JP2012214612A - Silicone heat dissipation member - Google Patents

Silicone heat dissipation member Download PDF

Info

Publication number
JP2012214612A
JP2012214612A JP2011080627A JP2011080627A JP2012214612A JP 2012214612 A JP2012214612 A JP 2012214612A JP 2011080627 A JP2011080627 A JP 2011080627A JP 2011080627 A JP2011080627 A JP 2011080627A JP 2012214612 A JP2012214612 A JP 2012214612A
Authority
JP
Japan
Prior art keywords
alumina
average particle
weight
silicone
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011080627A
Other languages
Japanese (ja)
Inventor
Suguru Mototani
卓 元谷
Huy Sam
フイ サム
Atsuhito Kadoma
篤人 角間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2011080627A priority Critical patent/JP2012214612A/en
Publication of JP2012214612A publication Critical patent/JP2012214612A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicone heat dissipation member maintaining thermal conductivity characteristics for a long time under high-humidity/temperature, having low elasticity, an excellent tracking property to substrate and adhesion.SOLUTION: The silicone heat dissipation member is obtained by hardening a silicone resin composition comprising (a) an organopolysiloxane having at least two C-C double bonds reacting with SiH group in a molecule, (b) an organohydrogenpolysiloxane having at least two SiH groups in a molecule, (c) an addition reaction catalyst, (d1) alumina with an average particle size of 1-10 μm, (d2) alumina with an average particle size of 10-25 μm, and (d3) alumina with an average particle size of 30-70 μm.

Description

本発明は高温高湿下においても長期的に熱伝導特性を維持できるとともに、弾性が低く基材に対する追従性、密着性に優れたシリコーン放熱部材に関する。   The present invention relates to a silicone heat dissipating member that can maintain heat conduction characteristics for a long time even under high temperature and high humidity, and has low elasticity and excellent followability and adhesion to a substrate.

電子部材の放熱材料として、各種無機フィラーを混合したシリコーン樹脂を硬化、成型したものが用いられている。放熱特性を向上させるため、これまでに無機フィラーの種類や粒子径、それらを組み合わせる検討が行われているが、未だ放熱特性は十分ではない。また、放熱部材の熱伝導率を向上させようとすると無機フィラーの配合割合は高くなるが、硬化物が硬くなるため基材への追従性、密着性が低下してしまい、かえって放熱特性が低下してしまう問題があった。   As a heat dissipation material for an electronic member, a material obtained by curing and molding a silicone resin mixed with various inorganic fillers is used. In order to improve the heat dissipation characteristics, studies have been made so far on the types and particle diameters of inorganic fillers and combinations thereof, but the heat dissipation characteristics are still insufficient. In addition, when trying to improve the thermal conductivity of the heat radiating member, the blending ratio of the inorganic filler increases, but the cured product becomes hard, so the followability to the base material and the adhesiveness are lowered, and the heat radiating characteristics are lowered. There was a problem.

特許文献1には、異なる平均粒子径を有する2種以上の無機フィラーを用いたシリコーン放熱部材が開示されているが、放熱特性に改善の余地があった。
特開2002-3831号公報
Patent Document 1 discloses a silicone heat dissipating member using two or more inorganic fillers having different average particle diameters, but there is room for improvement in heat dissipating characteristics.
JP 2002-3831 A

本発明の課題は、高温高湿下においても長期的に熱伝導特性を維持できるとともに、弾性が低く基材に対する追従性、密着性に優れたシリコーン放熱部材を提供することである。   An object of the present invention is to provide a silicone heat radiating member that can maintain heat conduction characteristics for a long time even under high temperature and high humidity, and has low elasticity and excellent followability and adhesion to a substrate.

