JP2012215478A - Method of detection and detector - Google Patents

Method of detection and detector Download PDF

Info

Publication number
JP2012215478A
JP2012215478A JP2011081303A JP2011081303A JP2012215478A JP 2012215478 A JP2012215478 A JP 2012215478A JP 2011081303 A JP2011081303 A JP 2011081303A JP 2011081303 A JP2011081303 A JP 2011081303A JP 2012215478 A JP2012215478 A JP 2012215478A
Authority
JP
Japan
Prior art keywords
light
detected
sensor
amount
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081303A
Other languages
Japanese (ja)
Other versions
JP5669312B2 (en
Inventor
Masashi Hakamata
正志 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011081303A priority Critical patent/JP5669312B2/en
Priority to PCT/JP2012/002073 priority patent/WO2012132386A1/en
Publication of JP2012215478A publication Critical patent/JP2012215478A/en
Application granted granted Critical
Publication of JP5669312B2 publication Critical patent/JP5669312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Abstract

PROBLEM TO BE SOLVED: To reduce errors due to fluctuation of incident angles of excitation light against a metal film and also improve detection sensitivity in a method of detection and a detector for optically measuring the quantity of a substance to be detected in a sample solution by utilizing a surface plasmon enhanced effect.SOLUTION: A sensor chip for measuring the quantity of a substance to be detected in a sample solution has a sensor part formed by laminating a metal film 16 on one surface of a dielectric plate 17, the sensor part being divided into five planar regions E1 to E5 of which inclination angles with respect to a predetermined reference plane are different from each other. A method for measuring the quantity of the substance to be detected in the sample solution includes: using the sensor chip and bonding a fluorescent label bonding substance of a quantity according to the quantity of the substance to be detected contained in the sample solution on the sensor part by bringing the sample solution into contact with the sensor part of the sensor chip; sequentially irradiating each of the planar regions of the sensor chip with excitation light; detecting the quantity of light generated in the sensor part according to irradiation of the excitation light for each planar region of the sensor chip; and measuring the quantity of the substance to be detected based on the detection result of a planar region in which a measured amount of light is the largest among the planar regions E1 to E5.

Description

本発明は、試料液中の被検出物質の量を光学的に測定する検出方法および検出装置に関するものである。   The present invention relates to a detection method and a detection apparatus for optically measuring the amount of a substance to be detected in a sample solution.

従来、バイオ測定等において、高感度かつ容易な測定法として蛍光検出法が広く用いられている。この蛍光検出法は、特定波長の光により励起されて蛍光を発する検出対象物質を含むと考えられる試料に上記特定波長の励起光を照射し、そのとき蛍光を検出することによって検出対象物質の存在を確認する方法である。また、検出対象物質が蛍光体ではない場合、蛍光色素で標識されて検出対象物質と特異的に結合する物質を試料に接触させ、その後上記と同様にして蛍光を検出することにより、この結合すなわち検出対象物質の存在を確認することも広くなされている。   Conventionally, a fluorescence detection method has been widely used as a highly sensitive and easy measurement method in biomeasurement and the like. In this fluorescence detection method, the presence of the detection target substance is detected by irradiating the sample, which is considered to contain a detection target substance that emits fluorescence when excited with light of a specific wavelength, with the excitation light of the specific wavelength. It is a method to confirm. In addition, when the detection target substance is not a fluorescent substance, this binding, that is, by detecting the fluorescence in the same manner as described above by contacting the sample with a substance that is labeled with a fluorescent dye and specifically binds to the detection target substance. The existence of a detection target substance is also widely confirmed.

また、このような蛍光検出法において、感度を向上させるため、表面プラズモン増強効果を利用する方法が特許文献1などに提案されている。これは、表面プラズモン共鳴を生じさせるため、透明な支持体上の所定領域に金属膜を設けたセンサ部に対し、支持体と金属膜との界面に対して支持体の金属層形成面と反対の面側から、全反射角以上の所定の角度で励起光を入射させ、この励起光の照射により金属層に表面プラズモンを生じさせ、その電場増強作用によって、蛍光を増強させることによりS/Nを向上させるものである。   Further, in order to improve sensitivity in such a fluorescence detection method, a method using the surface plasmon enhancement effect is proposed in Patent Document 1 and the like. This is because the surface plasmon resonance is generated, so that the sensor part provided with the metal film in a predetermined region on the transparent support is opposite to the metal layer forming surface of the support with respect to the interface between the support and the metal film. S / N is obtained by making excitation light incident at a predetermined angle equal to or greater than the total reflection angle from the surface side of the substrate, generating surface plasmons on the metal layer by irradiation of the excitation light, and enhancing fluorescence by the electric field enhancement action. Is to improve.

また、上記に示した蛍光法のように蛍光標識からの蛍光を検出するのではなく、その蛍光が金属層に新たに表面プラズモンを誘起することによって生じる放射光(SPCE: Surface Plasmon-Coupled Emission)を検出する方法も提案されている。   In addition, instead of detecting the fluorescence from the fluorescent label as in the fluorescence method shown above, the emitted light (SPCE: Surface Plasmon-Coupled Emission) generated by the fluorescence newly inducing a surface plasmon in the metal layer A method for detecting the above has also been proposed.

