JP2012220526A - Inverted microscope - Google Patents

Inverted microscope Download PDF

Info

Publication number
JP2012220526A
JP2012220526A JP2011082790A JP2011082790A JP2012220526A JP 2012220526 A JP2012220526 A JP 2012220526A JP 2011082790 A JP2011082790 A JP 2011082790A JP 2011082790 A JP2011082790 A JP 2011082790A JP 2012220526 A JP2012220526 A JP 2012220526A
Authority
JP
Japan
Prior art keywords
optical system
imaging
image
light beam
inverted microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011082790A
Other languages
Japanese (ja)
Inventor
Kazuo Kajitani
和男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011082790A priority Critical patent/JP2012220526A/en
Publication of JP2012220526A publication Critical patent/JP2012220526A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce the size and weight of a microscope body while guiding the image of a specimen to a position easy to view.SOLUTION: An inverted microscope 1 includes a reflection member 15 for reflecting at least part of an infinite luminous flux condensed by an objective optical system 3, an imaging optical system 16 for condensing the infinite luminous flux reflected by the reflection member 15 to form an image of a subject A, and an eyepiece optical system 20 for enlarging the image of the subject A formed by the imaging optical system 16.

Description

本発明は、倒立顕微鏡に関するものである。   The present invention relates to an inverted microscope.

従来、対物レンズにより集光された鉛直下方に向かう無限遠光束の光路上に、対物レンズの像を撮像素子の撮像面に結像するための結像レンズを配置し、該結像レンズによって集光された光束の一部を分岐して、標本の像をU字型あるいはV字型の光路によってリレーすることにより、覗き易い位置に配置された接眼レンズまで導く倒立顕微鏡が知られている(例えば、特許文献1参照。)。   Conventionally, an imaging lens for forming an image of the objective lens on the imaging surface of the imaging element is arranged on the optical path of the infinity light beam focused by the objective lens toward the vertically downward direction, and collected by the imaging lens. An inverted microscope is known in which a part of the emitted light beam is branched and an image of the specimen is relayed by a U-shaped or V-shaped optical path to lead to an eyepiece arranged at a position where it can be easily viewed. For example, see Patent Document 1.)

特開2010−91809号公報JP 2010-91809 A

しかしながら、特許文献1の倒立顕微鏡は、結像レンズによって鉛直下方に集光した光束をU字型あるいはV字形の光路によって顕微鏡本体内を通過させるため、装置本体が大型化するという不都合がある。   However, the inverted microscope of Patent Document 1 has a disadvantage that the apparatus main body is enlarged because the light beam condensed vertically downward by the imaging lens is passed through the microscope main body by a U-shaped or V-shaped optical path.

本発明は上述した事情に鑑みてなされたものであって、顕微鏡本体の小型軽量化を図りつつ、覗きやすい位置に標本の像を導くことができる倒立顕微鏡を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an inverted microscope that can guide an image of a specimen to a position where it can be easily viewed while reducing the size and weight of the microscope main body.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、被写体からの光を集光する対物光学系と、該対物光学系により集光された無限遠光束の少なくとも一部を反射する反射部材と、該反射部材により反射された前記無限遠光束を集光して前記被写体の像を結像させる結像光学系と、該結像光学系により結像される前記被写体の像を拡大する接眼光学系とを備える倒立顕微鏡を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention provides an objective optical system that condenses light from a subject, a reflecting member that reflects at least a part of an infinite light beam collected by the objective optical system, and the infinity reflected by the reflecting member. An inverted microscope is provided that includes an imaging optical system that focuses a light beam to form an image of the subject, and an eyepiece optical system that enlarges the image of the subject that is imaged by the imaging optical system.