本発明は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサン(a)、1分子中に少なくとも2個のSiH基を含有するオルガノハイドロジェンポリシロキサン(b)、付加反応触媒(c)、平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)を含有するシリコーン樹脂組成物を硬化させることによって得られることを特徴とするシリコーン放熱部材である。   The present invention relates to an organopolysiloxane (a) containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, and an organohydrogen containing at least two SiH groups in one molecule. Polysiloxane (b), addition reaction catalyst (c), alumina (d1) having an average particle diameter of 1 μm or more and less than 10 μm, alumina (d2) having an average particle diameter of 10 μm or more and less than 25 μm, average particle diameter It is obtained by hardening the silicone resin composition containing the alumina (d3) whose is 30-70 micrometers. It is a silicone heat radiating member characterized by the above-mentioned.

本発明のシリコーン放熱部材は放熱特性に優れ、高温高湿下においても長期的に熱伝導特性を維持でき、弾性が低く基材に対する追従性、密着性に優れるため、電子部材の放熱材料として適する。   The silicone heat dissipating member of the present invention has excellent heat dissipating properties, can maintain heat conducting properties for a long time even under high temperature and high humidity, and is suitable as a heat dissipating material for electronic members because of its low elasticity and excellent followability and adhesion to the substrate. .

本発明のシリコーン放熱部材は付加型シリコーン樹脂を樹脂成分として含有する。SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサン(a)は、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基などの炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサンである。オルガノポリシロキサンは例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル基などが例示される。具体例としては、両末端にビニル基を有するジメチルポリシロキサンが挙げられる。   The silicone heat dissipating member of the present invention contains an addition type silicone resin as a resin component. Organopolysiloxane (a) containing at least two carbon-carbon double bonds having reactivity with SiH group in one molecule is vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, An organopolysiloxane containing at least two carbon-carbon double bonds such as a hexenyl group in one molecule. Examples of the organopolysiloxane include those in which the main chain is a repeating unit of diorganosiloxane and the terminal has a triorganosiloxane structure, and may have a branched or cyclic structure. Examples of the organo structure bonded to silicon in the terminal or repeating unit include a methyl group, an ethyl group, and a phenyl group. Specific examples include dimethylpolysiloxane having vinyl groups at both ends.

1分子中に少なくとも2個のSiH基を含有するオルガノハイドロジェンポリシロキサン(b)は、末端および/または繰返し構造中において、2個以上のSiH基を含有するオルガノポリシロキサンである。オルガノポリシロキサンは例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル基、オクチル基などが例示され、これらの2個以上が水素基に置換されたものともいえる。前記オルガノポリシロキサン(a)とオルガノハイドロジェンポリシロキサン(b)の配合比は、(a):(b)=1:1.0〜2.0とすることが好ましく、より好ましくは(a):(b)=1:1.3〜1.6である。   The organohydrogenpolysiloxane (b) containing at least two SiH groups in one molecule is an organopolysiloxane containing two or more SiH groups in the terminal and / or repeating structure. Examples of the organopolysiloxane include those in which the main chain is a repeating unit of diorganosiloxane and the terminal has a triorganosiloxane structure, and may have a branched or cyclic structure. Examples of the organo structure bonded to the terminal or the silicon in the repeating unit include a methyl group, an ethyl group, a phenyl group, and an octyl group, and it can be said that two or more of these are substituted with a hydrogen group. The blending ratio of the organopolysiloxane (a) and the organohydrogenpolysiloxane (b) is preferably (a) :( b) = 1: 1.0 to 2.0, more preferably (a). : (B) = 1: 1.3 to 1.6.

付加反応触媒(c)は、前記(a)成分と前記(b)成分のヒドロシリル化反応を促進させるために添加され、ヒドロシリル化反応の触媒活性を有する公知の金属、金属化合物、金属錯体などを用いることができる。特に白金、白金化合物、それらの錯体を用いることが好ましい。これらの触媒は単独で使用してもよく、2種以上を併用してもよい。また、助触媒を併用してもよい。付加反応触媒(c)の配合量は組成物全体に対して1ppm〜50ppmとすることが好ましく、より好ましくは2〜10ppmである。   The addition reaction catalyst (c) is added to promote the hydrosilylation reaction of the component (a) and the component (b), and a known metal, metal compound, metal complex or the like having catalytic activity for the hydrosilylation reaction is added. Can be used. In particular, it is preferable to use platinum, a platinum compound, or a complex thereof. These catalysts may be used alone or in combination of two or more. A cocatalyst may be used in combination. The addition amount of the addition reaction catalyst (c) is preferably 1 ppm to 50 ppm, more preferably 2 to 10 ppm with respect to the entire composition.

