JP2012217683A - Ophthalmologic apparatus - Google Patents

Ophthalmologic apparatus Download PDF

Info

Publication number
JP2012217683A
JP2012217683A JP2011087470A JP2011087470A JP2012217683A JP 2012217683 A JP2012217683 A JP 2012217683A JP 2011087470 A JP2011087470 A JP 2011087470A JP 2011087470 A JP2011087470 A JP 2011087470A JP 2012217683 A JP2012217683 A JP 2012217683A
Authority
JP
Japan
Prior art keywords
light
eye
examined
optical path
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011087470A
Other languages
Japanese (ja)
Inventor
Shinji Nishimura
愼二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011087470A priority Critical patent/JP2012217683A/en
Publication of JP2012217683A publication Critical patent/JP2012217683A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent increase in the whole size of an apparatus and to make a safe measurement by preventing the apparatus from having contact with a subject.SOLUTION: The ophthalmologic apparatus includes: a parallel plate 13 (optical path changing means) 13 which partially has a wedge prism shape and deflects return light from an eye 1 to be examined irradiated with light from a slit light source 2 toward the slit light source 2; and a cornea cross section image acquiring section 102 which leads the deflected light to an imaging element 18 through a cornea thickness measuring optical system and acquires a cornea cross section image of the eye 1 to be examined.

Description

本発明は、被検眼の眼圧値を測定する眼科装置に関するものである。また、眼圧値は、角膜厚により真の値からずれるので、これを補正するために、本発明の眼科装置では、角膜厚を計測する。この角膜厚の計測の際には、断面像撮影用光源から発せられた光を被検眼前眼部に向けてスリット光を投影する。特に、本発明では、このスリット光は角膜内で散乱光となり、この角膜断面散乱光を受光光学系で受光して角膜断面像を得て補正値とする角膜断面像撮影機能を有する眼科装置に関するものである。   The present invention relates to an ophthalmologic apparatus for measuring an intraocular pressure value of a subject eye. Further, since the intraocular pressure value deviates from a true value due to the corneal thickness, the corneal thickness is measured in the ophthalmologic apparatus of the present invention in order to correct this. In the measurement of the corneal thickness, the light emitted from the light source for cross-sectional image photography is projected toward the anterior eye portion of the eye to be examined, and slit light is projected. In particular, the present invention relates to an ophthalmic apparatus having a corneal cross-sectional image photographing function in which the slit light becomes scattered light in the cornea, and the corneal cross-sectional scattered light is received by a light receiving optical system to obtain a corneal cross-sectional image and use it as a correction value. Is.

従来例の、角膜厚測定機能を有する非接触式眼圧計(眼科装置)は、角膜厚測定の際に、気体吹付ノズルの内部をスリット光が透過するように構成し、角膜の断面で散乱光を発生させて所定の位置に設定された撮像素子で受光する。そして、従来例の眼科装置では、ここで得られた角膜厚を補正値として使用する。   The conventional non-contact tonometer (ophthalmologic apparatus) having a corneal thickness measurement function is configured so that slit light is transmitted through the inside of the gas blowing nozzle when measuring the corneal thickness, and the scattered light is scattered in the cross section of the cornea. Is received and received by an image sensor set at a predetermined position. In the conventional ophthalmologic apparatus, the corneal thickness obtained here is used as a correction value.

ここで、前眼部断面像を撮像する撮像素子と、投影光学系による前眼部からの反射光を撮像素子に導く撮像レンズとを有し、投影光学系による投影像の光断面、撮像レンズの主平面、及び、撮像素子の撮像面の延長面が一軸で交わる配置となる前眼部断面撮影光学系を有することが、特許文献1に開示されている。   Here, an imaging device that captures an anterior segment cross-sectional image and an imaging lens that guides reflected light from the anterior segment by the projection optical system to the imaging device, and an optical section of the projection image by the projection optical system, the imaging lens Japanese Patent Application Laid-Open No. H11-228707 discloses that the main plane of the imaging device and an imaging surface of the imaging device extend in a uniaxial manner.

また、角膜厚測定手段が、被検眼の斜め方向の第1軸から被検眼の角膜にスリット光束を投影するスリット及び投影レンズを持つ投影光学系であって、スリット光束がノズルの中心軸方向から被検眼の角膜に投影されたときと同じとなるように、スリット及び投影レンズがシャインプルーフの原理に基づいて配置された投影光学系を有することが、特許文献2に開示されている。   Further, the corneal thickness measuring means is a projection optical system having a slit and a projection lens for projecting a slit light beam from the first axis in the oblique direction of the eye to be examined onto the cornea of the eye to be examined. Patent Document 2 discloses that a slit and a projection lens have a projection optical system arranged based on the principle of Scheinproof so that it is the same as when projected onto the cornea of the eye to be examined.

