給電圧を下げるステップと、を含むことを特徴とする。   According to another aspect of the invention, there is provided an electronic device control method including an electronic power source circuit, a semiconductor integrated circuit that operates with a supply voltage supplied from the power source circuit, and a temperature sensor that measures a temperature of the semiconductor integrated circuit. A device control method, comprising: obtaining the measured temperature; and lowering a supply voltage that the power supply circuit supplies to the semiconductor integrated circuit in response to an increase in the obtained temperature. It is characterized by.

また、本発明に係る半導体集積回路は、電源回路から供給される供給電圧により動作する半導体集積回路であって、当該半導体集積回路の温度を計測する温度センサと、前記計測される温度の上昇に応じて、前記供給電圧を下げるよう前記電源回路に要求する手段と、を含むことを特徴とする。   The semiconductor integrated circuit according to the present invention is a semiconductor integrated circuit that operates by a supply voltage supplied from a power supply circuit, and includes a temperature sensor that measures the temperature of the semiconductor integrated circuit, and a rise in the measured temperature. And means for requesting the power supply circuit to lower the supply voltage accordingly.

本発明の実施の形態に係る半導体集積回路を備える電子機器の概略構成図である。1 is a schematic configuration diagram of an electronic device including a semiconductor integrated circuit according to an embodiment of the present invention. 従来例における動作周波数f変更時の動作周波数f及び供給電圧Vpの時間変化を模式的に示す図である。It is a figure which shows typically the time change of the operating frequency f at the time of the operating frequency f change in the prior art example, and the supply voltage Vp. 本実施形態における動作周波数f変更時の動作周波数f及び供給電圧Vpの時間変化を模式的に示す図である。It is a figure which shows typically the time change of the operating frequency f at the time of the operating frequency f change in this embodiment, and the supply voltage Vp. 動作周波数f変更時における変更回数Nと、当該変更に要する所要時間R、及び目標電圧Vp2との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count N of change at the time of the operating frequency f change, the required time R which the said change requires, and the target voltage Vp2. 動作周波数fの下限電圧Vlと温度Tとの関係を模式的に示すグラフである。It is a graph which shows typically the relation between lower limit voltage Vl of operating frequency f, and temperature T. 温度に応じた電圧制御を行う場合と行わない場合の消費電力を比較するグラフである。It is a graph which compares the power consumption when not performing with the case where voltage control according to temperature is performed.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[電子機器の構成]
図1は、本発明の一実施形態に係る半導体集積回路10を備える電子機器1の概略の回路構成を示す構成図である。電子機器1は、半導体集積回路10と、温度センサ11と、温度コントローラ12と、電源回路13と、電源制御回路14と、を含んで構成されている。
[Configuration of electronic equipment]
FIG. 1 is a configuration diagram showing a schematic circuit configuration of an electronic apparatus 1 including a semiconductor integrated circuit 10 according to an embodiment of the present invention. The electronic device 1 includes a semiconductor integrated circuit 10, a temperature sensor 11, a temperature controller 12, a power supply circuit 13, and a power supply control circuit 14.

半導体集積回路10は、CMOS(Complementary Metal Oxide Semiconductor)を含んで構成される集積回路であって、例えばCPUやSOC等であってよい。半導体集積回路10は、電源回路13から供給される供給電圧Vpにより動作する。以下では半導体集積回路10は、内蔵メモリ又は外部メモリに格納されるプログラムに従って各種の情報処理を行う演算装置であるものとする。半導体集積回路10は、その動作内容(ここでは実行するプログラムの内容)に応じて、自身の動作周波数fを内部的に変更可能になっている。自身の動作周波数fを変更する際には、半導体集積回路10は、当該変更に応じて供給電圧Vpを変化させるための指示を電源制御回路14に対して出力する。   The semiconductor integrated circuit 10 is an integrated circuit including a complementary metal oxide semiconductor (CMOS), and may be, for example, a CPU or an SOC. The semiconductor integrated circuit 10 operates with the supply voltage Vp supplied from the power supply circuit 13. In the following, it is assumed that the semiconductor integrated circuit 10 is an arithmetic device that performs various types of information processing in accordance with programs stored in an internal memory or an external memory. The semiconductor integrated circuit 10 can internally change its own operating frequency f in accordance with the operation content (the content of the program to be executed here). When changing its own operating frequency f, the semiconductor integrated circuit 10 outputs an instruction for changing the supply voltage Vp to the power supply control circuit 14 in accordance with the change.

また、半導体集積回路10には温度センサ11が内蔵されている。温度センサ11は、半導体集積回路10の温度を計測し、その結果を示す電気信号を温度コントローラ12に対して出力する。   The semiconductor integrated circuit 10 includes a temperature sensor 11. The temperature sensor 11 measures the temperature of the semiconductor integrated circuit 10 and outputs an electrical signal indicating the result to the temperature controller 12.

温度コントローラ12は、温度センサ11が出力する信号を受け付けて、当該受け付けた信号に応じて求められる半導体集積回路10の温度Tを表す情報を電源制御回路14に対して出力する。   The temperature controller 12 receives a signal output from the temperature sensor 11 and outputs information representing the temperature T of the semiconductor integrated circuit 10 obtained in accordance with the received signal to the power supply control circuit 14.

電源回路13は、例えばスイッチングレギュレータとして機能する電源用IC等を含んで構成され、電子機器1外部の電力供給源(例えば商用の交流電源やUSBホスト機器)や、電子機器1に内蔵される電池などが供給する電力を、所与の電圧に変換して電子機器1の各部に供給する。特に電源回路13は、電源制御回路14から入力される指示に応じた供給電圧Vpで、半導体集積回路10に対する電力供給を行う。   The power supply circuit 13 includes, for example, a power supply IC that functions as a switching regulator. The power supply circuit 13 is a power supply source outside the electronic device 1 (for example, a commercial AC power supply or a USB host device), or a battery built in the electronic device 1. The power supplied from the above is converted into a given voltage and supplied to each part of the electronic device 1. In particular, the power supply circuit 13 supplies power to the semiconductor integrated circuit 10 at a supply voltage Vp according to an instruction input from the power supply control circuit 14.