本発明のシリコーン放熱部材は熱伝導性無機フィラーとして異なる粒子径を有する3種類のアルミナを含有する。具体的には平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)を含有する。(d1)、(d2)、(d3)の合計を100重量部とした場合、(d1)が10〜30重量部、(d2)が5〜20重量部、(d3)が50〜85重量部となるように配合することが好ましい。また、(d1)、(d2)、(d3)の合計が、シリコーン樹脂組成物全体の85〜95重量%となるように配合することが好ましい。
異なる粒子径を有する3種類のアルミナを配合することにより、熱伝導性無機フィラーの充填率が高くなることが放熱特性に向上に寄与しているものと推察される。一方、充填率が高すぎても硬化物が硬くなってしまい、基材への追従性、密着性が低下するため、適度な充填率が得られているものと推察される。
The silicone heat dissipating member of the present invention contains three types of alumina having different particle diameters as the thermally conductive inorganic filler. Specifically, alumina (d1) having an average particle diameter of 1 μm or more and less than 10 μm, alumina (d2) having an average particle diameter of 10 μm or more and less than 25 μm, alumina having an average particle diameter of 30 to 70 μm (d3) ). When the total of (d1), (d2), and (d3) is 100 parts by weight, (d1) is 10 to 30 parts by weight, (d2) is 5 to 20 parts by weight, and (d3) is 50 to 85 parts by weight. It is preferable to blend so that. Moreover, it is preferable to mix | blend so that the sum total of (d1), (d2), (d3) may be 85 to 95 weight% of the whole silicone resin composition.
By blending three types of alumina having different particle sizes, it is surmised that the increase in the filling rate of the thermally conductive inorganic filler contributes to the improvement of the heat dissipation characteristics. On the other hand, even if the filling rate is too high, the cured product becomes hard, and the followability to the substrate and the adhesion are deteriorated.

本発明の硬化性シリコーン樹脂組成物には前記必須成分の他、各種樹脂、添加剤を配合できる。希釈剤の配合により、粘度、柔軟性等を調整できる。その具体例として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジ2−エチルヘキシルなどフタル酸エステル系の希釈剤、ジメチルシリコーンオイル、アルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル等のシリコーンオイル、アジピン酸ジオクチル、アジピン酸ジイソノニル、アゼライン酸ジアルキル、セバシン酸ジブチル、エポキシ化大
豆油、ポリプロピレングリコール、アクリルポリマー、α−オレフィンやその誘導体、植物油由来脂肪酸の2−エチルヘキシルエステル化合物等が挙げられる。
In addition to the above essential components, various resins and additives can be blended in the curable silicone resin composition of the present invention. Viscosity, flexibility, etc. can be adjusted by blending the diluent. Specific examples include phthalate-based diluents such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, silicone oils such as dimethyl silicone oil, alkyl-modified silicone oil, and polyether-modified silicone oil. , Dioctyl adipate, diisononyl adipate, dialkyl azelate, dibutyl sebacate, epoxidized soybean oil, polypropylene glycol, acrylic polymer, α-olefin and derivatives thereof, and 2-ethylhexyl ester compounds of vegetable oil-derived fatty acids.

粘度調整、粘性調整、増量などを目的として、炭酸カルシウム、硅砂、タルク、カーボンブラック、酸化チタン、カオリン、二酸化ケイ素、メラミン等の充填材、硬化樹脂の補強のためにガラス繊維等の補強材、軽量化及び粘度調整などのためにシラスバルーン、ガラスバルーン等の中空体を添加できる。その他、酸化防止剤、顔料、防腐剤などを適宜使用することができる。   For the purpose of adjusting viscosity, adjusting viscosity, increasing weight, etc., fillers such as calcium carbonate, cinnabar, talc, carbon black, titanium oxide, kaolin, silicon dioxide, melamine, reinforcing materials such as glass fiber for reinforcing cured resin, Hollow bodies such as shirasu balloons and glass balloons can be added for weight reduction and viscosity adjustment. In addition, antioxidants, pigments, preservatives, and the like can be used as appropriate.

