JP2012214426A - Organic compound, process for producing organic compound, and anti-helicobacter pylori agent - Google Patents

Organic compound, process for producing organic compound, and anti-helicobacter pylori agent Download PDF

Info

Publication number
JP2012214426A
JP2012214426A JP2011082248A JP2011082248A JP2012214426A JP 2012214426 A JP2012214426 A JP 2012214426A JP 2011082248 A JP2011082248 A JP 2011082248A JP 2011082248 A JP2011082248 A JP 2011082248A JP 2012214426 A JP2012214426 A JP 2012214426A
Authority
JP
Japan
Prior art keywords
organic compound
nmr
pylori
ppm
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011082248A
Other languages
Japanese (ja)
Other versions
JP5574495B2 (en
Inventor
Takehiro Kashiwagi
丈拡 柏木
Hiroyuki Uketa
浩之 受田
Tomoko Shimamura
智子 島村
Akitoshi Aoki
章敏 青木
Keiko Takeuchi
啓晃 竹内
Yuji Yamaguchi
裕司 山口
Hiroyuki Takenaka
裕行 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Micro Algae Corp
Original Assignee
Kyushu University NUC
Kochi University NUC
Micro Algae Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC, Micro Algae Corp filed Critical Kyushu University NUC
Priority to JP2011082248A priority Critical patent/JP5574495B2/en
Publication of JP2012214426A publication Critical patent/JP2012214426A/en
Application granted granted Critical
Publication of JP5574495B2 publication Critical patent/JP5574495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel organic compound and anti-Helicobacter pylori agent.SOLUTION: The organic compound has a structure represented by formula (1). The anti-Helicobacter pylori agent contains the organic compound having a structure represented by formula (1) as an effective component. A process for producing an organic compound includes: an extraction step of extracting an extract containing the organic compound from fine-mesh algae belonging to Chlorophyceae Volvox Dunaliella; and an isolation step of isolating the organic compound from the extract.

Description

本発明は、抗ピロリ菌活性を有する有機化合物、その製造方法、及び抗ピロリ菌剤に関する。   The present invention relates to an organic compound having anti-pylori activity, a method for producing the same, and an anti-pylori agent.

ピロリ菌(Helicobacter pylori)は、ヒト等の胃や十二指腸に生息するらせん型の細菌であり、胃炎、胃潰瘍、胃がん、及び十二指腸潰瘍等の疾病を引き起こす原因細菌として知られている。現在、ピロリ菌の除菌療法としては、抗生物質を用いた療法、例えば胃酸過多による副作用を抑えるためのプロトンポンプ阻害剤1剤(ランソプラゾール、又はオメプラゾール)と、抗生物質2剤(アモキシシリン及びクラリスロマイシン)の3剤を併用したトリプルセラピーが用いられている。このトリプルセラピーによる除菌成功率は90%を超えるとされてきたが、抗生物質耐性菌株の増加による除菌失敗例も数多く報告されるようになってきている。   Helicobacter pylori is a spiral bacterium that lives in the stomach and duodenum of humans and is known as a causative bacterium that causes diseases such as gastritis, gastric ulcer, gastric cancer, and duodenal ulcer. Currently, there are two types of Helicobacter pylori eradication therapy: antibiotics, such as one proton pump inhibitor (lansoprazole or omeprazole) for suppressing side effects caused by excessive acidity in the stomach, and two antibiotics (amoxicillin and clarithro). Triple therapy using three drugs (mycin) is used. Although the success rate of sterilization by triple therapy has been considered to exceed 90%, many cases of sterilization failure due to an increase in antibiotic-resistant strains have been reported.

そのため、近年では耐性菌株を生み出し難いと考えられる天然物由来、特に食品素材由来の抗ピロリ菌剤に注目が集まっている。このような天然物由来の抗ピロリ菌剤としては、例えば特許文献1に開示されるものが知られている。特許文献1の抗ピロリ菌剤は、月見草に含有される特定のポリフェノールが有する抗ピロリ菌活性に基づくものである。   Therefore, in recent years, attention has been focused on anti-H. Pylori agents derived from natural products, especially food materials, which are considered difficult to produce resistant strains. As such a natural product-derived anti-pylori agent, for example, one disclosed in Patent Document 1 is known. The anti-pylori agent of patent document 1 is based on the anti-pylori activity which the specific polyphenol contained in evening primrose has.

特開2004−352644号公報JP 2004-352644 A

この発明は、本発明者らの鋭意研究の結果、緑藻網オオヒゲマワリ目のデュナリエラ属に属する微細網の藻体から新規な有機化合物を単離したことによりなされたものである。また、かかる化合物について抗ピロリ菌活性を見出したことによりなされたものである。本発明の目的は、医薬品・食品等の様々な用途に適用することができる有機化合物、及びその製造方法を提供することにある。また、有用な抗ピロリ菌活性を発揮する抗ピロリ菌剤を提供することにある。   The present invention has been made by isolating a novel organic compound from the fine net algae belonging to the genus Dunaliella belonging to the order of the green alga net of the bearded sunflower. Moreover, it was made | formed by discovering antipylori activity about this compound. The objective of this invention is providing the organic compound which can be applied to various uses, such as a pharmaceutical and a foodstuff, and its manufacturing method. Another object is to provide an anti-pylori agent that exhibits useful anti-pylori activity.

上記の目的を達成するために請求項1に記載の有機化合物は、下記一般式(1):
で示されることを特徴とする。
In order to achieve the above object, the organic compound according to claim 1 has the following general formula (1):
It is characterized by being shown by.

請求項2に記載の有機化合物は、請求項1に記載の発明において、下記理化学的性質):
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.5(CH,C−2),19.5(CH,C−3),31.9(CH,C−4),79.1(C,C−5),65.5(C,C−6),52.9(CH,C−7),77.4(CH,C−8),63.4(C,C−9),59.2(CH,C−10),134.1(CH,C−11),140.8(CH,C−12),197.4(C,C−13),27.4(CH,C−14),24.6(CH,C−15),25.3(CH,C−16),23.9(CH,C−17),14.6(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.40(1H,dd,J=25.0Hz,J=12.5Hz,H−2a),1.53(1H,ddd,J=12.5Hz,J=12.5Hz,J=5.5Hz,H−2b),1.71(2H,m,H−3),1.42(2H,m,H−4),3.50(1H,d,J=3.5Hz,H−7),4.19(1H,d,J=3.5Hz,H−8),3.92(1H,d,J=6.0Hz,H−10),6.39(1H,d,J=16.0Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.27(3H,s,H−14),1.15(3H,s,H−15),0.80(3H,s,H−16),1.63(3H,s,H−17),1.46(3H,s,H−18)
を有することを特徴とする。
The organic compound according to claim 2 is the following physicochemical property in the invention according to claim 1):
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.5 (CH 2 , C-2), 19.5 (CH 2 , C-3), 31.9 (CH 2, C-4 ), 79.1 (C, C-5), 65.5 (C, C-6), 52.9 (CH, C-7), 77.4 (CH , C-8), 63.4 (C, C-9), 59.2 (CH, C-10), 134.1 (CH, C-11), 140.8 (CH, C-12), 197.4 (C, C-13) , 27.4 (CH 3, C-14), 24.6 (CH 3, C-15), 25.3 (CH 3, C-16), 23.9 (CH 3, C-17) , 14.6 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.40 (1H, dd, J = 25.0 Hz, J = 12.5 Hz, H-2a), 1.53 (1H, ddd, J = 12.5 Hz, J = 12.5 Hz, J = 5.5 Hz, H-2b), 1.71 (2H, m, H-3), 1.42 (2H, m, H-4), 3.50 (1H, d, J = 3.5 Hz, H-7), 4.19 (1H, d, J = 3.5 Hz, H-8), 3.92 (1H, d, J = 6.0 Hz, H -10), 6.39 (1H, d, J = 16.0 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2. 27 (3H, s, H-14), 1.15 (3H, s, H-15), 0.80 (3H, s, H-16), 1.63 (3H, s, H-17), 1.4 (3H, s, H-18)
It is characterized by having.