電源制御回路14は、電源回路13の動作を制御する回路であって、マイクロコンピュータ等により構成される。本実施形態において電源制御回路14は、半導体集積回路10から入力される動作周波数fの変更に応じた指示、及び/又は温度コントローラ12から入力される半導体集積回路10の温度Tを表す情報に基づいて供給電圧Vpを決定し、当該決定した供給電圧Vpで半導体集積回路10への電力供給を行うよう電源回路13に指示する。   The power supply control circuit 14 is a circuit that controls the operation of the power supply circuit 13 and is configured by a microcomputer or the like. In the present embodiment, the power supply control circuit 14 is based on an instruction according to a change in the operating frequency f input from the semiconductor integrated circuit 10 and / or information indicating the temperature T of the semiconductor integrated circuit 10 input from the temperature controller 12. The supply voltage Vp is determined, and the power supply circuit 13 is instructed to supply power to the semiconductor integrated circuit 10 with the determined supply voltage Vp.

[動作周波数の変更]
次に、本実施形態において半導体集積回路10が動作周波数fを変更する際の制御について、説明する。
[Changing operating frequency]
Next, control when the semiconductor integrated circuit 10 changes the operating frequency f in the present embodiment will be described.

一般的に、半導体集積回路10に供給すべき供給電圧Vpの下限値(半導体集積回路10を正常に動作させるために最低限必要な電圧の値)は、動作周波数fに応じて変化する。すなわち、動作周波数fが高くなればなるほど、必要な供給電圧Vpの値も大きくなる。そこで、半導体集積回路10の消費電力を抑えるために、動作周波数fを動的に変更する場合には、それに合わせて供給電圧Vpも変更して、動作周波数fの変更前後にわたって、できる限り下限値に近い供給電圧Vpを半導体集積回路10に供給することが望ましい。具体的に、半導体集積回路10が動作周波数fを初期周波数f1から目標周波数f2(>f1)に変更する場合、供給電圧Vpも、初期周波数f1に対応する初期電圧Vp1から目標周波数f2に対応する目標電圧Vp2(>Vp1)に変更する。なお、以下では目標周波数f2で半導体集積回路10が安定的に動作するために最低限必要な電圧の下限値を下限電圧Vlとする。   In general, the lower limit value of the supply voltage Vp to be supplied to the semiconductor integrated circuit 10 (the minimum voltage value necessary for normal operation of the semiconductor integrated circuit 10) varies according to the operating frequency f. That is, the higher the operating frequency f, the larger the value of the necessary supply voltage Vp. Therefore, in order to reduce the power consumption of the semiconductor integrated circuit 10, when the operating frequency f is dynamically changed, the supply voltage Vp is also changed accordingly and before and after the change of the operating frequency f, the lower limit value is possible. It is desirable to supply the semiconductor integrated circuit 10 with a supply voltage Vp close to. Specifically, when the semiconductor integrated circuit 10 changes the operating frequency f from the initial frequency f1 to the target frequency f2 (> f1), the supply voltage Vp also corresponds from the initial voltage Vp1 corresponding to the initial frequency f1 to the target frequency f2. The target voltage is changed to Vp2 (> Vp1). In the following, the lower limit value of the minimum voltage required for the semiconductor integrated circuit 10 to stably operate at the target frequency f2 is referred to as the lower limit voltage Vl.

ここで、目標電圧Vp2を下限電圧Vlとほぼ等しい値に設定してしまうと、動作周波数fの変更に伴って半導体集積回路10内に生じるノイズにより、半導体集積回路10内に流れる電流が変動し、供給電圧Vpが下限電圧Vlを下回ってしまうおそれがある。そのため電源制御回路14は、目標電圧Vp2を下限電圧Vlよりも大きな値に設定する。すなわち、目標電圧Vp2は、
Vp2=Vl+α
で表される値に設定する必要がある。ここで、αの値はノイズによる供給電圧Vpの変動分を考慮して決定される。しかしながら、このように下限電圧Vlよりも大きな供給電圧Vpを半導体集積回路10に供給することとすると、その分だけ半導体集積回路10の消費電力は増大してしまう。
Here, if the target voltage Vp2 is set to a value substantially equal to the lower limit voltage Vl, the current flowing in the semiconductor integrated circuit 10 fluctuates due to noise generated in the semiconductor integrated circuit 10 due to the change in the operating frequency f. The supply voltage Vp may fall below the lower limit voltage Vl. Therefore, the power supply control circuit 14 sets the target voltage Vp2 to a value larger than the lower limit voltage Vl. That is, the target voltage Vp2 is
Vp2 = Vl + α
It must be set to the value represented by. Here, the value of α is determined in consideration of the fluctuation of the supply voltage Vp due to noise. However, if the supply voltage Vp larger than the lower limit voltage Vl is supplied to the semiconductor integrated circuit 10, the power consumption of the semiconductor integrated circuit 10 increases accordingly.

そこで本実施形態においては、半導体集積回路10は、初期周波数f1から目標周波数f2への変更を複数回に分けて、1又は複数の中間周波数fm(f1<fm<f2)を経て段階的に動作周波数fを変更する。こうすれば、ノイズによって生じる電圧の変動を小さくすることができるので、初期周波数f1から目標周波数f2への変更を一度に行う場合と比較して、αの値を小さくすることができる。   Therefore, in the present embodiment, the semiconductor integrated circuit 10 operates in stages through one or more intermediate frequencies fm (f1 <fm <f2) by dividing the change from the initial frequency f1 to the target frequency f2 into a plurality of times. Change the frequency f. By so doing, voltage fluctuations caused by noise can be reduced, so that the value of α can be made smaller than when the initial frequency f1 is changed to the target frequency f2 at once.