本発明によれば、対物光学系により集光された被写体からの光は、無限遠光束となって鉛直下方に導かれ、反射部材によって反射された後に結像光学系によって集光され、接眼光学系に導かれる。観察者は、接眼光学系を介して被写体の像を拡大観察することができる。この場合において、本発明によれば、対物光学系により集光された無限遠光束が、結像光学系を通過する前に反射部材によって反射されて、接眼光学系に指向されるので、結像レンズを通過した後に反射される従来の倒立顕微鏡と比較して、接眼光学系に至るまでの光路長を短縮でき、小型軽量化を図ることができる。   According to the present invention, the light from the subject condensed by the objective optical system becomes an infinite luminous flux, is guided vertically downward, is reflected by the reflecting member, and is then collected by the imaging optical system, and is thus supplied with eyepiece optics. Guided to the system. The observer can enlarge and observe the subject image via the eyepiece optical system. In this case, according to the present invention, the infinity light beam collected by the objective optical system is reflected by the reflecting member before passing through the imaging optical system and directed to the eyepiece optical system. Compared with the conventional inverted microscope that is reflected after passing through the lens, the optical path length to the eyepiece optical system can be shortened, and the size and weight can be reduced.

上記発明においては、前記対物光学系により集光された無限遠光束を集光して前記被写体の像を結像させる撮影用結像光学系と、該撮影用結像光学系により結像された前記被写体の像を撮影する撮像素子とを備え、前記反射部材が、前記対物光学系と前記撮影用結像光学系との間の光路に挿脱可能に設けられていてもよい。   In the above invention, a photographic imaging optical system for focusing the infinity light beam collected by the objective optical system to form an image of the subject, and an image formed by the photographic imaging optical system An imaging element that captures an image of the subject may be provided, and the reflection member may be provided so as to be inserted into and removed from an optical path between the objective optical system and the imaging imaging optical system.

このようにすることで、反射部材を光路上に挿入することで、対物光学系によって集光された無限遠光束が反射部材で反射された後に結像光学系により集光されて接眼光学系へ指向される。一方、反射部材を光路上から離脱させると、対物光学系によって集光された無限遠光束は、撮影用結像光学系によって集光されることにより被写体の像を撮像素子の撮像面に結像させることができる。   In this way, by inserting the reflecting member on the optical path, the infinite light beam collected by the objective optical system is reflected by the reflecting member and then condensed by the imaging optical system to the eyepiece optical system. Oriented. On the other hand, when the reflecting member is removed from the optical path, the infinity light beam collected by the objective optical system is collected by the imaging optical system for imaging, thereby forming an image of the subject on the imaging surface of the imaging device. Can be made.

また、上記発明においては、前記反射部材が、前記対物光学系からの前記無限遠光束の少なくとも一部を反射させずに通過可能に設けられ、前記反射部材を透過した無限遠光束を集光して前記被写体の像を結像させる撮影用結像光学系と、該撮影用結像光学系により結像された前記被写体の像を撮影する撮像素子とを備えていてもよい。   In the above invention, the reflecting member is provided so as to be able to pass without reflecting at least a part of the infinite light beam from the objective optical system, and condenses the infinite light beam transmitted through the reflecting member. A photographing imaging optical system that forms an image of the subject, and an imaging element that photographs the subject image formed by the photographing imaging optical system.

このようにすることで、対物光学系からの無限遠光束のうち、反射部材において反射された部分は結像光学系によって集光されて接眼光学系に導かれ、反射部材を透過した部分は撮影用結像光学系によって集光されて撮像素子の撮像面に結像される。これにより、撮像素子により取得される被写体の像と同一の像を接眼光学系において同時に観察することができる。   In this way, the part reflected by the reflecting member of the infinite light beam from the objective optical system is condensed by the imaging optical system and guided to the eyepiece optical system, and the part transmitted through the reflecting member is photographed. The light is condensed by the image forming optical system and imaged on the image pickup surface of the image pickup device. Thereby, the same image as the image of the subject acquired by the image sensor can be simultaneously observed in the eyepiece optical system.

また、上記発明においては、前記反射部材が、前記対物光学系と前記撮影用結像光学系との間の光路に挿脱可能に設けられていてもよい。
このようにすることで、反射部材を光路に挿入したときには、撮像素子により取得される被写体の像と同一の像を接眼光学系において同時に観察でき、反射部材を光路から離脱させたときには、接眼光学系による観察を行うことなく撮像素子によって被写体の像を取得することができる。この場合に、反射部材は無限遠光束の光路に対して挿脱されるので、挿脱によって光路長が変化せず、光路長の補正を行わなくて済む。すなわち、反射部材を光路から離脱させた際に、代わりにダミーガラスを光路に挿入する等の処置を行う必要がない。
Moreover, in the said invention, the said reflection member may be provided in the optical path between the said objective optical system and the said imaging optical system for imaging so that attachment or detachment is possible.
In this way, when the reflecting member is inserted into the optical path, the same image as the subject image acquired by the image sensor can be observed simultaneously in the eyepiece optical system, and when the reflecting member is removed from the optical path, the eyepiece optical An image of the subject can be acquired by the image sensor without performing observation by the system. In this case, since the reflection member is inserted into and removed from the optical path of the light beam at infinity, the optical path length does not change by insertion and removal, and it is not necessary to correct the optical path length. That is, when the reflecting member is detached from the optical path, it is not necessary to perform a treatment such as inserting a dummy glass into the optical path instead.