請求項3に記載の有機化合物は、請求項1に記載の発明において、下記理化学的性質:
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.6(CH,C−2),19.6(CH,C−3),32.0(CH,C−4),79.5(C,C−5),64.2(C,C−6),52.8(CH,C−7),80.0(CH,C−8),65.0(C,C−9),58.3(CH,C−10),134.3(CH,C−11),140.5(CH,C−12),197.4(C,C−13),27.6(CH,C−14),24.6(CH,C−15),25.5(CH,C−16),23.9(CH,C−17),15.0(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.39(1H,dt,J=13.0Hz,J=3.5Hz,H−2a),1.55(1H,dd,J=13.0Hz,J=5.5Hz,H−2b),1.73(2H,m,H−3),1.27(1H,dd,J=11.0Hz,J=5.5Hz,H−4a),1.46(1H,dd,J=11.0Hz,J=7.5Hz,H−4b),3.44(1H,d,J=4.0Hz,H−7),4.04(1H,d,J=3.5Hz,H−8),3.89(1H,dd,J=6.5Hz,J=1.5Hz,H−10),6.40(1H,dd,J=16.0Hz,J=1.5Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.29(3H,s,H−14),1.16(3H,s,H−15),0.73(3H,s,H−16),1.65(3H,s,H−17),1.51(3H,s,H−18)
を有することを特徴とする。
The organic compound according to claim 3 is the following physicochemical property in the invention according to claim 1:
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.6 (CH 2 , C-2), 19.6 (CH 2 , C-3), 32.0 (CH 2, C-4 ), 79.5 (C, C-5), 64.2 (C, C-6), 52.8 (CH, C-7), 80.0 (CH , C-8), 65.0 (C, C-9), 58.3 (CH, C-10), 134.3 (CH, C-11), 140.5 (CH, C-12), 197.4 (C, C-13) , 27.6 (CH 3, C-14), 24.6 (CH 3, C-15), 25.5 (CH 3, C-16), 23.9 (CH 3, C-17) , 15.0 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.39 (1H, dt, J = 13.0 Hz, J = 3.5 Hz, H-2a), 1.55 (1H, dd, J = 13.0 Hz, J = 5.5 Hz, H-2b), 1.73 (2H, m, H-3), 1.27 (1H, dd, J = 11.0 Hz, J = 5.5 Hz, H− 4a), 1.46 (1H, dd, J = 11.0 Hz, J = 7.5 Hz, H-4b), 3.44 (1H, d, J = 4.0 Hz, H-7), 4.04. (1H, d, J = 3.5 Hz, H-8), 3.89 (1H, dd, J = 6.5 Hz, J = 1.5 Hz, H-10), 6.40 (1H, dd, J = 16.0 Hz, J = 1.5 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2.29 (3H s, H-14), 1.16 (3H, s, H-15), 0.73 (3H, s, H-16), 1.65 (3H, s, H-17), 1.51 ( 3H, s, H-18)
It is characterized by having.

請求項4に記載の抗ピロリ菌剤は、請求項1〜請求項3のいずれか一項に記載の有機化合物を有効成分として含有することを特徴とする。
請求項5に記載の有機化合物の製造方法は、下記一般式(1):
で示される有機化合物の製造方法であって、水、親水性有機溶媒、又は水と親水性有機溶媒との混合溶媒を用いて、緑藻網オオヒゲマワリ目のデュナリエラ属に属する微細網の藻体から前記有機化合物を含む抽出物を抽出する抽出工程と、前記抽出物から前記有機化合物を単離する単離工程とを有することを特徴とする。
The anti-pylori agent of Claim 4 contains the organic compound as described in any one of Claims 1-3 as an active ingredient, It is characterized by the above-mentioned.
The method for producing an organic compound according to claim 5 includes the following general formula (1):
A method for producing an organic compound represented by the above, using water, a hydrophilic organic solvent, or a mixed solvent of water and a hydrophilic organic solvent, from the fine net algae belonging to the genus Dunaliella belonging to the order It has the extraction process which extracts the extract containing an organic compound, and the isolation process which isolates the said organic compound from the said extract.

本発明によれば、新規な有機化合物、その製造方法、及び抗ピロリ菌剤が提供される。   According to the present invention, a novel organic compound, a method for producing the same, and an anti-pylori agent are provided.

第2中間精製物のHPLCチャート。HPLC chart of second intermediate purified product. 実施例1の吸光スペクトル。Absorption spectrum of Example 1. 実施例1におけるTOF−MSの測定結果。The measurement result of TOF-MS in Example 1. 実施例1の13C−NMRスペクトル。 13 C-NMR spectrum of Example 1. 実施例1のDEPT135スペクトル。The DEPT135 spectrum of Example 1. 実施例1のDEPT90スペクトル。The DEPT90 spectrum of Example 1. 実施例1のH−NMRスペクトル。 1 H-NMR spectrum of Example 1. 実施例1のHMQCスペクトル。HMQC spectrum of Example 1. 実施例1のHMBCスペクトル。The HMBC spectrum of Example 1. 実施例1のHH−COSYスペクトル。The HH-COSY spectrum of Example 1. 実施例2の吸光スペクトル。Absorption spectrum of Example 2. 実施例2におけるTOF−MSの測定結果。The measurement result of TOF-MS in Example 2. 実施例2の13C−NMRスペクトル。 13 C-NMR spectrum of Example 2. 実施例2のDEPT135スペクトル。The DEPT135 spectrum of Example 2. 実施例2のDEPT90スペクトル。The DEPT90 spectrum of Example 2. 実施例2のH−NMRスペクトル。 1 H-NMR spectrum of Example 2. 実施例2のHMQCスペクトル。HMQC spectrum of Example 2. 実施例2のHMBCスペクトル。The HMBC spectrum of Example 2. 実施例2のHH−COSYスペクトル。The HH-COSY spectrum of Example 2.

以下、本発明を具体化した実施形態の有機化合物及び抗ピロリ菌剤を詳細に説明する。
本実施形態の有機化合物は、下記一般式(1):
に示される有機化合物((E)−8−(1,2−dihydroxy−2,6,6−trimethylcyclohexyl)−5,6,7,8−tetrahydroxy−6−methyloct−3−en−2−one)である。
Hereinafter, the organic compound and the anti-pylori agent of embodiment which actualized this invention are demonstrated in detail.
The organic compound of the present embodiment has the following general formula (1):
((E) -8- (1,2-dihydroxy-2,6,6-trimethylcyclohexyl) -5,6,7,8-tetrahydroxy-6-methyl-3-ene-2-one) It is.

上記有機化合物は、5位、6位、7位、8位、9位、及び10位に合計6個の不斉炭素を有している。そのため、理論上64個(2個)の立体異性体が存在する。それら上記有機化合物の立体異性体のなかでも、さらに下記理化学的性質を有する2種類の立体異性体(以下、それぞれ有機化合物1及び有機化合物2と記載する。)は入手容易性に優れている。 The organic compound has a total of 6 asymmetric carbons at the 5th, 6th, 7th, 8th, 9th and 10th positions. Therefore, there are theoretically 64 ( 26 ) stereoisomers. Among these stereoisomers of the organic compounds, two types of stereoisomers having the following physicochemical properties (hereinafter referred to as organic compound 1 and organic compound 2, respectively) are excellent in availability.

有機化合物1は以下の理化学的性質を有する。
NMRスペクトル(図4及び図7参照):
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.5(CH,C−2),19.5(CH,C−3),31.9(CH,C−4),79.1(C,C−5),65.5(C,C−6),52.9(CH,C−7),77.4(CH,C−8),63.4(C,C−9),59.2(CH,C−10),134.1(CH,C−11),140.8(CH,C−12),197.4(C,C−13),27.4(CH,C−14),24.6(CH,C−15),25.3(CH,C−16),23.9(CH,C−17),14.6(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.40(1H,dd,J=25.0Hz,J=12.5Hz,H−2a),1.53(1H,ddd,J=12.5Hz,J=12.5Hz,J=5.5Hz,H−2b),1.71(2H,m,H−3),1.42(2H,m,H−4),3.50(1H,d,J=3.5Hz,H−7),4.19(1H,d,J=3.5Hz,H−8),3.92(1H,d,J=6.0Hz,H−10),6.39(1H,d,J=16.0Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.27(3H,s,H−14),1.15(3H,s,H−15),0.80(3H,s,H−16),1.63(3H,s,H−17),1.46(3H,s,H−18)
有機化合物2は以下の理化学的性質を有する。
The organic compound 1 has the following physicochemical properties.
NMR spectrum (see FIGS. 4 and 7):
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.5 (CH 2 , C-2), 19.5 (CH 2 , C-3), 31.9 (CH 2, C-4 ), 79.1 (C, C-5), 65.5 (C, C-6), 52.9 (CH, C-7), 77.4 (CH , C-8), 63.4 (C, C-9), 59.2 (CH, C-10), 134.1 (CH, C-11), 140.8 (CH, C-12), 197.4 (C, C-13) , 27.4 (CH 3, C-14), 24.6 (CH 3, C-15), 25.3 (CH 3, C-16), 23.9 (CH 3, C-17) , 14.6 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.40 (1H, dd, J = 25.0 Hz, J = 12.5 Hz, H-2a), 1.53 (1H, ddd, J = 12.5 Hz, J = 12.5 Hz, J = 5.5 Hz, H-2b), 1.71 (2H, m, H-3), 1.42 (2H, m, H-4), 3.50 (1H, d, J = 3.5 Hz, H-7), 4.19 (1H, d, J = 3.5 Hz, H-8), 3.92 (1H, d, J = 6.0 Hz, H -10), 6.39 (1H, d, J = 16.0 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2. 27 (3H, s, H-14), 1.15 (3H, s, H-15), 0.80 (3H, s, H-16), 1.63 (3H, s, H-17), 1.4 (3H, s, H-18)
The organic compound 2 has the following physicochemical properties.