図2A及び図2Bは、動作周波数fの変更時における従来例の電圧制御と本実施形態の電圧制御とを比較するための図であって、図2Aは従来例における動作周波数f及び供給電圧Vpの時間変化を、図2Bは本実施形態における動作周波数f及び供給電圧Vpの時間変化を、それぞれ模式的に示している。いずれの図においても、横軸は時間であって、時刻t0は初期電圧Vp1から目標電圧Vp2への変更タイミングを示している。また、縦軸は供給電圧Vp及び動作周波数fの大きさを示している。図2Aに示すように、初期周波数f1から目標周波数f2への変更を一度に行っている場合には、周波数変更後、ノイズにより供給電圧Vpが比較的大きく変動しており、そのため目標電圧Vp2は、このような変動後の供給電圧Vpが下限電圧Vlを下回らないように、比較的大きな値となっている。一方図2Bでは、初期周波数f1から目標周波数f2への変更を3回に分けて実施している。すなわち、まず初期周波数f1から第1中間周波数fm1へ、次に第1中間周波数fm1から第2中間周波数fm2へ、さらに第2中間周波数fm2から目標周波数f2へと段階的に動作周波数fが変更される。こうすれば、複数回の変更のそれぞれにおいて、変更前の周波数に対する変更後の周波数の比が一度に変更してしまう場合と比較して相対的に小さくなるので、その分ノイズにより発生する供給電圧Vpの変動も小さくなる。そのため、図2Aの例と比較して目標電圧Vp2を低くしても、供給電圧Vpが下限電圧Vlを下回らないようにすることができる。   2A and 2B are diagrams for comparing the voltage control of the conventional example when the operating frequency f is changed with the voltage control of the present embodiment, and FIG. 2A shows the operating frequency f and the supply voltage Vp in the conventional example. FIG. 2B schematically shows temporal changes in the operating frequency f and the supply voltage Vp in this embodiment. In any of the figures, the horizontal axis represents time, and time t0 represents the change timing from the initial voltage Vp1 to the target voltage Vp2. The vertical axis indicates the magnitude of the supply voltage Vp and the operating frequency f. As shown in FIG. 2A, when the change from the initial frequency f1 to the target frequency f2 is performed at once, the supply voltage Vp fluctuates relatively greatly due to noise after the frequency change, and therefore the target voltage Vp2 is The supply voltage Vp after such fluctuation is a relatively large value so that it does not fall below the lower limit voltage Vl. On the other hand, in FIG. 2B, the change from the initial frequency f1 to the target frequency f2 is performed in three steps. That is, the operating frequency f is changed stepwise from the initial frequency f1 to the first intermediate frequency fm1, then from the first intermediate frequency fm1 to the second intermediate frequency fm2, and further from the second intermediate frequency fm2 to the target frequency f2. The In this way, in each of the plurality of changes, the ratio of the frequency after the change to the frequency before the change is relatively small compared to the case where the change is made at one time. The fluctuation of Vp is also reduced. Therefore, even if the target voltage Vp2 is lowered compared to the example of FIG. 2A, the supply voltage Vp can be prevented from falling below the lower limit voltage Vl.

図2Bから明らかなように、本実施形態ではまず一度だけ供給電圧Vpを変更し、その後に複数回にわたって動作周波数fを変更することとしている。一般的に、供給電圧Vpの変更は半導体集積回路10外部の電源回路13を制御して行うため、時間を要する。一方、動作周波数fの変更は、半導体集積回路10自身で内部的に行われるので、それほど時間を要しない。本実施形態では、動作周波数fの変更回数が従来例と比較して増えるものの、供給電圧Vpの変更回数は1回で従来と変わらないため、初期周波数f1から目標周波数f2への変更に要する時間は、従来と比べてほとんど変わらない。なお、供給電圧Vpの変更にそれほど時間を要さない場合には、動作周波数fを段階的に変更するのに合わせて供給電圧Vpも複数回に分けて段階的に変更してもよい。   As apparent from FIG. 2B, in the present embodiment, the supply voltage Vp is first changed only once, and then the operating frequency f is changed a plurality of times. Generally, since the supply voltage Vp is changed by controlling the power supply circuit 13 outside the semiconductor integrated circuit 10, it takes time. On the other hand, since the change of the operating frequency f is internally performed by the semiconductor integrated circuit 10 itself, it does not require much time. In the present embodiment, although the number of changes of the operating frequency f is increased as compared with the conventional example, the number of times of change of the supply voltage Vp is one time, which is the same as that of the conventional example, so the time required for changing from the initial frequency f1 to the target frequency f2 Is almost the same as before. In the case where it does not take much time to change the supply voltage Vp, the supply voltage Vp may be changed stepwise in a plurality of times as the operating frequency f is changed stepwise.

ここで、初期周波数f1から目標周波数f2への変更を行う際に、動作周波数fの変更を何回に分けて行うべきか、また1又は複数の中間周波数fmのそれぞれをどのように決定すべきか、について説明する。   Here, when the change from the initial frequency f1 to the target frequency f2 is performed, how many times the change of the operating frequency f should be performed and how each of the one or more intermediate frequencies fm should be determined Will be described.

ある初期周波数f1からある目標周波数f2への変更を行う際の動作周波数fの変更回数を仮にN回とすると、半導体集積回路10は、(N−1)個の中間周波数fmを経て動作周波数fの変更を行うことになる。この場合の中間周波数fmは、各回の変更により発生するノイズの大きさのばらつきができる限り少なくなるように決定すべきである。ここで、1回の変更に起因して生じるノイズの大きさは、変更前後の動作周波数fの比に応じて決まる。そのため、n回目(nは1からN−1までの自然数)の変更で設定すべき中間周波数fmをfm(n)と表記すると、中間周波数fm(n)は、理想的には以下の計算式により求められる。

Figure 2012221301
このような計算式によれば、半導体集積回路10の動作周波数fは、初期周波数f1から始まって(N−1)個の中間周波数fm(n)を経て目標周波数f2まで等比数列的に増加することになる。なお、実際には半導体集積回路10で変更可能な動作周波数fの値には制約がある場合もあるが、そのときには変更可能な動作周波数fのうち上述した計算式で求められる値に近い値を設定すればよい。 Assuming that the number of changes in the operating frequency f when changing from a certain initial frequency f1 to a certain target frequency f2 is N, the semiconductor integrated circuit 10 passes the (N-1) intermediate frequencies fm through the operating frequency f. Will be changed. The intermediate frequency fm in this case should be determined so as to minimize the variation in the magnitude of noise generated by each change. Here, the magnitude of noise caused by one change is determined according to the ratio of the operating frequency f before and after the change. Therefore, when the intermediate frequency fm to be set in the nth change (n is a natural number from 1 to N-1) is expressed as fm (n), the intermediate frequency fm (n) is ideally calculated as Is required.
Figure 2012221301
According to such a calculation formula, the operating frequency f of the semiconductor integrated circuit 10 starts from the initial frequency f1 and increases in a geometric sequence from (N−1) intermediate frequencies fm (n) to the target frequency f2. Will do. In practice, the value of the operating frequency f that can be changed by the semiconductor integrated circuit 10 may be limited, but at that time, a value close to the value obtained by the above-described calculation formula among the changeable operating frequencies f. You only have to set it.

