JP2012216660A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2012216660A
JP2012216660A JP2011080554A JP2011080554A JP2012216660A JP 2012216660 A JP2012216660 A JP 2012216660A JP 2011080554 A JP2011080554 A JP 2011080554A JP 2011080554 A JP2011080554 A JP 2011080554A JP 2012216660 A JP2012216660 A JP 2012216660A
Authority
JP
Japan
Prior art keywords
induction heating
magnetic
chamber
opening
heating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080554A
Other languages
Japanese (ja)
Other versions
JP4918168B1 (en
Inventor
Naoki Uchida
直喜 内田
Yoshihiro Okazaki
良弘 岡崎
Kazuhiro Ozaki
一博 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011080554A priority Critical patent/JP4918168B1/en
Priority to PCT/JP2011/074172 priority patent/WO2012132078A1/en
Priority to CN2011800042013A priority patent/CN102812778B/en
Priority to KR1020127006263A priority patent/KR101184133B1/en
Application granted granted Critical
Publication of JP4918168B1 publication Critical patent/JP4918168B1/en
Publication of JP2012216660A publication Critical patent/JP2012216660A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating apparatus capable of suppressing heat generation from an edge of an opening provided on a partition wall even when a magnetic pole is disposed in the outside of a chamber.SOLUTION: An induction heating apparatus 10 includes: a chamber 12 constituting a process chamber; magnetic poles, each of which is disposed close to a magnetically permeable shielding plate 46 for shielding an opening 42 provided in a housing 26 which is the outer periphery of the chamber 12 and a conductive partition wall member constituting the chamber 12; and induction heating coils, each of which is wound around the magnetic pole. At least two magnetic poles 32, 34 are provided against one opening 42, and polarity of two magnetic poles 32, 34 is formed in reverse polarity.

Description

本発明は、誘導加熱装置に係り、特に大径の半導体基板を熱処理する場合に、被加熱物の温度制御を行う際に好適な誘導加熱装置に関する。   The present invention relates to an induction heating device, and more particularly to an induction heating device suitable for controlling the temperature of an object to be heated when heat treating a large-diameter semiconductor substrate.

大径な半導体基板をバッチ処理する際、基板表面に金属膜等が形成されていた場合であっても、当該金属膜が直接加熱されることにより、基板面内の温度分布にバラツキが生ずることを抑制することのできる誘導加熱装置が知られている(例えば特許文献1参照)。   When batch processing a large-sized semiconductor substrate, even if a metal film or the like is formed on the substrate surface, the metal film is directly heated, resulting in variations in temperature distribution in the substrate surface. There is known an induction heating apparatus capable of suppressing the above (for example, see Patent Document 1).

特許文献1に開示されている技術は、プロセス室を構成するチャンバと、磁極を構成するコアに巻回された誘導加熱コイルを備えている。このような構成の誘導加熱装置によれば、磁極を介して生ずる磁束が、チャンバ内に配置された被加熱物である半導体基板の載置方向と平行に生ずることとなる。このため、半導体基板の表面に金属膜等が形成されていた場合であっても、この金属膜と交差する方向に磁束が投入されることが無く、誘導加熱によって基板が直接加熱される虞が無い。このため、基板面内の温度分布にバラツキを生じさせることが無い。   The technique disclosed in Patent Document 1 includes a chamber constituting a process chamber and an induction heating coil wound around a core constituting a magnetic pole. According to the induction heating apparatus having such a configuration, the magnetic flux generated through the magnetic pole is generated in parallel with the mounting direction of the semiconductor substrate that is the object to be heated disposed in the chamber. For this reason, even when a metal film or the like is formed on the surface of the semiconductor substrate, magnetic flux is not input in a direction intersecting with the metal film, and the substrate may be directly heated by induction heating. No. For this reason, the temperature distribution in the substrate surface does not vary.

特開2010−59490号公報JP 2010-59490 A

特許文献1に開示されているような構成の誘導加熱装置によれば、確かに、基板表面に金属膜が被覆された半導体基板等であっても、誘導加熱により金属膜が直接加熱されてしまう虞が無くなる。   According to the induction heating apparatus configured as disclosed in Patent Document 1, the metal film is certainly directly heated by induction heating even in a semiconductor substrate or the like whose surface is coated with the metal film. There is no fear.

しかし、上記のような構成の誘導加熱装置では、チャンバを構成する隔壁をアルミ等の耐熱性金属で構成するため、磁極から生ずる磁束を被誘導加熱部材であるサセプタに到達させるためには、チャンバの一部に開口部(少なくとも磁束を透過させる磁気的開口部)を形成する必要がある。しかし、チャンバに開口部を設けた場合にはチャンバ内部を真空引きすることが出来なくなってしまう。また、チャンバを密閉するために、開口部を磁極で封止した場合には、チャンバ内にコンタミが生ずる虞がある。   However, in the induction heating apparatus configured as described above, the partition walls constituting the chamber are made of a heat-resistant metal such as aluminum, so that the magnetic flux generated from the magnetic poles reaches the susceptor that is the induction heating member. It is necessary to form an opening (a magnetic opening through which at least magnetic flux is transmitted) in a part of the film. However, when an opening is provided in the chamber, the inside of the chamber cannot be evacuated. Further, when the opening is sealed with a magnetic pole in order to seal the chamber, there is a risk that contamination will occur in the chamber.

このため、チャンバに設けた開口部には通常、真空耐力、磁束透過性、耐熱性、熱膨張率が低い、熱伝導率が低い、及び熱衝撃に強いといった特性を持ち、汚染の虞が無い石英が配置されることとなった。   For this reason, the opening provided in the chamber usually has characteristics such as vacuum strength, magnetic flux permeability, heat resistance, low thermal expansion coefficient, low thermal conductivity, and resistance to thermal shock, and there is no risk of contamination. Quartz was to be placed.

このような構成とした場合、導電性部材で構成された隔壁における開口部の縁部にも、磁極から生じた磁束が少なからず投入されることとなる。開口部の縁部に投入された磁束は、誘起電流を生じさせ、熱を生じさせることとなり、チャンバが加熱されるといった問題がある。
そこで本発明では、チャンバ外部に磁極を配置した場合であっても、隔壁に設けた開口部の縁部からの発熱を抑制することのできる誘導加熱装置を提供することを目的とする。
In the case of such a configuration, a considerable amount of magnetic flux generated from the magnetic poles is also applied to the edge of the opening in the partition wall made of a conductive member. There is a problem that the magnetic flux applied to the edge of the opening causes an induced current and heat, and the chamber is heated.
Therefore, an object of the present invention is to provide an induction heating device that can suppress heat generation from the edge of an opening provided in a partition wall even when a magnetic pole is disposed outside the chamber.