NMRスペクトル(図13及び図16参照):
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.6(CH,C−2),19.6(CH,C−3),32.0(CH,C−4),79.5(C,C−5),64.2(C,C−6),52.8(CH,C−7),80.0(CH,C−8),65.0(C,C−9),58.3(CH,C−10),134.3(CH,C−11),140.5(CH,C−12),197.4(C,C−13),27.6(CH,C−14),24.6(CH,C−15),25.5(CH,C−16),23.9(CH,C−17),15.0(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.39(1H,dt,J=13.0Hz,J=3.5Hz,H−2a),1.55(1H,dd,J=13.0Hz,J=5.5Hz,H−2b),1.73(2H,m,H−3),1.27(1H,dd,J=11.0Hz,J=5.5Hz,H−4a),1.46(1H,dd,J=11.0Hz,J=7.5Hz,H−4b),3.44(1H,d,J=4.0Hz,H−7),4.04(1H,d,J=3.5Hz,H−8),3.89(1H,dd,J=6.5Hz,J=1.5Hz,H−10),6.40(1H,dd,J=16.0Hz,J=1.5Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.29(3H,s,H−14),1.16(3H,s,H−15),0.73(3H,s,H−16),1.65(3H,s,H−17),1.51(3H,s,H−18)
次に、本実施形態の有機化合物のうち、例えば上記有機化合物1及び有機化合物2を得る方法について説明する。
NMR spectrum (see FIGS. 13 and 16):
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.6 (CH 2 , C-2), 19.6 (CH 2 , C-3), 32.0 (CH 2, C-4 ), 79.5 (C, C-5), 64.2 (C, C-6), 52.8 (CH, C-7), 80.0 (CH , C-8), 65.0 (C, C-9), 58.3 (CH, C-10), 134.3 (CH, C-11), 140.5 (CH, C-12), 197.4 (C, C-13) , 27.6 (CH 3, C-14), 24.6 (CH 3, C-15), 25.5 (CH 3, C-16), 23.9 (CH 3, C-17) , 15.0 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.39 (1H, dt, J = 13.0 Hz, J = 3.5 Hz, H-2a), 1.55 (1H, dd, J = 13.0 Hz, J = 5.5 Hz, H-2b), 1.73 (2H, m, H-3), 1.27 (1H, dd, J = 11.0 Hz, J = 5.5 Hz, H− 4a), 1.46 (1H, dd, J = 11.0 Hz, J = 7.5 Hz, H-4b), 3.44 (1H, d, J = 4.0 Hz, H-7), 4.04. (1H, d, J = 3.5 Hz, H-8), 3.89 (1H, dd, J = 6.5 Hz, J = 1.5 Hz, H-10), 6.40 (1H, dd, J = 16.0 Hz, J = 1.5 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2.29 (3H s, H-14), 1.16 (3H, s, H-15), 0.73 (3H, s, H-16), 1.65 (3H, s, H-17), 1.51 ( 3H, s, H-18)
Next, a method for obtaining, for example, the organic compound 1 and the organic compound 2 among the organic compounds of the present embodiment will be described.

上記有機化合物1及び有機化合物2は、緑藻網(Chlorophyceae)オオヒゲマワリ目(Volvocales)のデュナリエラ属(Dunaliella)に属する微細網の藻体を原料として抽出工程及び単離工程を経ることにより得られる。   The organic compound 1 and the organic compound 2 can be obtained through an extraction process and an isolation process using, as a raw material, a fine net alga belonging to the genus Dunaliella of the Chlorophyceae Volvocales.

[原料]
原料となる緑藻網オオヒゲマワリ目のデュナリエラ属に属する微細網の藻体としては、例えばデュナリエラ・サリーナ(Dunaliella salina)、及びデュナリエラ・バーダウィル(Dunaliella bardawil)が挙げられる。上記微細網の藻体は、天然に自生する藻体であってもよいし、人工的に培養した藻体(例えば、商業ベースで大量栽培生産されている藻体)であってもよい。なお、安定供給が可能である点や品質保持が容易である点から、人工的に培養した藻体を用いることが工業的に好適である。
[material]
Examples of the fine net algae belonging to the genus Dunaliella belonging to the order of the green alga net of the bearded sunflower are Dunaliella salina and Dunaliella bardawil. The algal body of the fine net may be a naturally occurring algal body or an artificially cultured algal body (for example, an algal body mass-produced on a commercial basis). In addition, it is industrially preferable to use an artificially cultured alga body from the viewpoint that stable supply is possible and quality maintenance is easy.

また、上記微細網の藻体なかでも、β−カロテン等のカロテノイドを細胞内に蓄積した外観が赤色(黄橙色)を呈する藻体を用いることが特に好ましい。上記微細網の藻体は、通常の生育条件では光合成色素(クロロフィルa,b)を体内に蓄積するため、外観が緑色を呈するが、特定の条件(例えば、高塩濃度)で生育した場合には、β−カロテン等のカロテノイドを生合成するとともに同カロテノイドを細胞内に蓄積して赤色を呈する。外観が赤色を呈する藻体は、公知の生育方法、例えば特開2007−210917号公報に記載されている方法により得ることができる。   Further, among the fine net algae, it is particularly preferable to use an alga that has red (yellow-orange) appearance in which carotenoids such as β-carotene are accumulated in cells. The above-mentioned fine net algae accumulates photosynthetic pigments (chlorophylls a and b) in the body under normal growth conditions, so the appearance is green, but when grown under specific conditions (for example, high salt concentration) Biosynthesizes carotenoids such as β-carotene and accumulates the carotenoids in the cells to give a red color. Algae having a red appearance can be obtained by a known growth method, for example, the method described in JP-A-2007-210917.

また、原料としての上記微細網の藻体は、採取したままの状態、採取後に破砕処理した状態、採取後に乾燥処理した状態、並びに採取後に破砕処理及び乾燥処理した状態のいずれの状態であってもよい。   In addition, the fine net algae as a raw material is in any state of being collected, crushed after collection, dried after collection, and crushed and dried after collection. Also good.

[抽出工程]
抽出工程は、原料としての上記微細網の藻体から、上記有機化合物1及び有機化合物2を含む抽出物を抽出する工程である。抽出工程に用いる抽出溶媒としては、水、親水性有機溶媒、又は水と親水性有機溶媒との混合溶媒を用いることができる。上記親水性有機溶媒としては、例えば、メタノールやエタノール等の低級アルコール類、アセトン、及び酢酸エチルが挙げられる。なお、抽出溶媒中に、水及び親水性有機溶媒以外の溶媒が少量含有されていてもよいし、その他の添加剤、例えば、有機塩、無機塩、緩衝剤、及び乳化剤等が溶解されていてもよい。
[Extraction process]
The extraction step is a step of extracting an extract containing the organic compound 1 and the organic compound 2 from the fine net algae as a raw material. As the extraction solvent used in the extraction step, water, a hydrophilic organic solvent, or a mixed solvent of water and a hydrophilic organic solvent can be used. Examples of the hydrophilic organic solvent include lower alcohols such as methanol and ethanol, acetone, and ethyl acetate. The extraction solvent may contain a small amount of a solvent other than water and a hydrophilic organic solvent, and other additives such as organic salts, inorganic salts, buffers, and emulsifiers are dissolved. Also good.

抽出方法としては、公知の抽出方法、例えば冷水抽出、温水抽出、熱水抽出、及び蒸気抽出のいずれの方法を用いてもよいが、特に冷水抽出を用いることが好ましい。また、抽出温度は0〜30℃であることが好ましく、0〜15℃であることがより好ましい。なお、抽出時間は特に限定されるものではないが、10〜120分間程度であることが好ましい。   As the extraction method, any known extraction method such as cold water extraction, hot water extraction, hot water extraction, and steam extraction may be used, but it is particularly preferable to use cold water extraction. Moreover, it is preferable that extraction temperature is 0-30 degreeC, and it is more preferable that it is 0-15 degreeC. In addition, although extraction time is not specifically limited, It is preferable that it is about 10 to 120 minutes.

抽出操作としては、抽出溶媒中に原料である上記微細網の藻体を所定時間浸漬させる。その際、抽出溶媒中における原料の濃度は特に限定されないが、5〜50質量%とすることが好ましく、5〜15質量%とすることがより好ましい。原料の濃度を5%未満とした場合には、得られる抽出液中における上記有機化合物1及び有機化合物2の濃度が低くなることから濃縮処理等の後処理が煩雑となる。一方、原料の濃度が50%を超える場合には、上記有機化合物1及び有機化合物2の回収率が低くなるおそれがある。   As the extraction operation, the fine net algae as a raw material is immersed in the extraction solvent for a predetermined time. At that time, the concentration of the raw material in the extraction solvent is not particularly limited, but is preferably 5 to 50% by mass, and more preferably 5 to 15% by mass. When the concentration of the raw material is less than 5%, the concentration of the organic compound 1 and the organic compound 2 in the resulting extract is low, and thus post-treatment such as concentration treatment becomes complicated. On the other hand, when the concentration of the raw material exceeds 50%, the recovery rate of the organic compound 1 and the organic compound 2 may be lowered.