被検眼の斜め方向の第1軸から被検眼の角膜にスリット光束を投影するスリット及び投影レンズを持つ投影光学系を有することが、特許文献3に開示されている。   Patent Document 3 discloses that a projection optical system having a slit and a projection lens for projecting a slit light beam from a first axis in the oblique direction of the eye to be examined onto the cornea of the eye to be examined.

特開2009−201636号公報JP 2009-201636 A 特開2008−11878号公報JP 2008-11878 A 特開2000−70224号公報JP 2000-70224 A

被検眼前眼部の角膜断面からの散乱光を受光する光学系は、角膜からの散乱光が弱いので、コントラスト比約60程度が得られる光束が必要である。従来、被検者の鼻横下付近に配置していた受光光学系及び保持部材と外装部材でかなりのスペースを使っていたため、鼻の高い人や鼻の大きい人にその一部が接触するなどの不快感を与える可能性があった。また、これを避けるために被検者の鼻横付近に配置していた受光光学系及び保持部材を被検者の鼻下位置まで移動配置すると、受光光束がさらに広がってレンズ径が増大しレンズ保持部材も大きくなり、結像位置も伸びてこの位置に撮像素子を配置することになる。したがって、従来の眼科装置では、受光系が肥大化することによって装置全体が大型化してしまうという課題があった。   An optical system that receives scattered light from the corneal cross section of the anterior eye portion of the eye to be examined has a weak light scattered from the cornea, and therefore requires a light flux that provides a contrast ratio of about 60. Conventionally, a considerable amount of space was used for the receiving optical system and the holding member and the exterior member that were placed near the side of the subject's nose, so that some of them touched people with high noses and people with large noses. There was a possibility of giving discomfort. In order to avoid this, if the light receiving optical system and the holding member arranged near the side of the subject's nose are moved and arranged to the position below the subject's nose, the received light beam further spreads to increase the lens diameter and the lens. The holding member is also enlarged, the image forming position is extended, and the image sensor is disposed at this position. Therefore, the conventional ophthalmic apparatus has a problem that the entire apparatus is enlarged due to the enlargement of the light receiving system.

本発明は、このような問題点に鑑みてなされたものであり、装置全体の大型化を防止し、被検者に装置が接触しないようにして安全な測定を実現する眼科装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides an ophthalmologic apparatus that prevents the apparatus from becoming large and prevents the apparatus from coming into contact with a subject to realize safe measurement. With the goal.

本発明の眼科装置は、光源からの光を照射した被検眼からの戻り光を当該光源側に屈折させる光路変更手段と、前記屈折された光を角膜厚測定光学系を介して撮像素子に導いて前記被検眼の角膜断面像を取得する取得手段と、を有する。   An ophthalmologic apparatus of the present invention guides an optical path changing means for refracting return light from a subject's eye irradiated with light from a light source toward the light source, and the refracted light to an image sensor via a corneal thickness measurement optical system. Acquisition means for acquiring a corneal cross-sectional image of the eye to be examined.

本発明によれば、装置全体の大型化を防止し、被検者に装置が接触しないようにして安全な測定を実現することができる。   According to the present invention, it is possible to prevent an increase in the size of the entire apparatus and to realize safe measurement by preventing the apparatus from coming into contact with a subject.

第1の実施形態に係る眼科装置の概略構成の一例を示す模式図である。It is a schematic diagram which shows an example of schematic structure of the ophthalmologic apparatus which concerns on 1st Embodiment. 第1の実施形態を示し、モニタ画面に表示された角膜断面像の一例を示す模式図である。It is a schematic diagram which shows 1st Embodiment and shows an example of the cornea cross-sectional image displayed on the monitor screen. 従来例を示し、被検者鼻の位置と受光光学系との位置関係を示す模式図である。It is a schematic diagram showing a positional relationship between the position of the subject's nose and the light receiving optical system, showing a conventional example. 第1の実施形態を示し、被検者鼻の位置と受光光学系との位置関係を示す模式図である。It is a schematic diagram which shows 1st Embodiment and shows the positional relationship of the position of a subject's nose and a light reception optical system. 第2の実施形態を示し、被検眼1の位置と受光光学系との位置関係を示す模式図である。It is a schematic diagram which shows 2nd Embodiment and shows the positional relationship of the position of the to-be-tested eye 1, and a light reception optical system.

以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。   Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、第1の実施形態に係る眼科装置の概略構成の一例を示す模式図である。ここで、図1には、角膜厚測定に関する構成と共に従来と同様の眼圧測定に関する構成も複合して記載している。
(First embodiment)
FIG. 1 is a schematic diagram illustrating an example of a schematic configuration of the ophthalmologic apparatus according to the first embodiment. Here, in FIG. 1, the configuration related to the intraocular pressure measurement similar to the conventional configuration is shown in combination with the configuration related to the corneal thickness measurement.