上記目的を達成するための本発明に係る誘導加熱装置は、プロセス室を構成する金属材料を主要部材としたチャンバと、前記チャンバの外周に配置され、前記チャンバに形成された磁束を透過させる磁気的開口部を介して前記チャンバ内に配置された被誘導加熱部材を加熱する誘導加熱コイルとを有する誘導加熱装置であって、1つの前記磁気的開口部に対して、前記磁気的開口部の縁部に投入される磁束の総和がゼロまたはゼロに近づくこととなるように、前記誘導加熱コイルを複数設けたことを特徴とする。   In order to achieve the above object, an induction heating apparatus according to the present invention includes a chamber mainly composed of a metal material constituting a process chamber, and a magnet that is disposed on the outer periphery of the chamber and transmits magnetic flux formed in the chamber. An induction heating device having an induction heating coil configured to heat an induction heating member disposed in the chamber through a static opening, wherein the magnetic opening is arranged with respect to one magnetic opening. A plurality of the induction heating coils are provided so that the sum of the magnetic fluxes input to the edge is zero or close to zero.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルは、前記被誘導加熱部材の側端面に向う交流磁束を発生する配置形態とすると良い。このような構成とすることで、被誘導加熱部材の被加熱物載置面と平行な方向に、交流磁束を生じさせることができる。このため、被加熱物の主面に金属膜等の被誘導加熱部材が被覆されていたとしても、被加熱物が直接加熱されてしまう虞が無く、温度分布の均等化を図りやすくなる。   In the induction heating device having the above-described characteristics, the induction heating coil may be arranged to generate an alternating magnetic flux directed to the side end surface of the induction heating member. By setting it as such a structure, an alternating current magnetic flux can be produced in the direction parallel to the to-be-heated material mounting surface of a to-be-induced heating member. For this reason, even if the main surface of the object to be heated is covered with an induction heating member such as a metal film, the object to be heated is not directly heated, and it becomes easy to equalize the temperature distribution.

また、上記のような特徴を有する誘導加熱装置では、前記磁気的開口部を複数設け、隣接する前記磁気的開口部間には、磁束を透過させる磁気的スリットを形成すると良い。このような構成とした場合であっても、実質的に単一の磁気的開口部に対して、磁気的開口部の縁部に投入される磁束の総和がゼロまたはゼロに近づくこととなるように複数の誘導加熱コイルを配置することとなる。よって、磁気的開口部の縁部に生じる誘起電流を相殺または一部相殺することができ、磁気的開口部の縁部からの発熱を抑制することができる。   In the induction heating apparatus having the above-described characteristics, it is preferable that a plurality of the magnetic openings are provided, and a magnetic slit that transmits magnetic flux is formed between the adjacent magnetic openings. Even in such a configuration, the sum of the magnetic fluxes injected into the edge of the magnetic opening is substantially zero or close to zero with respect to a substantially single magnetic opening. A plurality of induction heating coils are arranged in Therefore, the induced current generated at the edge of the magnetic opening can be canceled or partially canceled, and heat generation from the edge of the magnetic opening can be suppressed.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルを巻回する磁極を備えるようにすると良い。このような構成とすることで、発生磁束を収束させることができ、加熱効率の向上を図ることができる。   Moreover, in the induction heating apparatus having the above-described features, it is preferable to provide a magnetic pole around which the induction heating coil is wound. By setting it as such a structure, the generated magnetic flux can be converged and a heating efficiency can be improved.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルが巻回された少なくとも2つの磁極を連結するヨークを備えるようにすると良い。このような構成とすることで、チャンバを鎖交する磁束が低減し、チャンバの加熱を抑制することができる。   In the induction heating apparatus having the above-described characteristics, it is preferable to provide a yoke that connects at least two magnetic poles around which the induction heating coil is wound. By setting it as such a structure, the magnetic flux which links a chamber reduces and it can suppress the heating of a chamber.

また、上記のような特徴を有する誘導加熱装置では、前記磁気的開口部の外縁に、冷媒を挿通させる挿通路を設けるようにすると良い。このような構成とすることで、例え磁気的開口部の縁部に生じる誘起電流の相殺が一部相殺に留まった場合であっても、開口部の縁部からの発熱を抑制することができる。   Moreover, in the induction heating apparatus having the above-described features, it is preferable to provide an insertion passage through which the refrigerant is inserted at the outer edge of the magnetic opening. With such a configuration, even when the cancellation of the induced current generated at the edge of the magnetic opening is partially offset, heat generation from the edge of the opening can be suppressed. .

また、上記のような特徴を有する誘導加熱装置では、複数の前記誘導加熱コイルのうち極性の異なる2つのコイルを対として、巻回数、および巻回断面の形状を等しく構成すると良い。このような構成とすることで、各磁極から生ずる磁束が等しくなり、磁気的開口部の縁部に投入される磁束も近似、あるいは等しくなる。このため、縁部に生じる誘起電流の相殺精度を向上させることができる。   Moreover, in the induction heating apparatus having the above-described features, it is preferable that two windings having different polarities among the plurality of induction heating coils be paired to have the same number of turns and the shape of the winding cross section. With such a configuration, the magnetic flux generated from each magnetic pole becomes equal, and the magnetic flux applied to the edge of the magnetic opening is also approximated or equal. For this reason, it is possible to improve the cancellation accuracy of the induced current generated at the edge.

また、上記のような特徴を有する誘導加熱装置では、前記磁極の断面形状、および寸法を等しくすると良い。このような構成とした場合であっても、縁部に生じる誘起電流の相殺精度を向上させることができるからである。
また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルに流す電流値を等しくすることのできる電源部を備えるようにする。
In addition, in the induction heating device having the above-described features, the cross-sectional shape and dimensions of the magnetic poles are preferably equal. This is because even in such a configuration, the cancellation accuracy of the induced current generated at the edge can be improved.
In addition, the induction heating apparatus having the above-described characteristics is provided with a power supply unit that can equalize the value of current flowing through the induction heating coil.

上記のような特徴を有する誘導加熱装置によれば、磁気的開口部の縁部には、複数の誘導加熱コイルから生ずる磁束が投入されることとなり、その総和がゼロまたは単一の誘導加熱コイルを用いた場合に比べてゼロに近づくこととなる。このため、磁気的開口部の縁部に生ずる誘起電流のうちの少なくとも一部が相殺されることとなり、チャンバに設けた磁気的開口部の縁部からの発熱を抑制することが可能となる。   According to the induction heating device having the above-described characteristics, magnetic flux generated from a plurality of induction heating coils is input to the edge of the magnetic opening, and the sum of the magnetic fluxes is zero or a single induction heating coil. It will approach zero compared to the case of using. For this reason, at least a part of the induced current generated at the edge of the magnetic opening is canceled out, and heat generation from the edge of the magnetic opening provided in the chamber can be suppressed.

第1の実施形態に係る誘導加熱装置の構成を示す平面図である。It is a top view which shows the structure of the induction heating apparatus which concerns on 1st Embodiment. 図1におけるA−A断面の構成を示す図である。It is a figure which shows the structure of the AA cross section in FIG. 2つの磁極の角度と開口部の関係を示す平面図である。It is a top view which shows the relationship between the angle of two magnetic poles, and an opening part. ハウジングに設けた開口部の正面形態を示す図である。It is a figure which shows the front form of the opening part provided in the housing. 開口部に設けられた磁気透過性遮蔽部材と冷却板の組付け形態の詳細を示す図である。It is a figure which shows the detail of the assembly | attachment form of the magnetic-permeable shielding member and cooling plate provided in the opening part. 第2の実施形態に係る誘導加熱装置におけるハウジングに設けられた開口部の形態を説明するための平面図である。It is a top view for demonstrating the form of the opening part provided in the housing in the induction heating apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る誘導加熱装置におけるハウジングに設けられた開口部の正面形態を示す図である。It is a figure which shows the front form of the opening part provided in the housing in the induction heating apparatus which concerns on 2nd Embodiment.