こうした抽出操作においては、抽出効率を高めるべく、必要に応じて攪拌処理、加圧処理、及び超音波処理等の処理をさらに行ってもよい。また、抽出操作は同一の原料に対して一回のみ行なってもよいし、複数回繰り返して行なってもよい。そして、抽出操作の後に固液分離操作が行われることで、抽出液(上清)と原料の残渣とを分離する。固液分離処理の方法としては、例えばろ過や遠心分離等の公知の分離法を用いることができる。また、必要に応じて得られた抽出液(抽出物)の濃縮を行う。   In such an extraction operation, a treatment such as a stirring treatment, a pressure treatment, and an ultrasonic treatment may be further performed as necessary in order to increase the extraction efficiency. Further, the extraction operation may be performed only once for the same raw material, or may be performed repeatedly a plurality of times. Then, a solid-liquid separation operation is performed after the extraction operation, thereby separating the extract (supernatant) and the raw material residue. As a method of the solid-liquid separation treatment, for example, a known separation method such as filtration or centrifugation can be used. Moreover, the extract (extract) obtained is concentrated as needed.

[単離工程]
単離工程は、抽出工程にて得られた抽出物中に含まれる上記有機化合物1及び有機化合物2を単離する工程である。上記有機化合物1及び有機化合物2は、上記抽出物を1又は2以上のクロマトグラフィを用いて精製することにより単離される。クロマトグラフィとしては、公知のクロマトグラフィ、例えば液体クロマトグラフィ、超臨界流体クロマトグラフィ、及び薄層クロマトグラフィを用いることができる。液体クロマトグラフィとしては、例えばカラムクロマトグラフィを用いることができ、より具体的には高速液体クロマトグラフィ(HPLC)及びオープンカラムクロマトグラフィを挙げることができる。クロマトグラフィ担体としては、例えばイオン交換クロマトグラフィ、分配クロマトグラフィ(順相・逆相クロマトグラフィ)、吸着クロマトグラフィ、及び分子排斥クロマトグラフィが挙げられる。分配クロマトグラフィとして、より具体的にはシリカゲル担体やODS担体を用いることが分離効率の観点から好ましい。それらのクロマトグラフィを適宜組み合わせて、公知の使用方法で上記有機化合物1及び有機化合物2を単離・精製することができる。
[Isolation process]
The isolation step is a step of isolating the organic compound 1 and the organic compound 2 contained in the extract obtained in the extraction step. The organic compound 1 and the organic compound 2 are isolated by purifying the extract using one or more chromatography. As the chromatography, known chromatography such as liquid chromatography, supercritical fluid chromatography, and thin layer chromatography can be used. As liquid chromatography, column chromatography can be used, for example, and more specifically, high performance liquid chromatography (HPLC) and open column chromatography can be mentioned. Examples of the chromatography carrier include ion exchange chromatography, partition chromatography (normal phase / reverse phase chromatography), adsorption chromatography, and molecular exclusion chromatography. More specifically, it is preferable to use a silica gel carrier or an ODS carrier as partition chromatography from the viewpoint of separation efficiency. The organic compound 1 and the organic compound 2 can be isolated and purified by a known method of use by appropriately combining these chromatographies.

なお、本実施形態の有機化合物は、上記微細網の藻体から抽出及び単離する方法に限らず、有機化学合成(半合成を含む)等により製造してもよい。
次に、本実施形態の抗ピロリ菌剤について説明する。
The organic compound of the present embodiment is not limited to the method of extracting and isolating from the fine net algae, but may be produced by organic chemical synthesis (including semi-synthesis) or the like.
Next, the anti-pylori agent of this embodiment is demonstrated.

本実施形態の抗ピロリ菌剤は、上記一般式(1)で示される有機化合物を有効成分として含有する。この抗ピロリ菌剤は、例えば健康食品や食品等の飲食品等の添加剤、医薬品、及び医薬部外品として有用である。抗ピロリ菌剤は液状であってもよいし、固体状であってもよい。それらの剤形としては、特に限定されないが、例えば散剤、粉剤、顆粒剤、錠剤、カプセル剤、丸剤、液剤等が挙げられる。また、本発明の目的を損なわない範囲において、賦形剤、基剤、乳化剤、安定剤、溶剤、香料、甘味料等の添加剤を配合してもよい。   The anti-pylori agent of this embodiment contains the organic compound shown by the said General formula (1) as an active ingredient. This anti-H. Pylori agent is useful, for example, as an additive such as health foods and foods such as foods, pharmaceuticals, and quasi drugs. The anti-pylori agent may be liquid or solid. These dosage forms are not particularly limited, and examples thereof include powders, powders, granules, tablets, capsules, pills, and liquids. In addition, additives such as excipients, bases, emulsifiers, stabilizers, solvents, fragrances, and sweeteners may be blended within a range that does not impair the object of the present invention.

次に、本実施形態における効果について以下に記載する。
(1)本実施形態の有機化合物は新規化合物であり、医薬品・飲食品等の様々な用途に適用することができる。
Next, the effect in this embodiment is described below.
(1) The organic compound of the present embodiment is a novel compound and can be applied to various uses such as pharmaceuticals and foods.

(2)本実施形態の有機化合物は抗ピロリ菌活性を発揮する。したがって、同有機化合物を有効成分とする抗ピロリ菌剤を提供することができる。
(3)本実施形態の有機化合物は、抗ピロリ菌活性を有する公知の抗生物質(例えば、アモキシシリン、クラリスロマイシン、及びメトロニダゾール)と併用した場合にも、抗生物質の抗ピロリ菌活性を阻害することなく、抗生物質と協調して抗ピロリ菌活性を発揮することができる。また、抗生物質耐性のピロリ菌にも適用することができる。
(2) The organic compound of this embodiment exhibits anti-pylori activity. Therefore, the anti-pylori agent which uses the same organic compound as an active ingredient can be provided.
(3) The organic compound of this embodiment inhibits the anti-H. Pylori activity of antibiotics when used in combination with known antibiotics having anti-H. Pylori activity (for example, amoxicillin, clarithromycin, and metronidazole). Without any action, it can exert anti-pylori activity in cooperation with antibiotics. It can also be applied to antibiotic-resistant H. pylori.

(4)本実施形態の有機化合物のなかでも、特定の理化学的性質を示す上記有機化合物1及び有機化合物2は、入手容易性の観点において優れている。
(5)上記有機化合物1及び有機化合物2は、緑藻網オオヒゲマワリ目のデュナリエラ属に属する微細網の藻体に含まれる天然成分であることから、抗ピロリ菌剤として用いた場合に耐性菌株を生み出し難いという利点がある。また、天然成分であることから、副作用が少なく、生体に対してより安全に適用することができる。
(4) Among the organic compounds of the present embodiment, the organic compound 1 and the organic compound 2 exhibiting specific physicochemical properties are excellent in terms of availability.
(5) Since the organic compound 1 and the organic compound 2 are natural components contained in the fine net algae belonging to the genus Dunaliella belonging to the order of the green alga net of the bearded sunflower, a resistant strain is produced when used as an anti-pylori agent. There is an advantage that it is difficult. Moreover, since it is a natural component, there are few side effects and it can apply more safely with respect to a biological body.

次に、実施例を挙げて前記実施形態をさらに具体的に説明する。
<抽出工程>
外観が赤色を呈するデュナリエラ・サリーナ(Dunaliella salina)の乾燥粉末(120g)に酢酸エチル(1L)を添加して一日、氷冷状態で浸漬させた後、上清を採取した。また、沈殿物に対して、酢酸エチル(600mL)を添加して30分間浸漬させた後、上清を採取した。そして、この沈殿物に対する再抽出操作を合計4回繰り返した。得られた全ての上清をコットンフィルタにてろ過するとともに、そのろ液を濃縮することにより、固形状の抽出物(乾燥重量9.30g)を得た。この抽出物を酢酸エチル(200mL)に溶解させることによりデュナリエラ・サリーナ抽出液を調整した。
Next, the embodiment will be described more specifically with reference to examples.
<Extraction process>
Ethyl acetate (1 L) was added to a dry powder (120 g) of Dunaliella salina having a red appearance and immersed in an ice-cooled state for one day, and then the supernatant was collected. Further, ethyl acetate (600 mL) was added to the precipitate and immersed for 30 minutes, and then the supernatant was collected. And the re-extraction operation with respect to this deposit was repeated 4 times in total. All the obtained supernatants were filtered with a cotton filter, and the filtrate was concentrated to obtain a solid extract (dry weight 9.30 g). This extract was dissolved in ethyl acetate (200 mL) to prepare a Dunaliella salina extract.