ここでは、まず、従来と同様の眼圧測定に関する構成から先に説明する。   Here, first, the configuration related to the intraocular pressure measurement similar to the conventional one will be described first.

<被検眼観察>
測定開始時に可視光である固視灯光源38を点灯し、被検眼1にこの固視灯光源38の固視灯光軸39に基づく光を固視させる。この状態で被検眼観察を進める。まず、被検眼1の前眼画像は、一部楔プリズム形状の平行平板13の平面部から透過され、観察受光レンズ11で光路変更され、空気室隔壁ガラス10を透過してハーフミラー9を透過する。そして、被検眼1の前眼画像(ハーフミラー9を透過した観察光軸21に基づく画像)は、スプリット用楔プリズムA23、スプリット用楔プリズムB24の内径側を透過し観察結像レンズ25によって観察用撮像素子26に結像する。そして、前眼部の画像は、不図示のモニタ等で観察できる。
<Observed eye observation>
At the start of measurement, the fixation lamp light source 38 which is visible light is turned on, and the eye 1 to be examined is fixed with light based on the fixation lamp optical axis 39 of the fixation lamp light source 38. In this state, the eye observation is advanced. First, the anterior eye image of the eye 1 to be examined is transmitted from the plane part of the parallel plate 13 having a partially wedged prism shape, the optical path is changed by the observation light receiving lens 11, transmitted through the air chamber partition glass 10, and transmitted through the half mirror 9. To do. An anterior eye image of the eye 1 to be examined (an image based on the observation optical axis 21 transmitted through the half mirror 9) is transmitted through the inner diameter side of the split wedge prism A23 and the split wedge prism B24 and observed by the observation imaging lens 25. The image is formed on the image pickup device 26. The image of the anterior segment can be observed with a monitor (not shown).

<被検眼アライメント>
続いて、被検眼観察で不図示のモニタ等の略中心付近に前眼部の画像が表示されている状態で眼圧測定光源31から赤外光を被検眼1に照射する。この光束は被検眼1の角膜に照射されて角膜反射像として略瞳位置に結像し、角膜輝点20として被検眼1と共に観察される。角膜輝点20は、角膜反射光として一部楔プリズム形状の平行平板13、観察受光レンズ11、空気室46、空気室隔壁ガラス10、ハーフミラー9を透過して観察・スプリット用絞り22を通過する。そして、この角膜輝点20は、スプリット用楔プリズムA23及びスプリット用楔プリズムB24によって分割されて観察結像レンズ25により観察用撮像素子26に結像される。この角膜輝点情報をもとに、観察用撮像素子26のX軸に対して均等振り分けでY軸に対して軸上に載るように不図示の駆動機構を駆動させることで、被検眼1が観察受光レンズ11に対し被検眼アライメントが完了する。
<Eye alignment>
Subsequently, the eye 1 is irradiated with infrared light from the intraocular pressure measurement light source 31 in a state where an image of the anterior segment is displayed in the vicinity of the approximate center of a monitor (not shown) in the eye observation. This luminous flux is irradiated onto the cornea of the eye 1 to be examined, and is formed at a substantially pupil position as a cornea reflection image, and is observed together with the eye 1 as a corneal bright spot 20. The corneal bright spot 20 passes through the observation / split diaphragm 22 through the parallel plate 13 in the form of a wedge prism, the observation light receiving lens 11, the air chamber 46, the air chamber partition glass 10, and the half mirror 9 as corneal reflection light. To do. The corneal bright spot 20 is divided by the split wedge prism A 23 and the split wedge prism B 24 and imaged on the observation imaging element 26 by the observation imaging lens 25. Based on this corneal bright spot information, the eye 1 to be inspected is driven by driving a drive mechanism (not shown) so as to be placed on the axis with respect to the Y axis in an even distribution with respect to the X axis of the observation imaging device 26. The eye alignment for the observation light receiving lens 11 is completed.

<眼圧測定機能>
続いて、被検眼アライメントが完了した時点で、まず、眼圧測定光源31からの光束は、投影アパーチャ32で所定の形状にされ、投影レンズ33を透過する。投影レンズ33を透過した投影光軸34に基づく光束は、さらに、ハーフミラー40を透過してハーフミラー35で反射される。さらに、光束は、結像レンズ8によりハーフミラー9で反射され、空気室隔壁ガラス10を透過し気体吹き付けノズル12内部を通過して角膜輝点20に集光する。
<Intraocular pressure measurement function>
Subsequently, when the eye alignment is completed, the light beam from the tonometry light source 31 is first shaped into a predetermined shape by the projection aperture 32 and passes through the projection lens 33. The light beam based on the projection optical axis 34 that has passed through the projection lens 33 further passes through the half mirror 40 and is reflected by the half mirror 35. Further, the light beam is reflected by the half mirror 9 by the imaging lens 8, passes through the air chamber partition glass 10, passes through the gas blowing nozzle 12, and is condensed on the corneal bright spot 20.