以下、本発明の誘導加熱装置に係る実施の形態について、図面を参照して詳細に説明する。まず、図1、図2を参照して、第1の実施形態に係る誘導加熱装置の概要構成について説明する。なお、図1は誘導加熱装置の平面構成を示す部分断面ブロック図であり、図2は図1におけるA−A断面を示すブロック図である。   Hereinafter, embodiments of the induction heating apparatus of the present invention will be described in detail with reference to the drawings. First, a schematic configuration of the induction heating apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a partial cross-sectional block diagram illustrating a planar configuration of the induction heating apparatus, and FIG. 2 is a block diagram illustrating a cross-section taken along line AA in FIG.

本実施形態に係る誘導加熱装置10は、被加熱物としてのウエハ60と被誘導加熱部材(発熱体)としてのサセプタ16を多段に重ねて熱処理を行うバッチ式のものとする。
誘導加熱装置10は、チャンバ12と、チャンバ12の外部に配置された励磁部28、および電源部40を基本として構成される。
The induction heating apparatus 10 according to the present embodiment is a batch-type apparatus in which a wafer 60 as a heated object and a susceptor 16 as an induction heating member (heating element) are stacked in multiple stages to perform heat treatment.
The induction heating apparatus 10 is configured based on a chamber 12, an excitation unit 28 disposed outside the chamber 12, and a power supply unit 40.

チャンバ12は、ボート14と回転テーブル18、およびハウジング26を基本として構成されるプロセス室である。ボート14は、被加熱物であるウエハ60を載置するサセプタ16を複数、垂直方向に積層配置することで構成される。各サセプタ16間には、図示しない支持部材が配置され、ウエハ60を配置するための所定の間隔を保つように構成される。図示しない支持部材は、磁束の影響を受けることが無く、耐熱性が高く、かつ熱膨張率の小さい部材により構成すると良く、具体的には石英などを用いて構成すると良い。   The chamber 12 is a process chamber configured based on the boat 14, the rotary table 18, and the housing 26. The boat 14 is configured by stacking a plurality of susceptors 16 on which wafers 60 to be heated are placed in a vertical direction. A support member (not shown) is disposed between the susceptors 16 and is configured to maintain a predetermined interval for disposing the wafer 60. The support member (not shown) is not affected by the magnetic flux, is preferably made of a member having high heat resistance and a low coefficient of thermal expansion, and specifically, made of quartz or the like.

サセプタ16は、導電性部材で構成されれば良く、例えばグラファイト、SiC、SiCコートグラファイト、および耐熱金属等により構成すれば良い。
回転テーブル18は、テーブル20と回転軸22、およびベース24を基本として構成される。テーブル20は、積層配置された複数のサセプタ16から成るボート14を支持するための台であり、図示しない支持部が設けられる。回転軸22は、テーブル20の回転中心に固定された軸であり、図示しない駆動源からの駆動力を受けて回転することで、テーブル20を回転させ、テーブル20に載置された複数のサセプタ16を回転させる。ベース24は、回転軸22を回転させるためのモータ等の駆動源を有する土台であり、テーブル20の安定状態を確保する。回転テーブル18によりボート14を回転させることにより、加熱源である励磁部28を誘導加熱装置10に対して偏らせて配置した場合であっても、サセプタ16の均一加熱が可能となる。また、励磁部28を偏らせて配置することによれば、誘導加熱装置10をボート14(チャンバ12)の外周に均等配置する場合に比べ、装置の小型化を図ることが可能となる。
The susceptor 16 may be made of a conductive member, and may be made of, for example, graphite, SiC, SiC-coated graphite, refractory metal, or the like.
The rotary table 18 is configured based on a table 20, a rotary shaft 22, and a base 24. The table 20 is a table for supporting the boat 14 composed of a plurality of susceptors 16 arranged in a stacked manner, and a support portion (not shown) is provided. The rotating shaft 22 is a shaft fixed to the rotation center of the table 20, and rotates by receiving a driving force from a driving source (not shown), thereby rotating the table 20, and a plurality of susceptors mounted on the table 20. 16 is rotated. The base 24 is a base having a drive source such as a motor for rotating the rotary shaft 22, and ensures a stable state of the table 20. By rotating the boat 14 by the rotary table 18, the susceptor 16 can be uniformly heated even when the excitation unit 28, which is a heating source, is arranged biased with respect to the induction heating device 10. Further, by arranging the excitation unit 28 in a biased manner, it is possible to reduce the size of the device as compared with the case where the induction heating device 10 is evenly arranged on the outer periphery of the boat 14 (chamber 12).

ハウジング26は、チャンバ12内部を真空に保つための隔壁である。実施形態におけるハウジング26は、平面形態を多角形(図1に示す例では六角形)とすることで、形状形成の容易化を図ることができる。ハウジング26の構成部材は、プロセス的な側面から、アルミニウムまたはステンレスが用いられる。ここで、アルミニウムは形状形成や、形状形成のための溶接面に不利があり、ステンレスに比べて耐熱性も低い。このため、ハウジング26の構成部材としては、ステンレスが用いられることが多い。ハウジング26の少なくとも一部には、図3から図5に示すように、開口部(磁束を透過させる磁気的開口部)42が設けられ、開口部42には、磁気透過性遮蔽板46と、磁気透過性の冷却板48が密接または近接するように積層配置されている。磁気透過性遮蔽板46は、チャンバ12の内部領域と外部領域とを隔離するための部材であり、真空耐力、磁束透過性、耐熱性、低熱膨張性、低熱伝導性、および耐熱衝撃性を有する部材とすると良く、例えば石英などを挙げることができる。一方、冷却板48は、詳細を後述する冷却管50から伝達される冷媒の温度を伝導させることで磁気透過性遮蔽板46を冷却し、磁気透過性遮蔽板46の加熱に伴う磁極32(32a〜32c),34(34a〜34c)の過加熱を防止する役割を担う。冷却板48の構成部材としては、例えば窒化アルミやSiC、アルミナなどのセラミック部材を挙げることができる。   The housing 26 is a partition for keeping the inside of the chamber 12 in a vacuum. The housing 26 in the embodiment can be formed easily by forming the planar form into a polygon (hexagon in the example shown in FIG. 1). The component of the housing 26 is made of aluminum or stainless steel from the process side. Here, aluminum has a disadvantage in shape formation and a welding surface for shape formation, and has lower heat resistance than stainless steel. For this reason, stainless steel is often used as a constituent member of the housing 26. As shown in FIGS. 3 to 5, at least a part of the housing 26 is provided with an opening (magnetic opening through which magnetic flux is transmitted) 42, and the opening 42 has a magnetically permeable shielding plate 46, The magnetically permeable cooling plates 48 are stacked so as to be in close proximity or close to each other. The magnetically permeable shielding plate 46 is a member for separating the inner region and the outer region of the chamber 12 and has vacuum strength, magnetic flux permeability, heat resistance, low thermal expansion, low thermal conductivity, and thermal shock resistance. For example, quartz may be used. On the other hand, the cooling plate 48 cools the magnetically permeable shielding plate 46 by conducting the temperature of the refrigerant transmitted from the cooling pipe 50, which will be described in detail later, and the magnetic pole 32 (32 a associated with the heating of the magnetically permeable shielding plate 46. To 32c) and 34 (34a to 34c). Examples of the constituent member of the cooling plate 48 include ceramic members such as aluminum nitride, SiC, and alumina.