表面プラズモン増強度は金属膜に対する励起光の強度や入射角等に依存し、中でも金属膜に対する励起光の入射角に対しては急峻な特性を示すため、入射角が僅かに変動しただけで表面プラズモン増強度が大きく変動して、その結果、検出される蛍光の強度が変動することになる。すなわち、センサチップの設置精度や、センサチップのセンサ部の面精度や、励起光の入射角精度にバラツキがあると、測定結果が安定せずに測定精度が低下するという問題がある。   The surface plasmon enhancement depends on the intensity and incident angle of the excitation light on the metal film. In particular, the surface plasmon enhancement shows a steep characteristic with respect to the incident angle of the excitation light on the metal film. The plasmon enhancement varies greatly, and as a result, the detected fluorescence intensity varies. That is, if there are variations in the installation accuracy of the sensor chip, the surface accuracy of the sensor portion of the sensor chip, and the incident angle accuracy of the excitation light, there is a problem that the measurement result is not stable and the measurement accuracy is lowered.

このような問題を解消するため、特許文献2では、励起光について複数の角度成分を持つ収束光を用いることにより、収束角度内での角度誤差を吸収することが可能な装置が提案されている。通常、光源から射出される光は、光束の位置(例えば、光源からの発散角の角度に由来する光束中心からの距離)によって光の強度が変化する(つまり、強度分布がある)ため、表面プラズモン共鳴が発生する角度が変化することで、表面プラズモンによる電場増強作用の度合いが変化してしまうという問題があるため、特許文献2では、さらに絞り等の光学系を組み合わせて、光束中心の光強度が高い領域のみを使用するようにして、入射角毎の励起光の強度のバラツキを抑える工夫もなされている。   In order to solve such a problem, Patent Document 2 proposes an apparatus capable of absorbing an angle error within a convergence angle by using convergent light having a plurality of angle components for excitation light. . Normally, the light emitted from the light source has a light intensity that changes depending on the position of the light beam (for example, the distance from the light beam center derived from the angle of divergence from the light source) (that is, there is an intensity distribution). Since there is a problem that the degree of the electric field enhancement effect by the surface plasmon changes due to the change in the angle at which the plasmon resonance is generated, in Patent Document 2, an optical system such as a diaphragm is further combined with the light at the center of the light beam. A device has also been devised to suppress variation in the intensity of the excitation light for each incident angle by using only a region having a high intensity.

特開平10−307141号公報JP-A-10-307141 特開2009−204483号公報JP 2009-204483 A

しかしながら、特許文献2に記載の手段では、金属膜に対する励起光の入射角の変動に起因する誤差については対処できるものの、光源から出射された光のうち光束中心付近の僅かな光のみしか励起光として用いないため、今度は励起光の強度が全体的に下がってしまい、検出感度が低下するという問題があった。   However, the means described in Patent Document 2 can deal with errors caused by fluctuations in the incident angle of the excitation light with respect to the metal film, but only a small amount of light near the center of the light beam is emitted from the light source. As a result, the intensity of the excitation light is lowered as a whole and the detection sensitivity is lowered.

本発明は上記問題に鑑みてなされたものであり、表面プラズモン増強効果を利用して、試料液中の被検出物質の量を光学的に測定する検出方法および検出装置において、金属膜に対する励起光の入射角の変動に起因する誤差が少なく、また検出感度も高い検出方法および検出装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in a detection method and a detection apparatus for optically measuring the amount of a substance to be detected in a sample liquid using a surface plasmon enhancement effect, excitation light for a metal film It is an object of the present invention to provide a detection method and a detection apparatus that have a small error due to fluctuations in the incident angle and a high detection sensitivity.

本発明の検出方法は、誘電体プレートの一面上に金属膜が積層されて形成されたセンサ部を備え、センサ部が所定の基準平面に対する傾斜角度の異なる複数の平面領域に分割されてなるセンサチップを用いて、センサチップのセンサ部上に、被検出物質を含む試料液を接触させることにより、試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質をセンサ部上に結合させ、センサチップの各平面領域毎に順次励起光を照射し、センサチップの各平面領域毎に励起光の照射に応じてセンサ部で発生した光の量を検出し、複数の平面領域の中で最も光の量が多く検出された平面領域の検出結果に基づいて、被検出物質の量を測定することを特徴とするものである。   The detection method of the present invention includes a sensor unit formed by laminating a metal film on one surface of a dielectric plate, and the sensor unit is divided into a plurality of plane regions having different inclination angles with respect to a predetermined reference plane. Using the chip, the sample liquid containing the substance to be detected is brought into contact with the sensor part of the sensor chip, whereby an amount of the fluorescent label binding substance corresponding to the quantity of the substance to be detected contained in the sample liquid is placed on the sensor part. The sensor chip is irradiated with excitation light sequentially for each plane area of the sensor chip, and the amount of light generated in the sensor unit in response to the excitation light irradiation is detected for each plane area of the sensor chip. The amount of the substance to be detected is measured based on the detection result of the planar region in which the most amount of light is detected.

本発明の検出方法においては、センサチップが、試料液を流通させる微小流路を備え、微小流路内に平面領域の構成が同じセンサ部が複数設けられたものである場合に、複数のセンサ部のうちのいずれか一つのセンサ部を基準センサ部として、基準センサ部の各平面領域毎に前記光の量を検出し、基準センサ部の複数の平面領域の中で最も光の量が多く検出された平面領域を決定し、複数のセンサ部のうちの残りのセンサ部については、基準センサ部において最も光の量が多く検出された平面領域と対応する平面領域についてのみ、前記光の量の検出を行うようにすることが好ましい。   In the detection method of the present invention, when the sensor chip includes a microchannel through which the sample liquid is circulated, and a plurality of sensor units having the same planar area configuration are provided in the microchannel, a plurality of sensors are provided. The amount of light is detected in each plane area of the reference sensor unit, and the amount of light is the largest among the plurality of plane areas of the reference sensor unit. The detected plane area is determined, and for the remaining sensor sections of the plurality of sensor sections, the amount of light is only in the plane area corresponding to the plane area where the most amount of light is detected in the reference sensor section. It is preferable to perform detection.