この状態で、ピストン駆動源41を回転駆動し連結アーム42を介してピストン43を押し出すと、シリンダ44の内部気体は、連結管45を通り空気室46内で圧力が高まると同時に気体吹き付けノズル12内部を通り被検眼1に吹き付けられる。このピストン駆動源41〜気体吹き付けノズル12の構成は、被検眼1の角膜に気体吹き付けノズル12の内部から気体を吹き付ける気体吹き付け手段を構成する。この気体の圧力により、被検眼1の角膜は変形され平面から凹面へと変化して再び平面に戻り、さらに平常状態に復帰する。そして、この最初の角膜平面状態時における空気室46内の圧力値を圧力計47で読み取る。この圧力計47で圧力値を読み取る時期は、最初の角膜平面状態時に受光アパーチャ36で光束が絞られ、受光素子37での反射光の光量が最大となる時期である。眼圧値計測部101は、そのときの空気室46の圧力値(圧力計47による圧力値)に基づいて眼圧値に換算し、眼圧値を求める。圧力値と眼圧値との関係は、眼圧値が概知の被検眼と多くの臨床データで圧力値との換算式が決られており、当該圧力値に基づき眼圧値が求められる。   In this state, when the piston drive source 41 is rotationally driven and the piston 43 is pushed out via the connecting arm 42, the gas inside the cylinder 44 passes through the connecting pipe 45 and the pressure in the air chamber 46 is increased at the same time. The eye 1 is sprayed through the inside. The configuration of the piston drive source 41 to the gas blowing nozzle 12 constitutes a gas blowing means for blowing gas from the inside of the gas blowing nozzle 12 to the cornea of the eye 1 to be examined. Due to the pressure of the gas, the cornea of the eye 1 to be examined is deformed and changed from a flat surface to a concave surface, and then returns to the flat surface, and further returns to a normal state. Then, the pressure value in the air chamber 46 in the initial corneal plane state is read by the pressure gauge 47. The time when the pressure value is read by the pressure gauge 47 is a time when the light beam is narrowed by the light receiving aperture 36 in the initial corneal plane state, and the amount of reflected light from the light receiving element 37 is maximized. The intraocular pressure value measurement unit 101 obtains an intraocular pressure value by converting it into an intraocular pressure value based on the pressure value of the air chamber 46 at that time (pressure value by the pressure gauge 47). As for the relationship between the pressure value and the intraocular pressure value, a conversion formula between the pressure value is determined by the eye to be examined and the clinical data, and the intraocular pressure value is obtained based on the pressure value.

次に、本発明に関する角膜厚測定について説明する。   Next, corneal thickness measurement according to the present invention will be described.

<角膜厚測定機能>
角膜厚測定機能は、角膜の角膜断面像に基づき被検眼1の角膜厚を測定する。
被検眼アライメントが完了した時点で、まず、スリット光光源2からの光束は、拡散板3により略均一光量にされる。その後、略均一光量にされた光束は、投影チャート4に作られた細く均一な幅の水平なスリット形状を透過し、さらに、投影レンズ5を透過する。その後、投影レンズ5を透過した投影後軸6に基づく光束は、2つのハーフミラー7及び9で反射されて被検眼1の角膜に照射される。
<Corner thickness measurement function>
The corneal thickness measurement function measures the corneal thickness of the eye 1 based on the corneal cross-sectional image of the cornea.
When the eye alignment is completed, the light beam from the slit light source 2 is first made into a substantially uniform light amount by the diffusion plate 3. Thereafter, the light beam having a substantially uniform light quantity passes through the narrow slit having a uniform width formed on the projection chart 4 and further passes through the projection lens 5. Thereafter, the light beam based on the post-projection axis 6 that has passed through the projection lens 5 is reflected by the two half mirrors 7 and 9 and irradiated onto the cornea of the eye 1 to be examined.