実施形態に係るハウジング26では、平面形状六角形の体を成す2辺に開口部42が設けられている。また、実施形態に係る例の場合、六角形の頂点部分に角片26を設け、この角片26の一部を切欠き、2つの開口部42を連通するスリット(磁束を透過させる磁気的スリット)44が設けられている。これにより、2辺に設けられた開口部42は、隣接する2辺に亙ってスリット44を介して連通された単一の開口部の体を成すこととなる。   In the housing 26 according to the embodiment, openings 42 are provided on two sides forming a planar hexagonal body. In the case of the example according to the embodiment, a square piece 26 is provided at the apex portion of the hexagon, a part of the square piece 26 is cut out, and a slit that communicates the two openings 42 (a magnetic slit that transmits magnetic flux). ) 44 is provided. Thereby, the opening part 42 provided in two sides will comprise the body of the single opening part connected via the slit 44 over two adjacent sides.

実施形態に係る磁気透過性遮蔽板46は、アルミニウム等により構成されたハウジング26の開口部42の外縁に設けられた段差部26bに押圧保持される。磁気透過性遮蔽板46の外側(磁気透過性遮蔽板46と磁極32,34との間)には、冷却板48が密接配置され、冷却板48の外縁部には、冷媒を挿通可能な冷却管50が密接配置される。このような配置構成とすることで、冷却管50に挿通された冷媒と冷却板48との間で熱交換が行われて冷却板48が冷却される。冷却板48は磁気透過性遮蔽板46に比べて熱伝導率が高いため、磁気透過性遮蔽板46と冷却板48との間での熱交換(熱伝達)が成される前に冷却板48全体が冷却されることとなる。その後、冷却された冷却板48と磁気透過性遮蔽板46との間での熱交換が成され、磁気透過性遮蔽板46が冷却される。これにより輻射熱の影響により磁極が過加熱されることを避けることができる。   The magnetically permeable shielding plate 46 according to the embodiment is pressed and held by a step portion 26b provided on the outer edge of the opening 42 of the housing 26 made of aluminum or the like. A cooling plate 48 is closely arranged outside the magnetically permeable shielding plate 46 (between the magnetically permeable shielding plate 46 and the magnetic poles 32 and 34), and cooling that allows a refrigerant to be inserted into the outer edge portion of the cooling plate 48. The tube 50 is closely placed. With such an arrangement configuration, heat exchange is performed between the refrigerant inserted into the cooling pipe 50 and the cooling plate 48 to cool the cooling plate 48. Since the cooling plate 48 has a higher thermal conductivity than the magnetically permeable shielding plate 46, the cooling plate 48 is subjected to heat exchange (heat transfer) between the magnetically permeable shielding plate 46 and the cooling plate 48. The whole is cooled. Thereafter, heat exchange is performed between the cooled cooling plate 48 and the magnetically permeable shielding plate 46, and the magnetically permeable shielding plate 46 is cooled. Thereby, it can avoid that a magnetic pole is overheated by the influence of radiant heat.

また、実施形態に係るハウジング26は、開口部42の近傍に、冷却水などの冷媒を挿通させるための挿通路26cが設けられている。このような構成とすることで、サセプタ16からの輻射熱や、残留する誘起電流による加熱等によりハウジング26が加熱されることを抑制することができる。   In addition, the housing 26 according to the embodiment is provided with an insertion passage 26 c for allowing a coolant such as cooling water to pass therethrough in the vicinity of the opening 42. By adopting such a configuration, it is possible to suppress the housing 26 from being heated by radiation heat from the susceptor 16 or heating by a residual induced current.

このような開口部42に対して磁気透過性遮蔽板46は、図5に示すように、Oリング52を介して段差部26bに押し付けられる。そして、冷却板48と冷却管50、および絶縁部材54を介して固定ブロック56により固定される。なお、角片26a間に設けられたスリット44は、Oリング52によって閉塞される。このような構成とすることで、チャンバ12の内部領域と外部領域とを隔離することができ、チャンバ12内を真空引きすることが可能となる。   The magnetically permeable shielding plate 46 is pressed against the stepped portion 26b through the O-ring 52 as shown in FIG. Then, it is fixed by a fixing block 56 via the cooling plate 48, the cooling pipe 50, and the insulating member 54. Note that the slits 44 provided between the square pieces 26 a are closed by the O-ring 52. With such a configuration, the inner region and the outer region of the chamber 12 can be isolated, and the inside of the chamber 12 can be evacuated.

励磁部28は、コア30(30a〜30c)と、誘導加熱コイル36(36a〜36c),38(38a〜38c)とより成る。コア30は、鍬型に形成された鉄芯である。コア30は、その両端に、詳細を後述する誘導加熱コイル36,38を巻回させることで構成される磁極32(32a〜32c),34(34a〜34c)を有すると共に、両磁極間を接続するヨーク35(35a〜35c)を有する。磁極32,34の端面は、円形サセプタ16の接線と平行、すなわちサセプタ16の半径方向延長線に対して直交する面を備えるように構成する。このような構成とすることで、磁極32,34の端面近くに誘導加熱コイル36,38を巻回させることができ、磁極先端以外からの磁束の漏洩を抑制することができる。よって、サセプタ16へ投入される磁束に無駄が無く、加熱効率を向上させることができる。コア30は、フェライトなどにより構成すると良い。このような構成によれば、粘土状の原料を形状形成した上で焼成することで所望形状の磁極32,34、およびヨーク35を得ることができる。このため、形状形成を自由に行うことが可能となる。また、本実施形態に係る誘導加熱装置10では、磁極32,34の断面形状(端面の形状)、および寸法を等しく構成している。このような構成とすることで、巻回数やコイル直径、巻回形状、および電流値等の条件の等しい誘導加熱コイルを介して、磁極32,34の端面から生ずる磁束量が等しくなる。   The exciting unit 28 includes a core 30 (30a to 30c) and induction heating coils 36 (36a to 36c) and 38 (38a to 38c). The core 30 is an iron core formed in a bowl shape. The core 30 has magnetic poles 32 (32a to 32c) and 34 (34a to 34c) formed by winding induction heating coils 36 and 38, which will be described in detail later, at both ends, and connects between the two magnetic poles. Yoke 35 (35a to 35c) is provided. The end faces of the magnetic poles 32 and 34 are configured to have a plane parallel to the tangent line of the circular susceptor 16, that is, a plane orthogonal to the radial extension line of the susceptor 16. By setting it as such a structure, the induction heating coils 36 and 38 can be wound near the end surface of the magnetic poles 32 and 34, and the leakage of the magnetic flux from other than the front-end | tip of a magnetic pole can be suppressed. Therefore, there is no waste in the magnetic flux input to the susceptor 16, and the heating efficiency can be improved. The core 30 is preferably composed of ferrite or the like. According to such a configuration, the magnetic poles 32 and 34 and the yoke 35 having desired shapes can be obtained by firing after forming a clay-like raw material. For this reason, shape formation can be performed freely. In addition, in the induction heating device 10 according to the present embodiment, the magnetic poles 32 and 34 have the same cross-sectional shape (end face shape) and dimensions. With such a configuration, the amount of magnetic flux generated from the end faces of the magnetic poles 32 and 34 is equalized through induction heating coils having the same conditions such as the number of turns, coil diameter, winding shape, and current value.