本発明の検出装置は、上記検出方法に用いられる検出装置であって、センサチップを収容する収容部と、収容部に収容されたセンサチップの各平面領域毎に選択的に励起光を照射する励起光照射光学系と、励起光の照射に応じてセンサ部で発生した光の量を検出する光検出手段と、光検出手段により検出された光の量に基づいて、被検出物質の量を測定する測定手段とを備えてなることを特徴とするものである。   The detection device of the present invention is a detection device used in the above-described detection method, and selectively irradiates excitation light for each planar area of a housing portion that houses a sensor chip and a sensor chip that is housed in the housing portion. Based on the excitation light irradiation optical system, the light detection means for detecting the amount of light generated in the sensor unit in response to the excitation light irradiation, and the amount of the detected substance based on the amount of light detected by the light detection means And measuring means for measuring.

本発明の検出方法および検出装置によれば、誘電体プレートの一面上に金属膜が積層されて形成されたセンサ部を備え、センサ部が所定の基準平面に対する傾斜角度の異なる複数の平面領域に分割されてなるセンサチップを用いて、センサチップのセンサ部上に、被検出物質を含む試料液を接触させることにより、試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質をセンサ部上に結合させ、センサチップの各平面領域毎に順次励起光を照射し、センサチップの各平面領域毎に励起光の照射に応じてセンサ部で発生した光の量を検出し、複数の平面領域の中で最も光の量が多く検出された平面領域の検出結果に基づいて、被検出物質の量を測定するようにしている。   According to the detection method and the detection apparatus of the present invention, the sensor unit includes a sensor unit formed by laminating a metal film on one surface of the dielectric plate, and the sensor unit is provided in a plurality of plane regions having different inclination angles with respect to a predetermined reference plane. Using the divided sensor chip, the sample liquid containing the substance to be detected is brought into contact with the sensor part of the sensor chip, whereby an amount of fluorescent label binding corresponding to the quantity of the substance to be detected contained in the sample liquid A substance is bonded onto the sensor unit, and excitation light is sequentially irradiated to each planar region of the sensor chip, and the amount of light generated in the sensor unit is detected for each planar region of the sensor chip in response to irradiation of the excitation light. The amount of the substance to be detected is measured based on the detection result of the planar area in which the largest amount of light is detected among the plurality of planar areas.

誘電体プレートの一面上に金属膜が積層されて形成されたセンサ部を備え、センサ部が所定の基準平面に対する傾斜角度の異なる複数の平面領域に分割されてなるセンサチップを用いれば、平行光を励起光として用いた場合でも、複数の平面領域の傾斜角度の設定範囲内での角度調整を不要とすることができる。   If a sensor chip that includes a sensor unit formed by laminating a metal film on one surface of a dielectric plate and is divided into a plurality of plane regions having different inclination angles with respect to a predetermined reference plane is used, parallel light Even when is used as excitation light, angle adjustment within the setting range of the inclination angle of the plurality of planar regions can be made unnecessary.

また、センサチップの各平面領域毎に順次励起光を照射するようにしているため、各平面領域毎に光源から出射された励起光を全て照射することができるため、検出時の励起光強度を高くすることができる。   In addition, since the excitation light is irradiated sequentially for each planar area of the sensor chip, all the excitation light emitted from the light source can be irradiated for each planar area, so that the excitation light intensity at the time of detection can be increased. Can be high.

従って、金属膜に対する励起光の入射角の変動に起因する誤差を少なくすることができるとともに、検出感度も高くすることができる。   Therefore, it is possible to reduce errors due to fluctuations in the incident angle of the excitation light with respect to the metal film and to increase the detection sensitivity.

また、センサチップが、試料液を流通させる微小流路を備え、微小流路内に平面領域の構成が同じセンサ部が複数設けられたものである場合に、複数のセンサ部のうちのいずれか一つのセンサ部を基準センサ部として、基準センサ部の各平面領域毎に前記光の量を検出し、基準センサ部の複数の平面領域の中で最も光の量が多く検出された平面領域を決定し、複数のセンサ部のうちの残りのセンサ部については、基準センサ部において最も光の量が多く検出された平面領域と対応する平面領域についてのみ、前記光の量の検出を行うようにすれば、全体の検出回数を少なくすることができるため、効率的な測定を行うことが可能となる。   In addition, when the sensor chip includes a micro flow channel through which the sample liquid is circulated and a plurality of sensor units having the same planar area configuration are provided in the micro flow channel, any one of the plurality of sensor units is provided. Using one sensor unit as a reference sensor unit, the amount of light is detected for each plane region of the reference sensor unit, and the plane region in which the most amount of light is detected among the plurality of plane regions of the reference sensor unit For the remaining sensor units of the plurality of sensor units, the amount of light is detected only in the plane region corresponding to the plane region where the most amount of light is detected in the reference sensor unit. By doing so, the total number of detections can be reduced, so that efficient measurement can be performed.

本発明の一実施の形態の蛍光検出装置の模式図Schematic diagram of a fluorescence detection apparatus according to an embodiment of the present invention 上記蛍光検出装置のブロック図Block diagram of the fluorescence detection device 上記蛍光検出装置に用いられるセンサチップの一例を示す模式図The schematic diagram which shows an example of the sensor chip used for the said fluorescence detection apparatus 図2の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図FIG. 2 is a schematic diagram showing how a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG. 図2の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図FIG. 2 is a schematic diagram showing how the sample in the nozzle tip is injected and stirred into the reagent cell by the sample processing means of FIG. 図2の光照射手段および蛍光検出手段の一例を示す模式図Schematic diagram showing an example of the light irradiation means and fluorescence detection means of FIG. 上記センサチップのセンサ部の構成を示す上面図Top view showing the configuration of the sensor portion of the sensor chip 図7中のVIII矢指方向から見たセンサ部の各平面領域毎の断面図Sectional drawing for each planar area of the sensor section viewed from the direction of arrow VIII in FIG. 上記センサチップのセンサ部のその他の構成を示す上面図The top view which shows the other structure of the sensor part of the said sensor chip 図9中のX−X線断面図XX sectional view in FIG.