<単離工程>
[1.シリカゲルオープンカラムによる分画]
100%ヘキサンにて活性化させたシリカゲルカラム(40mmI.D.×350mm)に、上記デュナリエラ・サリーナ抽出液(4.65g(藻体60g当量))をアプライした。そして、44Lのヘキサン・酢酸エチル混合溶液(9:1)を用いて溶出処理を行った後、さらに44Lのヘキサン・酢酸エチル混合溶媒(7:3)を用いて溶出処理を行った。ヘキサン・酢酸エチル混合溶媒(7:3)による溶出処理にて得られた画分を回収し、これを減圧濃縮することにより第1中間精製物(0.89g)を得た。
<Isolation process>
[1. Fractionation using silica gel open column]
The above-mentioned Dunaliella salina extract (4.65 g (algae 60 g equivalent)) was applied to a silica gel column (40 mm ID × 350 mm) activated with 100% hexane. Then, after elution treatment was performed using 44 L of a hexane / ethyl acetate mixed solution (9: 1), further elution treatment was performed using a 44 L hexane / ethyl acetate mixed solvent (7: 3). The fraction obtained by the elution treatment with hexane / ethyl acetate mixed solvent (7: 3) was collected and concentrated under reduced pressure to obtain a first intermediate purified product (0.89 g).

[2.ODSオープンカラムによる分画]
100%メタノールを用いてODSオープンカラム(30mmI.D.×130mm)を活性化させた後、100mLの70%メタノール水溶液、及び100mLの50%メタノール水溶液を用いてカラム内の溶媒を順次置換した。その後、第1中間精製物(0.73g(藻体50g当量))を50%メタノール水溶液に溶解させたものを上記ODSオープンカラムにアプライした。そして、920mLの50%メタノール水溶液を用いて溶出処理を行った後、さらに920mLの70%メタノール水溶液を用いて溶出処理を行った。70%メタノール水溶液による溶出処理にて得られた画分を回収し、これを減圧濃縮することにより第2中間精製物を得た。
[2. Fractionation with ODS open column]
After activating the ODS open column (30 mm ID × 130 mm) using 100% methanol, the solvent in the column was sequentially replaced with 100 mL of 70% aqueous methanol solution and 100 mL of 50% aqueous methanol solution. Thereafter, the first intermediate purified product (0.73 g (50 g equivalent of algal cells)) dissolved in a 50% aqueous methanol solution was applied to the ODS open column. And after performing the elution process using 920 mL of 50% methanol aqueous solution, the elution process was further performed using 920 mL of 70% methanol aqueous solution. The fraction obtained by elution treatment with 70% aqueous methanol was collected and concentrated under reduced pressure to obtain a second intermediate purified product.

[3.HPLCによる分画]
逆相高速液体クロマトグラフィを用いて第2中間精製物の精製を行った。この精製においては、保持時間20〜22分に現れるピークにて確認される画分、及び保持時間22〜24分に現れるピークにて確認される画分をそれぞれ回収した。このときのHPLCチャートを図1に示す。そして、保持時間20〜22分に現れるピークにて確認される画分を濃縮乾固することにより、目的の化合物(実施例1)を得た。また、保持時間22〜24分に現れるピークにて確認される画分を濃縮乾固することにより、目的の化合物(実施例2)を得た。なお、HPLCの処理条件は以下のとおりである。
[3. Fractionation by HPLC]
The second intermediate purified product was purified using reverse phase high performance liquid chromatography. In this purification, a fraction confirmed at a peak appearing at a retention time of 20 to 22 minutes and a fraction confirmed at a peak appearing at a retention time of 22 to 24 minutes were collected. The HPLC chart at this time is shown in FIG. And the target compound (Example 1) was obtained by concentrating and drying the fraction confirmed by the peak which appears in the retention time 20-22 minutes. Moreover, the target compound (Example 2) was obtained by concentrating and drying the fraction confirmed by the peak which appears in 22-24 minutes of retention time. The HPLC processing conditions are as follows.

column:COSMOSIL 5C18−MS−II(10mmI.D.×250mm)
column temperature:30℃
Flow rate:3.0mL/min
Solvent:65%メタノール/水
wavelength:254nm
<実施例1の構造解析>
[1.吸光スペクトル分析]
分光光度計を用いて、デュナリエラ・サリーナより単離した実施例1を、濃度40μm/mLとなるように70%メタノール水溶液に溶解させて試験液を調製した。そして、この試験液について波長200〜400nmにおける吸光スペクトルを測定した。その結果を図2に示す。吸光スペクトル分析の結果から、実施例1は231nmに極大吸収をもつことが示された。
column: COSMOSIL 5C 18 -MS-II (. 10mmI.D × 250mm)
column temperature: 30 ° C.
Flow rate: 3.0 mL / min
Solvent: 65% methanol / water wavelength: 254 nm
<Structural analysis of Example 1>
[1. Absorption spectrum analysis]
Using a spectrophotometer, Example 1 isolated from Dunaliella Salina was dissolved in a 70% aqueous methanol solution to a concentration of 40 μm / mL to prepare a test solution. And the absorption spectrum in wavelength 200-400nm was measured about this test liquid. The result is shown in FIG. From the results of the absorption spectrum analysis, it was shown that Example 1 has a maximum absorption at 231 nm.

[2.TOF−MS分析]
実施例1の分子量を特定するためにTOF−MS分析を行った。その結果を図3に示す。ポジティブモードにてm/z361[M+H]に分子量ピークが認められたことから、実施例1の分子量は360であると考えられる。なお、TOF−MS分析の条件は以下のとおりである。
[2. TOF-MS analysis]
TOF-MS analysis was performed to identify the molecular weight of Example 1. The result is shown in FIG. Since a molecular weight peak was observed at m / z 361 [M + H] + in the positive mode, the molecular weight of Example 1 is considered to be 360. The conditions for TOF-MS analysis are as follows.

分析方法:インフュージョン分析
試料濃度:1ppm(70%MeOH/HO)
Flow rate:10μL/min
Solvent:70%MeOH/H
Ionization interface:ESI
Mode:positive ion mode
Capillary voltage:20V
Capillary temperature:250℃
[3.NMR分析]
実施例1の分子構造を特定するためにNMR分析を行った。所定量の実施例1を分取し、これを重水素置換メタノールに溶解させて水素を置換した。その後、デシケータ内にて完全に乾燥させた後、クロロホルムに溶解させて各種NMR分析(13C−NMR、DEPT135、DEPT90、H−NMR、HMQC、HMBC、HH−COSY)を行った。各NMR分析において得られたNMRスペクトルを図4〜10に示すとともに、13C−NMR及びH−NMRスペクトルのケミカルシフト値(ppm)を表1及び2に示す。なお、NMR分析の条件は以下のとおりである。
Analysis method: infusion analysis Sample concentration: 1 ppm (70% MeOH / H 2 O)
Flow rate: 10 μL / min
Solvent: 70% MeOH / H 2 O
Ionization interface: ESI
Mode: positive ion mode
Capillary voltage: 20V
Capillary temperature: 250 ° C
[3. NMR analysis]
NMR analysis was performed to identify the molecular structure of Example 1. A predetermined amount of Example 1 was collected and dissolved in deuterium-substituted methanol to replace hydrogen. Then, after completely dried in a desiccator, dissolved in chloroform various NMR analysis (13 C-NMR, DEPT135, DEPT90, 1 H-NMR, HMQC, HMBC, HH-COSY) was performed. The NMR spectra obtained in each NMR analysis are shown in FIGS. 4 to 10, and the chemical shift values (ppm) of 13 C-NMR and 1 H-NMR spectra are shown in Tables 1 and 2. The conditions for NMR analysis are as follows.

13C−NMR:125MHz
H−NMR:500MHz
基準物質:テトラメチルシラン(TMS)
13 C-NMR: 125 MHz
1 H-NMR: 500 MHz
Reference material: Tetramethylsilane (TMS)

13C−NMR、DEPT90、及びDEPT135の結果から、18種の炭素ピークが認められ、CHを5個、CHを3個、CHを5個、Cを5個有することが示された。また、ケミカルシフトから酸素と結合した炭素が7個あり、そのうち1個は197.4ppmのシグナルを有することから共役したケトン基であると考えられる。そして、二重結合性の炭素のシグナルが2本存在し、二重結合が一つ存在すると考えられる。一方、H−NMR及びHMQCの分析結果から、各炭素に対応する水素ピークが示された。とくに、二重結合性の炭素に対応する水素ピークのカップリング定数(J=16.0Hz)からトランス型の二重結合が存在することが示された。 From the results of 13 C-NMR, DEPT90, and DEPT135, 18 types of carbon peaks were observed, indicating that 5 CH 3 , 3 CH 2 , 5 CH, and 5 C were present. Further, from chemical shift, there are seven carbons bonded to oxygen, and one of them has a signal of 197.4 ppm, so that it is considered to be a conjugated ketone group. And it is thought that there are two double bond carbon signals and one double bond. On the other hand, from the analysis results of 1 H-NMR and HMQC, hydrogen peaks corresponding to each carbon were shown. In particular, it was shown from the coupling constant (J = 16.0 Hz) of the hydrogen peak corresponding to double bond carbon that a trans type double bond exists.

上記のNMR分析の結果より導き出される実施例1の組成式はC1826(分子量354)となる。しかし、この分子量はTOF−MS分析の結果(m/z=360)より6低いことから、6個の酸素に水素が結合していると考えられる。したがって、TOF−MS分析とNMR分析の結果から、実施例1の組成式はC1832と決定した。 The composition formula of Example 1 derived from the results of the above NMR analysis is C 18 H 26 O 7 (molecular weight 354). However, since this molecular weight is 6 lower than the result of TOF-MS analysis (m / z = 360), it is considered that hydrogen is bonded to 6 oxygens. Therefore, the composition formula of Example 1 was determined as C 18 H 32 O 7 from the results of TOF-MS analysis and NMR analysis.