中間周波数fm(n)が決定されると、これに応じて目標電圧Vp2として設定すべき値も決定される。上述した計算式によれば、1回あたりの変更において、動作周波数fは変更前の(f2/f1)(1/N)倍に増えることになる。電子機器1の製造者は、例えば事前にプロトタイプを用いて測定するなどの方法で、このような動作周波数fの変更に伴ってどの程度の大きさの電圧低下が生じるかに関する情報を取得することができる。そして、この情報を用いてαの値を決定することにより、目標電圧Vp2を決定できる。 When the intermediate frequency fm (n) is determined, a value to be set as the target voltage Vp2 is also determined accordingly. According to the calculation formula described above, the operating frequency f increases by (f2 / f1) (1 / N) times before the change in the change per time. The manufacturer of the electronic device 1 obtains information on how much voltage drop occurs with such a change in the operating frequency f by, for example, measuring using a prototype in advance. Can do. The target voltage Vp2 can be determined by determining the value of α using this information.

さらに、初期周波数f1から目標周波数f2への変更を何回に分けて行うべきかは、以下のようにして決定できる。図3は、初期周波数f1から目標周波数f2へと動作周波数fを変更する際における変更回数Nと、当該変更に要する所要時間R、及び目標電圧Vp2との関係を示すグラフである。この図に示されるように、変更回数Nを増やせば増やすほど、動作周波数fの変更に要する全体の所要時間Rは延びることになる。一方で、変更回数Nを増やせば1回あたりの動作周波数fの変更幅を小さくすることができるため、それだけ目標電圧Vp2を下げることができる。ただし、図から分かるように、変更回数Nがある程度以上になると、それ以上変更回数Nを増やしても目標電圧Vp2の低下率はそれほど大きくならない。そこで、変更回数Nは、目標電圧Vp2をどの程度低く抑えたいか、及び変更に要する所要時間Rをどの程度の範囲に収めたいか、の兼ね合いにより決定する必要がある。図3の例では、変更回数Nと所要時間Rの間の関係を示す曲線と、変更回数Nと目標電圧Vp2の間の関係を示す曲線とが、変更回数=3の近傍で交差している。そのため、短い所要時間Rと低い目標電圧Vp2とを両立させたい場合、変更回数Nを3回にすればよい。あるいは、所要時間R及び目標電圧Vp2のいずれかをより重視して他の変更回数を採用してもよい。   Furthermore, how many times the change from the initial frequency f1 to the target frequency f2 should be performed can be determined as follows. FIG. 3 is a graph showing the relationship between the number of changes N when changing the operating frequency f from the initial frequency f1 to the target frequency f2, the required time R required for the change, and the target voltage Vp2. As shown in this figure, the total required time R required for changing the operating frequency f increases as the number of changes N increases. On the other hand, if the number of changes N is increased, the change width of the operating frequency f per operation can be reduced, so that the target voltage Vp2 can be lowered accordingly. However, as can be seen from the figure, when the number of changes N exceeds a certain level, the decrease rate of the target voltage Vp2 does not increase so much even if the number of changes N is further increased. Therefore, it is necessary to determine the number of changes N based on the balance between how low the target voltage Vp2 is to be suppressed and how long the required time R required for the change is to be kept. In the example of FIG. 3, a curve indicating the relationship between the number of changes N and the required time R and a curve indicating the relationship between the number of changes N and the target voltage Vp2 intersect in the vicinity of the number of changes = 3. . Therefore, when it is desired to achieve both the short required time R and the low target voltage Vp2, the number of changes N may be set to three. Alternatively, the number of times of change may be adopted with an emphasis on either the required time R or the target voltage Vp2.

目標電圧Vp2及び中間周波数fmとして設定すべき値は、初期周波数f1と目標周波数f2の組み合わせごとに決定される必要がある。これらの値は、予め電子機器1の工場出荷時に半導体集積回路10内に記録されることとしてもよい。半導体集積回路10は、動作周波数fをある初期周波数f1からある目標周波数f2に変更する際には、この初期周波数f1と目標周波数f2の組み合わせに関連づけられて記録されている目標電圧Vp2の値を電源制御回路14に出力することによって、当該目標電圧Vp2での電力供給を電源回路13に要求する。その後に半導体集積回路10は、この初期周波数f1と目標周波数f2の組み合わせに関連づけられて記録されている(N−1)個の中間周波数fmを経由するように、N回に分けて動作周波数fの変更を行う。こうすれば、動作周波数fの変更に伴うノイズの発生を抑えて、目標電圧Vp2を低くすることができる。   The values to be set as the target voltage Vp2 and the intermediate frequency fm need to be determined for each combination of the initial frequency f1 and the target frequency f2. These values may be recorded in advance in the semiconductor integrated circuit 10 when the electronic apparatus 1 is shipped from the factory. When the operating frequency f is changed from a certain initial frequency f1 to a certain target frequency f2, the semiconductor integrated circuit 10 sets the value of the target voltage Vp2 recorded in association with the combination of the initial frequency f1 and the target frequency f2. By outputting to the power supply control circuit 14, the power supply circuit 13 is requested to supply power at the target voltage Vp2. Thereafter, the semiconductor integrated circuit 10 is divided into N times so as to pass through the (N−1) intermediate frequencies fm recorded in association with the combination of the initial frequency f1 and the target frequency f2. Make changes. In this way, it is possible to reduce the target voltage Vp2 while suppressing the generation of noise accompanying the change of the operating frequency f.