以下、図面を参照して本発明の一実施の形態について詳細に説明する。図1は本発明の一実施の形態の蛍光検出装置の模式図、図2は上記蛍光検出装置のブロック図、図3は上記蛍光検出装置に用いられるセンサチップの一例を示す模式図、図4は図2の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図、図5は図2の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図、図6は図2の光照射手段および蛍光検出手段の一例を示す模式図、図7は上記センサチップのセンサ部の構成を示す上面図、図8は図7中のVIII矢指方向から見たセンサ部の各平面領域毎の断面図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 1 is a schematic diagram of a fluorescence detection device according to an embodiment of the present invention, FIG. 2 is a block diagram of the fluorescence detection device, FIG. 3 is a schematic diagram illustrating an example of a sensor chip used in the fluorescence detection device, and FIG. FIG. 5 is a schematic diagram showing how a sample is extracted from a sample container using a nozzle tip by the sample processing means in FIG. 2, and FIG. 5 is a diagram in which the sample in the nozzle chip is injected and stirred into the reagent cell by the sample processing means in FIG. 6 is a schematic diagram showing an example of the light irradiation means and the fluorescence detection means of FIG. 2, FIG. 7 is a top view showing the configuration of the sensor portion of the sensor chip, and FIG. 8 is a diagram in FIG. It is sectional drawing for every plane area | region of the sensor part seen from VIII arrow direction.

この蛍光検出装置1は、表面プラズモン共鳴を利用した免疫解析装置であって、蛍光検出装置1により分析を行う際、図1に示す検体が収容された検体容器CBと、検体および試薬を抽出する際に用いられるノズルチップNCと、試薬セルおよびマイクロ流路が形成されたセンサチップ10が装填される。なお、検体容器CB、ノズルチップNCおよびセンサチップ10はいずれも一度使用したら破棄される使い捨てのものである。そして、蛍光検出装置1は検体をセンサチップ10のマイクロ流路15に流しながら検体内の被検物質について定量的もしくは定性的な分析を行う。   This fluorescence detection device 1 is an immunological analysis device using surface plasmon resonance, and when performing analysis by the fluorescence detection device 1, a sample container CB containing the sample shown in FIG. 1 and a sample and a reagent are extracted. The nozzle chip NC used at the time, and the sensor chip 10 formed with the reagent cell and the micro flow path are loaded. The sample container CB, the nozzle tip NC, and the sensor chip 10 are all disposable items that are discarded once they are used. Then, the fluorescence detection apparatus 1 performs quantitative or qualitative analysis on the test substance in the sample while flowing the sample through the micro flow path 15 of the sensor chip 10.

この蛍光検出装置1は、検体処理手段20、光照射手段30、蛍光検出手段40、データ分析手段50等を備えている。検体処理手段20は、ノズルチップNCを用いて検体を収容した検体容器CB内から検体を抽出し、抽出した検体を試薬と混合撹拌した検体溶液を生成するものである。   The fluorescence detection apparatus 1 includes a sample processing unit 20, a light irradiation unit 30, a fluorescence detection unit 40, a data analysis unit 50, and the like. The sample processing means 20 extracts a sample from the sample container CB containing the sample using the nozzle chip NC, and generates a sample solution obtained by mixing and stirring the extracted sample with a reagent.

ここで、図3はセンサチップ10の一例を示す模式図である。センサチップ10は、光透過性の樹脂等の誘電体プレートからなる本体11に注入口12、排出口13、試料セル14a、14b、流路15が形成された構造を有している。注入口12は流路15を介して排出口13に連通しており、排出口13から負圧をかけることにより検体は注入口12から注入されて流路15内に流れ排出口13から排出される。試料セル14a、14bは検体容器CB内の検体に混合する蛍光試薬(第2抗体)を収容する容器である。なお、試料セル14a、14bの開口部はシール部材により封止されており、検体と蛍光試薬とを混合する際にシール部材が穿孔されるようになっている。   Here, FIG. 3 is a schematic diagram showing an example of the sensor chip 10. The sensor chip 10 has a structure in which an inlet 12, an outlet 13, sample cells 14 a and 14 b, and a flow path 15 are formed in a main body 11 made of a dielectric plate such as a light transmissive resin. The injection port 12 communicates with the discharge port 13 via the flow channel 15, and by applying a negative pressure from the discharge port 13, the specimen is injected from the injection port 12, flows into the flow channel 15, and is discharged from the discharge port 13. The The sample cells 14a and 14b are containers for storing a fluorescent reagent (second antibody) to be mixed with the specimen in the specimen container CB. Note that the openings of the sample cells 14a and 14b are sealed with a sealing member, and the sealing member is pierced when the specimen and the fluorescent reagent are mixed.

また、流路15内には、検体内の被検物質を検出するための測定用のセンサ部としてのテスト領域TRが形成されており、このテスト領域TRの下流側には、テスト領域TRにおける測定結果を補正するための情報を取得するための補正用のセンサ部としてのコントロール領域CRが形成されている。   Further, a test region TR as a measurement sensor unit for detecting a test substance in the specimen is formed in the flow path 15, and in the test region TR, downstream of the test region TR. A control region CR is formed as a correction sensor unit for acquiring information for correcting the measurement result.