また、HMBC及びHH−COSYの結果から、実施例1は下記一般式(2)、(3)に示す部分構造を有することが示唆される。   Further, the results of HMBC and HH-COSY suggest that Example 1 has a partial structure represented by the following general formulas (2) and (3).

さらに、HH−COSYの結果を見ると、H3とH4、H2−a、及びH2−b間のカップリングが認められ、H3はマルチプレットであることから、H3の結合する炭素の両隣に水素と結合した炭素が結合していると考えられる。また、H7とH8間のカップリングが認められ、H7はダブレットであることから、H7の結合する炭素は4級炭素と結合していると考えられる。以上の結果から、実施例1は下記一般式(1)に示す構造を有する有機化合物((E)−8−(1,2−dihydroxy−2,6,6−trimethylcyclohexyl)−5,6,7,8−tetrahydroxy−6−methyloct−3−en−2−one)であると構造決定した。 Further, in the result of HH-COSY, coupling between H3 and H4, H2-a, and H2-b is recognized, and H3 is a multiplet. The bonded carbon is considered to be bonded. Further, since coupling between H7 and H8 is observed and H7 is a doublet, it is considered that the carbon to which H7 is bonded is bonded to a quaternary carbon. From the above results, Example 1 is an organic compound ((E) -8- (1,2-dihydroxy-2,6,6-trimethylcyclohexyl) -5,6,7 having the structure represented by the following general formula (1). , 8-tetrahydroxy-6-methyl-3-en-2-one).

<実施例2の構造解析>
[1.吸光スペクトル分析]
分光光度計を用いて、デュナリエラ・サリーナより単離した実施例2を、濃度80μm/mLとなるように70%メタノール水溶液に溶解させて試験液を調製した。そして、この試験液について波長200〜400nmにおける吸光スペクトルを測定した。その結果を図11に示す。吸光スペクトル分析の結果から、実施例1は232nmに極大吸収をもつことが示された。
<Structural analysis of Example 2>
[1. Absorption spectrum analysis]
Using a spectrophotometer, Example 2 isolated from Dunaliella Salina was dissolved in a 70% aqueous methanol solution to a concentration of 80 μm / mL to prepare a test solution. And the absorption spectrum in wavelength 200-400nm was measured about this test liquid. The result is shown in FIG. As a result of the absorption spectrum analysis, it was shown that Example 1 has a maximum absorption at 232 nm.

[2.TOF−MS分析]
実施例2の分子量を特定するためにTOF−MS分析を行った。その結果を図12に示す。ポジティブモードにてm/z361[M+H]に分子量ピークが認められたことから、実施例2の分子量は360であると考えられる。なお、TOF−MS分析の条件は上記と同様である。
[2. TOF-MS analysis]
TOF-MS analysis was performed to identify the molecular weight of Example 2. The result is shown in FIG. Since a molecular weight peak was observed at m / z 361 [M + H] + in the positive mode, the molecular weight of Example 2 is considered to be 360. The conditions for TOF-MS analysis are the same as above.

[3.NMR分析]
実施例2の分子構造を特定するためにNMR分析を行った。所定量の実施例2を分取し、これを重水素置換メタノールに溶解させて水素を置換した。その後、デシケータ内にて完全に乾燥させた後、クロロホルムに溶解させて各種NMR分析(13C−NMR、DEPT135、DEPT90、H−NMR、HMQC、HMBC、HH−COSY)を行った。各NMR分析において得られたNMRスペクトルを図13〜19に示すとともに、13C−NMR及びH−NMRスペクトルのケミカルシフト値(ppm)を表3及び4に示す。
[3. NMR analysis]
NMR analysis was performed to identify the molecular structure of Example 2. A predetermined amount of Example 2 was collected and dissolved in deuterium-substituted methanol to replace hydrogen. Then, after completely dried in a desiccator, dissolved in chloroform various NMR analysis (13 C-NMR, DEPT135, DEPT90, 1 H-NMR, HMQC, HMBC, HH-COSY) was performed. The NMR spectra obtained in each NMR analysis are shown in FIGS. 13 to 19, and the chemical shift values (ppm) of 13 C-NMR and 1 H-NMR spectra are shown in Tables 3 and 4.

13C−NMR、DEPT90、及びDEPT135の結果、並びにH−NMR、HMQC、HMBC、及びHH−COSYの結果から、実施例1と同様に実施例2の構造解析を行った。その結果、実施例2も上記一般式(1)に示す構造を有する化合物((E)−8−(1,2−dihydroxy−2,6,6−trimethylcyclohexyl)−5,6,7,8−tetrahydroxy−6−methyloct−3−en−2−one)であると構造決定した。 From the results of 13 C-NMR, DEPT90, and DEPT135, and the results of 1 H-NMR, HMQC, HMBC, and HH-COSY, the structural analysis of Example 2 was performed in the same manner as in Example 1. As a result, the compound ((E) -8- (1,2-dihydroxy-2,6,6-trimethylcyclohexyl) -5,6,7,8- having a structure represented by the general formula (1) was also obtained in Example 2. The structure was determined to be tetrahydroxy-6-methyl-3-en-2-one).

なお、実施例1及び実施例2のNMR分析の結果は非常に類似しているものの、同じではなかった。この結果から、実施例1と実施例2とは互いに立体異性体の関係であると考えられる。そこで、実施例1及び実施例2の13C−NMRスペクトルのケミカルシフト値(ppm)を比較した。その結果を表5に示す。 In addition, although the result of the NMR analysis of Example 1 and Example 2 was very similar, it was not the same. From this result, Example 1 and Example 2 are considered to have a stereoisomeric relationship with each other. Therefore, the chemical shift values (ppm) of the 13 C-NMR spectra of Example 1 and Example 2 were compared. The results are shown in Table 5.

表5に示すように、実施例2においては実施例1と比較して、C6及びC10がそれぞれ1.3ppm、0.9ppm高磁場へ、C8及びC9がそれぞれ2.6ppm、1.6ppm低磁場へシフトしている。この結果から、実施例1と実施例2とは、C6、C8、C9、及びC10付近の不斉炭素の立体構造が異なっていると考えられる。 As shown in Table 5, in Example 2, compared with Example 1, C6 and C10 are 1.3 ppm and 0.9 ppm high magnetic fields, respectively, and C8 and C9 are 2.6 ppm and 1.6 ppm low magnetic fields, respectively. Has shifted to. From these results, it is considered that Example 1 and Example 2 differ in the steric structure of the asymmetric carbon around C6, C8, C9, and C10.

<抗ピロリ菌活性の評価>
実施例1及び実施例2によるピロリ菌の増殖抑制効果(抗ピロリ菌活性)をディスク拡散法により評価した。ブルセラ寒天培地にて2日間微好気培養したピロリ菌をブルセラ液体培地に混和して、波長600nmで吸光度0.6を示す懸濁液を調製した。また、直径6mmのディスク(Whatman製Antibiotic AssayDiscs)に試料(実施例1、実施例2、又は実施例1と実施例2との質量比1:1の混合物)の溶液を染み込ませ、これを減圧乾燥させることにより、試料(乾燥質量9μg)を含むディスクを作成した。
<Evaluation of anti-pylori activity>
The growth inhibitory effect (anti-H. Pylori activity) of H. pylori according to Example 1 and Example 2 was evaluated by the disk diffusion method. Helicobacter pylori cultivated on a Brucella agar medium for 2 days in microaerobic culture was mixed with a Brucella liquid medium to prepare a suspension having an absorbance of 0.6 at a wavelength of 600 nm. In addition, a 6 mm diameter disc (Whatman Antibiotic Discs manufactured by Whatman) is soaked with a solution of a sample (Example 1, Example 2, or a mixture of Example 1 and Example 2 in a mass ratio of 1: 1), and the pressure is reduced. By drying, a disk containing the sample (dry mass 9 μg) was prepared.

そして、ブルセラ寒天培地に上記懸濁液を塗布するとともに、そのブルセラ寒天培地上に上記試料を含むディスクを置いた。3日間の微好気培養(37℃、10%CO)の後、ブルセラ寒天培地に形成された阻止円の直径を定規にて測定し、この阻止円の直径に基づいて実施例1及び実施例2によるピロリ菌の増殖抑制効果を評価した。なお、本評価試験はKYU1(NCTC11637株(米国)を高知大学医学部でスナネズミ感染を繰り返し分離した高度胃内感染定着株、抗生物質感受性株)、TK1402(日本、メトロニダゾール耐性株)、及びNY31(日本、クラリスロマイシン耐性株)の異なるピロリ菌3菌株についてそれぞれ行った。その結果を表6に示す。 Then, the suspension was applied to a Brucella agar medium, and a disk containing the sample was placed on the Brucella agar medium. After 3 days of microaerobic culture (37 ° C., 10% CO 2 ), the diameter of the inhibition circle formed on the Brucella agar medium was measured with a ruler, and Example 1 and the implementation were carried out based on the diameter of this inhibition circle. The growth inhibitory effect of Helicobacter pylori according to Example 2 was evaluated. In this evaluation test, KYU1 (NCTC11637 strain (US), highly gastric infection colony strain, antibiotic-sensitive strain obtained by repeatedly isolating gerbil infection at Kochi University School of Medicine), TK1402 (Japan, metronidazole resistant strain), and NY31 (Japan) 3 strains of Helicobacter pylori different from each other. The results are shown in Table 6.