これまでは、特に動作周波数fを上げる変更を行う場合の制御について説明した。消費電力を抑えるために供給電圧Vpを下げるという観点からは、動作周波数fを下げる変更を行う場合には、以上説明したように複数回に分けて動作周波数fを変更する必要は必ずしもない。しかしながら、半導体集積回路10には、下限電圧Vlだけでなく、動作周波数fに応じた上限電圧Vuが設定されている場合もある。この場合、半導体集積回路10を正常に動作させるために、この上限電圧Vuを超える電圧が印加されないようにする必要があるが、動作周波数fを一度に大きく変更させると、動作周波数fの変更に伴って生じるノイズにより、供給電圧Vpが一時的に上限電圧Vuを超えてしまうおそれがある。上限電圧Vuが動作周波数fに応じて変化する値である場合、動作周波数fを下げる変更を行う場合にも、変更後の供給電圧Vpが上限電圧Vuを超えてしまうことが考えられる。そこで半導体集積回路10は、動作周波数fを下げる変更を行う場合にも、目標周波数f2への変更を複数回に分けて行ってよい。この場合の変更回数N、及び中間周波数fmは、いずれも前述した動作周波数fを上げる場合と同様にして決定されてよい。また、変更後の目標電圧Vp2は、上限電圧Vuからノイズによる変動として予想される値以上低い値に設定される。   So far, the control for changing the operating frequency f has been described. From the viewpoint of lowering the supply voltage Vp in order to reduce power consumption, when changing the operating frequency f, it is not always necessary to change the operating frequency f in multiple steps as described above. However, not only the lower limit voltage Vl but also the upper limit voltage Vu corresponding to the operating frequency f may be set in the semiconductor integrated circuit 10. In this case, in order to operate the semiconductor integrated circuit 10 normally, it is necessary to prevent a voltage exceeding the upper limit voltage Vu from being applied. However, if the operating frequency f is greatly changed at once, the operating frequency f is changed. Due to the accompanying noise, the supply voltage Vp may temporarily exceed the upper limit voltage Vu. When the upper limit voltage Vu is a value that changes according to the operating frequency f, it is conceivable that the changed supply voltage Vp will exceed the upper limit voltage Vu even when changing the operating frequency f. Therefore, the semiconductor integrated circuit 10 may perform the change to the target frequency f2 in a plurality of times even when making a change to lower the operating frequency f. In this case, the number N of changes and the intermediate frequency fm may both be determined in the same manner as in the case of increasing the operating frequency f described above. Further, the target voltage Vp2 after the change is set to a value lower than the value expected as the fluctuation due to noise from the upper limit voltage Vu.

なお、以上の説明においては電源制御回路14が電源回路13の供給電圧Vpを制御することとしたが、半導体集積回路10が直接電源回路13の供給電圧Vpを制御してもよい。また、以上説明した動作周波数fの変更制御を行うためだけであれば、温度センサ11及び温度コントローラ12は必ずしも必要ない。   In the above description, the power supply control circuit 14 controls the supply voltage Vp of the power supply circuit 13, but the semiconductor integrated circuit 10 may directly control the supply voltage Vp of the power supply circuit 13. Further, the temperature sensor 11 and the temperature controller 12 are not necessarily required only for performing the control for changing the operating frequency f described above.

[温度に応じた電圧制御]
電源制御回路14は、温度センサ11によって測定される半導体集積回路10の温度変化に応じて、電源回路13が半導体集積回路10に供給する供給電圧Vpを変化させてもよい。特に本実施形態では、半導体集積回路10の温度上昇に応じて供給電圧Vpを下げる制御を行う。これについて、以下に説明する。
[Voltage control according to temperature]
The power supply control circuit 14 may change the supply voltage Vp supplied from the power supply circuit 13 to the semiconductor integrated circuit 10 in accordance with the temperature change of the semiconductor integrated circuit 10 measured by the temperature sensor 11. In particular, in this embodiment, control is performed to lower the supply voltage Vp as the temperature of the semiconductor integrated circuit 10 increases. This will be described below.

半導体集積回路10に使用されるCMOSの特性により、前述した動作周波数fに対応する下限電圧Vlは、温度Tに依存して変化する。図4は、この下限電圧Vlと温度Tとの関係を模式的に示すグラフであって、破線は従来のゲート長が65nmを超えるCMOSの特性を、実線は近年のゲート長が65nm以下のCMOSの特性を、それぞれ示している。具体的に、CMOSは、その性能を決定するパラメタである移動度及び閾値電圧に温度依存性があり、移動度については高温になるほど性能が劣化し、閾値電圧については高温になるほど性能が向上する。従来のゲート長が65nmを超えるCMOSは、移動度の影響が支配的であったため、高温になると性能が劣化する傾向があった。すなわち、このようなCMOSを備える半導体集積回路は、図4に示すように、同じ動作周波数で動作する場合であっても、温度が高くなったときには温度が低いときよりも下限電圧Vlが上昇する。それゆえ、温度が高い環境下でこのようなCMOSを備える半導体集積回路を使用する場合、比較的高い供給電圧Vpで動作させる必要があった。ところが近年、CMOSの微細化に伴って、CMOSの性能の温度依存性にもこれまでと異なる傾向が見られるようになった。すなわち、近年登場したゲート長が65nm以下のCMOSは、高温になったときに閾値電圧の影響が支配的となり、高温になると性能が向上する傾向が見られるようになった。そのため、このようなゲート長の短いCMOSを備える半導体集積回路は、図4に示すように、温度が高くなるほど下限電圧Vlが低くなる傾向にある。   Due to the characteristics of the CMOS used in the semiconductor integrated circuit 10, the lower limit voltage Vl corresponding to the operating frequency f described above changes depending on the temperature T. FIG. 4 is a graph schematically showing the relationship between the lower limit voltage Vl and the temperature T. The broken line indicates the characteristics of a CMOS having a conventional gate length exceeding 65 nm, and the solid line indicates a CMOS having a recent gate length of 65 nm or less. The characteristics are shown respectively. Specifically, CMOS has temperature dependence on mobility and threshold voltage, which are parameters that determine its performance, and the mobility deteriorates as the temperature increases, and the performance improves as the threshold voltage increases. . The conventional CMOS having a gate length of more than 65 nm has a tendency to deteriorate at high temperatures because the influence of mobility is dominant. That is, as shown in FIG. 4, in the semiconductor integrated circuit having such a CMOS, even when the semiconductor integrated circuit operates at the same operating frequency, the lower limit voltage Vl rises when the temperature is higher than when the temperature is low. . Therefore, when a semiconductor integrated circuit including such a CMOS is used in a high temperature environment, it has been necessary to operate with a relatively high supply voltage Vp. However, in recent years, with the miniaturization of CMOS, the temperature dependence of the performance of CMOS has become different from the past. That is, the CMOS having a gate length of 65 nm or less that has recently appeared has a tendency that the influence of the threshold voltage is dominant at a high temperature, and the performance tends to be improved at a high temperature. For this reason, in such a semiconductor integrated circuit including a CMOS with a short gate length, the lower limit voltage Vl tends to decrease as the temperature increases, as shown in FIG.

そこで本実施形態に係る電子機器1は、半導体集積回路10の温度上昇に応じて、半導体集積回路10に供給する供給電圧Vpを下げることとしている。具体的に、例えば電源制御回路14は、温度コントローラ12が出力する情報が示す半導体集積回路10の温度Tが所定の閾値Tth以上になったときには、所定の下げ幅βだけ供給電圧Vpを下げるよう電源回路13に指示する。なお、この場合のβの値は予め電源制御回路14に記録されているものとする。また、電源制御回路14は、温度Tが所定の閾値Tth未満になったときには、供給電圧Vpを下げる前の値に戻すこととする(つまり、供給電圧Vpをβだけ上昇させる)。   Therefore, the electronic apparatus 1 according to the present embodiment decreases the supply voltage Vp supplied to the semiconductor integrated circuit 10 as the temperature of the semiconductor integrated circuit 10 increases. Specifically, for example, when the temperature T of the semiconductor integrated circuit 10 indicated by the information output from the temperature controller 12 becomes equal to or higher than a predetermined threshold Tth, the power supply control circuit 14 decreases the supply voltage Vp by a predetermined decrease width β. The power supply circuit 13 is instructed. It is assumed that the value of β in this case is recorded in the power supply control circuit 14 in advance. Further, when the temperature T becomes lower than the predetermined threshold Tth, the power supply control circuit 14 returns the supply voltage Vp to the previous value (that is, increases the supply voltage Vp by β).

図5は、このような制御を行う場合と行わない場合の消費電力を比較するグラフであって、横軸は温度Tを、縦軸は電力Pを、それぞれ示している。また、実線は温度上昇に伴う供給電圧Vpの変更制御を行わない場合を、破線は変更制御を行う場合を、それぞれ示している。この図の例では、電源回路13は閾値Tth以上になると供給電圧Vpを0.5V下げることとしており、その結果として温度Tが閾値Tth以上の領域で半導体集積回路10の消費電力が大きく改善していることが分かる。   FIG. 5 is a graph comparing the power consumption when such control is performed and when it is not performed. The horizontal axis indicates the temperature T, and the vertical axis indicates the power P. Further, the solid line indicates the case where the change control of the supply voltage Vp accompanying the temperature rise is not performed, and the broken line indicates the case where the change control is performed. In the example of this figure, the power supply circuit 13 reduces the supply voltage Vp by 0.5 V when the threshold Tth or higher, and as a result, the power consumption of the semiconductor integrated circuit 10 is greatly improved in the region where the temperature T is higher than the threshold Tth. I understand that

なお、図5の例では閾値Tthは1つだけであることとしたが、閾値Tthは複数あってもよい。例えば20度ごとに閾値Tthを設定する場合、電源制御回路14は、半導体集積回路10の温度が20度上昇するごとに段階的に供給電圧Vpを下げることになる。この場合、供給電圧Vpの下げ幅βは複数の閾値Tthのそれぞれに対応して互いに異なる値であってもよい。こうすれば、温度Tの上昇に対して下限電圧Vlが非線形に変化する場合であっても、温度Tの上昇に伴って最適な値に供給電圧Vpを変更することができる。   In the example of FIG. 5, only one threshold value Tth is used. However, there may be a plurality of threshold values Tth. For example, when the threshold value Tth is set every 20 degrees, the power supply control circuit 14 decreases the supply voltage Vp step by step each time the temperature of the semiconductor integrated circuit 10 increases by 20 degrees. In this case, the decrease width β of the supply voltage Vp may be different from each other corresponding to each of the plurality of threshold values Tth. In this way, even if the lower limit voltage Vl changes non-linearly with respect to the rise in temperature T, the supply voltage Vp can be changed to an optimal value as the temperature T rises.

また、供給電圧Vpを下げる際のβの値は、余裕を持って設定されることが望ましい。例えば閾値Tthが50℃とすると、電源制御回路14は、温度Tが50℃以上になった場合には、半導体集積回路10の温度が(50−γ)度の場合の下限電圧Vl以上となるように供給電圧Vpを変更する。このγの値は、例えば温度センサ11の測定誤差に応じて決定される。こうすれば、電源回路13は、温度センサ11の測定誤差などがあったとしても、半導体集積回路10の動作に必要な電圧を供給することができる。また、電源制御回路14は、温度Tが閾値Tth以上となったことを検知したときに、直ちに供給電圧Vpを変更するのではなく、所定時間の経過を待ってから供給電圧Vpを変更してもよい。また、電源制御回路14は、半導体集積回路10の動作状況に応じて決まるタイミングで供給電圧Vpを変更してもよい。具体的には、半導体集積回路10の処理負荷が所定値未満のときには、温度Tがそれほど上昇しない傾向にあるので、温度Tが閾値Tth以上になっても直ちに供給電圧Vpを下げるのではなく、温度Tが閾値Tth以上となる状態が所定時間以上続いてから供給電圧Vpを下げることとし、逆に温度Tが閾値Tth以上となった時点で半導体集積回路10の処理負荷が所定値以上の場合には直ちに供給電圧Vpを下げることとしてもよい。   Further, it is desirable that the value of β when the supply voltage Vp is lowered is set with a margin. For example, when the threshold value Tth is 50 ° C., the power supply control circuit 14 becomes equal to or higher than the lower limit voltage Vl when the temperature of the semiconductor integrated circuit 10 is (50−γ) degrees when the temperature T becomes 50 ° C. or higher. Thus, the supply voltage Vp is changed. The value of γ is determined according to the measurement error of the temperature sensor 11, for example. In this way, the power supply circuit 13 can supply a voltage necessary for the operation of the semiconductor integrated circuit 10 even if there is a measurement error of the temperature sensor 11 or the like. Further, when the power supply control circuit 14 detects that the temperature T has become equal to or higher than the threshold value Tth, the power supply control circuit 14 does not immediately change the supply voltage Vp but changes the supply voltage Vp after waiting for a predetermined time. Also good. Further, the power supply control circuit 14 may change the supply voltage Vp at a timing determined according to the operation state of the semiconductor integrated circuit 10. Specifically, when the processing load of the semiconductor integrated circuit 10 is less than a predetermined value, the temperature T tends not to increase so much, so that the supply voltage Vp is not immediately decreased even when the temperature T exceeds the threshold Tth. When the supply voltage Vp is lowered after a state where the temperature T is equal to or higher than the threshold value Tth continues for a predetermined time or longer, and conversely, when the temperature T becomes equal to or higher than the threshold value Tth, the processing load of the semiconductor integrated circuit 10 is higher than the predetermined value Alternatively, the supply voltage Vp may be immediately reduced.

以上の説明では、温度センサ11が半導体集積回路10自身に内蔵されているものとしたが、温度センサ11は半導体集積回路10の外部に配置されてもよい。この場合、温度Tの測定精度は温度センサ11が半導体集積回路10内部に配置されている場合よりも低くなる。しかしながら、事前に温度センサ11の測定結果と半導体集積回路10の実際の温度を調査し、その結果に応じて閾値Tth及び下げ幅βを決定すれば、温度センサ11が半導体集積回路10内部に配置されている場合と同様に、半導体集積回路10の温度上昇に応じて供給電圧Vpを下げる制御を実現できる。   In the above description, the temperature sensor 11 is incorporated in the semiconductor integrated circuit 10 itself. However, the temperature sensor 11 may be arranged outside the semiconductor integrated circuit 10. In this case, the measurement accuracy of the temperature T is lower than when the temperature sensor 11 is disposed inside the semiconductor integrated circuit 10. However, if the measurement result of the temperature sensor 11 and the actual temperature of the semiconductor integrated circuit 10 are investigated in advance and the threshold value Tth and the decrease width β are determined according to the result, the temperature sensor 11 is arranged inside the semiconductor integrated circuit 10. As in the case where the temperature is increased, the control for lowering the supply voltage Vp according to the temperature rise of the semiconductor integrated circuit 10 can be realized.

また、以上の説明では、温度コントローラ12は温度Tに関する情報を電源制御回路14に直接出力することとしたが、これに代えて、温度コントローラ12は温度Tに関する情報を半導体集積回路10に対して出力することとしてもよい。この場合、半導体集積回路10自身が、温度Tが閾値Tth以上となったか否かを判定し、当該判定結果に応じて供給電圧Vp変更の要求を電源制御回路14に出力する。   In the above description, the temperature controller 12 directly outputs information on the temperature T to the power supply control circuit 14. Instead, the temperature controller 12 sends information on the temperature T to the semiconductor integrated circuit 10. It is good also as outputting. In this case, the semiconductor integrated circuit 10 itself determines whether or not the temperature T is equal to or higher than the threshold Tth, and outputs a request for changing the supply voltage Vp to the power supply control circuit 14 according to the determination result.

以上説明した動作周波数f変更時の制御、及び温度による供給電圧Vpの制御は、それぞれ単独で実施してもよいし、互いに組み合わせて実施してもよい。組み合わせる場合、動作周波数fの変更時には、変更後の目標周波数f2に応じて決まる目標電圧Vp2から、当該時点の温度Tに応じて決まる下げ幅βを減じることで、変更後の供給電圧Vpを決定できる。   The control at the time of changing the operating frequency f and the control of the supply voltage Vp depending on the temperature described above may be performed independently or in combination with each other. In the case of combination, when the operating frequency f is changed, the supply voltage Vp after the change is determined by subtracting the decrease width β determined according to the temperature T at the time point from the target voltage Vp2 determined according to the target frequency f2 after the change. it can.

1 電子機器、10 半導体集積回路、11 温度センサ、12 温度コントローラ、13 電源回路、14 電源制御回路。   DESCRIPTION OF SYMBOLS 1 Electronic device, 10 Semiconductor integrated circuit, 11 Temperature sensor, 12 Temperature controller, 13 Power supply circuit, 14 Power supply control circuit

Claims (4)