また、上記発明においては、前記反射部材が、前記無限遠光束を2回反射させる2つの反射面を備え、該反射面のなす角度θが以下の条件式を満たすことが好ましい。
20°<θ<40°
Moreover, in the said invention, it is preferable that the said reflection member is provided with two reflective surfaces which reflect the said infinity light beam twice, and angle (theta) which this reflective surface makes satisfies the following conditional expressions.
20 ° <θ <40 °

θが20°より小さいと、反射部材がプリズムで構成されている場合には、後段の反射面で全反射しなくなる。また、反射部材がミラーで構成されている場合には、ミラーの間隔を広くしないと後段の反射面を構成するミラーが光束を遮ってしまう。これを回避するためには、ミラーが配置されるスペースが大きくなってしまう。   When θ is smaller than 20 °, when the reflecting member is composed of a prism, total reflection does not occur on the subsequent reflecting surface. Further, in the case where the reflecting member is constituted by a mirror, the mirror constituting the subsequent reflecting surface blocks the light beam unless the interval between the mirrors is widened. In order to avoid this, the space where the mirror is arranged becomes large.

θが40°より大きいと、後段の反射面に浅い角度で光束が入射する。このため、反射部材がプリズムで構成されている場合には、プリズムが長く大きくなってしまい高価になる。反射部材がミラーで構成されている場合には、後段の反射面を構成するミラーが長くなるので、反射面の面精度を保つために、ミラーを厚くする必要があり、ミラーが配置されるスペースが大きくなってしまう。   If θ is greater than 40 °, the light beam is incident on the subsequent reflecting surface at a shallow angle. For this reason, when the reflecting member is composed of a prism, the prism becomes long and large, which is expensive. When the reflecting member is composed of a mirror, the mirror constituting the subsequent reflecting surface becomes long. Therefore, in order to maintain the surface accuracy of the reflecting surface, it is necessary to increase the thickness of the mirror, and the space where the mirror is disposed. Will become bigger.

また、上記発明においては、前記反射面のうち、後段の前記反射面と前記対物光学系の光軸とのなす角度βが以下の条件式を満たすことが好ましい。
80°<β<100°
Moreover, in the said invention, it is preferable that the angle (beta) which the said reflective surface of the back | latter stage and the optical axis of the said objective optical system among the said reflective surfaces satisfy | fill the following conditional expressions.
80 ° <β <100 °

後段の反射面は、その面積が比較的大きいので対物光学系の光軸にほぼ直交(β=90°)することが望ましい。βが80°より小さいか100°より大きいと後段の反射面が傾くことにより対物光学系の光軸方向にスペースをとってしまうことになる。   Since the reflection surface at the rear stage has a relatively large area, it is desirable that the reflection surface is substantially orthogonal (β = 90 °) to the optical axis of the objective optical system. If β is smaller than 80 ° or larger than 100 °, the reflecting surface in the subsequent stage is inclined to take a space in the optical axis direction of the objective optical system.

本発明によれば、顕微鏡本体の小型軽量化を図りつつ、覗きやすい位置に対物光学系の像を導くことができるという効果を奏する。   According to the present invention, there is an effect that an image of the objective optical system can be guided to a position where it can be easily viewed while reducing the size and weight of the microscope main body.

本発明の一実施形態に係る倒立顕微鏡を示す図である。It is a figure which shows the inverted microscope which concerns on one Embodiment of this invention. 図1の倒立顕微鏡の変形例を示す図である。It is a figure which shows the modification of the inverted microscope of FIG.

本発明の一実施形態に係る倒立顕微鏡1について、図面を参照して以下に説明する。
本実施形態に係る倒立顕微鏡1は、図1に示されるように、被写体である標本Aを搭載するステージ2の下方に配置された対物光学系3と、該対物光学系3を介して標本Aに照射する照明光を供給する照明光学系4と、対物光学系3により集光されて鉛直方向下方に向かう無限遠光束からなる標本Aからの光を集光して撮影する撮像光学系5と、無限遠光束からなる標本Aからの光を集光して目視により観察するための観察光学系6とを備えている。
An inverted microscope 1 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the inverted microscope 1 according to the present embodiment includes an objective optical system 3 disposed below a stage 2 on which a specimen A that is a subject is mounted, and a specimen A via the objective optical system 3. An illumination optical system 4 that supplies illumination light to irradiate the light, and an imaging optical system 5 that collects and shoots light from the specimen A, which is a infinity light beam that is condensed by the objective optical system 3 and goes downward in the vertical direction And an observation optical system 6 for condensing the light from the specimen A consisting of an infinite luminous flux and observing it visually.

照明光学系4は、照明光を発生する水銀灯のような光源7と、光源7からの照明光を集光する集光光学系8と、該集光光学系8により集光された照明光を対物光学系3の光軸Cに沿う方向に偏向するダイクロイックミラー9とを備えている。集光光学系8の焦点位置を対物光学系3の後側焦点位置に一致させることにより、略平行光からなる照明光を標本Aに照射することができるようになっている。   The illumination optical system 4 includes a light source 7 such as a mercury lamp that generates illumination light, a condensing optical system 8 that condenses the illumination light from the light source 7, and illumination light collected by the condensing optical system 8. A dichroic mirror 9 that deflects in the direction along the optical axis C of the objective optical system 3 is provided. By making the focal position of the condensing optical system 8 coincide with the rear focal position of the objective optical system 3, it is possible to irradiate the specimen A with illumination light consisting of substantially parallel light.

対物光学系3は、標本Aから発せられた光を集光して略無限遠光束として鉛直下方に導くようになっている。
撮像光学系5は、対物光学系3により導かれた略無限遠光束を波長毎に分岐するダイクビームスプリッタ10と、該ビームスプリッタ10により分岐された光をそれぞれ集光して結像させる2つの結像光学系(撮影用結像光学系)11,12と、これら結像光学系11,12の焦点位置にそれぞれ撮像面を配置する撮像素子13,14とを備えている。
The objective optical system 3 condenses the light emitted from the specimen A and guides it vertically downward as a substantially infinite light beam.
The imaging optical system 5 includes a Dyke beam splitter 10 that splits the substantially infinite light beam guided by the objective optical system 3 for each wavelength, and two lights that focus and split the light branched by the beam splitter 10. Imaging optical systems (imaging imaging optical systems) 11 and 12 and imaging elements 13 and 14 that respectively arrange imaging surfaces at focal positions of the imaging optical systems 11 and 12 are provided.

観察光学系6は、ダイクロイックミラー9とビームスプリッタ10との間の光路に配置され、対物光学系3により鉛直下方に導かれてきた略無限遠光束の一部を略水平方向に分岐するビームスプリッタ15と、該ビームスプリッタ15により分岐された光を集光して結像させる結像光学系16と、該結像光学系16により形成された中間像をリレーするリレー光学系17と、該リレー光学系17を通過した光を斜め上方に傾斜した方向に反射するプリズム18と、該プリズム18によって反射された光を2つに分割する双眼分割用プリズム19と、リレー光学系17によってリレーされた標本Aの像を拡大して、ユーザの両眼Eの網膜が配置される位置にそれぞれ結像させる接眼光学系20とを備えている。図中、符号21はミラーである。   The observation optical system 6 is disposed in the optical path between the dichroic mirror 9 and the beam splitter 10 and is a beam splitter that branches a part of the substantially infinite light beam guided vertically downward by the objective optical system 3 in a substantially horizontal direction. 15, an imaging optical system 16 that focuses and splits the light branched by the beam splitter 15, a relay optical system 17 that relays an intermediate image formed by the imaging optical system 16, and the relay The light that has passed through the optical system 17 is reflected by a prism 18 that reflects obliquely upward, the binocular division prism 19 that divides the light reflected by the prism 18 into two, and relayed by a relay optical system 17. An eyepiece optical system 20 is provided that enlarges the image of the specimen A and forms images at positions where the retinas of both eyes E of the user are arranged. In the figure, reference numeral 21 denotes a mirror.

このように構成された本実施形態に係る倒立顕微鏡1の作用について以下に説明する。
本実施形態に係る倒立顕微鏡1によれば、照明光学系4の光源7から発せられた照明光は、集光光学系8によって集光された後、ダイクロイックミラー9によって対物光学系3の光軸Cに沿う方向に偏向され、対物光学系3によって、該対物光学系3の鉛直上方のステージ2上に配置されている標本Aに照射される。
The operation of the inverted microscope 1 according to the present embodiment configured as described above will be described below.
According to the inverted microscope 1 according to the present embodiment, the illumination light emitted from the light source 7 of the illumination optical system 4 is condensed by the condensing optical system 8 and then the optical axis of the objective optical system 3 by the dichroic mirror 9. The sample A is deflected in the direction along C, and is irradiated by the objective optical system 3 onto the specimen A arranged on the stage 2 vertically above the objective optical system 3.

標本Aから下方に発せられた光は、対物光学系3により集光されて、鉛直下方に向かう略無限遠光束となり、ダイクロイックミラー9を透過した部分の一部がビームスプリッタ15により観察光学系6に分岐される。ビームスプリッタ15により分岐された略無限遠光束は、分岐後に結像光学系16によって集光され、リレー光学系17によってリレーされて、双眼分割用プリズム19によって2つに分割された後、接眼光学系20によって試料Aの像が拡大されて、ユーザの両眼Eの網膜が配置される位置に結像される。ユーザは接眼光学系20の焦点位置に目を配置しておくことにより、試料Aの像を詳細に観察することができる。   The light emitted downward from the specimen A is condensed by the objective optical system 3 to become a substantially infinite light beam directed vertically downward, and a part of the portion transmitted through the dichroic mirror 9 is observed by the beam splitter 15 by the observation optical system 6. Fork. The substantially infinite light beam branched by the beam splitter 15 is condensed by the imaging optical system 16 after being branched, relayed by the relay optical system 17 and split into two by the binocular splitting prism 19, and then the eyepiece optics. The image of the sample A is enlarged by the system 20 and formed at a position where the retinas of the user's eyes E are arranged. The user can observe the image of the sample A in detail by placing an eye at the focal position of the eyepiece optical system 20.

この場合において、本実施形態に係る倒立顕微鏡1によれば、対物光学系3により集光された略無限遠光束が、結像光学系16を通過する前にビームスプリッタ15によって反射されて、接眼光学系6に指向されるので、結像光学系16を通過した後に反射される従来の倒立顕微鏡と比較して、接眼光学系20に至るまでの光路長を短縮することができるという利点がある。その結果、小型軽量の倒立顕微鏡1を提供することができる。   In this case, according to the inverted microscope 1 according to the present embodiment, the substantially infinite light beam collected by the objective optical system 3 is reflected by the beam splitter 15 before passing through the imaging optical system 16, and thus the eyepiece. Since it is directed to the optical system 6, there is an advantage that the optical path length to the eyepiece optical system 20 can be shortened as compared with the conventional inverted microscope that is reflected after passing through the imaging optical system 16. . As a result, a small and light inverted microscope 1 can be provided.

一方、ダイクロイックミラー9を透過した略無限遠光束の内、ビームスプリッタ15を透過した部分は、撮影光学系5に入射され、ビームスプリッタ10によって分岐された後に、結像光学系11,12によってそれぞれ集光されて、撮像素子13,14の撮像面に標本Aの像を結像する。これにより、各撮像素子13,14は、波長毎に、標本Aの像を撮影することができる。   On the other hand, of the substantially infinite light beam that has passed through the dichroic mirror 9, the portion that has passed through the beam splitter 15 is incident on the imaging optical system 5 and branched by the beam splitter 10, and then by the imaging optical systems 11 and 12. The light is collected and an image of the specimen A is formed on the imaging surfaces of the imaging elements 13 and 14. Thereby, each image pick-up element 13 and 14 can image | photograph the image of the sample A for every wavelength.

この場合において、本実施形態に係る倒立顕微鏡1によれば、観察光学系6に設けられた接眼光学系20用の結像光学系16とは別の結像光学系11,12によって標本Aの像を結像するので、観察光学系6の配置に束縛されることなく、撮影光学系5を自由にレイアウトすることができるという利点がある。例えば、図2に示されるように略無限遠光束からなる光路に他のビームスプリッタ10’を配置して、他の結像光学系12’および撮像素子14’を設けることもできる。   In this case, according to the inverted microscope 1 according to the present embodiment, the specimen A is formed by the imaging optical systems 11 and 12 different from the imaging optical system 16 for the eyepiece optical system 20 provided in the observation optical system 6. Since the image is formed, there is an advantage that the photographing optical system 5 can be laid out freely without being restricted by the arrangement of the observation optical system 6. For example, as shown in FIG. 2, another beam splitter 10 'may be disposed on the optical path consisting of a substantially infinite light beam, and another imaging optical system 12' and imaging element 14 'may be provided.

なお、本実施形態においては、観察光学系6が、ビームスプリッタ15により略無限遠光束を90°偏向する場合について説明したが、これに限定されるものではなく、図2に示されるように、斜め下方に分岐するプリズム22を採用してもよい。
このプリズム22としては、略無限遠光束を2回反射させる2つの反射面22a,22bを有し、これらの反射面22a,22bのなす角度θが以下の条件式を満たすことが好ましい。
20°<θ<40°
In the present embodiment, the case where the observation optical system 6 deflects a substantially infinite light beam by 90 ° by the beam splitter 15 has been described. However, the present invention is not limited to this, and as shown in FIG. A prism 22 that branches obliquely downward may be employed.
The prism 22 preferably has two reflecting surfaces 22a and 22b that reflect a substantially infinite light beam twice, and an angle θ formed by these reflecting surfaces 22a and 22b preferably satisfies the following conditional expression.
20 ° <θ <40 °

θが20°より小さいと、反射面22bで全反射しなくなる。θが40°より大きいと、反射面22bに浅い角度で光束が入射する。このため、プリズム22が長く大きくなってしまい高価になる。   When θ is smaller than 20 °, the reflection surface 22b does not totally reflect. If θ is greater than 40 °, the light beam enters the reflecting surface 22b at a shallow angle. For this reason, the prism 22 becomes long and large, and becomes expensive.

さらに、反射面22a,22bのうち、後段の反射面22bと対物光学系3の光軸Cとのなす角度βが以下の条件式を満たすことが好ましい。
80°<β<100°
後段の反射面22bは、その面積が比較的大きいので対物光学系3の光軸にほぼ直交(β=90°)することが望ましい。βが80°より小さいか100°より大きいと反射面22bが傾くことにより対物光学系3の光軸方向にスペースをとってしまうことになる。
Furthermore, it is preferable that the angle β formed by the subsequent reflecting surface 22b of the reflecting surfaces 22a and 22b and the optical axis C of the objective optical system 3 satisfies the following conditional expression.
80 ° <β <100 °
Since the reflection surface 22b in the subsequent stage has a relatively large area, it is desirable that the reflection surface 22b be substantially orthogonal (β = 90 °) to the optical axis of the objective optical system 3. If β is smaller than 80 ° or larger than 100 °, the reflecting surface 22b is inclined, so that a space is taken in the optical axis direction of the objective optical system 3.

また、プリズム22に代えてミラーを使用してもよい。この場合には、θが20°より小さいと、ミラーの間隔を広くしないと後段の反射面22bを構成するミラーが光束を遮ってしまうので、これを回避するためには、ミラーが配置されるスペースが大きくなってしまう。また、θが40°より大きいと、後段の反射面22bを構成するミラーが長くなってしまう。このため、反射面22bの面精度を保つために、ミラーを厚くする必要があり、ミラーが配置されるスペースが大きくなってしまう。   Further, a mirror may be used instead of the prism 22. In this case, if [theta] is smaller than 20 [deg.], The mirror constituting the reflection surface 22b in the subsequent stage will block the light beam unless the mirror interval is widened. In order to avoid this, the mirror is arranged. Space becomes big. On the other hand, if θ is larger than 40 °, the mirror constituting the subsequent reflecting surface 22b becomes long. For this reason, in order to maintain the surface accuracy of the reflecting surface 22b, it is necessary to increase the thickness of the mirror, which increases the space in which the mirror is disposed.