以下、本発明について実施例、比較例を挙げてより詳細に説明するが、具体例を示すものであって、特にこれらに限定するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and demonstrated in detail about this invention, a specific example is shown and it does not specifically limit to these.

実施例1
粘度3.5Pa・sのポリメチルビニルシロキサン40重量部、SiH基を含有する粘度3.2Pa・sのオルガノハイドロジェンポリシロキサン60重量部に対して、熱伝導性無機フィラーとして、平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)160重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)60重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)520重量部を混合し、フィラー充填率を88%とした。さらに、硬化遅延を目的として1−エチニル−1−シクロヘキサノール(ECH)を0.015重量部、着色剤としてカーボンブラック(旭カーボン株式会社製、商品名 アサヒサーマル)1重量部を添加し、付加反応触媒として白金−ビニルシロキサン錯体を組成物全体に対して10ppmとなるよう添加、混合することにより、実施例1のシリコーン樹脂組成物を作製した。
Example 1
An average particle diameter of 40 parts by weight of polymethylvinylsiloxane having a viscosity of 3.5 Pa · s and 60 parts by weight of organohydrogenpolysiloxane having a viscosity of 3.2 Pa · s containing SiH groups as a thermally conductive inorganic filler. 160 parts by weight of alumina (made by Showa Denko KK, trade name CB-P05) which is 4 μm, 60 parts by weight of alumina (made by Showa Denko KK, trade name CB-A20S) whose average particle diameter is 20 μm, and the average particle diameter is 520 parts by weight of alumina (trade name CB-A50S, manufactured by Showa Denko KK), which is 50 μm, was mixed to make the filler filling rate 88%. Furthermore, 0.015 parts by weight of 1-ethynyl-1-cyclohexanol (ECH) and 1 part by weight of carbon black (trade name: Asahi Thermal Co., Ltd., manufactured by Asahi Carbon Co., Ltd.) are added as a colorant for the purpose of retarding curing. The silicone resin composition of Example 1 was produced by adding and mixing a platinum-vinylsiloxane complex as a reaction catalyst so as to be 10 ppm with respect to the entire composition.

比較例1
実施例1において、熱伝導性無機フィラーとして平均粒子径が12μmであるアルミナ(日本軽金属株式会社製、商品名V325F)40重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)120重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)400重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例1のシリコーン樹脂組成物を作製した。
Comparative Example 1
In Example 1, 40 parts by weight of alumina having a mean particle size of 12 μm (product name: V325F, manufactured by Nippon Light Metal Co., Ltd.) and alumina having a mean particle size of 20 μm (made by Showa Denko KK Example 1 except that 120 parts by weight of CB-A20S) and 400 parts by weight of alumina (trade name CB-A50S, manufactured by Showa Denko KK) with an average particle size of 50 μm were used and the filler filling rate was 85%. In the same manner, a silicone resin composition of Comparative Example 1 was produced.

比較例2
実施例1において、熱伝導性無機フィラーとして平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)160重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)400重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例2のシリコーン樹脂組成物を作製した。
Comparative Example 2
In Example 1, 160 parts by weight of alumina (made by Showa Denko KK, trade name CB-P05) having an average particle diameter of 4 μm as a thermally conductive inorganic filler, alumina (made by Showa Denko KK) having an average particle diameter of 50 μm , Trade name CB-A50S) A silicone resin composition of Comparative Example 2 was prepared in the same manner as in Example 1 except that 400 parts by weight was used and the filler filling rate was 85%.

比較例3
実施例1において、熱伝導性無機フィラーとして平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)370重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)190重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例3のシリコーン樹脂組成物を作製した。
Comparative Example 3
In Example 1, 370 parts by weight of alumina (manufactured by Showa Denko KK, trade name CB-P05) having an average particle diameter of 4 μm as the thermally conductive inorganic filler, alumina (manufactured by Showa Denko KK) having an average particle diameter of 20 μm , Trade name CB-A20S) A silicone resin composition of Comparative Example 3 was produced in the same manner as in Example 1 except that 190 parts by weight and a filler filling rate of 85% were used.

熱伝導率の測定方法
各硬化性シリコーン樹脂組成物を60×120mmに成型し、23℃雰囲気下で迅速熱伝導率計(京都電子工業株式会社製、商品名 QTM-500)を用いて、熱伝導率を測定した。
Measurement method of thermal conductivity Each curable silicone resin composition was molded into 60 x 120 mm, and heat was measured using a rapid thermal conductivity meter (trade name QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.) in an atmosphere at 23 ° C. Conductivity was measured.

Figure 2012214612
Figure 2012214612

実施例のシリコーン放熱部材は、比較例のシリコーン放熱部材よりも熱伝導性に優れていた。   The silicone heat radiating member of the example was superior in thermal conductivity to the silicone heat radiating member of the comparative example.

Claims (3)

SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサン(a)、1分子中に少なくとも2個のSiH基を含有するオルガノハイドロジェンポリシロキサン(b)、付加反応触媒(c)、平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)を含有するシリコーン樹脂組成物を硬化させることによって得られることを特徴とするシリコーン放熱部材。   Organopolysiloxane containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule (a) Organohydrogenpolysiloxane containing at least two SiH groups in one molecule (b) ), Addition reaction catalyst (c), alumina (d1) having an average particle size of 1 μm or more and less than 10 μm, alumina (d2) having an average particle size of 10 μm or more and less than 25 μm, and an average particle size of 30 to 70 μm A silicone heat dissipating member obtained by curing a silicone resin composition containing alumina (d3). 前記平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)の合計を100重量部とした場合、(d1)が10〜30重量部、(d2)が5〜20重量部、(d3)が50〜85重量部であることを特徴とする請求項1記載のシリコーン放熱部材。   Sum of alumina (d1) having an average particle diameter of 1 μm or more and less than 10 μm, alumina (d2) having an average particle diameter of 10 μm or more and less than 25 μm, and alumina (d3) having an average particle diameter of 30 to 70 μm 2. The silicone according to claim 1, wherein (d1) is from 10 to 30 parts by weight, (d2) is from 5 to 20 parts by weight, and (d3) is from 50 to 85 parts by weight, assuming that 100 parts by weight. Heat dissipation member. 前記(d1)、(d2)、(d3)の合計が、シリコーン樹脂組成物全体の85〜95重量%であることを特徴とする請求項1または2記載のシリコーン放熱部材。

The total of (d1), (d2), and (d3) is 85 to 95% by weight of the entire silicone resin composition.

JP2011080627A 2011-03-31 2011-03-31 Silicone heat dissipation member Pending JP2012214612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080627A JP2012214612A (en) 2011-03-31 2011-03-31 Silicone heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080627A JP2012214612A (en) 2011-03-31 2011-03-31 Silicone heat dissipation member

Publications (1)

Publication Number Publication Date
JP2012214612A true JP2012214612A (en) 2012-11-08

Family

ID=47267745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080627A Pending JP2012214612A (en) 2011-03-31 2011-03-31 Silicone heat dissipation member

Country Status (1)

Country Link
JP (1) JP2012214612A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147600A (en) * 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition and cured product thereof
WO2016190188A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JPWO2016190189A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JP2018123200A (en) * 2017-01-30 2018-08-09 富士高分子工業株式会社 Heat-resistant heat-conductive silicone composition
US10968111B2 (en) 2016-05-16 2021-04-06 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
WO2021261758A1 (en) * 2020-06-25 2021-12-30 권장숙 Thermally conductive silicone compound, method for preparing same, and thermally conductive gel for virtual currency mining comprising same
KR20220000327A (en) * 2020-06-25 2022-01-03 권장숙 Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same
KR20220008047A (en) * 2020-07-13 2022-01-20 한국세라믹기술원 Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274929A (en) * 2008-05-16 2009-11-26 Micron:Kk Alumina blend particle and resin molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274929A (en) * 2008-05-16 2009-11-26 Micron:Kk Alumina blend particle and resin molding