この照射光は、被検眼1の角膜内部で散乱光となり、光軸上斜め方向から観察できる。この散乱光は、受光光束14として一部楔プリズム形状の平行平板13の楔形状プリズムを透過する際に光路が曲げられ、受光対物レンズ15の鉛直方向から入射する。このとき、一部楔プリズム形状の平行平板13を保持する対物レンズ保持鏡筒19には、受光光学系の受光光束14、受光対物レンズ15、光路変更後の光軸16を妨げないように開口部が設けられている。より具体的には、気体吹き付けノズル12には、受光対物レンズ15の近傍に、被検眼1の前眼部(角膜)からの散乱光を透過する開口部が設けられている。さらに、この散乱光は、結像レンズ17で集光され、撮像素子18上に結像して画像として取り込まれる。ここで、取り込まれた画像は、図2のモニタ画面66に角膜断面像67として角膜表面が湾曲した形状で表示される。   This irradiation light becomes scattered light inside the cornea of the eye 1 to be examined and can be observed from an oblique direction on the optical axis. When the scattered light passes through the wedge-shaped prism of the parallel plate 13 having a partially wedge prism shape as the received light beam 14, the light path is bent and enters from the vertical direction of the light-receiving objective lens 15. At this time, the objective lens holding barrel 19 that holds the parallel plate 13 having a partially wedge prism shape is opened so as not to interfere with the received light beam 14 of the light receiving optical system, the received light objective lens 15, and the optical axis 16 after the optical path change. Is provided. More specifically, the gas blowing nozzle 12 is provided with an opening that transmits scattered light from the anterior segment (cornea) of the eye 1 to be examined in the vicinity of the light receiving objective lens 15. Further, the scattered light is collected by the imaging lens 17, imaged on the image sensor 18 and captured as an image. Here, the captured image is displayed on the monitor screen 66 of FIG.

ここで、一部楔プリズム形状の平行平板13、受光対物レンズ15及び結像レンズ17は、角膜厚測定光学系を構成し、一部楔プリズム形状の平行平板13には、前眼部からの散乱光を被検者から遠ざけるように屈折させる楔形状プリズムが設けられている。この楔形状プリズムは、光路変更手段を構成する。即ち、この楔形状プリズムである光路変更手段は、スリット光光源2からの光を照射した被検眼1からの戻り光を当該スリット光光源側に屈折させるものである。より詳細には、この楔形状プリズムである光路変更手段は、スリット光光源2からの光を気体吹き付けノズル12の内部から照射した被検眼1からの散乱光を当該気体吹き付けノズル側に屈折させるものである。そして、角膜断面像取得部102は、前記屈折された光を角膜厚測定光学系を介して導かれた撮像素子18から被検眼1の角膜断面像を取得する。また、楔形状プリズムの近傍に受光対物レンズ15が配置されている。   Here, the partially wedged prism-shaped parallel plate 13, the light-receiving objective lens 15 and the imaging lens 17 constitute a corneal thickness measuring optical system. A wedge-shaped prism that refracts the scattered light away from the subject is provided. This wedge-shaped prism constitutes an optical path changing means. In other words, the optical path changing means, which is a wedge-shaped prism, refracts the return light from the eye 1 irradiated with light from the slit light source 2 toward the slit light source. More specifically, the optical path changing means, which is a wedge-shaped prism, refracts the scattered light from the subject eye 1 irradiated with light from the slit light source 2 from the inside of the gas blowing nozzle 12 toward the gas blowing nozzle. It is. Then, the corneal cross-sectional image acquisition unit 102 acquires a corneal cross-sectional image of the eye 1 to be examined from the imaging device 18 that has led the refracted light through the corneal thickness measurement optical system. In addition, a light receiving objective lens 15 is disposed in the vicinity of the wedge-shaped prism.

角膜厚測定部103は、角膜断面像取得部102で取得した角膜断面像に基づいて被検眼1の角膜厚を測定する。眼圧値補正部104は、角膜厚測定部103で測定された被検眼1の角膜厚に基づいて前記眼圧値を補正する。   The corneal thickness measuring unit 103 measures the corneal thickness of the eye 1 based on the corneal cross-sectional image acquired by the corneal cross-sectional image acquiring unit 102. The intraocular pressure correction unit 104 corrects the intraocular pressure value based on the corneal thickness of the eye 1 measured by the corneal thickness measurement unit 103.

図3は、従来例を示し、被検者鼻の位置と受光光学系との位置関係を示す模式図である。
受光光束52は、図1の受光光束14と光束の広がり角度が等しく、受光レンズ53が被検眼1から離れている距離に比例して裾野が広がり受光レンズ53の径も大きくなる。このため、受光レンズ53が被検者鼻51に接近し接触しやすくなる。
FIG. 3 is a schematic diagram illustrating a positional relationship between the position of the subject's nose and the light receiving optical system, showing a conventional example.
The received light beam 52 has the same spread angle as that of the received light beam 14 in FIG. 1, and the base spreads in proportion to the distance that the light receiving lens 53 is away from the eye 1 to be examined, and the diameter of the light receiving lens 53 is increased. For this reason, the light receiving lens 53 is likely to approach and come into contact with the subject's nose 51.