また、本実施形態においては、ビームスプリッタ15を光軸Cから挿脱させることにしてもよい。この場合に、ビームスプリッタ15はダイクロイックミラー9と撮像光学系5との間の略無限遠光束からなる光路に配置されるので、ビームスプリッタ15を挿脱しても光路長が変動せず、ビームスプリッタ15を離脱させた際に、代わりにダミーガラスを挿入するなどの光路長の調節を行わなくて済むという利点がある。なお、光路に挿脱する場合には、ビームスプリッタ15に代えて、ミラーを採用してもよい。   In the present embodiment, the beam splitter 15 may be inserted into and removed from the optical axis C. In this case, since the beam splitter 15 is disposed in the optical path consisting of a substantially infinite light beam between the dichroic mirror 9 and the imaging optical system 5, the optical path length does not change even when the beam splitter 15 is inserted and removed. There is an advantage that when the lens 15 is detached, it is not necessary to adjust the optical path length such as inserting a dummy glass instead. In addition, when inserting / removing to / from the optical path, a mirror may be employed instead of the beam splitter 15.

A 標本(被写体)
1 倒立顕微鏡
3 対物光学系
11,12,12’ 結像光学系(撮影用結像光学系)
13,14,14’ 撮像素子
15 ビームスプリッタ(反射部材)
16 結像光学系
20 接眼光学系
22 プリズム(反射部材)
22a,22b 反射面
A specimen (subject)
DESCRIPTION OF SYMBOLS 1 Inverted microscope 3 Objective optical system 11, 12, 12 'Imaging optical system (imaging optical system for imaging | photography)
13, 14, 14 'Image sensor 15 Beam splitter (reflective member)
16 Imaging optical system 20 Eyepiece optical system 22 Prism (reflective member)
22a, 22b Reflecting surface

Claims (6)

被写体からの光を集光する対物光学系と、
該対物光学系により集光された無限遠光束の少なくとも一部を反射する反射部材と、
該反射部材により反射された前記無限遠光束を集光して前記被写体の像を結像させる結像光学系と、
該結像光学系により結像される前記被写体の像を拡大する接眼光学系とを備える倒立顕微鏡。
An objective optical system that collects light from the subject;
A reflecting member that reflects at least a portion of the infinite light beam collected by the objective optical system;
An imaging optical system that focuses the infinity light beam reflected by the reflecting member to form an image of the subject;
An inverted microscope comprising: an eyepiece optical system for enlarging an image of the subject imaged by the imaging optical system.
前記対物光学系により集光された無限遠光束を集光して前記被写体の像を結像させる撮影用結像光学系と、
該撮影用結像光学系により結像された前記被写体の像を撮影する撮像素子とを備え、
前記反射部材が、前記対物光学系と前記撮影用結像光学系との間の光路に挿脱可能に設けられている請求項1に記載の倒立顕微鏡。
An imaging optical system for photographing that focuses the infinity light beam collected by the objective optical system to form an image of the subject;
An imaging element that captures an image of the subject imaged by the imaging optical system for imaging,
The inverted microscope according to claim 1, wherein the reflecting member is detachably provided in an optical path between the objective optical system and the imaging imaging optical system.
前記反射部材が、前記対物光学系からの前記無限遠光束の少なくとも一部を反射させずに通過可能に設けられ、
前記反射部材を透過した無限遠光束を集光して前記被写体の像を結像させる撮影用結像光学系と、
該撮影用結像光学系により結像された前記被写体の像を撮影する撮像素子とを備える請求項1に記載の倒立顕微鏡。
The reflection member is provided so as to be able to pass through without reflecting at least a part of the infinite light beam from the objective optical system;
An imaging optical system for photographing that focuses the infinite light beam transmitted through the reflecting member to form an image of the subject;
The inverted microscope according to claim 1, further comprising: an imaging element that captures an image of the subject imaged by the imaging optical system for imaging.
前記反射部材が、前記対物光学系と前記撮影用結像光学系との間の光路に挿脱可能に設けられている請求項3に記載の倒立顕微鏡。   The inverted microscope according to claim 3, wherein the reflecting member is detachably provided in an optical path between the objective optical system and the imaging imaging optical system. 前記反射部材が、前記無限遠光束を2回反射させる2つの反射面を備え、
該反射面のなす角度θが以下の条件式を満たす請求項1から請求項4のいずれかに記載の倒立顕微鏡。
20°<θ<40°
The reflecting member includes two reflecting surfaces that reflect the infinite luminous flux twice.
The inverted microscope according to any one of claims 1 to 4, wherein an angle θ formed by the reflecting surface satisfies the following conditional expression.
20 ° <θ <40 °
前記反射面のうち、後段の前記反射面と前記対物光学系の光軸とのなす角度βが以下の条件式を満たす請求項5に記載の倒立顕微鏡。
80°<β<100°
6. The inverted microscope according to claim 5, wherein an angle β formed by the subsequent reflecting surface of the reflecting surface and the optical axis of the objective optical system satisfies the following conditional expression.
80 ° <β <100 °
JP2011082790A 2011-04-04 2011-04-04 Inverted microscope Pending JP2012220526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082790A JP2012220526A (en) 2011-04-04 2011-04-04 Inverted microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082790A JP2012220526A (en) 2011-04-04 2011-04-04 Inverted microscope

Publications (1)

Publication Number Publication Date
JP2012220526A true JP2012220526A (en) 2012-11-12

Family

ID=47272149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082790A Pending JP2012220526A (en) 2011-04-04 2011-04-04 Inverted microscope

Country Status (1)

Country Link
JP (1) JP2012220526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333737A (en) * 2018-03-30 2018-07-27 宁波华光精密仪器有限公司 Three mesh stereomicroscope relay systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020A (en) * 1852-06-15 Improved machine for peaking sheet-metal tubes
JPH08278448A (en) * 1995-04-06 1996-10-22 Nikon Corp Lens barrel optical system
JP2003270544A (en) * 2003-02-17 2003-09-25 Olympus Optical Co Ltd Stereomicroscope
JP2007163982A (en) * 2005-12-15 2007-06-28 Nikon Corp Microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020A (en) * 1852-06-15 Improved machine for peaking sheet-metal tubes
JPH08278448A (en) * 1995-04-06 1996-10-22 Nikon Corp Lens barrel optical system
JP2003270544A (en) * 2003-02-17 2003-09-25 Olympus Optical Co Ltd Stereomicroscope
JP2007163982A (en) * 2005-12-15 2007-06-28 Nikon Corp Microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333737A (en) * 2018-03-30 2018-07-27 宁波华光精密仪器有限公司 Three mesh stereomicroscope relay systems

Similar Documents

Publication Publication Date Title
JP5941634B2 (en) Microscope including micro and macro objectives
JP5386512B2 (en) Ophthalmic imaging equipment
JP2012509729A5 (en)
JP5286774B2 (en) Microscope device and fluorescent cube used therefor
JP5655617B2 (en) microscope
JP2009110004A (en) Illumination device for light microscope and light microscope with illumination device
JPS58214121A (en) Device for photographic microscope
JP2006301514A (en) Microscope
JP2012042564A (en) Microscope and ghost removing method
JP2012220526A (en) Inverted microscope
US20100118297A1 (en) Microscope having multiple image-outputting devices and probing apparatus for integrated circuit devices using the same
JP2002303795A (en) Inverted microscope
JP2009031323A (en) Eyepiece barrel of microscope and microscope system
US20090128897A1 (en) Microscope having multiple image- outputting devices and probing apparatus for integrated circuit devices using the same
JP2012181341A (en) Microscope device
JP2007264029A (en) Finder optical system and optical equipment mounted with same
JP2011059205A (en) Microscope device
JP2019074619A (en) Observation device
JP2017191122A (en) Surgical microscope
JP2013200438A (en) Microscope
JP4593139B2 (en) Optical scanning confocal observation device
JP6249783B2 (en) microscope
JP6733957B2 (en) Surgical microscope
JP5418880B2 (en) Display device and optical apparatus provided with the same
JP5023934B2 (en) microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118