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147600A (en) * 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition and cured product thereof
US10683444B2 (en) 2015-05-22 2020-06-16 Momentive Performance Materials Japan Llc Thermally conductive composition
JPWO2016190189A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
TWI705996B (en) * 2015-05-22 2020-10-01 日商邁圖高新材料日本合同公司 Thermally conductive composition
CN107532000B (en) * 2015-05-22 2021-07-13 迈图高新材料日本合同公司 Thermally conductive composition
KR20180011080A (en) * 2015-05-22 2018-01-31 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Thermally conductive composition
US20180127629A1 (en) * 2015-05-22 2018-05-10 Momentive Performance Materials Japan Llc Thermally conductive composition
KR102544343B1 (en) * 2015-05-22 2023-06-19 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 thermally conductive composition
WO2016190188A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
CN107532000A (en) * 2015-05-22 2018-01-02 迈图高新材料日本合同公司 Heat conductivity composition
JPWO2016190188A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
US11912584B2 (en) 2016-05-16 2024-02-27 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
US10968111B2 (en) 2016-05-16 2021-04-06 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
JP2018123200A (en) * 2017-01-30 2018-08-09 富士高分子工業株式会社 Heat-resistant heat-conductive silicone composition
WO2021261758A1 (en) * 2020-06-25 2021-12-30 권장숙 Thermally conductive silicone compound, method for preparing same, and thermally conductive gel for virtual currency mining comprising same
KR20220000327A (en) * 2020-06-25 2022-01-03 권장숙 Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same
KR102388812B1 (en) 2020-06-25 2022-04-21 권장숙 Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same
KR20220008047A (en) * 2020-07-13 2022-01-20 한국세라믹기술원 Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same
KR102403680B1 (en) * 2020-07-13 2022-05-31 한국세라믹기술원 Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2012214612A (en) Silicone heat dissipation member
US10683444B2 (en) Thermally conductive composition
JP4557136B2 (en) Thermally conductive silicone rubber composition and molded product
JP6394517B2 (en) Method for improving electrical insulation of heat-resistant silicone gel cured product
KR102334773B1 (en) Thermally conductive polyorganosiloxane composition
KR20190104075A (en) Thermally Conductive Polyorganosiloxane Compositions
TWI522423B (en) Polysiloxane composition and cured product thereof
EP2628770A1 (en) Curable polyorganosiloxane composition
JP5332437B2 (en) Hydrophilic organopolysiloxane composition for dental impression material
JP2005344106A (en) Silicone gel composition
CN106928725A (en) conductive curable organic silicon rubber
JP2009149736A (en) Heat-conductive silicone gel composition
JP5962599B2 (en) Silicone gel composition with excellent heat resistance
JP2016125001A (en) Heat-conductive silicone composition, cured product, and composite seat
US9631062B2 (en) Silicone gel composition and silicone gel cured product
KR101598788B1 (en) Thermal conductivity liquid silicone rubber composition and manufacturing method there of
JP6468115B2 (en) Addition-curable silicone rubber composition and cured product
JP4557137B2 (en) Thermally conductive silicone rubber composition and molded product
KR102595408B1 (en) Thermal conductive resin composition and thermally conductive sheet using the same
CN110234711B (en) Thermally conductive silicone composition
JP5553076B2 (en) Silicone rubber composition
JP2018119021A (en) Self-adhesiveness silicone gel composition, and cured product of the same
JP2015187253A (en) fluorosilicone rubber composition
WO2017018033A1 (en) Silicone gel composition and silicone gel cured product
JP2010144130A (en) Curable organopolysiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150513