図4は、第1の実施形態を示し、被検者鼻の位置と受光光学系との位置関係を示す模式図である。図4において、図1,図3と同様の構成には、同じ符号を付している。
被検眼1から得られる受光光束14の角度は、図1と同一である。気体吹き付けノズル12の外周の一部楔プリズム形状の平行平板13の楔形状プリズム(光路変更手段)により、光軸が、被検者より離れる方向へ(即ち、気体吹き付けノズル12側へ)屈折させられ、被検者鼻51の位置から遠ざけられている。
FIG. 4 is a schematic diagram illustrating the positional relationship between the position of the subject's nose and the light receiving optical system according to the first embodiment. In FIG. 4, the same components as those in FIGS. 1 and 3 are denoted by the same reference numerals.
The angle of the received light beam 14 obtained from the eye 1 is the same as that shown in FIG. The wedge-shaped prism (optical path changing means) of the parallel plate 13 having a partially wedged prism shape on the outer periphery of the gas blowing nozzle 12 refracts the optical axis away from the subject (that is, toward the gas blowing nozzle 12 side). And away from the position of the subject's nose 51.

さらに、受光対物レンズ15によって光路変更後の光軸16を略平行光とすることで結像面を被検者鼻51の位置から遠ざけられるため、撮像素子18も同様に被検者から遠ざけられることから、不図示の保持部材も十分離れた位置に構成できる。これにより、眼圧測定及び角膜断面像撮影(角膜厚測定)を行う際に、被検者に装置が接触しないようにして安全な測定を行うことができる。   Further, since the image plane is moved away from the position of the subject's nose 51 by making the optical axis 16 after the optical path change by the light receiving objective lens 15 substantially parallel light, the imaging element 18 is also moved away from the subject. Therefore, the holding member (not shown) can also be configured at a position sufficiently away. Thereby, when performing intraocular pressure measurement and corneal cross-sectional image photography (corneal film thickness measurement), it is possible to perform safe measurement so that the apparatus does not contact the subject.

(第2の実施形態)
図5は、第2の実施形態を示し、被検眼1の位置と受光光学系との位置関係を示す模式図である。図5において、図1と同様の構成には、同じ符号を付している。
第2の実施形態では、第1の実施形態の被検眼観察、被検眼アライメント、眼圧測定は同一であり、角膜断面像の撮影方法も同じである。第2の実施形態において、第1の実施形態と異なるのは、第1の実施形態では一部楔プリズム形状の平行平板13としていたところを、第2の実施形態では受光系の光路変更手段の形状を平行平板54と楔形状プリズム55として別体で製作し接合した点である。
(Second Embodiment)
FIG. 5 is a schematic diagram showing the positional relationship between the position of the eye 1 to be examined and the light receiving optical system according to the second embodiment. In FIG. 5, the same components as those in FIG.
In the second embodiment, the eye observation, the eye alignment, and the intraocular pressure measurement of the first embodiment are the same, and the imaging method of the corneal cross-sectional image is also the same. In the second embodiment, the difference from the first embodiment is that the parallel plate 13 having a partially wedge prism shape is used in the first embodiment, but the optical path changing means of the light receiving system in the second embodiment. The point is that the parallel plate 54 and the wedge-shaped prism 55 are separately manufactured and joined.

(第3の実施形態)
上述した第1及び第2の実施形態では、光源からの光をノズル内部から照射した被検眼1からの散乱光を用いて角膜厚測定光学系を介して測定を行う形態であったが、本発明においては、必ずしもこの形態に限定されるものではない。
例えば、特開2000−60801号公報の図1に示すように、被検眼の斜め上方向に設けられた光源から照射した被検眼1からの散乱光を用いて、被検眼の斜め下方向に設けられた、第1及び第2の実施形態に係る角膜厚測定光学系を介して測定を行う形態であってもよい。即ち、被検眼から正反射した散乱光を用いて測定を行う形態であってもよい。
(Third embodiment)
In the first and second embodiments described above, the measurement is performed through the corneal thickness measurement optical system using the scattered light from the eye 1 irradiated with light from the light source from the inside of the nozzle. The invention is not necessarily limited to this form.
For example, as shown in FIG. 1 of Japanese Patent Laid-Open No. 2000-60801, the scattered light from the eye 1 irradiated from a light source provided obliquely above the eye to be examined is provided obliquely below the eye to be examined. The measurement may be performed via the corneal thickness measurement optical system according to the first and second embodiments. That is, the measurement may be performed using scattered light that is regularly reflected from the eye to be examined.