誘導加熱コイル36,38は、磁極32,34を構成するコア30の両端部に巻回される導電線である。誘導加熱コイル36,38に電流を投入することで、コイルの巻回方向と交差する方向に位置する磁極先端から磁束が生ずることとなる。本実施形態では、磁極端面(磁極先端)がサセプタ16におけるウエハ載置面と直交する方向を向いているため、磁極端面からは、サセプタ16のウエハ載置面に平行な方向に交流磁束が発生することとなる。実施形態に係る誘導加熱コイル36,38は、冷媒を挿通可能な管状部材(例えば、冷媒として水を使用する場合には銅管など)により誘導加熱コイル36,38が過加熱されることを防止する構造としているが、管状部材とリッツ線とを組み合わせることにより構成するようにしても良い。管状部材とリッツ線とを組み合わせて誘導加熱コイル36,38を構成する場合の具体的な構成は、磁極先端部や、磁極先端に近い部分には管状部材を用い、それよりも後端側にはリッツ線を用いるという構成である。また、実施形態に係る誘導加熱コイル36,38は詳細を後述するように、磁極32,34に生ずる磁束の極性が逆となるように電流の投入方向、あるいは巻回方向が定められる。このような構成とされる2つのコイルは対として、巻回数、および巻回断面の形状が等しくなるように形成される。このような構成とすることで、両者の発生磁束が等しくなり、開口部42の縁部に投入される磁束、および発生する誘起電流が等しくなり、誘起電流の相殺精度を向上させることができる。   The induction heating coils 36 and 38 are conductive wires wound around both ends of the core 30 constituting the magnetic poles 32 and 34. By supplying current to the induction heating coils 36 and 38, magnetic flux is generated from the tip of the magnetic pole located in the direction intersecting with the winding direction of the coil. In the present embodiment, the magnetic pole end face (magnetic pole tip) faces in the direction orthogonal to the wafer placement surface of the susceptor 16, so that an alternating magnetic flux is generated from the magnetic pole end face in a direction parallel to the wafer placement face of the susceptor 16. Will be. The induction heating coils 36 and 38 according to the embodiment prevent the induction heating coils 36 and 38 from being overheated by a tubular member through which the refrigerant can be inserted (for example, when using water as the refrigerant, a copper tube or the like). However, it may be configured by combining a tubular member and a litz wire. In the case of configuring the induction heating coils 36 and 38 by combining the tubular member and the litz wire, the tubular member is used at the magnetic pole front end portion or a portion close to the magnetic pole front end, and the rear end side thereof is used. Is a configuration using a litz wire. In addition, the induction heating coils 36 and 38 according to the embodiment have a current application direction or a winding direction determined so that the polarities of magnetic fluxes generated in the magnetic poles 32 and 34 are reversed, as will be described in detail later. The two coils having such a configuration are formed as a pair so that the number of turns and the shape of the winding cross section are equal. With such a configuration, the generated magnetic fluxes of both are equal, the magnetic flux applied to the edge of the opening 42 and the generated induced current are equalized, and the cancellation accuracy of the induced current can be improved.

サセプタ16のウエハ載置面に対して水平な方向に磁束を生じさせる加熱方法では、誘導加熱コイル36,38へ投入される電流の周波数は数十kHzである。管状部材に銅を使用した場合、肉厚を1mm程度とする銅管は誘導加熱されることとなり、サセプタ16の加熱効率が低下すると共に、電力損失が大きくなってしまう。一方、0.18φ程度の素線を使用しているリッツ線であれば、磁束は透過することが考えられるが、磁極32,34の先端部分には鎖交磁束が多いため、誘導加熱されてしまう。冷却作用を持たないリッツ線は、誘導加熱によって発熱した場合には温度上昇し、使用温度限界を超えてしまうことがある。このため、磁極先端側に冷却作用を有する管状部材、後端側にリッツ線を配置することで、電力損失を抑制し、かつコイルの過加熱も防止することが可能となる。   In the heating method in which the magnetic flux is generated in the horizontal direction with respect to the wafer mounting surface of the susceptor 16, the frequency of the current applied to the induction heating coils 36 and 38 is several tens of kHz. When copper is used for the tubular member, the copper tube having a wall thickness of about 1 mm is induction-heated, which lowers the heating efficiency of the susceptor 16 and increases power loss. On the other hand, if it is a litz wire using a strand of about 0.18φ, it is considered that the magnetic flux is transmitted. End up. A litz wire that does not have a cooling action may rise in temperature when it generates heat by induction heating, and may exceed the operating temperature limit. For this reason, by disposing a tubular member having a cooling action on the magnetic pole front end side and a litz wire on the rear end side, it becomes possible to suppress power loss and prevent overheating of the coil.

励磁部28は、上記のような構成のコア30と誘導加熱コイル36,38を、サセプタ16の積層方向に沿って複数(図2に示す例では3つ)配置することで構成されている。
また、上記のような励磁部28において、実施形態のコア30は、図3に示すように、サセプタ16の中心点Oから各磁極端面の中心に向けて伸ばした線の成す角θが所定の角度(ハウジング26の成す角に依存)となるように構成されている。磁極32,34間に角度付けをした上で、一方の磁極32と他方の磁極34の極性を逆にすることで、発生磁束が磁極32,34間を行き来することとなる。これにより、単一の磁極32(34)によって生ずる磁束よりもサセプタ16の中心側を通る磁束を生じさせることが可能となる。
The exciting unit 28 is configured by arranging a plurality (three in the example shown in FIG. 2) of the core 30 and the induction heating coils 36 and 38 configured as described above along the stacking direction of the susceptor 16.
Further, in the exciting unit 28 as described above, the core 30 of the embodiment has a predetermined angle θ formed by a line extending from the center point O of the susceptor 16 toward the center of each magnetic pole end face as shown in FIG. It is configured to have an angle (depending on the angle formed by the housing 26). By making the angle between the magnetic poles 32 and 34 and reversing the polarities of one magnetic pole 32 and the other magnetic pole 34, the generated magnetic flux travels between the magnetic poles 32 and 34. Thereby, it is possible to generate a magnetic flux passing through the center side of the susceptor 16 rather than a magnetic flux generated by the single magnetic pole 32 (34).

上述したように、本実施形態に係る誘導加熱装置10では、スリット44を設けられた角片26aにより、2つの開口部42を単一の開口部として構成し、各開口部42には磁気透過性遮蔽板46と冷却板48を配置し、冷却板48の外側に、極性の異なる磁極32,34を設ける構成としている。   As described above, in the induction heating device 10 according to the present embodiment, the square piece 26a provided with the slit 44 forms the two openings 42 as a single opening, and each opening 42 is magnetically transmissive. The shield plate 46 and the cooling plate 48 are disposed, and the magnetic poles 32 and 34 having different polarities are provided outside the cooling plate 48.