テスト領域TR上には第1抗体が固定されており、いわゆるサンドイッチ方式により標識化された抗体を捕捉する。また、コントロール領域CRには参照抗体が固定されており、コントロール領域CR上に検体溶液が流れることにより参照抗体が蛍光物質を捕捉する。なお、コントロール領域CRは2つ形成されており、上流側から順に、非特異吸着を検出するためのいわゆるネガ型のコントロール領域CRと、検体差による反応性の違いを検出するためのいわゆるポジ型のコントロール領域CRとが形成されている。   A first antibody is immobilized on the test region TR, and the labeled antibody is captured by a so-called sandwich method. In addition, a reference antibody is fixed to the control region CR, and the reference antibody captures the fluorescent substance when the sample solution flows on the control region CR. Two control regions CR are formed, and in order from the upstream side, a so-called negative control region CR for detecting non-specific adsorption and a so-called positive type for detecting a difference in reactivity due to a difference in specimen. The control region CR is formed.

テスト領域TRおよび2つのコントロール領域CRは、図7、8に示すように、流路15の進行方向において5つの平面領域E1〜E5に分割されている。5つの平面領域E1〜E5は水平方向(基準平面)に対する傾斜角度が全て異なり、平面領域E1は水平方向に対して流路15の進行方向と直交する方向において−2°傾いており、平面領域E2は水平方向に対して流路15の進行方向と直交する方向において−1°傾いており、平面領域E3は水平方向に対して平行であり、平面領域E4は水平方向に対して流路15の進行方向と直交する方向において1°傾いており、平面領域E5は水平方向に対して流路15の進行方向と直交する方向において2°傾いている。なお、テスト領域TRおよび2つのコントロール領域CRの各々の平面領域E1〜E5の構成は同一である。   As shown in FIGS. 7 and 8, the test region TR and the two control regions CR are divided into five planar regions E1 to E5 in the traveling direction of the flow path 15. The five plane regions E1 to E5 have different inclination angles with respect to the horizontal direction (reference plane), and the plane region E1 is inclined by −2 ° with respect to the horizontal direction in the direction orthogonal to the traveling direction of the flow path 15. E2 is inclined by -1 ° in the direction orthogonal to the traveling direction of the flow path 15 with respect to the horizontal direction, the planar area E3 is parallel to the horizontal direction, and the planar area E4 is parallel to the horizontal direction. The plane region E5 is inclined 2 ° in the direction orthogonal to the traveling direction of the flow path 15 with respect to the horizontal direction. The configuration of the planar areas E1 to E5 of the test area TR and the two control areas CR is the same.

分析の開始が指示された際、検体処理手段20は図4に示すようにノズルチップNCを用いて検体容器CBから検体を吸引する。その後、検体処理手段20は図5に示すように試料セル14aのシール部材を穿孔し試料セル14a内の試薬に検体を混合・撹拌させた後、検体溶液を再びノズルチップNCを用いて吸引する。この動作を試料セル14bについても同様に行う。すると、検体内に存在する被検物質(抗原)Aに試薬内の特異的に結合する第2の結合物質である第2抗体B2が表面に修飾された検体溶液が生成される。そして、検体処理手段20は、検体溶液を収容したノズルチップNCを注入口12上に設置し、排出口13からの負圧によりノズルチップNC内の検体溶液が流路15内に流入する。   When the start of analysis is instructed, the sample processing means 20 aspirates the sample from the sample container CB using the nozzle tip NC as shown in FIG. Thereafter, the sample processing means 20 punctures the seal member of the sample cell 14a as shown in FIG. 5, mixes and stirs the sample with the reagent in the sample cell 14a, and then sucks the sample solution again using the nozzle tip NC. . This operation is similarly performed for the sample cell 14b. Then, a sample solution is generated in which the second antibody B2, which is a second binding substance specifically binding in the reagent, to the test substance (antigen) A present in the sample is modified on the surface. Then, the sample processing means 20 installs the nozzle chip NC containing the sample solution on the injection port 12, and the sample solution in the nozzle chip NC flows into the flow path 15 by the negative pressure from the discharge port 13.

なお、検体処理手段20が検体と試薬とを混合した検体溶液を流路15内に供給する場合について例示しているが、流路15内に予め試薬を充填させておき、検体処理手段20が注入口12から検体のみを流入させるようにしてもよい。   In addition, although the case where the sample processing unit 20 supplies the sample solution in which the sample and the reagent are mixed into the flow path 15 is illustrated, the reagent is filled in the flow path 15 in advance, and the sample processing means 20 Only the specimen may be allowed to flow from the inlet 12.

図6は光照射手段30および蛍光検出手段40の一例を示す模式図である。なお、図6においてはテスト領域TRに着目して説明するが、コントロール領域CRについても同様に励起光Lが照射されるものである。図2の光照射手段30は、センサチップ10の裏面側から平行光とした励起光Lを全反射条件となる入射角度でプリズムを介してテスト領域TRの平面領域E1〜E5のいずれかに選択的に照射するものである。蛍光検出手段40は、たとえばCCD、CMOS等からなり、テスト領域TRもしくはコントロール領域CRにおいて発生した蛍光Lfの光量を検出するものである。   FIG. 6 is a schematic diagram showing an example of the light irradiation means 30 and the fluorescence detection means 40. In FIG. 6, the description will be given focusing on the test region TR, but the excitation light L is similarly applied to the control region CR. The light irradiating means 30 in FIG. 2 selects the excitation light L, which is parallel light from the back side of the sensor chip 10, at one of the plane regions E1 to E5 of the test region TR through the prism at an incident angle that is a total reflection condition. Is intended to be irradiated. The fluorescence detection means 40 is composed of, for example, a CCD, a CMOS, or the like, and detects the amount of fluorescence Lf generated in the test area TR or the control area CR.