以上説明した本発明の各実施形態では、角膜厚測定光学系に、前眼部からの散乱光を、被検者から遠ざけるように(即ち、スリット光光源2側に)屈折させる光路変更手段を設けるようにした。かかる構成によれば、眼圧測定及び角膜厚測定を行う非接触式眼圧計において、装置全体の大型化を防止し、被検者に装置が接触しないようにして安全な測定を実現することができるという作用・効果を奏する。
また、本発明の第2の実施形態では、光路変更手段として、気体吹き付けノズル12の外周の平行平板54の一部に楔形状プリズム55を別体で接合して構成するようにした。かかる構成によれば、上述した作用・効果に加えて、光路変更手段の製作時の自由度を高めることができる。
また、本発明の第1及び第2の実施形態では、気体吹き付けノズル12において、受光対物レンズ15の近傍に、前眼部からの散乱光を透過する開口部を有するようにした。かかる構成によれば、光路変更手段により変更された光束が保持部材(対物レンズ保持鏡筒19)との干渉を避けるための配置制約を減らすことができる。
また、本発明の各実施形態では、受光対物レンズ15からの光路を略平行光に構成し、撮像素子18を被検者から遠ざけるように配置にした。かかる構成によれば、上述した作用・効果に加えて、受光対物レンズ15の平行光束手段により撮像素子18の配置自由度を高めるため、装置全体として小型化が可能である。
In each of the embodiments of the present invention described above, the optical path changing means that refracts the scattered light from the anterior segment to the corneal thickness measurement optical system so as to be away from the subject (that is, toward the slit light source 2 side). I made it. According to such a configuration, in the non-contact tonometer that performs intraocular pressure measurement and corneal thickness measurement, it is possible to prevent an increase in the size of the entire apparatus and to realize a safe measurement by preventing the apparatus from contacting the subject. Has the effect of being able to.
In the second embodiment of the present invention, the wedge-shaped prism 55 is separately joined to a part of the parallel plate 54 on the outer periphery of the gas blowing nozzle 12 as the optical path changing means. According to such a configuration, in addition to the operations and effects described above, the degree of freedom in manufacturing the optical path changing means can be increased.
In the first and second embodiments of the present invention, the gas blowing nozzle 12 has an opening that transmits scattered light from the anterior segment in the vicinity of the light receiving objective lens 15. According to such a configuration, it is possible to reduce arrangement restrictions for avoiding interference between the light beam changed by the optical path changing means and the holding member (objective lens holding barrel 19).
Further, in each embodiment of the present invention, the optical path from the light receiving objective lens 15 is configured to be substantially parallel light, and the imaging element 18 is disposed so as to be away from the subject. According to such a configuration, in addition to the operations and effects described above, the degree of freedom in arrangement of the image pickup element 18 is increased by the parallel light beam means of the light receiving objective lens 15, so that the entire apparatus can be reduced in size.

なお、前述した本発明の各実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又は、その主要な特徴から逸脱することなく、様々な形で実施することができる。   Note that each of the embodiments of the present invention described above is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

1 被検眼、11 観察受光レンズ、12 気体吹き付けノズル、13 一部楔プリズム形状の平行平板、14 受光光束、15 受光対物レンズ、16 光路変更後の光軸、17 結像レンズ、18 撮像素子、51 被検者鼻 DESCRIPTION OF SYMBOLS 1 Eye to be examined, 11 Observation light-receiving lens, 12 Gas spray nozzle, 13 Parallel plate of a partly wedge prism shape, 14 Light-receiving light beam, 15 Light-receiving objective lens, 16 Optical axis after optical path change, 17 Imaging lens, 18 Imaging element, 51 Subject's nose

Claims (10)