実施形態に係る誘導加熱装置10ではハウジング26を金属部材により構成している。このため、各磁極32,34の近傍に位置する開口部42の縁部には、磁極32,34から生ずる磁束に起因した誘起電流が発生する(図4参照)。開口部42の縁部に誘起電流が生ずると、この誘起電流により熱(誘導加熱)が生ずるため、ハウジングが加熱されてしまう虞がある。この誘起電流は、磁束の透過方向に応じた方向の渦電流を生じさせ、開口部42の縁部形状に沿って流れることとなる。このため、本実施形態に係る誘導加熱装置10のように、実質的に1つの開口部42に、極性の異なる2つの磁極32,34を配置することで、開口部42の縁部には、それぞれ逆向きの誘起電流が流れることとなる。そして、開口部42の縁部に、流れ方向(極性)の異なる2つの誘起電流が生じた場合、誘起電流は互いに相殺し合うこととなり、発熱を抑制することができる。   In the induction heating apparatus 10 according to the embodiment, the housing 26 is made of a metal member. Therefore, an induced current caused by the magnetic flux generated from the magnetic poles 32 and 34 is generated at the edge of the opening 42 located in the vicinity of the magnetic poles 32 and 34 (see FIG. 4). When an induced current is generated at the edge of the opening 42, heat (inductive heating) is generated by the induced current, and the housing may be heated. This induced current generates an eddy current in a direction corresponding to the magnetic flux transmission direction, and flows along the edge shape of the opening 42. For this reason, like the induction heating device 10 according to the present embodiment, by arranging the two magnetic poles 32 and 34 having different polarities in one opening 42 substantially, at the edge of the opening 42, An induced current in the opposite direction flows in each case. When two induced currents having different flow directions (polarities) are generated at the edge of the opening 42, the induced currents cancel each other, and heat generation can be suppressed.

このことは、磁極32,34に対する投入電流(アンペア)と誘導加熱コイル36,38の巻回数(ターン)の積に応じて生ずる誘導起電力が、次のように示されることからも明らかである。磁極32のアンペアターン(100A×7ターン)+磁極34のアンペアターン(−100A×7ターン)=0アンペアターン。   This is also clear from the fact that the induced electromotive force generated according to the product of the input current (ampere) to the magnetic poles 32 and 34 and the number of turns (turns) of the induction heating coils 36 and 38 is shown as follows. . The ampere turn of the magnetic pole 32 (100 A × 7 turns) + the ampere turn of the magnetic pole 34 (−100 A × 7 turns) = 0 ampere turn.

また、このような作用をより精度良く行うためには、磁極32と磁極34との断面形状、および大きさを等しくすると良い。このような構成とすることで、磁極32,34に巻回する誘導加熱コイル36,38の長さが等しくなり、磁極32,34から生ずる磁束量が等しくなるからである。   In order to perform such an operation with higher accuracy, the cross-sectional shape and size of the magnetic pole 32 and the magnetic pole 34 are preferably equal. This is because the lengths of the induction heating coils 36 and 38 wound around the magnetic poles 32 and 34 are equalized, and the amount of magnetic flux generated from the magnetic poles 32 and 34 is equalized.

電源部40には、コア30単位で、各コア30の磁極32,34に巻回された誘導加熱コイル36,38に対応したインバータ(不図示)と、図示しない交流電源、および図示しない電力制御部等が設けられており、各コア30に設けられた誘導加熱コイル36,38単位で、供給する電流や電圧、および周波数等を調整することができるように構成されている。実施形態に係る誘導加熱装置10では、単一のコア30に巻回された誘導加熱コイル36,38(例えば磁極32aに巻回される誘導加熱コイル36aと磁極34aに巻回される誘導加熱コイル38a)は回路上並列あるいは直列な関係とし、巻回方向を同一とした上で、電流の投入方向を逆にする。これにより、各コア30における2つの磁極(例えば磁極32aと磁極34a)の極性を逆向きとすることができる。ここでインバータとして共振型のものを採用する場合には、周波数の切り替えを簡易に行うことができるように、各制御周波数に合わせた共振コンデンサを並列接続し、これを電力制御部からの信号に応じて切り替えることができるように構成することが望ましい。   The power supply unit 40 includes an inverter (not shown) corresponding to the induction heating coils 36 and 38 wound around the magnetic poles 32 and 34 of each core 30, an AC power supply (not shown), and a power control (not shown). The current and voltage to be supplied, the frequency, the frequency, and the like can be adjusted in units of induction heating coils 36 and 38 provided in each core 30. In the induction heating device 10 according to the embodiment, the induction heating coils 36 and 38 wound around the single core 30 (for example, the induction heating coil 36a wound around the magnetic pole 32a and the induction heating coil wound around the magnetic pole 34a). 38a) is a parallel or serial relationship on the circuit, and the winding direction is the same, and the current input direction is reversed. Thereby, the polarities of the two magnetic poles (for example, the magnetic pole 32a and the magnetic pole 34a) in each core 30 can be reversed. Here, when a resonant type inverter is adopted, a resonant capacitor matched to each control frequency is connected in parallel so that the frequency can be easily switched, and this is used as a signal from the power control unit. It is desirable to configure so that it can be switched accordingly.

実施形態に係る電力制御部は、図示しないゾーンコントロール手段を有する。ゾーンコントロール手段は、隣接配置されたコア30に巻回された誘導加熱コイル36,38間に生ずる相互誘導の影響を回避しつつ、各誘導加熱コイル36,38に対する投入電力の制御を行う役割を担う。   The power control unit according to the embodiment includes zone control means (not shown). The zone control means plays a role of controlling the input power to each induction heating coil 36, 38 while avoiding the influence of mutual induction occurring between the induction heating coils 36, 38 wound around the adjacent core 30. Bear.

上記のように近接して積層配置されるコア30に巻回された誘導加熱コイル36,38は、各々が個別の誘導加熱コイルとして稼動されるため、上下に隣接する誘導加熱コイル間(例えば誘導加熱コイル38aと誘導加熱コイル38b)において相互誘導が生じ、個別の電力制御に悪影響を与える事がある。このためゾーンコントロール手段は、検出された電流の周波数や波形(電流波形)に基づいて、隣接配置された誘導加熱コイルに投入する電流の周波数を一致させ、かつ電流波形の位相を同期(位相差を0または位相差を0に近似させる事)、あるいは所定の位相差を保つように制御することで、隣接配置した誘導加熱コイル間における相互誘導の影響を回避した電力制御(ゾーンコントロール制御)を可能としている。   Since each of the induction heating coils 36 and 38 wound around the core 30 stacked in close proximity as described above is operated as an individual induction heating coil, the induction heating coils adjacent to each other vertically (for example, induction Mutual induction occurs in the heating coil 38a and the induction heating coil 38b), which may adversely affect individual power control. For this reason, the zone control means matches the frequency of the current applied to the adjacent induction heating coil based on the detected current frequency and waveform (current waveform) and synchronizes the phase of the current waveform (phase difference). Power control (zone control control) that avoids the influence of mutual induction between adjacently arranged induction heating coils by controlling so that the phase difference is approximated to 0 or a phase difference of 0) It is possible.

このような制御は、各誘導加熱コイル36,38に投入されている電流値や電流の周波数、および電圧値等を検出し、これをゾーンコントロール手段に入力する。ゾーンコントロール手段では、例えばコア30aに巻回された誘導加熱コイル36a,38aとコア30bに巻回された誘導加熱コイル36b,38b間の電流波形の位相をそれぞれ検出し、これを同期、あるいは所定の位相差を保つように制御する。このような制御は、電力制御部に対して各誘導加熱コイルに投入する電流の周波数を瞬時的に変化させる信号を出力することで成される。   Such control detects a current value, a current frequency, a voltage value, and the like supplied to the induction heating coils 36 and 38, and inputs them to the zone control means. In the zone control means, for example, the phase of the current waveform between the induction heating coils 36a, 38a wound around the core 30a and the induction heating coils 36b, 38b wound around the core 30b is detected, respectively, and this is synchronized or predetermined. Control to maintain the phase difference of. Such control is performed by outputting a signal that instantaneously changes the frequency of the current supplied to each induction heating coil to the power control unit.