そして、光照射手段30により励起光Lが誘電体プレート17と金属膜16との界面に対して全反射角以上の特定の入射角度で入射されることにより、金属膜16上の試料S中にエバネッセント波Ewが滲み出し、このエバネッセント波Ewによって金属膜16中に表面プラズモンが励起される。この表面プラズモンにより金属膜16表面に電界分布が生じ、電場増強領域が形成される。すると、金属膜16上に固着された第1抗体B1と結合した蛍光標識物質Fはエバネッセント波Ewにより励起され増強された蛍光Lfを発生する。   Then, the excitation light L is incident on the interface between the dielectric plate 17 and the metal film 16 at a specific incident angle equal to or greater than the total reflection angle by the light irradiation means 30, thereby entering the sample S on the metal film 16. The evanescent wave Ew oozes out, and surface plasmons are excited in the metal film 16 by the evanescent wave Ew. This surface plasmon causes an electric field distribution on the surface of the metal film 16 to form an electric field enhancement region. Then, the fluorescent labeling substance F bound to the first antibody B1 fixed on the metal film 16 is excited by the evanescent wave Ew to generate enhanced fluorescence Lf.

なお、プラズモン増強を利用した検出においては、金属消光が発生して感度が低下するおそれがあるため、例えばシリカ層やポリスチレン層等からなる消光防止層を金属層16上に設けるようにすれば、このような問題を解消することができる。また、蛍光標識物質Fについて、例えば、蛍光色素をポリスチレン粒子やシリカ粒子に内包したものや、金コロイド表面をポリスチレンでコーティングしたもの等といった、消光防止性物質としても、金属消光の問題を解消することができる。   In detection using plasmon enhancement, metal quenching may occur and the sensitivity may be lowered. For example, if a quenching prevention layer made of a silica layer, a polystyrene layer, or the like is provided on the metal layer 16, Such a problem can be solved. In addition, as for the fluorescent labeling substance F, for example, as a quenching preventive substance such as a fluorescent dye encapsulated in polystyrene particles or silica particles, or a gold colloid surface coated with polystyrene, the problem of metal quenching is solved. be able to.

図2のデータ分析手段50は、蛍光検出手段40により検出された蛍光Lfの光量に基づいた信号FSに基づいて、被検物質の分析を行うものである。   The data analysis means 50 in FIG. 2 analyzes the test substance based on the signal FS based on the light quantity of the fluorescence Lf detected by the fluorescence detection means 40.

ここで、本実施の形態における分析時の処理について詳細に説明する。   Here, the analysis processing in this embodiment will be described in detail.

本実施の形態では、まずポジ型のコントロール領域CRにおける平面領域E1〜E5の各々について、図7に示すように、流路15の進行方向に沿って励起光Lの照射位置を移動させて、上記のように励起光Lを順次照射し、その際に発生した光の量を検出する。そして平面領域E1〜E5の中で、最も検出光量が高い平面領域を特定する。そして、最も検出光量が高い平面領域の検出結果に基づいて、コントロール領域CRにおける測定結果を取得する。   In the present embodiment, first, for each of the planar regions E1 to E5 in the positive control region CR, as shown in FIG. 7, the irradiation position of the excitation light L is moved along the traveling direction of the flow path 15, The excitation light L is sequentially irradiated as described above, and the amount of light generated at that time is detected. And the plane area with the highest detected light quantity is specified among the plane areas E1 to E5. Then, the measurement result in the control region CR is acquired based on the detection result of the planar region having the highest detected light amount.

また、テスト領域TRおよびネガ型のコントロール領域CRについては、ポジ型のコントロール領域CRでの検出において最も検出光量が高い平面領域と同じ平面領域についてのみ励起光Lを照射し、その際に発生した光の量を検出する。例えば、ポジ型のコントロール領域CRにおいて平面領域E2の検出光量が最も高かった場合には、テスト領域TRおよびネガ型のコントロール領域CRについては平面領域E2のみ励起光Lを照射し、その際に発生した光の量を検出する。   In addition, the test region TR and the negative control region CR were irradiated with the excitation light L only in the same planar region as the planar region having the highest detected light amount in the detection in the positive control region CR, and occurred at that time. Detect the amount of light. For example, when the detected light amount in the plane area E2 is the highest in the positive type control area CR, the test area TR and the negative type control area CR are irradiated with the excitation light L only in the plane area E2 and generated at that time. Detect the amount of light.

上記のようにして得られた分析結果は、モニタやプリンタ等からなる情報出力手段4から出力される。   The analysis result obtained as described above is output from the information output means 4 comprising a monitor, a printer or the like.

このような態様とすることにより、平行光を励起光Lとして用いた場合でも、平面領域E1〜E5の傾斜角度の範囲内での角度誤差を吸収することができる。また、平面領域E1〜E5毎に順次励起光Lを照射するようにしているため、各平面領域E1〜E5毎に光源から出射された励起光Lを全て照射することができるため、検出時の励起光Lの強度を高くすることができる。従って、金属膜16に対する励起光の入射角の変動に起因する誤差を少なくすることができるとともに、検出感度も高くすることができる。また、励起光Lは平行光とすることができるので、光学系については上記特許文献2に記載されているような特別な光学系を必要とせずに簡素な構成とすることができるので、コストを低く抑えることができる。   By setting it as such an aspect, even when parallel light is used as the excitation light L, the angle error within the inclination angle range of the planar regions E1 to E5 can be absorbed. Further, since the excitation light L is sequentially irradiated for each of the planar regions E1 to E5, all the excitation light L emitted from the light source can be irradiated for each of the planar regions E1 to E5. The intensity of the excitation light L can be increased. Therefore, it is possible to reduce errors due to fluctuations in the incident angle of the excitation light with respect to the metal film 16 and to increase the detection sensitivity. In addition, since the excitation light L can be parallel light, the optical system can have a simple configuration without requiring a special optical system as described in Patent Document 2 above, so that the cost can be reduced. Can be kept low.