表6に示すように、ピロリ菌3菌株に対して、実施例1では12〜18mm、実施例2では11〜14mm、実施例1と実施例2の混合物では12〜16mmの阻止円の形成を確認することができた。この結果から、実施例1及び実施例2は共に薬剤耐性のないピロリ菌だけでなく、薬剤耐性を有するピロリ菌に対しても同様の増殖抑制効果を発揮することが示された。なお、互いに異性体の関係にある実施例1及び2が略同等の抗ピロリ菌活性を有することから、上記一般式(1)で示される他の異性体においても、抗ピロリ菌活性を有することが推認される。 As shown in Table 6, for 3 strains of Helicobacter pylori, formation of inhibition circles of 12 to 18 mm in Example 1, 11 to 14 mm in Example 2, and 12 to 16 mm in the mixture of Examples 1 and 2 was achieved. I was able to confirm. From this result, it was shown that both Example 1 and Example 2 exhibited the same growth inhibitory effect not only against H. pylori that has no drug resistance but also against H. pylori that has drug resistance. In addition, since Examples 1 and 2 which are in an isomer relationship with each other have substantially the same anti-pylori activity, the other isomers represented by the above general formula (1) also have anti-pylori activity. Is inferred.

<抗生物質との比較試験>
臨床で用いられている抗生物質であるアモキシシリン(AMPC)、クラリスロマイシン(CAM)、及びメトロニダゾール(MNZ)の抗ピロリ菌活性を評価し、実施例1及び実施例2との抗ピロリ菌活性の比較を行った。本試験においても、ディスク拡散法によりピロリ菌の増殖抑制効果を評価したが、ここではディスクに含ませる試料の量を変化させて11〜18mmの阻止円を形成するために必要な試料の量(乾燥質量)を求めた。その結果を表7に示す。
<Comparison test with antibiotics>
Anti-H. Pylori activity of amoxicillin (AMPC), clarithromycin (CAM), and metronidazole (MNZ), which are antibiotics used in clinical practice, was evaluated. A comparison was made. In this test, the effect of inhibiting the growth of Helicobacter pylori was also evaluated by the disk diffusion method. Here, the amount of the sample necessary for forming a blocking circle of 11 to 18 mm by changing the amount of the sample included in the disk ( Dry mass) was determined. The results are shown in Table 7.

上記抗ピロリ菌活性の評価の結果から、実施例1及び実施例2の場合には、11〜18mmの阻止円を形成するために必要な試料の量は約9μgであった。これに対して、表7に示すように、アモキシリンの場合には、同様の阻止円を形成するために必要な試料の量は0.01〜0.012μgであり、3オーダー程度低い濃度で各実施例と同様の抗ピロリ菌活性を発揮することが示された。クラリスロマイシンの場合には、同様の阻止円を形成するために試料の量は0.005〜0.03μgであり、3オーダー程度低い濃度で各実施例と同様の抗ピロリ菌活性を発揮することが示された。メトロニダゾールの場合には、同様の阻止円を形成するために必要な試料の量は4〜100μgであり、各実施例と同程度、又は各実施例よりも1オーダー程度高い濃度で各実施例と同様の抗ピロリ菌活性を発揮することが示された。これらの結果から、実施例1及び実施例2は、メトロニダゾールと同程度、又はそれ以上の抗ピロリ菌活性を有することが分かる。 From the results of the evaluation of the above anti-pylori activity, in the case of Example 1 and Example 2, the amount of the sample necessary for forming a blocking circle of 11 to 18 mm was about 9 μg. On the other hand, as shown in Table 7, in the case of amoxiline, the amount of the sample necessary for forming the same inhibition circle is 0.01 to 0.012 μg, and each concentration is about 3 orders of magnitude lower. It was shown to exhibit the same anti-pylori activity as in the examples. In the case of clarithromycin, the amount of the sample is 0.005 to 0.03 μg in order to form a similar inhibition circle, and exhibits the same anti-H. Pylori activity at a concentration as low as about 3 orders of magnitude. It was shown that. In the case of metronidazole, the amount of sample required to form a similar inhibition circle is 4 to 100 μg, which is the same as that of each example or about one order higher than each example. It was shown to exert similar anti-H. Pylori activity. From these results, it can be seen that Example 1 and Example 2 have anti-H. Pylori activity comparable to or higher than metronidazole.

<抗生物質との併用試験>
実施例1及び実施例2と各抗生物質とを併用した場合におけるピロリ菌の増殖抑制効果をディスク拡散法により評価した。本試験では、9μg(乾燥質量)の実施例1又は実施例2を含むディスクに対して、上記試験にて11〜18mmの阻止円の形成が認められた含量(上記表7に示した量)で各抗生物質をさらに含ませるように処理したディスクを使用して試験を行った。また、比較対照として、実施例1、実施例2、及び各抗生物質を単独で含ませたディスクを用いて同様の試験を行った。その結果を表8に示す。
<Combination test with antibiotics>
The growth inhibitory effect of Helicobacter pylori when Example 1 and Example 2 and each antibiotic were used in combination was evaluated by the disk diffusion method. In this test, the content in which formation of a blocking circle of 11 to 18 mm was observed in the above test on the disk containing 9 μg (dry mass) of Example 1 or Example 2 (amount shown in Table 7 above). Tests were performed using discs that were treated to further contain each antibiotic. Moreover, the same test was done using Example 1 and Example 2, and the disk which contained each antibiotic independently as a comparison control. The results are shown in Table 8.

表8に示すように、菌株KYU1に対して、実施例1、実施例2、及び各抗生物質単独の場合には14〜17mmの阻止円の形成が確認された。一方、実施例1又は実施例2と各抗生物質とを併用した場合には、単独の場合よりも大きい15〜25mmの阻止円の形成が確認された。また、菌株TK1402及び菌株NY31に対しても同様に、実施例1又は実施例2と各抗生物質とを併用した場合には、単独の場合よりも大きい阻止円の形成が確認された。これらの結果から、実施例1及び実施例2は抗生物質の抗ピロリ菌活性を阻害することなく、抗生物質と協調して抗ピロリ菌活性を発揮することが分かる。 As shown in Table 8, formation of a blocking circle of 14 to 17 mm was confirmed in the case of Example 1, Example 2, and each antibiotic alone against the strain KYU1. On the other hand, when Example 1 or Example 2 and each antibiotic were used in combination, formation of a blocking circle of 15 to 25 mm larger than that of the single antibiotic was confirmed. Similarly, when Example 1 or Example 2 and each antibiotic were used in combination with the strain TK1402 and the strain NY31, formation of a larger inhibition circle was confirmed as compared with the case of using alone. From these results, it can be seen that Example 1 and Example 2 exhibit anti-H. Pylori activity in cooperation with antibiotics without inhibiting the anti-H. Pylori activity of antibiotics.

Claims (5)