本実施形態に係る誘導加熱装置10のような構成の場合、電力制御に関しては、電力制御部に設けられた図示しない記憶手段(メモリ)に記憶された制御マップ(垂直温度分布制御マップ)に基づいて、熱処理開始からの経過時間単位に変化させる投入電力を出力するための信号を出力すれば良い。なお、制御マップは、熱処理開始から熱処理終了に至るまでの積層配置されたサセプタ間の温度変化を補正し、任意の温度分布(例えば均一な温度分布)を得るために各誘導加熱コイルに与える電力値を、熱処理開始からの経過時間と共に記録したものであれば良い。また、サセプタ16の温度を計測する計測手段(不図示)を備えている場合には、各ゾーンにおけるサセプタ温度をフィードバックして温度制御(電力制御)を行うようにすると良い。   In the case of a configuration such as the induction heating apparatus 10 according to the present embodiment, the power control is based on a control map (vertical temperature distribution control map) stored in a storage unit (memory) (not shown) provided in the power control unit. Thus, it suffices to output a signal for outputting input power to be changed in units of elapsed time from the start of heat treatment. The control map corrects the temperature change between the stacked susceptors from the start of heat treatment to the end of heat treatment, and gives power to each induction heating coil to obtain an arbitrary temperature distribution (for example, uniform temperature distribution). Any value may be recorded as long as the elapsed time from the start of the heat treatment is recorded. Further, in the case where measurement means (not shown) for measuring the temperature of the susceptor 16 is provided, it is preferable to perform temperature control (power control) by feeding back the susceptor temperature in each zone.

このような構成の電源部40では、電力制御部からの信号に基づいて、各誘導加熱コイル36,38に投入する電流の周波数を瞬時的に調整し、電流波形の位相制御を実施すると共に、各誘導加熱コイル36,38単位の電力制御を実施することで、ボート14内における垂直方向の温度分布を制御することができる。   In the power supply unit 40 having such a configuration, the frequency of the current input to each induction heating coil 36 and 38 is instantaneously adjusted based on the signal from the power control unit, and the phase control of the current waveform is performed. By performing power control for each induction heating coil 36, 38, the temperature distribution in the vertical direction in the boat 14 can be controlled.

また、このような構成の誘導加熱装置10によれば、磁束がウエハ60に対して水平に働くため、ウエハ60の表面に金属膜等の導電性部材が形成されていた場合であっても、ウエハ60の温度分布が乱れる虞が無い。   Moreover, according to the induction heating apparatus 10 having such a configuration, since the magnetic flux works horizontally with respect to the wafer 60, even when a conductive member such as a metal film is formed on the surface of the wafer 60, There is no possibility that the temperature distribution of the wafer 60 is disturbed.

このような構成の誘導加熱装置によれば、チャンバ12の外部に配置した磁極32,34の加熱防止を実現しつつ、被誘導加熱部材であるサセプタ16を効率良く加熱することが可能となる。   According to the induction heating device having such a configuration, it is possible to efficiently heat the susceptor 16 that is an induction heating member while preventing the magnetic poles 32 and 34 disposed outside the chamber 12 from being heated.

次に、本発明の誘導加熱装置に係る第2の実施形態について、図面を参照して詳細に説明する。本実施形態に係る誘導加熱装置の殆どの構成は、上述した第1の実施形態に係る誘導加熱装置10と同様である。よって、本実施形態においては、上記第1の実施形態に係る誘導加熱装置10と構成を異ならせる要部のみを図示して説明するものとし、その構成を同一とする箇所には、図面に同一符号を付して詳細な説明は省略する。なお、第1の実施形態に係る誘導加熱装置10との相違点としては、ハウジング26に設けた開口部142の形態である。具体的には、第1の実施形態に係る誘導加熱装置では、2つの開口部42を角辺26aに設けたスリット44により連通し、単一の開口部とした上で、各開口部42のそれぞれに磁気透過性遮蔽板46と、冷却板48を個別に配置する構成としていた。これに対し本実施形態に係る誘導加熱装置では図6、図7に示すように、開口部142に角片を設けず、単一の磁気透過性遮蔽板46と、単一の冷却板48で開口部42を遮蔽する構成としている。   Next, a second embodiment according to the induction heating device of the present invention will be described in detail with reference to the drawings. Most configurations of the induction heating apparatus according to the present embodiment are the same as those of the induction heating apparatus 10 according to the first embodiment described above. Therefore, in the present embodiment, only the main parts that are different in configuration from the induction heating apparatus 10 according to the first embodiment are illustrated and described, and the same configuration is the same in the drawings. A detailed description is omitted with reference numerals. The difference from the induction heating apparatus 10 according to the first embodiment is the form of the opening 142 provided in the housing 26. Specifically, in the induction heating apparatus according to the first embodiment, the two openings 42 are communicated by the slits 44 provided on the corners 26a to form a single opening. The magnetically permeable shielding plate 46 and the cooling plate 48 are individually arranged for each. On the other hand, in the induction heating apparatus according to the present embodiment, as shown in FIGS. 6 and 7, no square piece is provided in the opening 142, and a single magnetically permeable shielding plate 46 and a single cooling plate 48 are used. The opening 42 is shielded.

このような構成とした場合であっても、磁極32,34の極性を異ならせるようにすることで、ハウジング26における開口部142の縁部に生ずる誘起電流を相殺することが可能となる。なお、その他の構成、作用、効果については、上述した第1の実施形態に係る誘導加熱装置10と同様である。   Even in such a configuration, by making the polarities of the magnetic poles 32 and 34 different, the induced current generated at the edge of the opening 142 in the housing 26 can be offset. In addition, about another structure, an effect | action, and an effect, it is the same as that of the induction heating apparatus 10 which concerns on 1st Embodiment mentioned above.

10………誘導加熱装置、12………チャンバ、14………ボート、16………サセプタ、18………回転テーブル、20………テーブル、22………回転軸、24………ベース、26………ハウジング、28………励磁部、30(30a〜30c)………コア、32(32a〜32c)………磁極、34(34a〜34c)………磁極、35(35a〜35c)………ヨーク、36(36a〜36c)………誘導加熱コイル、38(38a〜38c)………誘導加熱コイル、40………電源部、42………開口部、46………磁気透過性遮蔽板、48………冷却板、50………冷却管、60………ウエハ。 DESCRIPTION OF SYMBOLS 10 ......... Induction heating apparatus, 12 ......... Chamber, 14 ......... Boat, 16 ......... Susceptor, 18 ......... Rotary table, 20 ......... Table, 22 ......... Rotating shaft, 24 ......... Base, 26 ......... Housing, 28 ......... Excitation part, 30 (30a-30c) ......... Core, 32 (32a-32c) ......... Magnetic pole, 34 (34a-34c) ......... Magnetic pole, 35 ( 35a-35c) ......... Yoke, 36 (36a-36c) ......... Induction heating coil, 38 (38a-38c) ......... Induction heating coil, 40 ......... Power supply, 42 ......... Opening, 46 ..... Magnetically permeable shielding plate, 48 .... Cooling plate, 50 .... Cooling tube, 60 ..... Wafer.