以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施の形態に限定されるものではない。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the said embodiment.

例えば、テスト領域TRおよび2つのコントロール領域CRは、図9、10に示すように、流路15の進行方向と直交する方向において5つの平面領域E1〜E5に分割してもよい。ここで、5つの平面領域E1〜E5は水平方向(基準平面)に対する傾斜角度が全て異なり、平面領域E1は水平方向に対して流路15の進行方向と直交する方向において−2°傾いており、平面領域E2は水平方向に対して流路15の進行方向と直交する方向において−1°傾いており、平面領域E3は水平方向に対して平行であり、平面領域E4は水平方向に対して流路15の進行方向と直交する方向において1°傾いており、平面領域E5は水平方向に対して流路15の進行方向と直交する方向において2°傾いている。なお、テスト領域TRおよび2つのコントロール領域CRの各々の平面領域E1〜E5の構成は同一である。この場合、平面領域E1〜E5の各々について、図10に示すように、流路15の進行方向と直交する方向に沿って励起光Lの照射位置を移動させて励起光Lを順次照射し、その際に発生した光の量を検出する。   For example, the test region TR and the two control regions CR may be divided into five planar regions E1 to E5 in a direction orthogonal to the traveling direction of the flow path 15, as shown in FIGS. Here, the five plane regions E1 to E5 have different inclination angles with respect to the horizontal direction (reference plane), and the plane region E1 is inclined by −2 ° in the direction perpendicular to the traveling direction of the flow path 15 with respect to the horizontal direction. The plane region E2 is inclined by -1 ° in the direction orthogonal to the traveling direction of the flow path 15 with respect to the horizontal direction, the plane region E3 is parallel to the horizontal direction, and the plane region E4 is parallel to the horizontal direction. The plane region E5 is inclined by 2 ° in the direction orthogonal to the traveling direction of the flow path 15 with respect to the horizontal direction. The configuration of the planar areas E1 to E5 of the test area TR and the two control areas CR is the same. In this case, for each of the planar regions E1 to E5, as shown in FIG. 10, the excitation light L is sequentially irradiated by moving the irradiation position of the excitation light L along the direction orthogonal to the traveling direction of the flow path 15, The amount of light generated at that time is detected.

また、センサ部の構成について、各平面領域に分割する数は5つに限らず、それ以外の複数の数としてもよい。また、分割の態様についても上記のように一次元状に分割するのではなく、二次元状に分割してもよい。また、各平面領域の傾斜角度についても上記に限定されるものではない。   Moreover, about the structure of a sensor part, the number divided | segmented into each plane area | region is not restricted to five, It is good also as a several other number. Further, the division mode may be divided in a two-dimensional manner instead of a one-dimensional manner as described above. Further, the inclination angle of each planar region is not limited to the above.

さらに、上記以外にも、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行なってもよいのは勿論である。   Furthermore, it goes without saying that various improvements and modifications other than those described above may be made without departing from the scope of the present invention.

1 蛍光検出装置
10 センサチップ
20 検体処理手段
30 光照射手段
40 蛍光検出手段
50 データ分析手段
CR コントロール領域
FS 蛍光信号
L 励起光
LF 蛍光
TR テスト領域
DESCRIPTION OF SYMBOLS 1 Fluorescence detection apparatus 10 Sensor chip 20 Sample processing means 30 Light irradiation means 40 Fluorescence detection means 50 Data analysis means CR Control area FS Fluorescence signal L Excitation light LF Fluorescence TR Test area

Claims (3)

誘電体プレートの一面上に金属膜が積層されて形成されたセンサ部を備え、該センサ部が所定の基準平面に対する傾斜角度の異なる複数の平面領域に分割されてなるセンサチップを用いて、
該センサチップの前記センサ部上に、被検出物質を含む試料液を接触させることにより、該試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質を前記センサ部上に結合させ、
前記センサチップの各平面領域毎に順次励起光を照射し、
前記センサチップの各平面領域毎に前記励起光の照射に応じて前記センサ部で発生した光の量を検出し、
複数の平面領域の中で最も光の量が多く検出された平面領域の検出結果に基づいて、前記被検出物質の量を測定することを特徴とする検出方法。
Using a sensor chip that includes a sensor unit formed by laminating a metal film on one surface of a dielectric plate, and the sensor unit is divided into a plurality of plane regions having different inclination angles with respect to a predetermined reference plane,
By contacting a sample liquid containing a substance to be detected on the sensor part of the sensor chip, an amount of the fluorescent label binding substance corresponding to the quantity of the substance to be detected contained in the sample liquid is placed on the sensor part. Combined
Irradiate excitation light sequentially for each planar area of the sensor chip,
Detecting the amount of light generated in the sensor unit according to the irradiation of the excitation light for each planar region of the sensor chip;
A detection method, comprising: measuring an amount of the substance to be detected based on a detection result of a planar area in which the largest amount of light is detected among a plurality of planar areas.
前記センサチップが、前記試料液を流通させる微小流路を備え、該微小流路内に平面領域の構成が同じセンサ部が複数設けられたものである場合に、
前記複数のセンサ部のうちのいずれか一つのセンサ部を基準センサ部として、該基準センサ部の各平面領域毎に前記光の量を検出し、
前記基準センサ部の複数の平面領域の中で最も光の量が多く検出された平面領域を決定し、
前記複数のセンサ部のうちの残りのセンサ部については、前記基準センサ部において最も光の量が多く検出された平面領域と対応する平面領域についてのみ、前記光の量の検出を行うことを特徴とする請求項1記載の検出方法。
When the sensor chip includes a microchannel through which the sample liquid is circulated, and a plurality of sensor units having the same planar region configuration are provided in the microchannel,
Using one of the plurality of sensor units as a reference sensor unit, the amount of the light is detected for each planar region of the reference sensor unit,
Determining the plane area in which the most amount of light is detected among the plurality of plane areas of the reference sensor unit;
For the remaining sensor units of the plurality of sensor units, the amount of light is detected only in the plane region corresponding to the plane region in which the most amount of light is detected in the reference sensor unit. The detection method according to claim 1.
請求項1または2記載の検出方法に用いられる検出装置であって、
前記センサチップを収容する収容部と、
該収容部に収容された前記センサチップの各平面領域毎に選択的に励起光を照射する励起光照射光学系と、
前記励起光の照射に応じて前記センサ部で発生した光の量を検出する光検出手段と、
該光検出手段により検出された光の量に基づいて、前記被検出物質の量を測定する測定手段とを備えてなることを特徴とする検出装置。
A detection device used in the detection method according to claim 1 or 2,
An accommodating portion for accommodating the sensor chip;
An excitation light irradiation optical system that selectively emits excitation light for each planar region of the sensor chip housed in the housing portion;
Light detecting means for detecting the amount of light generated in the sensor unit in response to irradiation of the excitation light;
A detection apparatus comprising: a measurement unit that measures the amount of the substance to be detected based on the amount of light detected by the light detection unit.
JP2011081303A 2011-03-31 2011-03-31 Detection method and detection apparatus Expired - Fee Related JP5669312B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011081303A JP5669312B2 (en) 2011-03-31 2011-03-31 Detection method and detection apparatus
PCT/JP2012/002073 WO2012132386A1 (en) 2011-03-31 2012-03-26 Detection method and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081303A JP5669312B2 (en) 2011-03-31 2011-03-31 Detection method and detection apparatus

