JP2012220111A - Binary refrigerating device - Google Patents

Binary refrigerating device Download PDF

Info

Publication number
JP2012220111A
JP2012220111A JP2011086739A JP2011086739A JP2012220111A JP 2012220111 A JP2012220111 A JP 2012220111A JP 2011086739 A JP2011086739 A JP 2011086739A JP 2011086739 A JP2011086739 A JP 2011086739A JP 2012220111 A JP2012220111 A JP 2012220111A
Authority
JP
Japan
Prior art keywords
low
radiator
source
refrigerant
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011086739A
Other languages
Japanese (ja)
Other versions
JP5430604B2 (en
Inventor
Tomotaka Ishikawa
智隆 石川
So Nomoto
宗 野本
Takeshi Sugimoto
猛 杉本
Tetsuya Yamashita
哲也 山下
Takashi Ikeda
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011086739A priority Critical patent/JP5430604B2/en
Publication of JP2012220111A publication Critical patent/JP2012220111A/en
Application granted granted Critical
Publication of JP5430604B2 publication Critical patent/JP5430604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a binary refrigerating device capable of achieving energy saving effect year-round by defining a radiation ratio of an auxiliary radiator in an integrated radiator.SOLUTION: In this binary refrigerating device using a COrefrigerant, the auxiliary radiator is disposed on a former stage in a low-order side refrigerating cycle of a cascade condenser, and a high-order side condenser and the auxiliary radiator are integrated to constitute the integrated radiator 25. The radiation amount of the auxiliary radiator 15 is 10-20% of the total radiation amount of the integrated radiator 25.

Description

本発明は、二元冷凍装置に係り、特に低元冷凍サイクルにCO2冷媒を用いた二元冷凍装置に関するものである。   The present invention relates to a binary refrigeration apparatus, and more particularly to a binary refrigeration apparatus that uses a CO2 refrigerant in a low refrigeration cycle.

近年、冷凍装置に使用される冷媒の地球温暖化に対する影響を削減する要求が高まっており、地球温暖化に対する影響が小さい自然冷媒として、CO2を使用した冷凍装置が提案されている。また、CO2を使用した冷凍装置は、遷臨界サイクルである点を利用して高い出湯温度を得る給湯機に適用され、また不燃性である点を利用して使用時の冷媒漏洩量が大きいカーエアコンに適用されている。   In recent years, there has been an increasing demand for reducing the influence of refrigerants used in refrigeration equipment on global warming, and refrigeration equipment using CO2 has been proposed as a natural refrigerant that has little influence on global warming. In addition, the refrigeration system using CO2 is applied to a hot water heater that obtains a high tapping temperature by utilizing the point that is a transcritical cycle, and the refrigerant leakage amount during use is large by utilizing the point that it is nonflammable. Applied to air conditioners.

一方、冷蔵あるいは冷凍に利用する比較的蒸発温度が低い冷凍装置においては、高外気温度条件において効率が著しく低下するとともに、蒸発温度の低下に伴って吐出ガス温度が非常に高くなるという問題があり、CO2冷媒の適用が進んでいない。   On the other hand, in a refrigeration apparatus having a relatively low evaporation temperature used for refrigeration or freezing, there is a problem that the efficiency is remarkably lowered under a high outside air temperature condition, and the discharge gas temperature becomes very high as the evaporation temperature is lowered. Application of CO2 refrigerant is not progressing.

そこで、CO2冷媒を使用した冷凍サイクル(低元冷凍サイクル)と他の冷媒を使用した冷凍サイクル(高元冷凍サイクル)とを備え、低元冷凍サイクルにおける低元側凝縮器と高元冷凍サイクルにおける高元側蒸発器とを熱交換できるように構成したカスケードコンデンサによって低元冷凍サイクルと高元冷凍サイクルとを連結する二元冷凍装置が提案されている(例えば、特許文献1参照)。この二元冷凍装置では、低元冷凍サイクルにおいてカスケードコンデンサの前段に補助放熱器を設置し、低元側圧縮機から吐出された吐出冷媒を補助放熱器で冷却することで運転効率の向上を図っている。   Therefore, a refrigeration cycle using a CO2 refrigerant (low refrigeration cycle) and a refrigeration cycle using another refrigerant (high refrigeration cycle) are provided. A binary refrigeration apparatus has been proposed in which a low-source refrigeration cycle and a high-source refrigeration cycle are connected by a cascade condenser configured to exchange heat with a high-source evaporator (see, for example, Patent Document 1). In this dual refrigeration system, an auxiliary radiator is installed in front of the cascade condenser in the low refrigeration cycle, and the discharge refrigerant discharged from the low-source compressor is cooled by the auxiliary radiator to improve the operation efficiency. ing.

また、二元冷凍装置において補助放熱器と高元側凝縮器とを一体型とし、装置のコンパクト化を図った技術がある(例えば、特許文献2参照)。   In addition, there is a technique in which an auxiliary radiator and a high-side condenser are integrated in a binary refrigeration apparatus to reduce the size of the apparatus (for example, see Patent Document 2).

特許第3604973号公報(第2頁、第3頁、図1)Japanese Patent No. 3606043 (2nd page, 3rd page, FIG. 1) 特開2010−127548号公報(図4)JP 2010-127548 A (FIG. 4)

特許文献1の二元冷凍装置では補助放熱器と高元側凝縮器が別体で構成されているため、装置が大型化する。このため、特許文献2のように補助放熱器と高元側凝縮器とを一体型とすれば、運転効率の向上と装置のコンパクト化を図った二元冷凍装置を構成できる。   In the binary refrigeration apparatus of Patent Document 1, the auxiliary radiator and the high-side condenser are configured separately, so that the apparatus becomes large. For this reason, if an auxiliary heat sink and a high-end side condenser are integrated as in Patent Document 2, a binary refrigeration apparatus that improves operational efficiency and makes the apparatus compact can be configured.

ところで、特許文献1の二元冷凍装置では、低元冷凍サイクルにおいて吐出冷媒を冷却する補助放熱器の放熱量を増大すれば、高元冷凍サイクルの能力を低減でき、運転効率を向上することができる。補助放熱器の放熱量をどの程度まで増大すればよいかは外気温度によって異なる。また、カスケードコンデンサにおいて低元側凝縮器と高元側蒸発器とが熱交換する二元冷凍装置では、運転効率を最大とするにあたり、補助放熱器の放熱量と高元凝縮器の放熱量との間に最適な放熱比が存在する。この放熱比は、装置のコンパクト化を図るために補助放熱器と高元側凝縮器とを一体型とした場合には、一体型放熱器全体の放熱量に対する補助放熱量の放熱量の割合に置き換えられる。この放熱量割合もまた外気温度によって変化する。   By the way, in the binary refrigeration apparatus of Patent Document 1, if the heat radiation amount of the auxiliary radiator that cools the discharged refrigerant in the low-source refrigeration cycle is increased, the capacity of the high-source refrigeration cycle can be reduced and the operation efficiency can be improved. it can. The extent to which the heat radiation amount of the auxiliary radiator should be increased depends on the outside air temperature. In a binary refrigeration system in which heat is exchanged between the low-side condenser and the high-side evaporator in the cascade condenser, the heat dissipation of the auxiliary radiator and the heat dissipation of the high-order condenser There is an optimal heat dissipation ratio between. This heat dissipation ratio is the ratio of the heat dissipation amount of the auxiliary heat dissipation amount to the heat dissipation amount of the entire integrated radiator when the auxiliary heatsink and the high-side condenser are integrated to reduce the size of the device. Replaced. This heat dissipation rate also varies with the outside air temperature.

二元冷凍装置に対しては、年間を通して高い運転効率での運転が望まれている。よって、補助放熱器と高元側凝縮器とを一体型とした二元冷凍装置では、年間を通した外気温度変化を踏まえた上で、高い運転効率が達成されるように放熱量割合を決定することが望まれる。しかし、特許文献1では、この点について検討されていない。   For dual refrigeration equipment, operation with high operational efficiency is desired throughout the year. Therefore, in a dual refrigeration system that integrates an auxiliary radiator and a high-end condenser, the heat dissipation rate is determined so that high operating efficiency is achieved after taking into account changes in the outside air temperature throughout the year. It is desirable to do. However, Patent Document 1 does not discuss this point.

本発明はこのような点に鑑みなされたもので、一体型放熱器における補助放熱器の放熱量割合を規定し、年間を通して省エネ効果を得ることが可能な二元冷凍装置を提供することを目的とする。   The present invention has been made in view of such points, and an object thereof is to provide a binary refrigeration apparatus capable of providing an energy saving effect throughout the year by defining a heat dissipation rate of an auxiliary radiator in an integrated radiator. And

本発明に係る二元冷凍装置は、CO2冷媒を用いた低元冷凍サイクルと、低元冷凍サイクルの放熱を補助する高元冷凍サイクルとを備え、低元冷凍サイクル及び高元冷凍サイクルはそれぞれ圧縮機、凝縮器、減圧装置及び蒸発器を備えており、高元側蒸発器と低元側凝縮器とがカスケードコンデンサで熱交換し、カスケードコンデンサの低元冷凍サイクルにおける前段に補助放熱器が設置された構成を有し、更に、高元側凝縮器及び補助放熱器は一体化されて一体型放熱器を構成しており、一体型放熱器の全放熱量の10%から20%を補助放熱器の放熱量としたものである。   A binary refrigeration apparatus according to the present invention includes a low refrigeration cycle using a CO2 refrigerant and a high refrigeration cycle that assists heat dissipation in the low refrigeration cycle, and the low refrigeration cycle and the high refrigeration cycle are respectively compressed. Machine, condenser, decompression device, and evaporator, heat exchange between the high-end evaporator and the low-end condenser using a cascade condenser, and an auxiliary radiator installed at the front stage of the cascade condenser's low-end refrigeration cycle Furthermore, the high-end side condenser and the auxiliary radiator are integrated to form an integrated radiator, and 10% to 20% of the total radiation amount of the integrated radiator is auxiliary radiation. This is the amount of heat released from the vessel.

地球温暖化に対する影響が小さい自然冷媒として、運転効率の低いCO2冷媒を冷凍装置に使用した場合であっても、年間を通して大きな省エネ効果があり、コンパクトな二元冷凍装置を得ることができる。   Even when a low-efficiency CO 2 refrigerant is used in the refrigeration system as a natural refrigerant that has little influence on global warming, a compact binary refrigeration system can be obtained throughout the year.

本発明の一実施の形態に係る二元冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the binary refrigeration apparatus concerning one embodiment of the present invention. 図1の一体型放熱器の伝熱フィン部分の構成を示す概略図である。It is the schematic which shows the structure of the heat-transfer fin part of the integrated radiator of FIG. 図1の二元冷凍装置におけるエンタルピと飽和温度との関係を示す図である。It is a figure which shows the relationship between enthalpy and saturation temperature in the binary refrigeration apparatus of FIG. 低元側凝縮温度と圧縮機入力との関係を示す図である。It is a figure which shows the relationship between the low original side condensing temperature and a compressor input. 低元側凝縮温度が外気温度よりも低い場合と高い場合の放熱量の説明図である。It is explanatory drawing of the thermal radiation amount in the case where the low element side condensing temperature is lower than outside temperature, and when it is high. 補助放熱器の放熱量とCOPとの関係の説明図である。It is explanatory drawing of the relationship between the heat dissipation of an auxiliary radiator and COP. 低元側凝縮温度と二元冷凍装置全体の運転効率変動率との関係を示す図である。It is a figure which shows the relationship between the low element side condensation temperature and the operating efficiency fluctuation | variation rate of the whole binary refrigeration apparatus. 図7の運転効率最大値部分の拡大図である。It is an enlarged view of the operation efficiency maximum value part of FIG. 図1の一体型放熱器の放熱量の説明図である。It is explanatory drawing of the thermal radiation amount of the integrated radiator of FIG. 図1の一体型放熱器における補助放熱器の放熱量割合の説明図である。It is explanatory drawing of the heat dissipation amount ratio of the auxiliary radiator in the integrated radiator of FIG. 外気温度が32℃のときの補助放熱器の放熱量割合と運転効率変動率との関係を示す図である。It is a figure which shows the relationship between the heat dissipation amount ratio of an auxiliary radiator when an outside temperature is 32 degreeC, and an operating efficiency fluctuation rate.

以下、本発明に係る二元冷凍装置の好適な実施の形態について添付図面を参照して説明する。
実施の形態.
図1は、本発明の一実施の形態に係る二元冷凍装置の冷媒回路図である。図1において、二元冷凍装置は、低元冷凍サイクル10と高元冷凍サイクル20とを備えている。低元冷凍サイクル10は、運転容量可変式の低元側圧縮機11、カスケードコンデンサC、減圧装置としての低元側膨張弁13、低元側蒸発器14及び補助放熱器15が順次接続されて構成されている。高元冷凍サイクル20は、運転容量可変式の高元側圧縮機21、高元側凝縮器22、減圧装置としての高元側膨張弁23及びカスケードコンデンサCが順次接続されて構成されている。本例の二元冷凍装置では、低元冷凍サイクル10には冷媒としてCO2冷媒を用い、高元冷凍サイクル20にはCO2冷媒よりも運転効率の高いHC系冷媒やHFC冷媒、HFO冷媒(HFO−1234yf、HFO−1234ze等)等を用いる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a binary refrigeration apparatus according to the invention will be described with reference to the accompanying drawings.
Embodiment.
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus according to an embodiment of the present invention. In FIG. 1, the binary refrigeration apparatus includes a low original refrigeration cycle 10 and a high original refrigeration cycle 20. In the low-source refrigeration cycle 10, a variable-capacity low-source compressor 11, a cascade capacitor C, a low-source expansion valve 13 as a decompression device, a low-source evaporator 14 and an auxiliary radiator 15 are sequentially connected. It is configured. The high-source refrigeration cycle 20 is configured by sequentially connecting a high-side compressor 21 having a variable operating capacity, a high-side condenser 22, a high-side expansion valve 23 as a pressure reducing device, and a cascade capacitor C. In the binary refrigeration apparatus of this example, a CO2 refrigerant is used as the refrigerant in the low refrigeration cycle 10, and an HC refrigerant, an HFC refrigerant, an HFO refrigerant (HFO-) having higher operating efficiency than the CO2 refrigerant is used in the high refrigeration cycle 20. 1234yf, HFO-1234ze, etc.).

カスケードコンデンサCは高元側の高元側蒸発器24と低元側の低元側凝縮器12とを備え、互いに熱交換するように構成されている。また、一体型放熱器25は、補助放熱器15と高元側凝縮器22とを一体型として形成したもので、高元側凝縮器22は高元冷凍サイクル20を流れる冷媒を凝縮し、これと同時に、低元冷凍サイクル10においてカスケードコンデンサCの前段に配置された補助放熱器15は、低元冷凍サイクル10を流れるCO2ガスを冷却する。また、一体型放熱器25は一体型放熱器25内に外気を吸入して一体型放熱器25を通過する冷媒と熱交換させた後、熱交換後の外気を一体型放熱器25外に排気するための放熱器ファン16を備えている。   The cascade condenser C includes a high-side evaporator 24 on the high side and a low-side condenser 12 on the low side, and is configured to exchange heat with each other. The integrated radiator 25 is formed by integrating the auxiliary radiator 15 and the high-side condenser 22 as an integrated type, and the high-side condenser 22 condenses the refrigerant flowing through the high-source refrigeration cycle 20. At the same time, the auxiliary radiator 15 disposed in front of the cascade capacitor C in the low-source refrigeration cycle 10 cools the CO 2 gas flowing through the low-source refrigeration cycle 10. The integrated radiator 25 sucks outside air into the integrated radiator 25 and exchanges heat with the refrigerant passing through the integrated radiator 25, and then exhausts the outside air after heat exchange to the outside of the integrated radiator 25. A radiator fan 16 is provided.

図2は、図1の一体型放熱器の伝熱フィン部分の構成を示す概略図である。
一体型放熱器25は、平板状の伝熱フィン25aに伝熱管25bを貫通してなるプレートフィンチューブ型熱交換器である。高元側凝縮器22及び補助放熱器15は、伝熱フィン25aを共有することによって一体化されていてもよいし、伝熱フィン25a部分が分割されていてもよい。一体化されていれば、熱交換器の構造上、製造が容易となる。また、高温となる補助放熱器15と高元側凝縮器22との間で伝熱フィン25aを分割した構成とした場合には熱絶縁効果が大きくなるため、補助放熱器15及び高元側凝縮器22の双方がより効率よく放熱可能となる。
FIG. 2 is a schematic view showing a configuration of a heat transfer fin portion of the integrated heat radiator of FIG.
The integrated radiator 25 is a plate fin tube type heat exchanger formed by penetrating a heat transfer tube 25b through a flat heat transfer fin 25a. The high-end side condenser 22 and the auxiliary radiator 15 may be integrated by sharing the heat transfer fin 25a, or the heat transfer fin 25a portion may be divided. If integrated, the structure of the heat exchanger makes it easy to manufacture. In addition, when the heat transfer fins 25a are divided between the auxiliary radiator 15 and the high-end condenser 22 that are at a high temperature, the thermal insulation effect is increased, so that the auxiliary radiator 15 and the high-end condenser are provided. Both units 22 can dissipate heat more efficiently.

また、一体型放熱器25では、高温となる低元CO2冷媒の吐出ガスを冷却する補助放熱器15を熱交換器の上方部に配置し、高元側凝縮器22を下方部に配置する。これにより、補助放熱器15の放熱が高元側凝縮器22側に干渉することがなく、すなわち補助放熱器15で暖められた被熱伝達流体が高元側凝縮器22側に移動することがなく、補助放熱器15及び高元側凝縮器22の双方が効率よく放熱可能となる。   Further, in the integrated radiator 25, the auxiliary radiator 15 that cools the discharge gas of the low-temperature CO2 refrigerant that becomes high temperature is arranged in the upper part of the heat exchanger, and the high-side condenser 22 is arranged in the lower part. Thereby, the heat radiation of the auxiliary radiator 15 does not interfere with the high-side condenser 22 side, that is, the heat transfer fluid heated by the auxiliary radiator 15 moves to the high-side condenser 22 side. Therefore, both the auxiliary radiator 15 and the high-side condenser 22 can efficiently dissipate heat.

本例では、図2に示したように、一体型放熱器25全体の放熱量に対する補助放熱器15の放熱量割合を10%〜20%としたことに特徴を有するものであるが、その詳細については後述する。   As shown in FIG. 2, this example is characterized in that the ratio of the heat dissipation amount of the auxiliary radiator 15 to the heat dissipation amount of the entire integrated radiator 25 is 10% to 20%. Will be described later.

このように構成された二元冷凍装置において、低元冷凍サイクル10に用いる冷媒は、本例ではCO2としているが、これは以下の理由による。低元冷凍サイクル10は、室内の負荷装置、例えばスーパーマーケットのショーケースなどを接続対象としており、ショーケースの配置換えなどにより冷媒回路が開放され冷媒漏れが多い。よって、冷媒漏れを考慮し、地球温暖化に対する影響が小さいCO2を用いる。一方、高元冷凍サイクル20は冷媒回路が開放されることがないため、高元冷凍サイクル20に用いる冷媒は冷媒漏れ量も小さい。このため、高元冷凍サイクル20に用いる冷媒は従来の地球温暖化係数の高いHFC系冷媒でも問題ないが、地球温暖化に対する影響が小さい冷媒、即ちHFO冷媒、HC系冷媒、CO2、水などが望ましい。   In the binary refrigeration apparatus configured as described above, the refrigerant used in the low-source refrigeration cycle 10 is CO2 in this example. This is due to the following reason. The low-source refrigeration cycle 10 is connected to an indoor load device, for example, a supermarket showcase, and the refrigerant circuit is opened due to rearrangement of the showcase and the refrigerant leaks frequently. Therefore, in consideration of refrigerant leakage, CO2 having a small influence on global warming is used. On the other hand, since the refrigerant circuit of the high refrigeration cycle 20 is not opened, the refrigerant used in the high refrigeration cycle 20 has a small amount of refrigerant leakage. For this reason, the refrigerant used in the high-source refrigeration cycle 20 may be a conventional HFC refrigerant having a high global warming potential, but a refrigerant having a small influence on global warming, that is, an HFO refrigerant, an HC refrigerant, CO2, water, etc. desirable.

以上のように構成された二元冷凍装置について、以下にその動作を説明する。
低元側圧縮機11で圧縮されて吐出されたCO2冷媒は、一体型放熱器25内の補助放熱器15で冷却された後、カスケードコンデンサCの低元側凝縮器12で高元側蒸発器24を流れるHFO冷媒と熱交換して更に冷却される。そして、カスケードコンデンサCで冷却されたCO2冷媒は低元側膨張弁13で減圧された後、低元側蒸発器14で蒸発し、吸入管を介して低元側圧縮機11へ還流する。
About the binary refrigeration apparatus comprised as mentioned above, the operation | movement is demonstrated below.
The CO 2 refrigerant compressed and discharged by the low-side compressor 11 is cooled by the auxiliary radiator 15 in the integrated radiator 25 and then the high-side evaporator by the low-side condenser 12 of the cascade capacitor C. It is further cooled by exchanging heat with the HFO refrigerant flowing through 24. The CO 2 refrigerant cooled by the cascade condenser C is depressurized by the low-side expansion valve 13, evaporates by the low-side evaporator 14, and returns to the low-side compressor 11 through the suction pipe.

また、高元側圧縮機21で圧縮されて吐出されたHFO冷媒は、一体型放熱器25内の高元側凝縮器22で放熱、凝縮された後、高元側膨張弁23で減圧されてカスケードコンデンサCの高元側蒸発器24に流入する。高元側蒸発器24に流入したHFO冷媒は低元側凝縮器12を流れるCO2冷媒と熱交換しながら蒸発し、高元側圧縮機21へ還流する。   The HFO refrigerant compressed and discharged by the high-end compressor 21 is radiated and condensed by the high-end condenser 22 in the integrated radiator 25 and then depressurized by the high-end expansion valve 23. It flows into the high-side evaporator 24 of the cascade capacitor C. The HFO refrigerant that has flowed into the high-side evaporator 24 evaporates while exchanging heat with the CO2 refrigerant that flows through the low-side condenser 12, and then returns to the high-side compressor 21.

本実施の形態の二元冷凍装置では、高元側圧縮機21を駆動するモータの周波数を制御して高元側の冷却能力を制御することにより低元側高圧を調節する。この点について以下に詳述する。   In the binary refrigeration apparatus of the present embodiment, the low-source-side high pressure is adjusted by controlling the high-side cooling capacity by controlling the frequency of the motor that drives the high-side compressor 21. This point will be described in detail below.

図3は、図1の二元冷凍装置におけるエンタルピと飽和温度との関係を示す図である。本例の二元冷凍装置では、低元側凝縮温度と高元側蒸発温度との温度差ΔT(ここでは例えば5℃)が生じる。よって、ある運転状態から高元側圧縮機21の運転周波数を上げて高元冷却能力を増大させると、高元側蒸発温度が低下し、その低下した高元側蒸発温度との温度差ΔTが生じて低元側凝縮温度(低元側高圧)も低下するという関係がある。逆に、高元冷却能力を低減すれば低元側高圧が上昇する。   FIG. 3 is a diagram showing the relationship between enthalpy and saturation temperature in the binary refrigeration apparatus of FIG. In the binary refrigeration apparatus of this example, a temperature difference ΔT (here, 5 ° C.) between the low-side condensation temperature and the high-side evaporation temperature occurs. Therefore, when the operating frequency of the high-source side compressor 21 is increased from a certain operating state to increase the high-source cooling capacity, the high-source side evaporating temperature is lowered, and the temperature difference ΔT with the reduced high-source side evaporating temperature is It is generated and the low element side condensation temperature (low element side high pressure) is also reduced. Conversely, if the high-source cooling capacity is reduced, the low-source side high pressure increases.

また、図3から明らかなように、高元側圧縮機21の運転周波数を上げて低元冷凍サイクル10の低元側高圧が低下すると、高元側圧縮機21の入力は大きくなる(WH1<WH2)のに対し、低元側圧縮機11の入力は小さくなる(WL1>WL2)。なお、冷凍能力Q=ΔH(エンタルピ差)×Gr(冷媒流量)であり、また、二元冷凍装置では、外気温度に応じて冷却負荷が変化し、冷却負荷に対して冷凍能力(低元冷凍サイクル10側の蒸発能力に相当)を決定しており、その決定した冷凍能力に一定に保つように低元側圧縮機11によりGrを制御している。ΔHが一定であれば、Grも一定となるように低元側圧縮機11を制御する。   As is clear from FIG. 3, when the operating frequency of the high-source compressor 21 is increased and the low-source high pressure of the low-source refrigeration cycle 10 is decreased, the input of the high-source compressor 21 is increased (WH1 < In contrast to (WH2), the input of the low-end compressor 11 is small (WL1> WL2). Note that the refrigeration capacity Q = ΔH (enthalpy difference) × Gr (refrigerant flow rate). In the two-way refrigeration system, the cooling load changes according to the outside air temperature, and the refrigeration capacity (low-source refrigeration) This corresponds to the evaporation capacity on the cycle 10 side), and Gr is controlled by the low-side compressor 11 so as to keep the determined refrigeration capacity constant. If ΔH is constant, the low-end compressor 11 is controlled so that Gr is also constant.

ところで、低元冷凍サイクル10に使用されるCO2冷媒は、高元冷凍サイクル20で用いられるHFO冷媒に比べて冷凍効果が小さく、大きな圧縮機動力が必要となるため、高元冷凍サイクル20で用いられるHFO冷媒に比べて運転効率が低い。そのため、高元側圧縮機21の容量を増大させ、低元側高圧を低下させることにより、低元冷凍サイクル10側の消費電力を抑える運転を行う。すなわち、運転効率が低いCO2冷媒を用いた低元冷凍サイクル10側の消費電力を小さくし、運転効率が高いHFO冷媒を用いた高元冷凍サイクル20側の消費電力を大きくして高元冷凍サイクル20側の仕事量を増やし、二元冷凍装置全体の運転効率を向上させる。更に言い換えれば、高効率な高元冷凍サイクル20の消費電力比率を大きくすることで、二元冷凍装置全体の運転効率を最適とする。よって、低元冷凍サイクル10の高圧は超臨界とならない運転が多くなり、高圧によって相変化が生じる飽和温度が決まっている。   By the way, the CO2 refrigerant used in the low-source refrigeration cycle 10 has a smaller refrigeration effect than the HFO refrigerant used in the high-source refrigeration cycle 20, and requires a large compressor power. Operation efficiency is lower than that of the HFO refrigerant. Therefore, the operation of suppressing the power consumption on the low-source refrigeration cycle 10 side is performed by increasing the capacity of the high-source side compressor 21 and decreasing the low-source side high pressure. That is, the power consumption on the low-source refrigeration cycle 10 side using the CO2 refrigerant having low operating efficiency is reduced, and the power consumption on the high-source refrigeration cycle 20 side using the HFO refrigerant having high operating efficiency is increased to increase the power consumption on the high-source refrigeration cycle. The work amount on the 20 side is increased, and the operation efficiency of the entire binary refrigeration apparatus is improved. In other words, by increasing the power consumption ratio of the high-efficiency high-source refrigeration cycle 20, the operation efficiency of the entire binary refrigeration apparatus is optimized. Therefore, there are many operations in which the high pressure of the low-source refrigeration cycle 10 is not supercritical, and the saturation temperature at which phase change occurs due to the high pressure is determined.

以上の関係を整理し、横軸を低元側凝縮温度、縦軸を二元冷凍装置全体の合計入力として、高元側圧縮機入力と低元側圧縮機入力とそれらの合計入力のそれぞれのグラフを作成すると、図4に示すようになる。図4に示すように、高元側と低元側のそれぞれの圧縮機入力が略同じになるとき合計入力が最も小さくなり、COP(=冷凍能力/(高元側圧縮機入力+低元側圧縮機入力))が最大となることがわかる。   Arranging the above relationships, the horizontal axis is the low source side condensing temperature, the vertical axis is the total input of the entire dual refrigeration system, and each of the high source side compressor input and the low source side compressor input and their total input When the graph is created, it is as shown in FIG. As shown in FIG. 4, when the compressor inputs on the high-side and low-side are substantially the same, the total input becomes the smallest and COP (= refrigeration capacity / (high-side compressor input + low-source side) It can be seen that the compressor input)) is maximized.

以上より、二元冷凍装置ではCOPが最大となるように高元側圧縮機入力と低元側圧縮機入力とを略同じとする運転制御を行っている。図3で説明すると、高元側圧縮機入力に相当するWH1×Grhと、低元側圧縮機入力に相当するWL1×Grlとを同じとする運転制御を行っている。なお、Grhは高元冷媒流量、Grlは低元冷媒流量である。   As described above, in the two-stage refrigeration apparatus, the operation control is performed so that the high-side compressor input and the low-side compressor input are substantially the same so that the COP is maximized. Referring to FIG. 3, operation control is performed such that WH1 × Grh corresponding to the high-end compressor input and WL1 × Grl corresponding to the low-end compressor input are the same. Grh is a high-source refrigerant flow rate, and Grl is a low-source refrigerant flow rate.

ここで、図4を別の見方をすると、低元冷凍サイクル10の低元側凝縮温度がTcのとき合計入力が最小となり、COPが最大となる。よって、高元側圧縮機入力と低元側圧縮機入力とを略同じとする運転制御は、具体的には低元側凝縮温度を低元目標凝縮温度Tcに保つように低元冷凍サイクル10を制御することになる。このとき、高元側は低元目標凝縮温度TcよりもΔT℃低い温度を目標蒸発温度として一定に保つ制御を行うことになる。この制御により、COPを最大とすることができる。なお、外気温度に応じて二元冷凍装置に求められる冷凍能力は異なるため、COPを最大とする低元目標凝縮温度Tcも外気温度によって変化する。   Here, in another way of viewing FIG. 4, the total input becomes minimum and the COP becomes maximum when the low-side refrigeration temperature of the low-source refrigeration cycle 10 is Tc. Therefore, the operation control in which the high-source side compressor input and the low-side compressor input are substantially the same is specifically performed in the low-source refrigeration cycle 10 so as to keep the low-source side condensation temperature at the low-source target condensation temperature Tc. Will be controlled. At this time, the high element side performs control to keep a temperature lower by ΔT ° C. lower than the low original target condensation temperature Tc as the target evaporation temperature. With this control, the COP can be maximized. In addition, since the refrigerating capacity calculated | required by a binary refrigeration apparatus changes according to outside air temperature, the low original target condensation temperature Tc which makes COP the maximum also changes with outside air temperature.

以上の内容を整理すると、外気温度に基づいて二元冷凍装置で必要な冷凍能力が決定し、冷凍能力が決定すると低元目標凝縮温度Tcが決定する。低元目標凝縮温度Tcが決定すると、低元冷凍サイクル10では、決定した冷凍能力に一定に保つように低元冷媒流量Grlを調整する制御が行われ、また、高元冷凍サイクル20では高元蒸発温度を低元目標凝縮温度Tc+ΔT℃に一定に保つ制御が行われる。これにより高元側圧縮機入力と低元側圧縮機入力とを略同じとする運転制御が実現され、COPを最大とすることができる。また、高元冷凍サイクル20は低元凝縮温度を直接検知して制御してもよい。さらに、高元冷凍サイクル20は高元入力と低元入力を直接検知して制御してもよい。   When the above contents are arranged, the refrigerating capacity necessary for the binary refrigeration system is determined based on the outside air temperature, and when the refrigerating capacity is determined, the low original target condensation temperature Tc is determined. When the low element target condensing temperature Tc is determined, the low element refrigeration cycle 10 is controlled to adjust the low element refrigerant flow rate Grl so as to keep the determined refrigeration capacity constant. Control is performed to keep the evaporation temperature constant at the low original target condensation temperature Tc + ΔT ° C. This realizes operation control in which the high-side compressor input and the low-side compressor input are substantially the same, and COP can be maximized. The high-source refrigeration cycle 20 may directly detect and control the low-source condensation temperature. Further, the high-source refrigeration cycle 20 may directly detect and control the high-source input and the low-source input.

なお、以上の説明において、低効率の低元冷凍サイクル10の消費電力を抑えるために低元側高圧(低元側凝縮温度)を低下させるとしたが、これは制御原理上の説明であって、実運転上において低元側高圧を低下させるという意味ではない。実運転上は上述したように低元目標凝縮温度Tcに一定に保つ制御を行うことになる。また、低元側高圧を低下させる制御原理について補足して説明すると、高元冷凍サイクル20で用いられるHFO冷媒は低元冷凍サイクル10で用いられるCO2冷媒に比べて高効率な冷媒である。このため、高元側圧縮機21の図3の線図上の傾きθhは低元側圧縮機11側の傾きθlより大きい。したがって、低元側凝縮温度を下げていっても、低元側凝縮温度が低元目標凝縮温度Tcに至るまでは高元側圧縮機21の入力が低元側圧縮機11の入力を超えることはなく、低元目標凝縮温度Tcで高元側圧縮機21の入力と低元側圧縮機11の入力とが等しくなるということになる。   In the above description, the low-source-side high pressure (low-source-side condensation temperature) is reduced in order to suppress the power consumption of the low-efficiency low-source refrigeration cycle 10, but this is an explanation on the control principle. This does not mean that the low-side high pressure is reduced in actual operation. In actual operation, as described above, control is performed to keep the low original target condensing temperature Tc constant. Further, to explain supplementarily the control principle for reducing the low-source-side high pressure, the HFO refrigerant used in the high-source refrigeration cycle 20 is a highly efficient refrigerant compared to the CO2 refrigerant used in the low-source refrigeration cycle 10. Therefore, the inclination θh of the high-end compressor 21 on the diagram of FIG. 3 is larger than the inclination θl on the low-end compressor 11 side. Therefore, even if the low-side condensation temperature is lowered, the input of the high-side compressor 21 exceeds the input of the low-side compressor 11 until the low-side condensation temperature reaches the low-side target condensation temperature Tc. In other words, the input of the high-side compressor 21 and the input of the low-side compressor 11 become equal at the low-side target condensation temperature Tc.

冷媒の運転効率について具体的に説明する。運転効率の指標であるCOP(= 蒸発器のエンタルピ差 /圧縮過程のエンタルピ差)が高ければ、少ない圧縮動力で大きな蒸発潜熱を得られ、高効率な冷媒となる。外気温度32℃で運転する一般の冷凍機の動作状態、すなわち蒸発温度−40℃、凝縮温度40℃(超臨界のCO2高圧は8.8MPa)、吸入過熱度5℃、液過冷却度5℃の条件で各冷媒の理論上得られるCOPは、CO2:1.25、R404A:1.76、R410A:1.91、R134a:2.01、R32:1.98、プロパン:1.99、イソブタン:2.05、HFO−1234yf:1.83となる。CO2は、HFC冷媒やHC冷媒、HFO冷媒と比較しCOPが低く、低効率な冷媒である。   The operation efficiency of the refrigerant will be specifically described. If COP (= evaporator enthalpy difference / compression enthalpy difference), which is an index of operation efficiency, is high, a large latent heat of vaporization can be obtained with a small amount of compression power, resulting in a highly efficient refrigerant. Operating state of a general refrigerator operating at an outside air temperature of 32 ° C., that is, an evaporation temperature of −40 ° C., a condensation temperature of 40 ° C. (supercritical CO 2 high pressure is 8.8 MPa), a suction superheat degree of 5 ° C., and a liquid supercooling degree of 5 ° C. The theoretically obtained COP of each refrigerant under the conditions of CO2: 1.25, R404A: 1.76, R410A: 1.91, R134a: 2.01, R32: 1.98, propane: 1.99, isobutane : 2.05, HFO-1234yf: 1.83. CO2 is a low-efficiency refrigerant with a low COP compared to HFC refrigerant, HC refrigerant, and HFO refrigerant.

ここで、本例では低元冷凍サイクル10においてCO2冷媒を使用しており、この場合、低元目標凝縮温度Tcは外気温度よりも低くなる。具体的には外気条件がJRA規格(日本冷凍空調工業会)に基づく高外気条件である32℃のとき、低元目標凝縮温度Tcが約20℃、外気条件がJIS規格に基づく低外気条件である7℃のとき、低元目標凝縮温度Tcが約0℃となる。上述したように低元側高圧(低元側凝縮温度)を下げると低元側圧縮機11の入力が下がるため、言い換えれば運転効率が悪い低元冷凍サイクル10側の圧縮機入力を下げることができるため、外気温度よりも低い温度領域内に低元目標凝縮温度Tcが位置することになる。   Here, in this example, the CO2 refrigerant is used in the low-source refrigeration cycle 10, and in this case, the low-source target condensation temperature Tc is lower than the outside air temperature. Specifically, when the outside air condition is 32 ° C., which is a high outside air condition based on the JRA standard (Japan Refrigeration and Air Conditioning Industry Association), the low original target condensation temperature Tc is about 20 ° C., and the outside air condition is a low outside air condition based on the JIS standard. At a certain 7 ° C., the low original target condensation temperature Tc is about 0 ° C. As described above, when the low-source-side high pressure (low-source-side condensation temperature) is lowered, the input of the low-source side compressor 11 is lowered. In other words, the compressor input on the low-source refrigeration cycle 10 side having poor operating efficiency may be lowered. Therefore, the low original target condensation temperature Tc is located in a temperature region lower than the outside air temperature.

(低元側凝縮温度が外気温度よりも低い場合と高い場合の補助放熱器15の放熱量の違いについて)
次に、補助放熱器15の放熱量について考察する。本例の二元冷凍装置では、低元冷凍サイクル10に運転効率の低いCO2冷媒を使用している関係から低元目標凝縮温度Tcが外気温度よりも低くなる。補助放熱器15は外気に熱を放熱する放熱器であるため、低元側圧縮機11から吐出された冷媒は補助放熱器15で外気と熱交換しても、最大でも外気温度までしか下がらない。また、低元冷凍サイクル10の低元側凝縮温度が外気温度よりも低い場合と高い場合とでは吐出温度の冷媒を補助放熱器15で同じ外気温度まで下げるにあたっても、その放熱量は異なったものとなる。本例では、低元側凝縮温度を低元目標凝縮温度Tcに一定になるように制御するものであり、低元目標凝縮温度Tcは外気温度よりも低いため、低元側凝縮温度が外気温度よりも低い場合の補助放熱器15の放熱量について考察する。なお、比較のため、圧縮機、放熱器、膨張弁及び蒸発器を備えた一般的な冷媒回路において凝縮温度が外気温度よりも高い場合の凝縮器での放熱量についても考察する。
(Difference in heat dissipation of auxiliary radiator 15 when the low-side condensation temperature is lower and higher than the outside air temperature)
Next, the heat radiation amount of the auxiliary radiator 15 will be considered. In the binary refrigeration apparatus of this example, the low original target condensing temperature Tc is lower than the outside air temperature because the low original refrigeration cycle 10 uses a CO2 refrigerant with low operating efficiency. Since the auxiliary radiator 15 is a radiator that radiates heat to the outside air, even if the refrigerant discharged from the low-side compressor 11 exchanges heat with the outside air by the auxiliary radiator 15, the refrigerant only falls to the outside temperature at the maximum. . In addition, the amount of heat released differs even when the refrigerant at the discharge temperature is lowered to the same outside air temperature by the auxiliary radiator 15 depending on whether the low side condensing temperature of the low source refrigeration cycle 10 is lower or higher than the outside air temperature. It becomes. In this example, the low source side condensation temperature is controlled to be constant at the low source target condensation temperature Tc. Since the low source target condensation temperature Tc is lower than the outside air temperature, the low source side condensation temperature is the outside air temperature. Considering the heat dissipation amount of the auxiliary radiator 15 when the temperature is lower than the above. For comparison, the amount of heat released from the condenser when the condensation temperature is higher than the outside air temperature in a general refrigerant circuit including a compressor, a radiator, an expansion valve, and an evaporator will also be considered.

図5は、低元側凝縮温度が外気温度よりも低い場合と高い場合の放熱量の説明図である。図5(1)は、凝縮温度が外気温度よりも高い場合の一般的な冷凍サイクルにおけるモリエル線図、図5(2)は、低元側凝縮温度が外気温度よりも低い場合の低元冷凍サイクル10のモリエル線図である。   FIG. 5 is an explanatory diagram of the amount of heat released when the low-side condensation temperature is lower and higher than the outside air temperature. FIG. 5 (1) is a Mollier diagram in a general refrigeration cycle when the condensation temperature is higher than the outside air temperature, and FIG. 5 (2) is a low source refrigeration when the low-side condensation temperature is lower than the outside air temperature. It is a Mollier diagram of cycle 10.

(1)低元側凝縮温度が外気温度よりも高い場合
圧縮機の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、外気温度が20℃で凝縮温度が25℃の場合について考える。
放熱器は外気に熱を放熱する放熱器であるため、図5(1)に示すように、80℃〜90℃の冷媒(点a)が放熱器での外気との熱交換により、まず、ガス状態のまま凝縮温度である25℃(点b)まで下がる。そして、25℃を保ちながら凝縮して液状態となる(c点)。外気温度は20℃であるため冷媒は更に放熱可能であり、液状態で20℃(点d)まで下がる。このように凝縮温度が外気温度よりも高い場合は凝縮するため、相変化を伴う冷却を行うことができ、相変化を伴わない冷却を行う場合に比べて放熱量を大きくすることができる。
(1) When the low-side condensing temperature is higher than the outside air temperature The temperature of the refrigerant discharged from the compressor (temperature at point a) is, for example, 80 ° C to 90 ° C, the outside air temperature is 20 ° C, and the condensation temperature is 25 ° C. Think about the case.
Since the radiator is a radiator that radiates heat to the outside air, as shown in FIG. 5 (1), the refrigerant (point a) of 80 ° C. to 90 ° C. is exchanged with the outside air by the radiator, It falls to 25 degreeC (point b) which is a condensation temperature with a gas state. And it is condensed and liquid state is maintained while maintaining 25 ° C. (point c). Since the outside air temperature is 20 ° C., the refrigerant can further dissipate heat and falls to 20 ° C. (point d) in a liquid state. As described above, since condensation occurs when the condensation temperature is higher than the outside air temperature, cooling with phase change can be performed, and the amount of heat released can be increased as compared with cooling without phase change.

(2)低元側凝縮温度が外気温度よりも低い場合
低元側圧縮機11の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、外気温度が20℃で低元側凝縮温度が10℃の場合について考える。補助放熱器15は外気に熱を放熱する放熱器であるため、上述したように80℃〜90℃の冷媒は、補助放熱器15での外気との熱交換により最大でも外気温度の20℃までしか下がらない。つまり、図5(2)に示すように、80℃〜90℃の冷媒(点a)は、補助放熱器15でガス状態のまま20℃(点b)となる。20℃まで下がった冷媒を凝縮させて更に10℃(点c)まで下げるための熱交換は低元側凝縮器12側で行われることになる。つまり、低元側凝縮温度が外気温度より低い場合は、補助放熱器15では相変化を伴う冷却を行えず、相変化を伴わないガス冷却を行うことになる。つまり、補助放熱器15はガス冷却域で使用されることになる。
(2) When the low-end side condensing temperature is lower than the outside air temperature The temperature of the refrigerant discharged from the low-end side compressor 11 (the temperature at the point a) is, for example, 80 ° C. to 90 ° C., and the outside air temperature is 20 ° C. Consider the case where the side condensation temperature is 10 ° C. Since the auxiliary radiator 15 is a radiator that radiates heat to the outside air, as described above, the refrigerant of 80 ° C. to 90 ° C. can reach the maximum outside air temperature of 20 ° C. by heat exchange with the outside air in the auxiliary radiator 15. It only goes down. That is, as shown in FIG. 5 (2), the refrigerant (point a) at 80 ° C. to 90 ° C. becomes 20 ° C. (point b) in the gas state in the auxiliary radiator 15. The heat exchange for condensing the refrigerant lowered to 20 ° C. and further lowering to 10 ° C. (point c) is performed on the low-source side condenser 12 side. In other words, when the low-side condensation temperature is lower than the outside air temperature, the auxiliary radiator 15 cannot perform cooling with phase change and performs gas cooling without phase change. That is, the auxiliary radiator 15 is used in the gas cooling region.

ここで、図5(2)の点aから点bまでの放熱はガス状態での放熱であるため、同じ外気温度20℃まで温度を下げるにしても、凝縮させて20℃まで下げる上記(1)の場合に比べて補助放熱器15での放熱量を大きくできない。よって、低元側凝縮温度が外気温度よりも低い場合は、補助放熱器15の放熱器ファン16の風量を多くしたり、補助放熱器15として伝熱面積の大きな放熱器を採用したとしても、補助放熱器15の放熱量を増やすことはできず、最大でも吐出冷媒がガス状態のまま外気温度に低下するまでに放熱する放熱量となる。   Here, since the heat radiation from the point a to the point b in FIG. 5 (2) is the heat radiation in the gas state, even if the temperature is lowered to the same outside air temperature 20 ° C., the heat is condensed and lowered to 20 ° C. (1 ) Cannot be increased in the auxiliary radiator 15 as compared with the case of). Therefore, if the low-side condensation temperature is lower than the outside air temperature, even if the airflow of the radiator fan 16 of the auxiliary radiator 15 is increased or a radiator having a large heat transfer area is adopted as the auxiliary radiator 15, The amount of heat released from the auxiliary radiator 15 cannot be increased, and at most, the amount of heat dissipated before the discharged refrigerant is reduced to the outside temperature while being in a gas state.

以上の内容を整理すると、本例の補助放熱器15はガス冷却域で使用され、その放熱量は最大でも吐出冷媒がガス状態のまま外気温度に低下するまでに放熱する放熱量となる。   In summary, the auxiliary radiator 15 of the present example is used in the gas cooling region, and the amount of heat released is the amount of heat dissipated before the discharged refrigerant is reduced to the outside temperature in the gas state even at the maximum.

(補助放熱器15の放熱量とCOPとの関係)
図6は、補助放熱器15の放熱量とCOPとの関係の説明図で、低元冷凍サイクル10のモリエル線図を示している。
低元冷凍サイクル10を構成するにあたり、補助放熱器15での放熱量を図6のQsub1にした場合とQsub2にした場合とを比較すると、Qsub2にした場合の方が低元側凝縮器12の放熱量Qc2(<Qc1)を少なくできる。カスケードコンデンサCでは、常に高元側蒸発器24と低元側凝縮器12との熱交換量は等しくなる。よって、低元側凝縮器12での放熱量をQc2とした場合、高元冷凍サイクル20側では放熱量Qc2とのバランスを図れば良いため、補助放熱器15の放熱量をQsub1とした場合に比べて高元側圧縮機21の入力を小さくできる。
(Relationship between heat dissipation of auxiliary radiator 15 and COP)
FIG. 6 is an explanatory diagram of the relationship between the heat dissipation amount of the auxiliary radiator 15 and the COP, and shows a Mollier diagram of the low-source refrigeration cycle 10.
In constituting the low-stage refrigeration cycle 10, the heat radiation amount of the auxiliary radiator 15 compared to the case of when the Q sub2 you Q sub1 6, it is low-stage-side condenser when made into a Q sub2 The heat dissipation amount Qc2 (<Qc1) of the container 12 can be reduced. In the cascade condenser C, the heat exchange amount between the high-side evaporator 24 and the low-side condenser 12 is always equal. Therefore, when the heat dissipation amount at the low-side condenser 12 is Qc2, the heat dissipation amount of the auxiliary radiator 15 is Qsub1 because the high-source refrigeration cycle 20 side may be balanced with the heat dissipation amount Qc2. As compared with the above, the input of the high-end compressor 21 can be reduced.

二元冷凍装置では冷凍能力一定の制御が行われており、COP=冷凍能力/(高元側圧縮機入力+低元側圧縮機入力)であるため、高元側の圧縮機入力を小さくできると、COPを大きくすることができる。   In the two-stage refrigeration system, the constant refrigeration capacity is controlled, and COP = refrigeration capacity / (high source side compressor input + low side compressor input), so the high side compressor input can be reduced. COP can be increased.

以上の内容を整理すると、高元側圧縮機入力と低元側圧縮機入力とを略同じとする運転制御によりCOPを最大とすることができ、また、補助放熱器15の放熱量を多くするほど、COPの値を大きくすることができることになる。   If the above contents are arranged, the COP can be maximized by the operation control in which the high-side compressor input and the low-side compressor input are substantially the same, and the heat radiation amount of the auxiliary radiator 15 is increased. As a result, the value of COP can be increased.

図7は、低元側凝縮温度と二元冷凍装置全体の運転効率変動率との関係を示す図である。図7は、外気温度7℃で低元側凝縮温度を変化させたときの運転効率変動率を調べた計算結果であり、この例では、一体熱交換器全体の伝熱面積に対する補助放熱器15の伝熱面積の割合を10%、20%、30%、40%に構成した場合それぞれにおける計算結果を示している。なお、図7は補助放熱器無し(つまり一体熱交換器全てが高元側凝縮器の構成)のときの最大値を基準(100%)とした運転効率変動率を示している。また、図7Aは、図7の運転効率最大値部分の拡大図である。
図7及び図7Aには、伝熱面積の分割割合が何れであっても、外気温度よりも低いガス冷却域内の、ある低元側凝縮温度(この例では0℃付近の温度であり、上記の低元目標凝縮温度Tcに相当する)のときに二元冷凍装置の運転効率が最大となることが示されている。また、図7には、補助放熱器15の放熱量を増大させようとして低元側凝縮温度を外気温度よりも上げて補助放熱器15を凝縮域で使用するようにすると、低元冷凍サイクル10の消費電力割合が大きくなりすぎて全体としての運転効率が低下することが示されている。なお、図7には40%までしか図示されていないが、仮に100%としても、ガス冷却域における最大運転効率を超えることはない。
FIG. 7 is a diagram showing the relationship between the low-side condensation temperature and the operating efficiency fluctuation rate of the entire binary refrigeration apparatus. FIG. 7 is a calculation result obtained by examining the operating efficiency fluctuation rate when the low-side condensation temperature is changed at an outside air temperature of 7 ° C. In this example, the auxiliary radiator 15 with respect to the heat transfer area of the entire integrated heat exchanger is illustrated. The calculation results are shown when the ratio of the heat transfer area is 10%, 20%, 30%, and 40%. FIG. 7 shows the operating efficiency fluctuation rate based on the maximum value (100%) when there is no auxiliary radiator (that is, all the integrated heat exchangers are configured as a high-end condenser). FIG. 7A is an enlarged view of the maximum operating efficiency value portion of FIG.
7 and 7A, regardless of the division ratio of the heat transfer area, a certain low-side condensation temperature in the gas cooling region lower than the outside air temperature (in this example, a temperature around 0 ° C., It is shown that the operating efficiency of the binary refrigeration apparatus is maximized at a time corresponding to the low original target condensation temperature Tc). Further, in FIG. 7, when the low heat source side condensation temperature is raised above the outside air temperature and the auxiliary heat sink 15 is used in the condensing region in order to increase the heat radiation amount of the auxiliary heat sink 15, the low-source refrigeration cycle 10 It has been shown that the power consumption ratio of the system becomes too large and the overall operation efficiency decreases. Although only 40% is shown in FIG. 7, even if it is 100%, the maximum operating efficiency in the gas cooling zone is not exceeded.

ここで、本例の二元冷凍装置では、上述したように補助放熱器15はガス冷却域で使用されるため、補助放熱器15の伝熱面積の大きさ等の構造に関わらず、最大放熱できても吐出温度の冷媒を外気温度に下げるまでである。また、上述したように補助放熱器15の放熱量を多くするほど、COPを大きくできる。よって、補助放熱器15で吐出温度の冷媒を外気温度近くまで温度を下げられる程度に補助放熱器15の放熱量を確保する。この放熱量を以下では所要放熱量という。この所要放熱量を達成するには、例えば、放熱器ファン16の風量を制御したり、補助放熱器15自体の構造的な設計を行ったりすることになる。このように補助放熱器15の放熱量を所要放熱量とすることにより、所要放熱量よりも少ない放熱量とした場合に比べてCOPを大きくすることができる。   Here, in the binary refrigeration apparatus of this example, since the auxiliary radiator 15 is used in the gas cooling region as described above, the maximum heat dissipation is possible regardless of the structure of the heat transfer area of the auxiliary radiator 15 and the like. Even if it is possible, the refrigerant at the discharge temperature is lowered to the outside temperature. Further, as described above, the COP can be increased as the heat radiation amount of the auxiliary radiator 15 is increased. Therefore, the heat radiation amount of the auxiliary radiator 15 is ensured to such an extent that the temperature of the refrigerant at the discharge temperature can be lowered to near the outside air temperature by the auxiliary radiator 15. Hereinafter, this heat dissipation amount is referred to as a required heat dissipation amount. In order to achieve this required heat dissipation amount, for example, the air volume of the radiator fan 16 is controlled or the structural design of the auxiliary radiator 15 itself is performed. Thus, by setting the heat dissipation amount of the auxiliary radiator 15 as the required heat dissipation amount, the COP can be increased as compared with the case where the heat dissipation amount is smaller than the required heat dissipation amount.

ところで、所要放熱量は外気温度によって異なる。よって、年間を通じて大きなCOPを確保するには、低外気条件のときの所要放熱量と高外気条件のときの所要放熱量を把握しておく必要がある。本例の二元冷凍装置では、カスケードコンデンサCで高元側蒸発器24と低元側凝縮器12とが熱交換する構成であることや、低元冷凍サイクル10にCO2冷媒を用いていること、更にその他の以下に説明する内容を加味すると、補助放熱器15の所要放熱量と高元側凝縮器22の放熱量との間には、外気条件に応じた所定の放熱量比が存在する。本例では補助放熱器15と高元側凝縮器22とが一体型放熱器25で構成されているため、所定の放熱量比は、一体型放熱器25の全体放熱量に対する補助放熱器15の放熱量の割合に置き換えられる。したがって、低外気条件のときの放熱量割合と高外気条件のときの放熱量割合の範囲内に放熱量割合を設定することにより、年間を通じてCOPを大きくすることが可能な二元冷凍装置を構成できる。   By the way, the required heat dissipation varies depending on the outside air temperature. Therefore, in order to secure a large COP throughout the year, it is necessary to grasp the required heat dissipation amount under low outdoor air conditions and the required heat dissipation amount under high outdoor air conditions. In the binary refrigeration apparatus of this example, the high condenser side evaporator 24 and the low condenser side condenser 12 are configured to perform heat exchange with the cascade condenser C, and CO2 refrigerant is used in the low condenser refrigeration cycle 10. In addition, when other contents described below are taken into consideration, a predetermined heat dissipation amount ratio corresponding to the outside air condition exists between the required heat dissipation amount of the auxiliary radiator 15 and the heat dissipation amount of the high-side condenser 22. . In this example, since the auxiliary radiator 15 and the high-side condenser 22 are configured by the integrated radiator 25, the predetermined heat dissipation amount ratio is that of the auxiliary radiator 15 with respect to the total heat dissipation of the integrated radiator 25. Replaced by the rate of heat dissipation. Therefore, a dual refrigeration system capable of increasing the COP throughout the year by setting the heat release rate ratio within the range of the heat release rate ratio in the low outside air condition and the heat release rate ratio in the high outside air condition is configured. it can.

以下、低外気条件(7℃)及び高外気条件(32℃)のときの放熱量割合の説明に先立って、一体型放熱器25全体の放熱量について説明する。   Hereinafter, prior to the description of the heat dissipation rate in the low outside air condition (7 ° C.) and the high outside air condition (32 ° C.), the heat dissipation amount of the integrated radiator 25 as a whole will be described.

(一体型放熱器25の放熱量)
図8は、図1の一体型放熱器25の放熱量の説明図で、二元冷凍装置のモリエル線図を示している。
一体型放熱器25の放熱量QALLは、次の(1)式のように高元側凝縮器22の放熱量QCHと補助放熱器15の放熱量Qsubを加算した量となる。
(Heat dissipation amount of integrated radiator 25)
FIG. 8 is an explanatory diagram of the heat radiation amount of the integrated radiator 25 of FIG. 1 and shows a Mollier diagram of the dual refrigeration apparatus.
The heat radiation amount Q ALL of the integrated radiator 25 is an amount obtained by adding the heat radiation amount Q CH of the high-side condenser 22 and the heat radiation amount Q sub of the auxiliary radiator 15 as in the following equation (1).

ALL=Qsub+QCH ・・・(1) Q ALL = Q sub + Q CH (1)

ここで高元側凝縮器22の放熱量QCHは、高元側圧縮機21の入力分WHと高元側蒸発器24の熱交換量QeHとを加算した値に相当するため、(1)式は次の(2)式に書き換えられる。
ALL=Qsub+WH+QeH ・・・(2)
Here, the heat release amount Q CH of the high-end side condenser 22 corresponds to a value obtained by adding the input amount WH of the high-end side compressor 21 and the heat exchange amount Q eH of the high-end side evaporator 24. ) Is rewritten to the following (2).
Q ALL = Q sub + WH + Q eH (2)

そして、本例では高元側圧縮機入力WHと低元側圧縮機入力WLとが略同じとなるように制御しており、また、高元側蒸発器24の熱交換量QeHと低元側凝縮器12の熱交換量QCLとは等しいため、これらを(2)式に代入すると、(3)式となる。
ALL=Qsub+WL+QCL ・・・(3)
In this example, control is performed so that the high-side compressor input WH and the low-side compressor input WL are substantially the same, and the heat exchange amount Q eH of the high-side evaporator 24 is low. Since the heat exchange amount Q CL of the side condenser 12 is equal, when these are substituted into the equation (2), the equation (3) is obtained.
Q ALL = Q sub + WL + Q CL (3)

また、低元側圧縮機入力分WLは補助放熱器15の放熱量Qsubに略等しくなるため、これを(3)式に代入すると、(4)式が得られる。
ALL=Qsub+Qsub+QC ・・・(4)
The low-stage-side compressor input frequency WL because substantially equal to the heat radiation amount Q sub auxiliary radiator 15, and substituting this into equation (3) is obtained (4).
Q ALL = Q sub + Q sub + Q C (4)

ここで、熱交換量QWLと補助放熱器15の放熱量Qsubとが略等しくなるのは、本例の二元冷凍装置が以下の4点に示す運転を行っていることによる。
1.低元冷凍サイクル10の過熱度を5℃としている。
2.低元目標側凝縮温度Tcが外気温度より少し低い温度となっている。
3.COPを最大とするために高元側と低元側の圧縮機入力を略同じとしている。
4.CO2の飽和蒸気線lの傾きθが90゜に近い傾きを有している(図6参照)。
Here, the heat exchange amount Q WL and the heat radiation amount Q sub of the auxiliary radiator 15 are substantially equal because the binary refrigeration apparatus of this example performs the operation shown in the following four points.
1. The degree of superheat of the low-source refrigeration cycle 10 is 5 ° C.
2. The low original target side condensation temperature Tc is a little lower than the outside air temperature.
3. In order to maximize the COP, the compressor input on the high side and the low side are made substantially the same.
4). The inclination θ of the saturated vapor line 1 of CO 2 has an inclination close to 90 ° (see FIG. 6).

(一体型放熱器25における補助放熱器15の放熱量割合)
補助放熱器15の放熱量Qsubを所要放熱量とすると、この放熱量Qsubと一体型放熱器25全体の放熱量QALLとの間には、外気温度及びCO2冷媒の物性に応じた関係がある。この関係について以下に説明する。
(Heat dissipation ratio of the auxiliary radiator 15 in the integrated radiator 25)
When the required heat discharge the heat radiation amount Q sub auxiliary radiator 15, between the heat radiation amount Q sub integral radiator 25 total radiation amount Q ALL, according to the physical properties of the ambient temperature and CO2 refrigerants There is. This relationship will be described below.

図9は、図1の一体型放熱器における補助放熱器の放熱量割合の説明図で、外気温度が32℃のときの低元冷凍サイクルのモリエル線図を示している。図9中の点線は、外気温度が7℃のときの低元冷凍サイクルのモリエル線図である。
外気温度が32℃(高外気条件)のとき、本例の二元冷凍装置では低元目標凝縮温度Tcを約20℃とすることは上述の通りである。そして、外気温度が32℃のとき、図9の凝縮潜熱量A1と、a1点とc1点との間の放熱量B1との比が3:1になることがCO2冷媒の物性に基づき決まっている。
また、外気温度が7℃(低外気条件)のとき、低元目標凝縮温度を約0℃としており、このとき、凝縮潜熱量A2と、a2点とc2点との間の放熱量B2との比が8:1になることがCO2冷媒の物性に基づき決まっている。
FIG. 9 is an explanatory diagram of the heat dissipation rate of the auxiliary radiator in the integrated radiator of FIG. 1, and shows a Mollier diagram of the low-source refrigeration cycle when the outside air temperature is 32 ° C. The dotted line in FIG. 9 is a Mollier diagram of the low-source refrigeration cycle when the outside air temperature is 7 ° C.
As described above, when the outside air temperature is 32 ° C. (high outside air condition), the low-order target condensation temperature Tc is set to about 20 ° C. in the binary refrigeration apparatus of this example. When the outside air temperature is 32 ° C., the ratio of the latent heat of condensation A1 in FIG. 9 to the heat release amount B1 between the points a1 and c1 is 3: 1 based on the physical properties of the CO2 refrigerant. Yes.
Further, when the outside air temperature is 7 ° C. (low outside air condition), the low original target condensation temperature is set to about 0 ° C. At this time, the condensation latent heat amount A2 and the heat radiation amount B2 between the points a2 and c2 are The ratio is 8: 1 based on the physical properties of the CO2 refrigerant.

ここで、高外気条件において外気温度の32℃(b1点)まで下がった冷媒がガス領域のまま低元側凝縮温度20℃まで低下する際の放熱量は、低元冷凍サイクル10の全放熱量に対して少ないため、凝縮潜熱量A1と放熱量B1との比は、(5)式に示すように所要放熱量Qsub1と低元側蒸発器14の放熱量QCL1の比に近似することができる。また、外気温度が7℃の場合も同様に、(6)式に示すように近似できる。
外気温度が32℃の場合
CL1:Qsub1 ≒ 3:1 ・・・(5)
外気温度が7℃の場合
CL2:Qsub2 ≒ 8:1 ・・・(6)
Here, the amount of heat released when the refrigerant that has fallen to 32 ° C. (b1 point) outside air temperature in the high outside air condition is reduced to the low-side condensation temperature 20 ° C. in the gas region is the total amount of heat released from the low-source refrigeration cycle 10. for small relative to the ratio of the condensation latent heat amount A1 and the heat radiation amount B1 is (5) approximates to the ratio of the heat radiation amount Q CL1 of the required heat radiation quantity Q sub1 and low-stage-side evaporator 14, as shown in equation Can do. Similarly, when the outside air temperature is 7 ° C., it can be approximated as shown in equation (6).
When the outside air temperature is 32 ° C Q CL1 : Q sub1 ≒ 3: 1 ... (5)
When the outside air temperature is 7 ° C Q CL2 : Q sub2 ≒ 8: 1 ... (6)

以上の(5)式及び(6)式のそれぞれを(4)式に代入すると、(7)式及び(8)式となる。   If each of the above formulas (5) and (6) is substituted into formula (4), formulas (7) and (8) are obtained.

外気温度が32℃の場合
ALL=Qsub+Qsub+3Qsub =5Qsub ・・・(7)
外気温度が7℃の場合
ALL=Qsub+Qsub+8Qsub =10Qsub ・・・(8)
When the outside air temperature is 32 ° C. Q ALL = Q sub + Q sub + 3Q sub = 5Q sub (7)
When the outside air temperature is 7 ℃ Q ALL = Q sub + Q sub + 8Q sub = 10Q sub ··· (8)

以上より、二元冷凍装置をCOPが最大となる制御で運転し、ガス領域で使用される補助放熱器15で最大可能な放熱量を確保して高いCOPを得るための構成とするには、一体型放熱器25の全放熱量に対する補助放熱器15の放熱量割合を、外気温度が32℃の場合は20%とし、外気温度が7℃の場合を10%とすることが好ましい。そして、この二元冷凍装置は年間を通して使用されることを鑑みると、一体型放熱器25の全放熱量の10%〜20%を補助放熱器15で放熱する構成とすることが望ましいということになる。   From the above, in order to obtain a high COP by operating the binary refrigeration apparatus with the control that maximizes the COP and securing the maximum heat dissipation possible with the auxiliary radiator 15 used in the gas region, The ratio of the heat dissipation amount of the auxiliary radiator 15 to the total heat dissipation amount of the integrated radiator 25 is preferably 20% when the outside air temperature is 32 ° C. and 10% when the outside air temperature is 7 ° C. In view of the fact that this binary refrigeration apparatus is used throughout the year, it is desirable that 10% to 20% of the total heat dissipation amount of the integrated radiator 25 is radiated by the auxiliary radiator 15. Become.

放熱量割合をこのようにするための具体的な構成は任意の構成が採用でき、図1に示すように補助放熱器15と高元側凝縮器22とで共通のファンを備えた構成とする場合は、補助放熱器15の伝熱面積を一体型放熱器25の伝熱面積の10%〜20%とする。また、補助放熱器15と高元側凝縮器22とでそれぞれ別々のファンを用いる場合には、ファンの回転数を変えて放熱量割合を制御するようにしてもよい。この場合、外気温度が7℃の場合には放熱量割合が10%、外気温度が32℃のときは放熱量割合が20%となるように、図示しない制御装置により外気温度に応じて各ファンを制御するようにしてもよい。   Any specific configuration can be adopted for the heat dissipation rate ratio in this way, and the auxiliary radiator 15 and the high-end condenser 22 have a common fan as shown in FIG. In this case, the heat transfer area of the auxiliary radiator 15 is set to 10% to 20% of the heat transfer area of the integrated radiator 25. Further, when separate fans are used for the auxiliary radiator 15 and the high-side condenser 22, respectively, the heat dissipation rate ratio may be controlled by changing the rotation speed of the fans. In this case, each fan is controlled by a control device (not shown) according to the outside air temperature so that the heat release rate is 10% when the outside air temperature is 7 ° C. and the heat release rate is 20% when the outside air temperature is 32 ° C. May be controlled.

ここで、本実施の形態の二元冷凍装置における定常運転中の具体的な熱収支の一例を図10に示す。低元冷凍サイクル10はCO2冷媒、高元冷凍サイクル20はHFC冷媒のR410Aを用い、低元側蒸発器14の蒸発温度−10℃で冷却能力を25kW、外気温度を32℃とした場合、低元側凝縮温度を10℃とすれば二元冷凍装置全体の運転効率が最適となり、このとき補助放熱器15の放熱量6.3kW、高元側凝縮器22の放熱量31kWとなる。すなわち、補助放熱器15の放熱量は一体型放熱器25の全放熱量に対し、20%となる。   Here, FIG. 10 shows an example of a specific heat balance during steady operation in the binary refrigeration apparatus of the present embodiment. The low-source refrigeration cycle 10 uses CO2 refrigerant, and the high-source refrigeration cycle 20 uses H410 refrigerant R410A. When the low-end evaporator 14 has an evaporation temperature of −10 ° C., the cooling capacity is 25 kW, and the outside air temperature is 32 ° C., the low If the original side condensing temperature is 10 ° C., the operation efficiency of the entire binary refrigeration apparatus becomes optimal. At this time, the heat dissipation amount of the auxiliary radiator 15 is 6.3 kW, and the heat dissipation amount of the high source side condenser 22 is 31 kW. That is, the heat dissipation amount of the auxiliary radiator 15 is 20% with respect to the total heat dissipation amount of the integrated radiator 25.

ここで改めて図7Aを参照する。図7Aに示されているように、一体型放熱器25全体の伝熱面積に対する補助放熱器15の伝熱面積の割合を10%としたときに、最もCOPが高くなることが示されている。なお、図7Aはあくまでも伝熱面積の分割割合であって、放熱量割合ではない。   Reference is again made to FIG. 7A. As shown in FIG. 7A, when the ratio of the heat transfer area of the auxiliary radiator 15 to the heat transfer area of the entire integrated radiator 25 is 10%, the COP is highest. . In addition, FIG. 7A is a division | segmentation ratio of the heat-transfer area to the last, and is not a heat dissipation amount ratio.

補助放熱器15はガス冷却域で使用するため伝熱面積の増加に比例して放熱量が上昇するのは補助放熱器15の放熱量が所要放熱量に達するまでであり、それ以上に伝熱面積を大きくしても放熱量は上昇しない。また、補助放熱器15は高元側凝縮器22と一体であるため、補助放熱器15の分割割合を大きくすると、その分、高元側凝縮器22の伝熱面積が減ってしまい、高元側凝縮器22の凝縮能力が低下し運転効率が低下する。よって、図7に示されているように、補助放熱器15の伝熱面積の分割割合を多くするにつれて運転効率が下がっている。   Since the auxiliary radiator 15 is used in the gas cooling zone, the amount of heat dissipation increases in proportion to the increase in the heat transfer area until the amount of heat dissipation from the auxiliary radiator 15 reaches the required heat dissipation amount. Even if the area is increased, the heat dissipation does not increase. Further, since the auxiliary radiator 15 is integrated with the high-source side condenser 22, if the division ratio of the auxiliary radiator 15 is increased, the heat transfer area of the high-side condenser 22 is reduced accordingly, and the high-source side condenser 22 is increased. The condensing capacity of the side condenser 22 is lowered and the operation efficiency is lowered. Therefore, as shown in FIG. 7, the operation efficiency decreases as the division ratio of the heat transfer area of the auxiliary radiator 15 is increased.

以上説明したように、本実施の形態によれば、補助放熱器15の放熱量を一体型放熱器25の全放熱量に対して10%から20%としたことにより、地球温暖化に対する影響が小さい自然冷媒として運転効率の低いCO2冷媒を二元冷凍装置に使用した場合であっても、二元冷凍装置全体の運転効率を向上でき、年間を通して大きな省エネ効果を得ることができる。言い換えれば、CO2冷媒を用いた二元冷凍装置に関して、年間を通した外気温度変化、負荷変動と、CO2の特性、高元と低元の消費電力比率を考慮しつつ、放熱量割合を選定したので、年間を通した省エネ効果を得ることができる。また、補助放熱器15と高元側凝縮器22とを一体型で形成することでコンパクトな二元冷凍装置を得ることができる。   As described above, according to the present embodiment, since the heat radiation amount of the auxiliary radiator 15 is 10% to 20% with respect to the total heat radiation amount of the integrated radiator 25, the influence on global warming is increased. Even when a CO2 refrigerant with low operating efficiency is used as a small natural refrigerant in the binary refrigeration apparatus, the operation efficiency of the entire binary refrigeration apparatus can be improved, and a large energy saving effect can be obtained throughout the year. In other words, for the two-stage refrigeration system using CO2 refrigerant, the heat dissipation rate was selected in consideration of the year-round outdoor temperature change, load fluctuations, CO2 characteristics, and high and low power consumption ratios. So you can get energy saving effect throughout the year. Moreover, a compact binary refrigeration apparatus can be obtained by integrally forming the auxiliary radiator 15 and the high-side condenser 22.

また、補助放熱器15の放熱量を一体型放熱器25の全放熱量に対して10%から20%にするにあたり、一体型放熱器25の補助放熱器15と高元側凝縮器22とで伝熱面積を分ける構成とすることにより、無駄なく一体型放熱器25を使用することができ、年間を通して大きな省エネ効果となるコンパクトな二元冷凍装置を得ることができる。   Further, when the heat dissipation amount of the auxiliary radiator 15 is changed from 10% to 20% with respect to the total heat dissipation amount of the integrated radiator 25, the auxiliary radiator 15 and the high-side condenser 22 of the integrated radiator 25 are By adopting a configuration in which the heat transfer area is divided, the integrated radiator 25 can be used without waste, and a compact binary refrigeration apparatus having a large energy saving effect throughout the year can be obtained.

また、本例の二元冷凍装置は、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケースや業務用冷凍冷蔵庫、自動販売機等の冷蔵あるいは冷凍機器にも広く適用できる。   The dual refrigeration system of this example is also widely applicable to refrigeration or refrigeration equipment such as showcases, commercial refrigerators, and vending machines that require non-fluorocarbons, reduced CFC refrigerants, and energy-saving equipment. it can.

10 低元冷凍サイクル、11 低元側圧縮機、12 低元側凝縮器、13 低元側膨張弁、14 低元側蒸発器、15 補助放熱器、16 放熱器ファン、20 高元冷凍サイクル、21 高元側圧縮機、22 高元側凝縮器、23 高元側膨張弁、24 高元側蒸発器、25 一体型放熱器、25a 伝熱フィン、25b 伝熱管、C カスケードコンデンサ。   10 Low-source refrigeration cycle, 11 Low-source side compressor, 12 Low-source side condenser, 13 Low-source side expansion valve, 14 Low-source-side evaporator, 15 Auxiliary radiator, 16 Radiator fan, 20 High-source refrigeration cycle, 21 High side compressor, 22 High side condenser, 23 High side expansion valve, 24 High side evaporator, 25 Integrated radiator, 25a Heat transfer fin, 25b Heat transfer tube, C Cascade condenser.

Claims (5)

CO2冷媒を用いた低元冷凍サイクルと、前記低元冷凍サイクルの放熱を補助する高元冷凍サイクルとを備え、
前記低元冷凍サイクル及び前記高元冷凍サイクルはそれぞれ圧縮機、凝縮器、減圧装置及び蒸発器を備えており、高元側蒸発器と低元側凝縮器とがカスケードコンデンサで熱交換し、前記カスケードコンデンサの前記低元冷凍サイクルにおける前段に補助放熱器が設置された構成を有し、
更に、前記高元側凝縮器及び前記補助放熱器は一体化されて一体型放熱器を構成しており、
前記一体型放熱器の全放熱量の10%から20%を前記補助放熱器の放熱量としたことを特徴とする二元冷凍装置。
A low-source refrigeration cycle using a CO2 refrigerant, and a high-source refrigeration cycle for assisting heat dissipation in the low-source refrigeration cycle,
The low-source refrigeration cycle and the high-source refrigeration cycle each include a compressor, a condenser, a decompression device, and an evaporator, and the high-end evaporator and the low-end condenser exchange heat with a cascade condenser, Having a configuration in which an auxiliary radiator is installed in the previous stage in the low-source refrigeration cycle of the cascade capacitor;
Furthermore, the high-source side condenser and the auxiliary radiator are integrated to form an integrated radiator,
A dual refrigeration apparatus characterized in that 10% to 20% of the total heat dissipation amount of the integrated radiator is defined as the heat dissipation amount of the auxiliary radiator.
前記一体型放熱器の全伝熱面積の10%から20%を前記補助放熱器の伝熱面積としたことを特徴とする請求項1記載の二元冷凍装置。   2. The dual refrigeration apparatus according to claim 1, wherein 10% to 20% of a total heat transfer area of the integrated radiator is defined as a heat transfer area of the auxiliary radiator. 前記一体型放熱器は、上方部に前記補助放熱器を配置し、下方部に前記高元側凝縮器を配置した構成としたことを特徴とする請求項1又は請求項2記載の二元冷凍装置。   The two-way refrigeration according to claim 1 or 2, wherein the integrated radiator has a configuration in which the auxiliary radiator is disposed in an upper portion and the high-side condenser is disposed in a lower portion. apparatus. 前記一体型放熱器を、平板状フィンに伝熱管を貫通してなるプレートフィンチューブ型熱交換器とし、前記高元側凝縮器は、前記補助放熱器と伝熱フィンを共有することによって一体化されていることを特徴とする請求項1乃至請求項3の何れか1項に記載の二元冷凍装置。   The integrated radiator is a plate fin tube type heat exchanger formed by passing a heat transfer tube through a flat fin, and the high-side condenser is integrated by sharing the heat transfer fin with the auxiliary radiator. The binary refrigeration apparatus according to any one of claims 1 to 3, wherein the binary refrigeration apparatus is provided. 前記高元冷凍サイクルに用いられる冷媒は、前記低元冷凍サイクルに用いられるCO2冷媒より運転効率が高いことを特徴とする請求項1乃至請求項4の何れか1項に記載の二元冷凍装置。   The binary refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigerant used in the high-source refrigeration cycle has higher operating efficiency than the CO2 refrigerant used in the low-source refrigeration cycle. .
JP2011086739A 2011-04-08 2011-04-08 Dual refrigeration equipment Active JP5430604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086739A JP5430604B2 (en) 2011-04-08 2011-04-08 Dual refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086739A JP5430604B2 (en) 2011-04-08 2011-04-08 Dual refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012220111A true JP2012220111A (en) 2012-11-12
JP5430604B2 JP5430604B2 (en) 2014-03-05

Family

ID=47271828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086739A Active JP5430604B2 (en) 2011-04-08 2011-04-08 Dual refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5430604B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device
JP2014222131A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 Freezer
CN106568277A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-refrigeration equipment
CN106568279A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split type dual refrigerating device
CN106568278A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split multi-temperature-area double-refrigeration device
CN106568276A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Double-loop split refrigeration device
JP7473857B1 (en) 2022-11-25 2024-04-24 ダイキン工業株式会社 Refrigeration Cycle System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026116Y1 (en) * 1969-04-12 1975-08-05
JPS55162775U (en) * 1979-05-10 1980-11-21
JPS6078258A (en) * 1983-10-03 1985-05-02 株式会社日立製作所 Two-element refrigerator
JP2007218459A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device and cool box
JP2009299909A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration cycle device
JP2010054152A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Heat source system and its control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026116Y1 (en) * 1969-04-12 1975-08-05
JPS55162775U (en) * 1979-05-10 1980-11-21
JPS6078258A (en) * 1983-10-03 1985-05-02 株式会社日立製作所 Two-element refrigerator
JP2007218459A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device and cool box
JP2009299909A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration cycle device
JP2010054152A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Heat source system and its control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device
JP2014222131A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 Freezer
CN106568277A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-refrigeration equipment
CN106568279A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split type dual refrigerating device
CN106568278A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split multi-temperature-area double-refrigeration device
CN106568276A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Double-loop split refrigeration device
JP7473857B1 (en) 2022-11-25 2024-04-24 ダイキン工業株式会社 Refrigeration Cycle System

Also Published As

Publication number Publication date
JP5430604B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP5430604B2 (en) Dual refrigeration equipment
US7908881B2 (en) HVAC system with powered subcooler
JP5241872B2 (en) Refrigeration cycle equipment
JP5847366B1 (en) Air conditioner
JP5511983B2 (en) Air conditioning and hot water supply complex system
JP6493432B2 (en) Air conditioner
JP6042026B2 (en) Refrigeration cycle equipment
JPWO2011089652A1 (en) Air conditioning and hot water supply complex system
JP2013015264A (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP6880213B2 (en) Air conditioner
JP6758506B2 (en) Air conditioner
JP5506638B2 (en) Refrigeration equipment
JP5409747B2 (en) Dual refrigeration equipment
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP6675083B2 (en) Binary heat pump device
JP5474140B2 (en) Refrigeration equipment
JP6695034B2 (en) Heat pump device
JP5796588B2 (en) Open showcase
JP2014088974A (en) Refrigerator and refrigeration device
JP2017227396A (en) Dual refrigeration cycle device
US20180259228A1 (en) Air conditioner with a liquid to suction heat exchanger
JPWO2020240732A1 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5430604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250