Claims (9)

プロセス室を構成する金属材料を主要部材としたチャンバと、前記チャンバの外周に配置され、前記チャンバに形成された磁束を透過させる磁気的開口部を介して前記チャンバ内に配置された被誘導加熱部材を加熱する誘導加熱コイルとを有する誘導加熱装置であって、
1つの前記磁気的開口部に対して、前記磁気的開口部の縁部に投入される磁束の総和がゼロまたはゼロに近づくこととなるように、前記誘導加熱コイルを複数設けたことを特徴とする誘導加熱装置。
A chamber mainly composed of a metal material constituting a process chamber, and induction heating disposed in the chamber through a magnetic opening disposed on the outer periphery of the chamber and transmitting a magnetic flux formed in the chamber. An induction heating device having an induction heating coil for heating a member,
A plurality of the induction heating coils are provided with respect to one magnetic opening so that the sum of magnetic fluxes applied to the edge of the magnetic opening becomes zero or close to zero. Induction heating device.
前記誘導加熱コイルは、前記被誘導加熱部材の端面に向う交流磁束を発生する配置形態としたことを特徴とする請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein the induction heating coil is arranged to generate an alternating magnetic flux toward an end surface of the induction heating member. 前記磁気的開口部を複数設け、
隣接する前記磁気的開口部間には、磁束を透過させる磁気的スリットを形成したことを特徴とする請求項1または2に記載の誘導加熱装置。
Providing a plurality of the magnetic openings;
The induction heating apparatus according to claim 1, wherein a magnetic slit that transmits a magnetic flux is formed between the adjacent magnetic openings.
前記誘導加熱コイルを巻回する磁極を備えたことを特徴とする請求項1乃至3のいずれか1項に記載の誘導加熱装置。   The induction heating apparatus according to any one of claims 1 to 3, further comprising a magnetic pole around which the induction heating coil is wound. 前記誘導加熱コイルが巻回された少なくとも2つの磁極を連結するヨークを備えたことを特徴とする請求項4に記載の誘導加熱装置。   The induction heating apparatus according to claim 4, further comprising a yoke that connects at least two magnetic poles around which the induction heating coil is wound. 前記磁気的開口部の外縁に、冷媒を挿通させる挿通路を設けたことを特徴とする請求項1乃至5のいずれか1項に記載の誘導加熱装置。   The induction heating apparatus according to any one of claims 1 to 5, wherein an insertion passage through which a refrigerant is inserted is provided at an outer edge of the magnetic opening. 複数の前記誘導加熱コイルのうち極性の異なる2つのコイルを対として、巻回数、および巻回断面の形状を等しくしたことを特徴とする請求項1乃至6のいずれか1項に記載の誘導加熱装置。   The induction heating according to any one of claims 1 to 6, wherein two coils having different polarities among the plurality of induction heating coils are paired and the number of windings and the shape of the winding cross section are made equal. apparatus. 前記磁極の断面形状、および寸法を等しくしたことを特徴とする請求項7に記載の誘導加熱装置。   The induction heating apparatus according to claim 7, wherein the magnetic poles have the same cross-sectional shape and dimensions. 前記誘導加熱コイルに流す電流値を等しくすることのできる電源部を備えたことを特徴とする請求項7または8に記載の誘導加熱装置。

The induction heating apparatus according to claim 7 or 8, further comprising a power supply unit capable of equalizing a current value flowing through the induction heating coil.

JP2011080554A 2011-03-31 2011-03-31 Induction heating device Active JP4918168B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011080554A JP4918168B1 (en) 2011-03-31 2011-03-31 Induction heating device
PCT/JP2011/074172 WO2012132078A1 (en) 2011-03-31 2011-10-20 Induction heating device
CN2011800042013A CN102812778B (en) 2011-03-31 2011-10-20 Induction heating device
KR1020127006263A KR101184133B1 (en) 2011-03-31 2011-10-20 Induction heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080554A JP4918168B1 (en) 2011-03-31 2011-03-31 Induction heating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012014561A Division JP5005120B1 (en) 2012-01-26 2012-01-26 Induction heating method

Publications (2)

Publication Number Publication Date
JP4918168B1 JP4918168B1 (en) 2012-04-18
JP2012216660A true JP2012216660A (en) 2012-11-08

Family

ID=46243779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080554A Active JP4918168B1 (en) 2011-03-31 2011-03-31 Induction heating device

Country Status (4)

Country Link
JP (1) JP4918168B1 (en)
KR (1) KR101184133B1 (en)
CN (1) CN102812778B (en)
WO (1) WO2012132078A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995799B2 (en) * 2015-07-14 2018-06-12 The Boeing Company System and method for magnetic characterization of induction heating wires
CN110315619B (en) * 2019-08-07 2021-03-23 中国林业科学研究院木材工业研究所 Method and device for forming bent member of wooden product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1215444B (en) * 1987-04-24 1990-02-14 L P E S P A REFINEMENTS FOR INDUCTORS AND SUSCEPTERS THAT CAN BE USED IN EPITAXIAL REACTORS.
JPH03241733A (en) * 1990-02-20 1991-10-28 Fujitsu Ltd Vapor growth device
US6274857B1 (en) * 2000-02-10 2001-08-14 Inductoheat, Inc. Induction heat treatment of complex-shaped workpieces
JP4402860B2 (en) * 2001-03-28 2010-01-20 忠弘 大見 Plasma processing equipment
EP1271620B1 (en) 2001-06-21 2013-05-29 Hyoung June Kim Method and apparatus for heat treatment of semiconductor films
JP5213594B2 (en) * 2008-09-04 2013-06-19 東京エレクトロン株式会社 Heat treatment equipment
JP5297306B2 (en) * 2009-08-31 2013-09-25 三井造船株式会社 Induction heating method and induction heating apparatus

Also Published As

Publication number Publication date
CN102812778B (en) 2013-12-11
JP4918168B1 (en) 2012-04-18
WO2012132078A1 (en) 2012-10-04
CN102812778A (en) 2012-12-05
KR101184133B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5063755B2 (en) Induction heating apparatus and induction heating method
US4798926A (en) Method of heating semiconductor and susceptor used therefor
KR101192501B1 (en) Apparatus for heat-treating semiconductor substrate
JP5297306B2 (en) Induction heating method and induction heating apparatus
WO2012086268A1 (en) Induction heating apparatus and induction heating method
JP4918168B1 (en) Induction heating device
JP4980475B1 (en) Induction heating device
JP5005120B1 (en) Induction heating method
JP5616271B2 (en) Induction heating device and magnetic pole
JP5628731B2 (en) Induction heating device
JP2012209471A (en) Thermal treatment equipment
JP2010257891A (en) Induction heating cooker
JP5443228B2 (en) Semiconductor heat treatment equipment
JP5271810B2 (en) Electromagnetic induction heating device
JP5084069B2 (en) Induction heating apparatus and induction heating method
JP5461256B2 (en) Semiconductor substrate heat treatment apparatus and temperature measurement method using semiconductor substrate heat treatment apparatus
JP5596998B2 (en) Semiconductor substrate heat treatment apparatus and temperature estimation method using semiconductor substrate heat treatment apparatus
JP2011054318A (en) Induction heating method and induction heating device
JP5297307B2 (en) Induction heating method and induction heating apparatus
JP5453072B2 (en) Semiconductor substrate heat treatment equipment
JP2012089775A (en) Susceptor and semiconductor substrate heating apparatus

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4918168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250