下記一般式(1):
で示されることを特徴とする有機化合物。
The following general formula (1):
An organic compound characterized by the following:
下記理化学的性質:
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.5(CH,C−2),19.5(CH,C−3),31.9(CH,C−4),79.1(C,C−5),65.5(C,C−6),52.9(CH,C−7),77.4(CH,C−8),63.4(C,C−9),59.2(CH,C−10),134.1(CH,C−11),140.8(CH,C−12),197.4(C,C−13),27.4(CH,C−14),24.6(CH,C−15),25.3(CH,C−16),23.9(CH,C−17),14.6(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.40(1H,dd,J=25.0Hz,J=12.5Hz,H−2a),1.53(1H,ddd,J=12.5Hz,J=12.5Hz,J=5.5Hz,H−2b),1.71(2H,m,H−3),1.42(2H,m,H−4),3.50(1H,d,J=3.5Hz,H−7),4.19(1H,d,J=3.5Hz,H−8),3.92(1H,d,J=6.0Hz,H−10),6.39(1H,d,J=16.0Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.27(3H,s,H−14),1.15(3H,s,H−15),0.80(3H,s,H−16),1.63(3H,s,H−17),1.46(3H,s,H−18)
を有することを特徴とする請求項1に記載の有機化合物。
The following physicochemical properties:
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.5 (CH 2 , C-2), 19.5 (CH 2 , C-3), 31.9 (CH 2, C-4 ), 79.1 (C, C-5), 65.5 (C, C-6), 52.9 (CH, C-7), 77.4 (CH , C-8), 63.4 (C, C-9), 59.2 (CH, C-10), 134.1 (CH, C-11), 140.8 (CH, C-12), 197.4 (C, C-13) , 27.4 (CH 3, C-14), 24.6 (CH 3, C-15), 25.3 (CH 3, C-16), 23.9 (CH 3, C-17) , 14.6 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.40 (1H, dd, J = 25.0 Hz, J = 12.5 Hz, H-2a), 1.53 (1H, ddd, J = 12.5 Hz, J = 12.5 Hz, J = 5.5 Hz, H-2b), 1.71 (2H, m, H-3), 1.42 (2H, m, H-4), 3.50 (1H, d, J = 3.5 Hz, H-7), 4.19 (1H, d, J = 3.5 Hz, H-8), 3.92 (1H, d, J = 6.0 Hz, H -10), 6.39 (1H, d, J = 16.0 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2. 27 (3H, s, H-14), 1.15 (3H, s, H-15), 0.80 (3H, s, H-16), 1.63 (3H, s, H-17), 1.4 (3H, s, H-18)
The organic compound according to claim 1, wherein
下記理化学的性質:
13C−NMR(125MHz/CDCl)δ(ppm):34.1(C,C−1),37.6(CH,C−2),19.6(CH,C−3),32.0(CH,C−4),79.5(C,C−5),64.2(C,C−6),52.8(CH,C−7),80.0(CH,C−8),65.0(C,C−9),58.3(CH,C−10),134.3(CH,C−11),140.5(CH,C−12),197.4(C,C−13),27.6(CH,C−14),24.6(CH,C−15),25.5(CH,C−16),23.9(CH,C−17),15.0(CH,C−18)
H−NMR(500MHz/CDCl)δ(ppm):1.39(1H,dt,J=13.0Hz,J=3.5Hz,H−2a),1.55(1H,dd,J=13.0Hz,J=5.5Hz,H−2b),1.73(2H,m,H−3),1.27(1H,dd,J=11.0Hz,J=5.5Hz,H−4a),1.46(1H,dd,J=11.0Hz,J=7.5Hz,H−4b),3.44(1H,d,J=4.0Hz,H−7),4.04(1H,d,J=3.5Hz,H−8),3.89(1H,dd,J=6.5Hz,J=1.5Hz,H−10),6.40(1H,dd,J=16.0Hz,J=1.5Hz,H−11),6.71(1H,dd,J=16.0Hz,J=6.0Hz,H−12),2.29(3H,s,H−14),1.16(3H,s,H−15),0.73(3H,s,H−16),1.65(3H,s,H−17),1.51(3H,s,H−18)
を有することを特徴とする請求項1に記載の有機化合物。
The following physicochemical properties:
13 C-NMR (125 MHz / CDCl 3 ) δ (ppm): 34.1 (C, C-1), 37.6 (CH 2 , C-2), 19.6 (CH 2 , C-3), 32.0 (CH 2, C-4 ), 79.5 (C, C-5), 64.2 (C, C-6), 52.8 (CH, C-7), 80.0 (CH , C-8), 65.0 (C, C-9), 58.3 (CH, C-10), 134.3 (CH, C-11), 140.5 (CH, C-12), 197.4 (C, C-13) , 27.6 (CH 3, C-14), 24.6 (CH 3, C-15), 25.5 (CH 3, C-16), 23.9 (CH 3, C-17) , 15.0 (CH 3, C-18)
1 H-NMR (500 MHz / CDCl 3 ) δ (ppm): 1.39 (1H, dt, J = 13.0 Hz, J = 3.5 Hz, H-2a), 1.55 (1H, dd, J = 13.0 Hz, J = 5.5 Hz, H-2b), 1.73 (2H, m, H-3), 1.27 (1H, dd, J = 11.0 Hz, J = 5.5 Hz, H− 4a), 1.46 (1H, dd, J = 11.0 Hz, J = 7.5 Hz, H-4b), 3.44 (1H, d, J = 4.0 Hz, H-7), 4.04. (1H, d, J = 3.5 Hz, H-8), 3.89 (1H, dd, J = 6.5 Hz, J = 1.5 Hz, H-10), 6.40 (1H, dd, J = 16.0 Hz, J = 1.5 Hz, H-11), 6.71 (1H, dd, J = 16.0 Hz, J = 6.0 Hz, H-12), 2.29 (3H s, H-14), 1.16 (3H, s, H-15), 0.73 (3H, s, H-16), 1.65 (3H, s, H-17), 1.51 ( 3H, s, H-18)
The organic compound according to claim 1, wherein
請求項1〜請求項3のいずれか一項に記載の有機化合物を有効成分として含有することを特徴とする抗ピロリ菌剤。   An anti-pylori agent comprising the organic compound according to any one of claims 1 to 3 as an active ingredient. 下記一般式(1):
で示されることを特徴とする有機化合物の製造方法であって、
水、親水性有機溶媒、又は水と親水性有機溶媒との混合溶媒を用いて、緑藻網オオヒゲマワリ目のデュナリエラ属に属する微細網の藻体から前記有機化合物を含む抽出物を抽出する抽出工程と、
前記抽出物から前記有機化合物を単離する単離工程とを有することを特徴とする有機化合物の製造方法。
The following general formula (1):
A method for producing an organic compound, characterized in that
An extraction step of extracting an extract containing the organic compound from the fine net algae belonging to the genus Dunaliella belonging to the genus Dunaliella, using water, a hydrophilic organic solvent, or a mixed solvent of water and a hydrophilic organic solvent; ,
An isolation step of isolating the organic compound from the extract.
JP2011082248A 2011-04-01 2011-04-01 Organic compound, method for producing organic compound, and anti-pylori agent Active JP5574495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082248A JP5574495B2 (en) 2011-04-01 2011-04-01 Organic compound, method for producing organic compound, and anti-pylori agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082248A JP5574495B2 (en) 2011-04-01 2011-04-01 Organic compound, method for producing organic compound, and anti-pylori agent

Publications (2)

Publication Number Publication Date
JP2012214426A true JP2012214426A (en) 2012-11-08
JP5574495B2 JP5574495B2 (en) 2014-08-20

Family

ID=47267631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082248A Active JP5574495B2 (en) 2011-04-01 2011-04-01 Organic compound, method for producing organic compound, and anti-pylori agent

Country Status (1)

Country Link
JP (1) JP5574495B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217384A (en) * 2006-02-20 2007-08-30 Kochi Univ Anti-helicobacter pylori composition, and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217384A (en) * 2006-02-20 2007-08-30 Kochi Univ Anti-helicobacter pylori composition, and method for producing the same

Also Published As

Publication number Publication date
JP5574495B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US20200230098A1 (en) Improved process for producing fucoxanthin and/or polysaccharides from microalgae
Xu et al. Jasmonoid glucosides, sesquiterpenes and coumarins from the fruit of Clausena lansium
El-Aasr et al. Antimicrobial and Immunomodulatory Activities of Flavonol Glycosides Isolated From Atriplex halimus L. Herb.
Fraga et al. Bioactive compounds from transformed root cultures and aerial parts of Bethencourtia hermosae
KR101745338B1 (en) Composition for preventing and treating inflammatory diseases comprising Sagassum serratifolium extract
Rajendran et al. Antibacterial eremophilane sesquiterpenoids from Xylaria feejeensis, an endophytic fungi of the medicinal plant Geophila repens
KR100729437B1 (en) The extracts of corylopsis coreana and tellimagrandin i isolated from same having antifungal activity
KR20120074498A (en) Composition for improving allergy disease using an extract of sargassum muticum or the effective compound isolated from the extract
JP5574495B2 (en) Organic compound, method for producing organic compound, and anti-pylori agent
JP4852353B2 (en) Novel cinnamic acid derivative, process for producing the same and propolis fermented product
CN115806881A (en) Penicillium fungus and application thereof in preparation of antibacterial drugs
JP4436055B2 (en) Antibacterial agent
JP6049719B2 (en) Pimalang diterpene derived from ANISOCHILUSVERTICILLATUS
KR101850752B1 (en) Composition for preventing and treating inflammatory diseases comprising Sagassum serratifolium extract
Hlengwa Isolation and characterisation of bioactive compounds from Antidesma venosum E. Mey. ex Tul. and Euphorbia cooperi NE Br. ex A. Berger
JP5557045B2 (en) Isoprenoid compound, method for producing the same, and antioxidant
CN105418725B (en) Pentacyclic triterpenoid and its application
Fatope et al. ent‐Kaurene Diterpenoids from Blepharispermum hirtum
TWI526422B (en) Entadamides for cytotoxicity in cancer cells and the preparation method therefor
KR101470613B1 (en) Composition comprising latifolin for preventing or treating inflammatory diseases
KR20130057145A (en) Composition having physiological activity comprising aster yomena extract
JP2007051099A (en) New polyphenol compound
CN117999084A (en) An antibacterial and antioxidant composition containing grape callus culture solution as effective component
Ita et al. Novel Compounds from Homalium letestui (Flacourtiaceae)
Chandraraj et al. Bioassay-guided isolation and identification of compound from Sargassum ilicifolium and investigation of antimicrobial activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5574495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250