電源回路と、
前記電源回路から供給される供給電圧により動作する半導体集積回路と、
前記半導体集積回路の温度を計測する温度センサと、
を含み、
前記電源回路は、前記計測される温度の上昇に応じて、前記供給電圧を下げる
ことを特徴とする電子機器。
A power circuit;
A semiconductor integrated circuit that operates by a supply voltage supplied from the power supply circuit;
A temperature sensor for measuring the temperature of the semiconductor integrated circuit;
Including
The electronic device according to claim 1, wherein the power supply circuit lowers the supply voltage in accordance with an increase in the measured temperature.
請求項1に記載の電子機器において、
前記電源回路は、前記計測される温度が所定の閾値以上になったときに、所定の下げ幅だけ前記供給電圧を下げる
ことを特徴とする電子機器。
The electronic device according to claim 1,
The electronic device according to claim 1, wherein the power supply circuit lowers the supply voltage by a predetermined decrease amount when the measured temperature becomes a predetermined threshold value or more.
電源回路と、
前記電源回路から供給される供給電圧により動作する半導体集積回路と、
前記半導体集積回路の温度を計測する温度センサと、
を含む電子機器の制御方法であって、
前記計測される温度を取得するステップと、
前記取得した温度の上昇に応じて、前記電源回路が前記半導体集積回路に供給する供給電圧を下げるステップと、
を含むことを特徴とする電子機器の制御方法。
A power circuit;
A semiconductor integrated circuit that operates by a supply voltage supplied from the power supply circuit;
A temperature sensor for measuring the temperature of the semiconductor integrated circuit;
A method for controlling an electronic device including:
Obtaining the measured temperature;
Reducing the supply voltage that the power supply circuit supplies to the semiconductor integrated circuit in response to the increase in the acquired temperature;
A method for controlling an electronic device, comprising:
電源回路から供給される供給電圧により動作する半導体集積回路であって、
当該半導体集積回路の温度を計測する温度センサと、
前記計測される温度の上昇に応じて、前記供給電圧を下げるよう前記電源回路に要求する手段と、
を含むことを特徴とする半導体集積回路。
A semiconductor integrated circuit that operates by a supply voltage supplied from a power supply circuit,
A temperature sensor for measuring the temperature of the semiconductor integrated circuit;
Means for requesting the power supply circuit to lower the supply voltage in response to an increase in the measured temperature;
A semiconductor integrated circuit comprising:
JP2011087431A 2011-04-11 2011-04-11 Electronic device, control method thereof, and semiconductor integrated circuit Active JP5296136B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011087431A JP5296136B2 (en) 2011-04-11 2011-04-11 Electronic device, control method thereof, and semiconductor integrated circuit
EP12771976.3A EP2698684B1 (en) 2011-04-11 2012-04-10 Semiconductor integrated circuit
PCT/JP2012/059818 WO2012141182A1 (en) 2011-04-11 2012-04-10 Semiconductor integrated circuit
US14/009,593 US8975951B2 (en) 2011-04-11 2012-04-10 Semiconductor integrated circuit
CN201280016549.9A CN103460159B (en) 2011-04-11 2012-04-10 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087431A JP5296136B2 (en) 2011-04-11 2011-04-11 Electronic device, control method thereof, and semiconductor integrated circuit

Publications (3)

Publication Number Publication Date
JP2012221301A true JP2012221301A (en) 2012-11-12
JP2012221301A5 JP2012221301A5 (en) 2013-03-07
JP5296136B2 JP5296136B2 (en) 2013-09-25

Family

ID=47272711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087431A Active JP5296136B2 (en) 2011-04-11 2011-04-11 Electronic device, control method thereof, and semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP5296136B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963620B2 (en) 2013-07-23 2015-02-24 International Business Machines Corporation Controlling circuit voltage and frequency based upon location-dependent temperature
JP2016503930A (en) * 2013-01-08 2016-02-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method for performing adaptive voltage scaling (AVS) and integrated circuit configured to perform AVS
JP2016510917A (en) * 2013-02-27 2016-04-11 クアルコム,インコーポレイテッド System and method for thermal management in portable computing devices using thermal resistance values to predict optimal power levels
US9590639B2 (en) 2014-01-07 2017-03-07 Fujitsu Limited Semiconductor device and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032119A1 (en) * 2005-09-13 2007-03-22 Sony Computer Entertainment Inc. Power source device, and electronic device using the same
JP2007165527A (en) * 2005-12-13 2007-06-28 Renesas Technology Corp Method of controlling semiconductor integrated circuit
JP2010526380A (en) * 2007-05-03 2010-07-29 ディーエスエム ソリューションズ,インコーポレイテッド Method and system for adaptive power management
JP2010245117A (en) * 2009-04-01 2010-10-28 Toshiba Corp Semiconductor integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032119A1 (en) * 2005-09-13 2007-03-22 Sony Computer Entertainment Inc. Power source device, and electronic device using the same
JP2007165527A (en) * 2005-12-13 2007-06-28 Renesas Technology Corp Method of controlling semiconductor integrated circuit
JP2010526380A (en) * 2007-05-03 2010-07-29 ディーエスエム ソリューションズ,インコーポレイテッド Method and system for adaptive power management
JP2010245117A (en) * 2009-04-01 2010-10-28 Toshiba Corp Semiconductor integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503930A (en) * 2013-01-08 2016-02-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method for performing adaptive voltage scaling (AVS) and integrated circuit configured to perform AVS
JP2016510917A (en) * 2013-02-27 2016-04-11 クアルコム,インコーポレイテッド System and method for thermal management in portable computing devices using thermal resistance values to predict optimal power levels
US8963620B2 (en) 2013-07-23 2015-02-24 International Business Machines Corporation Controlling circuit voltage and frequency based upon location-dependent temperature
US9590639B2 (en) 2014-01-07 2017-03-07 Fujitsu Limited Semiconductor device and control method

Also Published As

Publication number Publication date
JP5296136B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
WO2012141182A1 (en) Semiconductor integrated circuit
CN107707118B (en) Electronic device including power management integrated circuit
KR100862113B1 (en) Device and method for controlling supply voltage/frequency using information of process variation
US8051312B2 (en) Apparatus and method for reducing power consumption by an integrated circuit
JP5296136B2 (en) Electronic device, control method thereof, and semiconductor integrated circuit
JP2013012000A (en) Semiconductor integrated circuit for regulator
TWI514410B (en) Current providing circuit and voltage providing circuit
US10763836B2 (en) Measuring circuit for quantizing variations in circuit operating speed
KR20180077048A (en) Semiconductor device, operation controlling method, and program
JP5782465B2 (en) Controller and semiconductor system
JP2015133905A (en) controller
JP2011200037A (en) Semiconductor power converter
US10461721B2 (en) Semiconductor apparatus, degradation value determination system and processing system
JP5785759B2 (en) Semiconductor integrated circuit, control method therefor, electronic device, and method for determining frequency change frequency
CN108398997B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US10116200B1 (en) DC/DC converter device
JP2011053830A (en) Design support apparatus and design support method
JP5357252B2 (en) Power supply circuit and power supply method
CN109213297B (en) Semiconductor device and method for controlling semiconductor device
JP2009142097A (en) Voltage regulator switching method and electronic vehicle controller
JP2016178773A (en) Semiconductor device, power source unit, and electronic device
JP6623696B2 (en) Power supply device and semiconductor device
US9973075B2 (en) Method for performing adaptive input current control in an electronic device with aid of adaptor management, and associated apparatus
US20170068547A1 (en) Semiconductor device, method for designing semiconductor device and method for manufacturing semiconductor device
CN114114971B (en) Voltage regulation method, device, digital processing equipment and readable storage medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5296136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250