光源からの光を照射した被検眼からの戻り光を当該光源側に屈折させる光路変更手段と、
前記屈折された光を角膜厚測定光学系を介して撮像素子に導いて前記被検眼の角膜断面像を取得する取得手段と、
を有することを特徴とする眼科装置。
An optical path changing means for refracting return light from the eye to be examined irradiated with light from the light source toward the light source;
An acquisition means for acquiring the corneal cross-sectional image of the eye to be examined by guiding the refracted light to an imaging device via a corneal thickness measurement optical system;
An ophthalmologic apparatus comprising:
前記被検眼の角膜にノズルの内部から気体を吹き付ける気体吹き付け手段を更に有することを特徴とする請求項1に記載の眼科装置。   The ophthalmologic apparatus according to claim 1, further comprising gas spraying means for spraying gas from the inside of a nozzle to the cornea of the eye to be examined. 前記光路変更手段は、前記光源からの光を前記ノズルの内部から照射した前記被検眼からの散乱光を前記ノズル側に屈折させることを特徴とする請求項2に記載の眼科装置。   The ophthalmic apparatus according to claim 2, wherein the optical path changing unit refracts scattered light from the eye to be inspected that is irradiated with light from the light source from the inside of the nozzle. 前記気体吹き付け手段により気体が吹き付けられた際の前記角膜の平面状態における空気室の圧力値に基づいて眼圧値を計測する眼圧値計測手段と、
前記角膜断面像に基づいて前記被検眼の角膜厚を測定する角膜厚測定手段と、
前記角膜厚に基づいて前記眼圧値を補正する補正手段と、
を更に有することを特徴とする請求項2又は3に記載の眼科装置。
An intraocular pressure value measuring means for measuring an intraocular pressure value based on the pressure value of the air chamber in the planar state of the cornea when the gas is blown by the gas blowing means;
Corneal thickness measuring means for measuring the corneal thickness of the eye based on the corneal cross-sectional image;
Correction means for correcting the intraocular pressure value based on the corneal thickness;
The ophthalmologic apparatus according to claim 2, further comprising:
前記取得手段は、前記ノズルを介して光束を照射した前記被検眼の角膜からの散乱光に基づいて当該被検眼の角膜断面像を取得することを特徴とする請求項2乃至4のいずれか1項に記載の眼科装置。   The said acquisition means acquires the cornea cross-sectional image of the said to-be-tested eye based on the scattered light from the cornea of the said to-be-tested eye irradiated with the light beam through the said nozzle. The ophthalmic apparatus according to item. 前記光路変更手段は、前記ノズルの外周の平行平板の一部が楔形状のプリズムで構成されていることを特徴とする請求項2乃至5のいずれか1項に記載の眼科装置。   6. The ophthalmologic apparatus according to claim 2, wherein the optical path changing unit is configured such that a part of a parallel plate on an outer periphery of the nozzle is formed of a wedge-shaped prism. 前記光路変更手段は、前記ノズルの外周の平行平板の一部に楔形状のプリズムが別体で接合されて構成されていることを特徴とする請求項2乃至5のいずれか1項に記載の眼科装置。   6. The optical path changing unit according to claim 2, wherein a wedge-shaped prism is joined separately to a part of a parallel plate on an outer periphery of the nozzle. Ophthalmic equipment. 前記角膜厚測定光学系には、前記光路変更手段の近傍に対物レンズが配置されていることを特徴とする請求項2乃至7のいずれか1項に記載の眼科装置。   The ophthalmologic apparatus according to claim 2, wherein an objective lens is disposed in the vicinity of the optical path changing unit in the corneal thickness measurement optical system. 前記ノズルには、前記対物レンズの近傍に、前記被検眼からの散乱光を透過する開口部を有することを特徴とする請求項8に記載の眼科装置。   The ophthalmic apparatus according to claim 8, wherein the nozzle has an opening that transmits scattered light from the eye to be examined in the vicinity of the objective lens. 前記対物レンズからの光路を略平行光に構成し、前記撮像素子を被検者から遠ざけるように配置にしたことを特徴とする請求項8又は9に記載の眼科装置。   10. The ophthalmologic apparatus according to claim 8, wherein an optical path from the objective lens is configured to be substantially parallel light, and the imaging element is arranged to be away from the subject.
JP2011087470A 2011-04-11 2011-04-11 Ophthalmologic apparatus Withdrawn JP2012217683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087470A JP2012217683A (en) 2011-04-11 2011-04-11 Ophthalmologic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087470A JP2012217683A (en) 2011-04-11 2011-04-11 Ophthalmologic apparatus

Publications (1)

Publication Number Publication Date
JP2012217683A true JP2012217683A (en) 2012-11-12

Family

ID=47269859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087470A Withdrawn JP2012217683A (en) 2011-04-11 2011-04-11 Ophthalmologic apparatus

Country Status (1)

Country Link
JP (1) JP2012217683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047036A (en) * 2016-09-21 2018-03-29 株式会社トプコン Non-contact type tonometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047036A (en) * 2016-09-21 2018-03-29 株式会社トプコン Non-contact type tonometer

Similar Documents

Publication Publication Date Title
JP5340434B2 (en) Ophthalmic apparatus, processing apparatus, ophthalmic system, processing method, ophthalmic apparatus control method, program
JP5038703B2 (en) Ophthalmic equipment
US7416301B2 (en) Eye refractive power measurement apparatus
US20080151190A1 (en) Corneal measurment apparatus and a method of using the same
JP2009201636A (en) Non-contact type tonometer
JP4535580B2 (en) Ophthalmic equipment
JP2007275600A (en) Refractometer for measuring refraction of eye
JP3862869B2 (en) Non-contact tonometer
JP5710827B2 (en) Corneal shape measuring device
JP2002200045A (en) Ophthalmic instrument
JP2012217683A (en) Ophthalmologic apparatus
CN103961055B (en) Optical system and optical method for measuring human eye white-to-white distance
JP4644842B2 (en) Non-contact tonometer
JP2014188273A (en) Ophthalmologic apparatus, control method for the same, and program
JP5677495B2 (en) Ophthalmic apparatus and control method thereof
JPH0984761A (en) Ophthalmic device
JP6430770B2 (en) Ophthalmic equipment
JP5915034B2 (en) Fundus imaging device with wavefront compensation
WO2022030202A1 (en) Ophthalmic device and ophthalmic device control program
JP2013000293A (en) Cornea thickness measuring apparatus and method for correcting the same
JP4018476B2 (en) Non-contact tonometer
JP3154533B2 (en) Ophthalmic equipment
JP6047040B2 (en) Ophthalmic equipment
WO2016063413A1 (en) Observation device
CN116725477A (en) Ophthalmic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701