Publications (2)

Publication Number Publication Date
JP2012215478A true JP2012215478A (en) 2012-11-08
JP5669312B2 JP5669312B2 (en) 2015-02-12

Family

ID=46930162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081303A Expired - Fee Related JP5669312B2 (en) 2011-03-31 2011-03-31 Detection method and detection apparatus

Country Status (2)

Country Link
JP (1) JP5669312B2 (en)
WO (1) WO2012132386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292332A (en) * 1996-04-25 1997-11-11 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2003121349A (en) * 2001-08-07 2003-04-23 Mitsubishi Chemicals Corp Surface plasmon resonance sensor chip as well as method and apparatus for analysing sample by using the same
JP2010203900A (en) * 2009-03-03 2010-09-16 Konica Minolta Holdings Inc Surface plasmon intensifying fluorescence sensor and chip structure used for the same
WO2010134470A1 (en) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 Surface plasmon field-enhanced fluorescence measurement device and plasmon excitation sensor used in surface plasmon field-enhanced fluorescence measurement device
JP2012052949A (en) * 2010-09-02 2012-03-15 Konica Minolta Holdings Inc Surface plasmon exciting intensified fluorescence measuring device and sensor structure used for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204484A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Sensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292332A (en) * 1996-04-25 1997-11-11 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2003121349A (en) * 2001-08-07 2003-04-23 Mitsubishi Chemicals Corp Surface plasmon resonance sensor chip as well as method and apparatus for analysing sample by using the same
JP2010203900A (en) * 2009-03-03 2010-09-16 Konica Minolta Holdings Inc Surface plasmon intensifying fluorescence sensor and chip structure used for the same
WO2010134470A1 (en) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 Surface plasmon field-enhanced fluorescence measurement device and plasmon excitation sensor used in surface plasmon field-enhanced fluorescence measurement device
JP2012052949A (en) * 2010-09-02 2012-03-15 Konica Minolta Holdings Inc Surface plasmon exciting intensified fluorescence measuring device and sensor structure used for the same

Also Published As

Publication number Publication date
JP5669312B2 (en) 2015-02-12
WO2012132386A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5666277B2 (en) Analysis chip
RU2519505C2 (en) Sensor device for target substance identification
JP5095552B2 (en) Detection method and detection system
US20090218496A1 (en) Sensing apparatus and a method of detecting substances
KR101884091B1 (en) Apparatus and method for trapezoid micro-channel system to improve performance of solution immersed silicon biosensor
JP6026262B2 (en) Measuring apparatus and measuring method
JP5797427B2 (en) Detection method and detection apparatus
JP5487150B2 (en) Optical measuring method and optical measuring apparatus
US20090221089A1 (en) Probe chip, sensing apparatus using the same and method of detecting substances using the same
JP5786308B2 (en) Surface plasmon resonance measuring device
JP2012202742A (en) Detection method and detection device
JP2006105914A (en) Measuring method and measuring device
JP2004361256A (en) Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus
JP5669312B2 (en) Detection method and detection apparatus
JP2004219401A (en) Surface plasmon sensor, apparatus for measuring surface plasmon resonance and detection chip
JP2013113690A (en) Analysis element, analyzer and analysis method
JP6768621B2 (en) Fluorescence detection device using surface plasmon resonance and its operation method
JP2012202911A (en) Analysis chip
JP2013076673A (en) Measurement apparatus
JP2011089917A (en) Testpiece housing and immunochromatographic device for concentration measurement
JP5681077B2 (en) Measuring method and measuring device
JP6481371B2 (en) Detection method and detection kit
JP6586884B2 (en) Chip and surface plasmon enhanced fluorescence measurement method
JP5772238B2 (en) Microchip for surface plasmon resonance measurement and surface plasmon resonance measurement apparatus
JP5851015B2 (en) Analysis chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5669312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees