JP2012213675A - Method of determining addition amount of coagulant and water treatment apparatus - Google Patents
Method of determining addition amount of coagulant and water treatment apparatus Download PDFInfo
- Publication number
- JP2012213675A JP2012213675A JP2011079007A JP2011079007A JP2012213675A JP 2012213675 A JP2012213675 A JP 2012213675A JP 2011079007 A JP2011079007 A JP 2011079007A JP 2011079007 A JP2011079007 A JP 2011079007A JP 2012213675 A JP2012213675 A JP 2012213675A
- Authority
- JP
- Japan
- Prior art keywords
- water
- concentration
- treatment
- membrane
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、凝集剤の添加量決定方法及び水処理装置に係り、詳しくは水溶性有機物が含まれる工業排水、河川水、湖沼水等の被処理水に添加する凝集剤の添加量の決定方法及びこのような方法を使用して水溶性有機物を凝集処理する水処理装置に関する。 The present invention relates to a method for determining the addition amount of a flocculant and a water treatment apparatus, and more specifically, a method for determining the addition amount of a flocculant added to water to be treated such as industrial wastewater, river water, lake water, etc. containing water-soluble organic matter. The present invention also relates to a water treatment apparatus for aggregating water-soluble organic substances using such a method.
河川水、湖沼水、または海水等の天然水や工業排水を原水として、逆浸透膜(以下、RO膜という)による膜分離方法により、純水や超純水を製造することが従来から行われている。これらの原水には、様々な懸濁物質や無機イオン成分だけでなく、水溶性の有機物が多く含まれている。水溶性の有機物として、例えば天然水中に存在するフミン酸やフルボ酸、藻類等が生成する単糖、多糖類、糖タンパク等の天然有機物や、工業排水の排水処理で行われる活性汚泥処理によって生成する多糖類やタンパク質等の微生物代謝物、及び界面活性剤等の合成化学物質等が挙げられる。このような有機物が存在する工業排水や天然水を原水としてRO膜を使用して濾過すると、RO膜が有機物で汚染され、RO膜の膜分離性能が低下するという問題が生じてしまう。 Conventionally, pure water or ultrapure water has been produced by a membrane separation method using reverse osmosis membrane (hereinafter referred to as RO membrane) using natural water such as river water, lake water, seawater, or industrial water as raw water. ing. These raw waters contain a large amount of water-soluble organic substances as well as various suspended substances and inorganic ion components. As water-soluble organic substances, for example, humic acid, fulvic acid present in natural water, natural organic substances such as monosaccharides, polysaccharides and glycoproteins produced by algae, and produced by activated sludge treatment in industrial wastewater treatment And microbial metabolites such as polysaccharides and proteins, and synthetic chemicals such as surfactants. When industrial wastewater or natural water in which such organic matter exists is filtered using RO membrane as raw water, the RO membrane is contaminated with organic matter, resulting in a problem that the membrane separation performance of the RO membrane is lowered.
RO膜の濾過性能に影響する物質を検討したところ、分子量が数千以上の高分子、特に多糖類、糖タンパクであることが判ってきた。このような高分子は、原水中の存在量が微量であってもRO膜を汚染し、膜分離性能を低下させてしまうため、このような高分子を含む原水をRO膜に通水する前に、凝集剤により凝集処理する必要がある。ところで、凝集剤の添加量が少ないと膜を汚染させる有機物を十分に除去することができず、添加量が多すぎると経済的に不利なほか、凝集剤自体が膜を汚染させることもある。従って、凝集剤の適正な添加量を決定するための種々の方法が提案されている。 Examination of substances affecting the filtration performance of RO membranes has revealed that they are polymers having molecular weights of several thousand or more, particularly polysaccharides and glycoproteins. Such a polymer contaminates the RO membrane even if the abundance in the raw water is very small, and lowers the membrane separation performance. Therefore, before the raw water containing such a polymer is passed through the RO membrane. In addition, it is necessary to agglomerate with an aggregating agent. By the way, if the addition amount of the flocculant is small, organic substances that contaminate the film cannot be sufficiently removed. If the addition amount is too large, it is economically disadvantageous, and the flocculant itself may contaminate the film. Therefore, various methods for determining an appropriate amount of the flocculant have been proposed.
このような方法として、例えば、被処理水に存在する有機物濃度を紫外線吸収で測定する方法(特許文献1参照)、原水の糖濃度を測定して添加する凝集剤の量を制御する方法(特許文献2参照)や、原水中の有機物を分子量に応じて複数の群に分画して有機物濃度を測定し、有機物濃度に応じて凝集剤の添加量を制御する方法(特許文献3)等が知られている。 As such a method, for example, a method of measuring the organic substance concentration present in the water to be treated by ultraviolet absorption (see Patent Document 1), a method of measuring the sugar concentration of raw water and controlling the amount of flocculant added (patent) Reference 2), a method of fractionating organic matter in raw water into a plurality of groups according to molecular weight, measuring the concentration of organic matter, and controlling the amount of flocculant added according to the concentration of organic matter (Patent Literature 3), etc. Are known.
しかしながら、上記特許文献1、2では、原水中に存在する有機物の量が微量である場合、精度よく有機物の濃度を測定することができないため好ましくない。また、上記特許文献3に開示された方法では、求めた処理条件が適正か否かを判別するために、膜処理装置におけるフラックス、脱塩率、膜間差圧、回収率等の測定をして判断しており、RO膜の濾過性能が悪化する前に適正処理されているか否かを判定できていない。
However, in
本発明は、上述した課題を解決すべくなされたものであり、その目的とするところは、膜分離装置の分離膜の処理性能が低下する前に、凝集処理条件が適正であることを判別することができ、凝集剤の添加量を適正なものとすることで安定した水処理を行うことのできる凝集剤の添加量決定方法及びこの方法を使用する水処理装置を提供することにある。 The present invention has been made to solve the above-described problems, and the object of the present invention is to determine that the agglomeration treatment conditions are appropriate before the treatment performance of the separation membrane of the membrane separation device is lowered. Another object of the present invention is to provide a method for determining the addition amount of a flocculant capable of performing stable water treatment by making the addition amount of the flocculant appropriate, and a water treatment apparatus using this method.
上記の目的を達成するべく、請求項1の凝集剤の添加量決定方法は、分離膜を備える膜分離装置に供給される被処理水に凝集剤を添加して凝集処理を行う水処理における凝集剤の添加量決定方法であって、前記凝集処理を行った被処理水を限外濾過膜で濃縮処理する濃縮処理工程と、該濃縮処理工程で得られた濃縮水に含まれる有機物の濃度を測定する濃度測定工程と、測定された有機物濃度に基づいて、被処理水へ添加する凝集剤の添加量を決定する添加量決定工程とを有することを特徴とする。
In order to achieve the above object, the method for determining the addition amount of a flocculant according to
請求項2の凝集剤の添加量決定方法では、請求項1において、前記有機物濃度は、糖濃度であることを特徴とする。
The method for determining the addition amount of the flocculant according to
請求項3の水処理装置は、分離膜を備える膜分離装置に供給される被処理水に凝集剤を添加して凝集処理を行う水処理装置であって、前記凝集処理を行った被処理水を限外濾過膜で濃縮処理する濃縮処理手段と、濃縮処理された濃縮水に存在する有機物濃度を測定する濃度測定手段と、測定された有機物濃度に基づいて、被処理水へ添加する凝集剤の添加量を制御する添加量制御手段とを備えることを特徴とする。
The water treatment apparatus according to
請求項4の水処理装置では、請求項3において、前記有機物濃度は、糖濃度であることを特徴とする。
The water treatment apparatus according to
請求項5の水処理装置では、請求項3または4において、前記限外濾過膜の分画分子量は、5000以上であることを特徴とする。 A water treatment device according to a fifth aspect is characterized in that, in the third or fourth aspect, the molecular weight cut-off of the ultrafiltration membrane is 5000 or more.
請求項1の凝集剤の添加量決定方法によれば、凝集処理を行った被処理水を限外濾過膜で濾過し、得られた濃縮水から測定された有機物濃度に基づいて、膜分離装置に被処理水を供給する前に、被処理水が膜分離装置に供給される水として適切に凝集処理されているか否かを判断することができる。また、被処理水に添加する凝集剤の添加量が求められ、適切な凝集処理を行うことが可能となり、膜分離装置に設けられている分離膜の汚染を抑制することができ、膜洗浄を行う頻度を低減することができ、安定して膜分離装置を運転することができる。
According to the method for determining the addition amount of the flocculant according to
請求項2の凝集剤の添加量決定方法によれば、有機物濃度は糖濃度であるので、高分子の有機物の濃度を測定することができ、測定した糖濃度から濃縮水中に含まれる糖成分を凝集するために必要な凝集剤の添加量を求めることができ、膜分離装置に設けられている分離膜の汚染を抑制することができる。
According to the method for determining the addition amount of the flocculant according to
請求項3の水処理装置によれば、凝集処理を行った被処理水を限外濾過膜で濾過し、得られた濃縮水から測定された有機物濃度に基づき、膜分離装置に被処理水を供給する前に、被処理水が膜分離装置に供給される水として適切に凝集処理されているかを判断することができる。また、被処理水に添加する凝集剤の添加量が求められ、凝集剤の添加量が制御されるので、膜分離装置に設けられている分離膜の汚染が抑制され、安定して膜分離装置を運転することができる。
According to the water treatment device of
請求項4の水処理装置によれば、有機物濃度は糖濃度であるので、有機物の中でも高分子の有機物の濃度を測定することができ、濃縮水中に含まれる糖成分を凝集するために必要な凝集剤の添加量を求めることができ、膜分離装置に設けられている分離膜の汚染を抑制することができる。
According to the water treatment device of
請求項5の水処理装置によれば、分画分子量が5000以上の限外濾過膜を使用するので、有機物の中でも分子量の大きい高分子の有機物が濃縮され、濃縮水中の有機物の濃度を測定することで、高分子の有機物を凝集処理するための適切な凝集剤の添加量を求めることができる。
According to the water treatment apparatus of
以下、本発明の凝集剤の添加量決定方法及び水処理装置の実施形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a method for determining the addition amount of a flocculant and a water treatment apparatus of the present invention will be described in detail with reference to the drawings.
(水処理装置)
図1に、本発明に係る水処理装置1の概略図を示す。図1に示すように、水処理装置1は、凝集固液分離装置10と膜分離装置40とを備える。凝集固液分離装置10は、被処理水を導入する被処理水貯槽12を有している。被処理水貯槽12から被処理水が供給される撹拌槽14には、凝集剤貯槽16から所定量の凝集剤がポンプ18を介して供給される。撹拌槽14からポンプ32を介して固液分離装置34へ被処理水が供給される。固液分離装置34から、前処理された被処理水が膜分離装置40へ供給される。また、固液分離装置34から一部の被処理水が、有機物の残留濃度を測定する残留濃度測定装置36に供給される。ポンプ18、24、26、32、pHセンサ30、及び残留濃度測定装置36と、CPUやメモリ等からなる制御部(添加量制御手段)38とは電気的に接続されている。
(Water treatment equipment)
In FIG. 1, the schematic of the
被処理水貯槽12に導入される被処理水として、例えば工業用水、河川水、湖沼水、海水、井水、市水、工業排水、農業排水等が挙げられるが、これらに限定されるものではない。
Examples of treated water introduced into the treated
撹拌槽14には、被処理水貯槽12から被処理水が供給され、制御部38からの制御信号に基づいて、凝集剤貯槽16から所定量の凝集剤がポンプ18を介して撹拌槽14内の被処理水に添加される。供給される凝集剤の添加量は、後述するように、残留濃度測定装置36で検出した有機物濃度に応じて制御部38で制御される。
To-be-treated water is supplied to the
凝集剤貯槽16から被処理水に添加される凝集剤として、無機凝集剤や高分子凝集剤等が挙げられる。無機凝集剤として、例えば、硫酸アルミニウム、ポリ塩化アルミニウム等のアルミニウム塩、塩化第2鉄、硫化第1鉄等の鉄塩等が挙げられるが、これに限定されるものではない。
Examples of the flocculant added to the water to be treated from the
また、高分子凝集剤は、カチオン性ポリマー、アニオン性ポリマー、またはノニオン性ポリマーから選択される。カチオン性ポリマーとして、例えば、一級アミン、二級アミン、三級アミン、及びそれらの酸塩、四級アンモニウム基等の官能基を有するカチオン性モノマーまたはアリルモノマーの単独重合体、または、これらと共重合可能なビニルモノマーまたはアニオン性アリルモノマーとの共重合体等が挙げられる。カチオン性モノマーとして、例えば、ジメチルアミノエチル(メタ)アクリレートの酸塩またはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの酸塩またはその4級アンモニウム塩、ジアリルジメチルアンモニウムクロリド、ビニルアニリン等が挙げられる。このようなカチオン性モノマーと共重合可能なアニオン性モノマーまたはノニオン性モノマーとの共重合体としてもよい。 The polymer flocculant is selected from a cationic polymer, an anionic polymer, or a nonionic polymer. Examples of the cationic polymer include primary amines, secondary amines, tertiary amines and their homopolymers of cationic monomers or allyl monomers having functional groups such as acid salts and quaternary ammonium groups, or copolymers thereof. Examples thereof include a copolymer with a polymerizable vinyl monomer or an anionic allyl monomer. Examples of the cationic monomer include dimethylaminoethyl (meth) acrylate acid salt or quaternary ammonium salt thereof, dimethylaminopropyl (meth) acrylamide acid salt or quaternary ammonium salt, diallyldimethylammonium chloride, vinylaniline, and the like. Can be mentioned. It is good also as a copolymer with such an anionic monomer or nonionic monomer copolymerizable with a cationic monomer.
ノニオン性モノマーとしては、例えば、(メタ)アクリルアミド、N−イソプロピルアクリルアミド、N−メチルアクリルアミド、N,N−ジメチルアクリルアミド、アクリロニトリル、スチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート等が挙げられる。このようなモノマーは単体で使用してもよいし、複数組み合わせて併用してもよい。この他に、カチオン性ポリマーとして、ジアルキルアミンとエピクロルヒドリンとの共重合体、ポリエチレンイミン、N−ビニルホルムアミド、N−ビニルアセトアミドをモノマーとするポリマーの加水分解物、ポリアクリルアミドのホフマン分解物、ポリアクリルアミドのマンニッヒ変性物等が挙げられる。 Examples of nonionic monomers include (meth) acrylamide, N-isopropylacrylamide, N-methylacrylamide, N, N-dimethylacrylamide, acrylonitrile, styrene, methyl (meth) acrylate, and ethyl (meth) acrylate. Such monomers may be used alone or in combination. In addition, as cationic polymers, copolymers of dialkylamine and epichlorohydrin, polyethylenimine, N-vinylformamide, hydrolyzate of polymer using N-vinylacetamide as a monomer, polyacrylamide Hoffman degradation product, polyacrylamide And Mannich modified products.
アニオン性ポリマーとして、例えば、(メタ)アクリル酸、イタコン酸、またはそれらのアルカリ金属塩の単独重合体若しくは共重合可能なモノマーとの共重合体が挙げられる。 Examples of the anionic polymer include a homopolymer of (meth) acrylic acid, itaconic acid, or an alkali metal salt thereof, or a copolymer with a copolymerizable monomer.
ノニオン性ポリマーとして、例えば、(メタ)アクリルアミド、N−イソプロピルアクリルアミド、N−メチルアクリルアミド、N,N−ジメチルアクリルアミド等の単独重合体または共重合可能なモノマーとの共重合体等、フェノール、カテコール、クレゾールをモノマー単位とするノボラック樹脂、ポリ酢酸ビニルをケン化して得られるポリビニルアルコール、ポリビニルフェノール、ポリビニルピロリドン等が挙げられる。 Nonionic polymers include, for example, homopolymers such as (meth) acrylamide, N-isopropylacrylamide, N-methylacrylamide, N, N-dimethylacrylamide and copolymers with copolymerizable monomers, such as phenol, catechol, Examples thereof include a novolak resin having cresol as a monomer unit, polyvinyl alcohol obtained by saponifying polyvinyl acetate, polyvinyl phenol, polyvinyl pyrrolidone and the like.
このような無機凝集剤や高分子凝集剤の添加は、それぞれ単独で使用してもよく、2つ以上を組み合わせて任意の比率で併用してもよい。無機凝集剤及び高分子凝集剤を併用する場合、添加する順番に制限はない。このような無機凝集剤や高分子凝集剤の添加は、膜分離装置40の膜分離処理の前までに行えばよいが、本実施形態のように固液分離装置34を有する場合には、固液分離装置34の前段で添加される。撹拌槽14に添加された凝集剤は、撹拌槽14で被処理水と共に撹拌機28で撹拌されて凝集処理される。
Such inorganic flocculants and polymer flocculants may be added alone or in combination of two or more at any ratio. When an inorganic flocculant and a polymer flocculant are used in combination, there is no restriction on the order of addition. Such an inorganic flocculant and a polymer flocculant may be added before the membrane separation process of the
撹拌槽14内の被処理水のpHを調整するためのpH調整剤として、酸貯槽20及びアルカリ貯槽22が備えられている。酸貯槽20及びアルカリ貯槽22から、ポンプ24、26を介して制御部38からの制御信号に基づいて撹拌槽14内の被処理水が所定のpHとなるように、所定量の酸及びアルカリのいずれかが撹拌槽14に添加される。添加されたpH調整剤及び凝集剤は、撹拌槽14に設けられた攪拌機28で被処理水と共に撹拌され、凝集処理された被処理水となる。撹拌槽14内に設けられたpHセンサ30は、撹拌槽14内の被処理水のpHを測定して制御部38へ通知する。制御部38は、撹拌槽14内のpHが5.0〜7.0となるように、酸貯槽20及びアルカリ貯槽22のいずれかから添加されるpH調整剤の添加量を制御する。
An
撹拌槽14で凝集処理された被処理水は、固液分離装置34へ導入される。固液分離装置34には、図示しないが分離膜が設けられており、分離膜を介して凝集処理された被処理水に含まれるフロック等が除去される。固液分離装置34で使用される分離膜として、精密濾過膜、限外濾過膜、ナノ濾過膜等が挙げられる。なお、本実施形態では、固液分離装置34として精密濾過膜等を用いた膜分離装置が例示されているが、これに限られず水処理として固液分離に用いられているものであれば使用することができ、例えば、沈殿分離装置、加圧浮上装置、濾過装置等を単独で、或いは組み合わせて使用するようにしてもよい。
The water to be treated that has been agglomerated in the stirring
固液分離装置34で分離された被処理水(即ち、凝集フロックが分離された清澄水)は、膜分離装置40へ供給されると共に、その一部が残留濃度測定装置36へ供給される。残留濃度測定装置36への被処理水は、配管のサンプリング口から供給されるようにしてもよいし、図示しないがポンプを使用して供給されるようにしてもよい。
The water to be treated separated by the solid-liquid separation device 34 (that is, the clarified water from which the aggregated floc has been separated) is supplied to the
詳しくは、図2に残留濃度測定装置36の概略図を示す。図2に示すように、ポンプ42を介して限外濾過器(濃縮処理手段)44へ被処理水が供給される。限外濾過器44は、容器46と蓋体48とから構成されており、容器46及び蓋体48のフランジ部は挟持体50、50で挟持されている。限外濾過器44はスターラー52の上に備えられており、後述する撹拌子を使用して被処理水を撹拌する。限外濾過器44で得られた濃縮水は、有機物の濃度を測定するための測定センサ(濃度測定手段)53に導入される。この測定センサ53は制御部38と電気的に接続され、測定センサ53で濃縮水に含まれる有機物濃度または糖濃度の測定を行い、制御部38に通知する。なお、残留濃度測定装置36は、クロスフロー方式である。
Specifically, FIG. 2 shows a schematic diagram of the residual
図3に図2の縦断面図を示すように、容器46には撹拌子54が入れられており、スターラー52で撹拌子54の回転速度を調整し、限外濾過器44に供給される被処理水を撹拌する。限外濾過器44に供給された被処理水は、限外濾過膜(以下、UF膜という)56で濾過され、透水性を有する焼結多孔板58を介して透過水が精製される。UF膜56として、分画分子量5000以上、好ましくは分画分子量10000以上であって、分画分子量50000以下、好ましくは分画分子量30000以下の濾過膜を使用する。分画分子量が小さくなりすぎると膜分離にあまり影響を及ぼさない低分子量の有機物の濃度も含めて測定されることとなり、逆に分画分子量が大きくなりすぎると測定対象の有機物まで除去されてしまうためである。
As shown in the longitudinal sectional view of FIG. 2 in FIG. 3, a
一方、UF膜56を通過できない物質が濃縮された濃縮水は容器46内に貯まる。限外濾過器44で得られる濃縮水は、後述する有機物濃度測定で使用するため、限外濾過器44に供給される被処理水を10倍以上濃縮した濃縮水であることが好ましい。一方、濃縮水に含まれる糖濃度を測定するためには、100倍以上濃縮した濃縮水であることが好ましい。
On the other hand, the concentrated water in which the substance that cannot pass through the
濃縮水に含まれる有機物濃度を測定する測定センサ53として、全有機炭素濃度測定、糖濃度測定、COD測定等から選択されるが、これらに限定されるものではない。全有機炭素濃度として、主にTOC計が使用される。
The
濃縮水に含まれる糖濃度の測定として、糖分析に使用されるフェノール硫酸法が一般的に用いられている。他にも、中性多糖を分析するアントロン硫酸法、酸性多糖を分析するカルバゾール硫酸法等が挙げられる。また、濃縮水中に含まれる糖を酸で加水分解してグルコース単位の単糖にすることにより、高速液体クロマトグラフィーを使用しての分析や、尿糖検査キットを使用して分析することができる。 As a measurement of the sugar concentration contained in the concentrated water, the phenol-sulfuric acid method used for sugar analysis is generally used. Other examples include an anthrone sulfate method for analyzing neutral polysaccharides and a carbazole sulfate method for analyzing acidic polysaccharides. In addition, the sugar contained in the concentrated water can be hydrolyzed with acid to form a glucose unit monosaccharide, which can be analyzed using high performance liquid chromatography or using a urine sugar test kit. .
また、加水分解した単糖に対し、試験紙を使用して、反射式光度計による簡易化学分析機器を使用して糖濃度を測定することもできる。例えば、メルク製RQフレックス用の試験紙が挙げられる。これは、酸処理水のpHを中性に戻し、中性に戻した酸処理水に試験紙を浸してRQフレックスの測定操作に従って糖濃度を測定するものである。詳しくは、試験紙をpHで中性に戻した酸処理水に浸し、RQフレックスの測定操作に従って糖濃度を測定する。糖濃度の測定に必要な濃縮水量は2〜3ml程度である。このように糖濃度を測定するのは、高分子領域の有機成分が、主に多糖若しくは糖タンパクで構成されるため、糖分析をすることによって高分子領域の有機成分濃度を知ることができるからである。なお、糖濃度の測定は、上述した方法に限られない。 Moreover, it is also possible to measure the sugar concentration of the hydrolyzed monosaccharide by using a test paper and using a simple chemical analyzer with a reflection photometer. For example, a test paper for Merck RQ flex can be mentioned. In this method, the pH of the acid-treated water is returned to neutral, the test paper is immersed in the acid-treated water that has been returned to neutral, and the sugar concentration is measured according to the measurement operation of RQ flex. Specifically, the test paper is immersed in acid-treated water that has been neutralized at pH, and the sugar concentration is measured according to the RQ flex measurement procedure. The amount of concentrated water necessary for measuring the sugar concentration is about 2 to 3 ml. The sugar concentration is measured in this way because the organic component in the polymer region is mainly composed of polysaccharides or glycoproteins, so that the organic component concentration in the polymer region can be known by analyzing the sugar. It is. The measurement of the sugar concentration is not limited to the method described above.
COD測定として、CODクロムやCODマンガン測定を行って有機物濃度を測定することができる。上述した全有機炭素濃度測定、糖濃度測定、COD測定の他に、有機物濃度を定量的に測定することができる紫外線吸収スペクトルや、高速液体クロマトグラフィー等を使用することもできるが、これらに限定されるものではない。 As the COD measurement, the organic substance concentration can be measured by measuring COD chromium or COD manganese. In addition to the total organic carbon concentration measurement, sugar concentration measurement, and COD measurement described above, an ultraviolet absorption spectrum capable of quantitatively measuring the organic substance concentration, high performance liquid chromatography, or the like can also be used, but it is not limited to these. Is not to be done.
固液分離装置34から被処理水が導入される膜分離装置40には、RO膜が設けられており、RO膜を介して被処理水が濾過され、透過水が精製される。
The
(凝集剤の添加量決定方法)
このように構成された凝集固液分離装置10を含む本発明に係る水処理装置1を用いた凝集剤の添加量決定方法ついて、図4に示すフローチャートに基づいて以下に説明する。本フローチャートは、制御部38によって行われる。
(Method for determining the amount of flocculant added)
A method for determining the addition amount of the flocculant using the
ステップS1では、撹拌槽14内の被処理水に所定量の凝集剤を添加して、被処理水を凝集処理する。ステップS2では、凝集処理後の被処理水を固液分離装置34へ導入して濾過する。ステップS3では、固液分離装置34で濾過した被処理水を限外濾過器44に導入し、UF膜で濾過して被処理水の濃縮処理を行う(濃縮処理工程)。
In step S1, a predetermined amount of a flocculant is added to the water to be treated in the stirring
続くステップS4では、上記ステップS3の濃縮処理で得られた濃縮水の濃度が規定値以上、即ち固液分離装置34で濾過された被処理水と比較して10倍以上濃縮されたら、濃縮水に含まれる有機物濃度をTOC計を使用して測定する(濃度測定工程)。ステップS5では、上記ステップS4で測定された有機物濃度から、撹拌槽14に添加する凝集剤の添加量を決定する(添加量決定工程)。撹拌槽14に添加する凝集剤の添加量は、例えば制御部38に予め登録されている有機物濃度、即ちTOCと凝集剤の添加量との関係を表すマップ等から求めてもよいが、これに限られない。ステップS6では、上記ステップS5で決定した添加量の凝集剤を、撹拌槽14の被処理水に添加する。
In the subsequent step S4, when the concentration of the concentrated water obtained by the concentration treatment in the above step S3 is not less than a specified value, that is, 10 times or more compared with the water to be treated filtered by the solid-
このように、本実施形態では、膜分離装置40で膜分離処理を行う前に、無機凝集剤や高分子凝集剤等の凝集剤を被処理水に添加し、凝集処理された被処理水の一部を限外濾過器44に通水して得られた濃縮水に含まれる有機物濃度を測定することにより、現状の凝集剤の添加量が、撹拌槽14の被処理水に含まれる有機物を凝集処理するために適切な量であるか否かを判断して適切な添加量を決定することができ、その決定に基づいて凝集剤の添加量を増減することができる。これにより、膜分離装置40で濾過した被処理水の精製結果から凝集剤の添加量が適切な量であるか否かを判断する必要はなくなり、膜分離装置40へ供給するのに適した被処理水を供給することができる。また、膜分離装置40に設けられているRO膜の有機物による汚染が抑制されるので、安定して膜分離装置40を運転させることができる。
As described above, in the present embodiment, before the membrane separation process is performed by the
(凝集剤の添加量決定方法の変形例)
水処理装置1の凝集剤の添加量決定方法に関する変形例について、図5に示すフローチャートに基づいて以下に説明する。なお、本フローチャートは、図4に示した水処理方法とステップS1〜S3、S6が共通しているので、共通箇所の説明は省略し、相違点についてのみ説明する。
(Modification of the method for determining the amount of flocculant added)
A modification of the method for determining the amount of flocculant added to the
ステップS41では、上記ステップS3の濃縮処理で得られた濃縮水の糖濃度を測定する(濃度測定工程)。糖濃度の測定は、上述したようなフェノール硫酸法で行ってもよいが、試験紙を使用して行う場合は、前処理として濃縮水の酸加水分解を行う必要がある。これは、糖濃度を測定する試験紙は、グルコースやフルクトース等の単糖を測定するものであるため、濃縮水中に含まれる多糖を酸で加水分解して単糖にする必要があるからである。濃縮水を酸加水分解する方法として、例えば、上記ステップS3で得られた濃縮水1mlに対し、2N塩酸または2N硫酸を0.5ml試験管に入れて混合し、80℃以上で水浴、またはヒータで10分間加熱して、2N水酸化ナトリウムを0.5ml添加して中和する方法がある。このようにして処理された濃縮水の糖濃度を測定する。 In step S41, the sugar concentration of the concentrated water obtained by the concentration process in step S3 is measured (concentration measuring step). The sugar concentration may be measured by the phenol sulfuric acid method as described above. However, when the test paper is used, it is necessary to perform acid hydrolysis of concentrated water as a pretreatment. This is because the test paper for measuring the sugar concentration measures monosaccharides such as glucose and fructose, and therefore it is necessary to hydrolyze the polysaccharide contained in the concentrated water with acid to form a monosaccharide. . As a method for acid hydrolysis of the concentrated water, for example, 1 ml of the concentrated water obtained in the above step S3 is mixed with 2N hydrochloric acid or 2N sulfuric acid in a 0.5 ml test tube and mixed at 80 ° C. or above in a water bath or heater. And neutralizing by adding 0.5 ml of 2N sodium hydroxide. The sugar concentration of the concentrated water thus treated is measured.
続くステップS51では、上記ステップS41で測定した糖濃度から、撹拌槽14に添加する凝集剤の添加量を決定する(添加量決定工程)。撹拌槽14に添加する凝集剤の添加量は、例えば制御部38に予め登録されている糖濃度と凝集剤の添加量との関係を表すマップ等から求めてもよいが、これに限られない。
In the subsequent step S51, the addition amount of the flocculant added to the stirring
このように、限外濾過器44で処理された濃縮水に含まれる糖濃度を測定し、測定された糖濃度から撹拌槽14の被処理水に添加する凝集剤の添加量を決定することにより、上記と同様の効果を得ることができる。
Thus, by measuring the sugar concentration contained in the concentrated water treated by the
なお、上述した実施形態では、水処理装置1は凝集固液分離装置10と膜分離装置40を有しているとしたが、さらに他の装置及び工程を備えていてもよく、例えば、膜分離装置40の前段までに行う前処理や、膜分離装置40の後段に行う後処理としてイオン交換処理などの脱イオン処理、脱炭素処理、活性炭処理等の被処理水の精製処理をさらに行ってもよい。また、必要に応じて、殺菌剤、消臭剤、消泡剤、防食剤等を添加してもよいし紫外線照射、オゾン処理、生物処理等を併用してもよい。
In the above-described embodiment, the
また、上述した実施形態では、凝集剤はポンプ18を介して撹拌槽14に添加されているが、凝集剤は、被処理水が流れる配管にライン注入して添加するようにしてもよい。
In the embodiment described above, the flocculant is added to the
また、上述した実施形態では、凝集固液分離装置10に固液分離装置34を含める構成としたが、固液分離装置34はなくてもよく、撹拌槽14で凝集処理された被処理水の一部をポンプで採取し、No5A濾紙で被処理水を濾過した後に残留濃度測定装置36へ導入するようにしてもよい。
In the embodiment described above, the solid-
また、上述した実施形態では、制御部38での制御によって自動で凝集剤の添加量を決定するものとしたが、固液分離装置34からの分離水を配管に設けたサンプリング口等から採取し、図4に示したフローチャートのステップS3〜S5を手動で行い、凝集剤の添加量を手動で設定するようにしてもよい。さらに、後述する実施例で示されるように、机上試験で凝集剤の添加量を決定し、机上試験によって求めた凝集剤の添加量を実際の水処理系、例えば水処理装置での添加量として採用するようにしてもよい。
In the embodiment described above, the addition amount of the flocculant is automatically determined by the control of the
以下に示す実施例に従って、本発明をより詳細に説明する。なお、本発明はこれに限定されるものではない。 The present invention will be described in more detail according to the following examples. Note that the present invention is not limited to this.
<実施例1>
被処理水として、湖沼水を水源とする工業用水1000mlを入れたビーカー4個をジャーテスターに設置し、各ビーカーに凝集剤としてポリ塩化アルミニウム(以下、PACという)(10重量%)をそれぞれ5、10、30、50mlを添加して5%水酸化ナトリウム水溶液でpHを6.5に調整した後、170rpmで3分間撹拌し、50rpmで5分間撹拌した。その後、フロック粒子径を確認した。なお、使用した工業用水の水質は、電気伝導率が35mS/m、pH6.8,TOCが1.2mg/lであった。
<Example 1>
Four beakers containing 1000 ml of industrial water from lake water as the water to be treated were installed in the jar tester, and polyaluminum chloride (hereinafter referred to as PAC) (10% by weight) was added to each beaker as a flocculant. After adding 10, 30, and 50 ml and adjusting the pH to 6.5 with a 5% aqueous sodium hydroxide solution, the mixture was stirred at 170 rpm for 3 minutes and then stirred at 50 rpm for 5 minutes. Thereafter, the floc particle diameter was confirmed. In addition, the water quality of the industrial water used was 35 mS / m in electrical conductivity, pH 6.8, and 1.2 mg / l in TOC.
No5A濾紙を使用して各処理水全量を濾過し、得られた濾液を限外濾過装置(アドバンテック製UF濾過ホルダー)に設けられた分画分子量30000のUF膜に通水し、濃縮倍数が濾液の約10倍となるように調整し、濃縮水を得た。ここで、UF濾過に使用した被処理水量(Aml)及び濃縮水の水量(Bml)を正確に測定した。また、濃縮水のTOC測定(Cmg/l)を行った。これらの結果に基づいて、被処理水中の分子量30000以上の有機物のTOC30000を、式(1)から求めた。 The total amount of each treated water was filtered using No5A filter paper, and the obtained filtrate was passed through a UF membrane with a molecular weight cut off of 30000 provided in an ultrafiltration device (UF filter holder made by Advantech), and the concentration factor was the filtrate. The concentrated water was obtained by adjusting to about 10 times. Here, the amount of treated water (Aml) and the amount of concentrated water (Bml) used for UF filtration were measured accurately. Moreover, the TOC measurement (Cmg / l) of concentrated water was performed. Based on these results, TOC 30000 of an organic substance having a molecular weight of 30,000 or more in the water to be treated was obtained from the formula (1).
TOC30000=B/A×C ・・・(1) TOC 30000 = B / A × C (1)
次に、上記と同様に被処理水として工業用水2Lをプラスチック容器に入れ、凝集剤としてPACを5mg/L添加し、スターラーで撹拌しながら5%水酸化ナトリウム水溶液を添加してpH6.5に調整し、170rpmで3分間撹拌した後、50rpmで5分間撹拌した。同様の操作を、PACの添加量10、30、50mg/Lと変えて凝集処理した。そして、凝集処理した被処理水を、No5A濾紙を使用して全量をそれぞれ濾過し、RO平膜試験装置に設けられたRO膜(日東電工製RO膜ES20)に、流速1ml/min、通水圧力0.78MPa、400rpmの通水条件で通水してフラックス測定を行った。RO膜の膜洗浄は、水酸化ナトリウムを使用してpH12に調整し、一晩浸漬させて洗浄した。フラックス測定では、使用した工業用水と略等しい電気伝導率になるように塩化ナトリウムで調整した純水をRO平膜試験装置に通水し、透過流量が安定した時点で被処理水の通水を開始し(開始日を0日とする)、一定期間ごとにフラックスを測定した。フラックスの測定は、10分間の透過水の水量をメスシリンダーで測定後、式(2)で算出した。
Next, in the same manner as above, 2 L of industrial water as treatment water is put in a plastic container, 5 mg / L of PAC is added as a flocculant, and 5% sodium hydroxide aqueous solution is added to pH 6.5 while stirring with a stirrer. After adjusting and stirring at 170 rpm for 3 minutes, it stirred at 50 rpm for 5 minutes. The same operation was carried out by changing the addition amount of PAC to 10, 30, and 50 mg / L to perform aggregation treatment. Then, the water to be treated which has been subjected to the coagulation treatment is respectively filtered using No5A filter paper, and the flow rate is 1 ml / min through the RO membrane (RO membrane ES20 manufactured by Nitto Denko) installed in the RO flat membrane test apparatus. Flux measurement was performed by passing water under conditions of a pressure of 0.78 MPa and 400 rpm. The RO membrane was washed by adjusting it to
Flux[m3/m2・d]=Fr×1.7905×Pc×Tc ・・・(2) Flux [m 3 / m 2 · d] = Fr × 1.7905 × Pc × Tc (2)
ここで、Frは流量[ml/min]、Pcは圧力補正係数、Tcは温度補正係数をそれぞれ表している。得られた結果を図6に示す。 Here, Fr represents a flow rate [ml / min], Pc represents a pressure correction coefficient, and Tc represents a temperature correction coefficient. The obtained result is shown in FIG.
<実施例2>
実施例1と同様の被処理水を使用してジャーテストを行った。凝集剤として、ジメチルアミン・エピクロルヒドリン重合物を使用した。なお、使用したジメチルアミン・エピクロルヒドリン重合物は50%水溶液で、添加量はそれぞれ1、2、5、10mg/lである。得られた結果を図7に示す。
<Example 2>
A jar test was performed using the same water to be treated as in Example 1. As a flocculant, dimethylamine / epichlorohydrin polymer was used. The dimethylamine / epichlorohydrin polymer used was a 50% aqueous solution, and the amount added was 1, 2, 5, 10 mg / l, respectively. The obtained results are shown in FIG.
図6、図7にそれぞれ示す結果に基づいて、被処理水から換算した分画分子量30000以上の有機物成分TOCと、RO平膜試験で得られた0日〜7日までのRO膜のフラックスの低下率の関係をグラフにまとめた。図8にそのグラフを示す。図8から、被処理水中の分画分子量30000以上の有機物成分のTOCとRO膜のフラックスに相関関係が明確に認められ、TOCを測定すれば現状の処理状態を把握することが可能である。また、膜分離装置における膜処理性能低下の兆候をこのグラフから読み取ることが可能であり、凝集剤の添加量を増減することで、RO膜の濾過性能低下を抑制することができる。 Based on the results shown in FIG. 6 and FIG. 7, the organic component TOC with a molecular weight cut off of 30000 or more converted from the water to be treated and the RO membrane flux from 0 to 7 days obtained in the RO flat membrane test. The relationship of the reduction rate is summarized in a graph. FIG. 8 shows the graph. FIG. 8 clearly shows a correlation between the TOC of the organic component having a molecular weight cut off of 30000 or more in the water to be treated and the flux of the RO membrane, and it is possible to grasp the current treatment state by measuring the TOC. Moreover, it is possible to read the sign of the membrane processing performance fall in a membrane separator from this graph, and it can suppress the filtration performance fall of RO membrane by increasing / decreasing the addition amount of a coagulant | flocculant.
<実施例3>
実施例1と同様の被処理水、凝集剤を使用してジャーテストを行った。UF濾過に使用した被処理水量(Aml)及び濃縮水の水量(Bml)を正確に測定した。また、濃縮水にメルク製RQフレックスのグルコース測定用試験紙を浸し、当該試験紙をRQフレックス本体に挿入して糖濃度(Dmg/l)を求めた。これらの結果に基づいて、被処理水中に含まれる分子量30000以上の糖濃度L30000(mg/l)を、次式(3)から求めた。
<Example 3>
A jar test was performed using water to be treated and a flocculant similar to those in Example 1. The amount of treated water (Aml) and the amount of concentrated water (Bml) used for UF filtration were measured accurately. Further, a glucose measuring test paper of Merck RQ flex was immersed in concentrated water, and the test paper was inserted into the RQ flex main body to determine the sugar concentration (Dmg / l). Based on these results, the sugar concentration L 30000 (mg / l) having a molecular weight of 30000 or more contained in the water to be treated was determined from the following formula (3).
L30000=B/A×D ・・・(3) L 30000 = B / A × D (3)
また、実施例1と同様の条件でフラックス測定を行った。結果を図9に示す。 Further, flux measurement was performed under the same conditions as in Example 1. The results are shown in FIG.
<実施例4>
実施例3と同様の被処理水を使用してジャーテストを行った。凝集剤として、ジメチルアミン・エピクロルヒドリン重合物を使用した。なお、使用したジメチルアミン・エピクロルヒドリン重合物は50%水溶液で、添加量はそれぞれ1、2、5、10mg/lである。得られた結果を図10に示す。
<Example 4>
A jar test was performed using the same treated water as in Example 3. As a flocculant, dimethylamine / epichlorohydrin polymer was used. The dimethylamine / epichlorohydrin polymer used was a 50% aqueous solution, and the amount added was 1, 2, 5, 10 mg / l, respectively. The obtained result is shown in FIG.
図9、図10の結果について、被処理水から換算した分画分子量30000以上の成分の糖濃度と、RO平膜試験で得られた0〜7日までのRO膜のフラックスの低下率の関係をまとめたグラフを図11に示す。図11から、被処理水中の分画分子量30000以上の成分における糖濃度とRO膜のフラックスに相関関係が明らかに認められ、糖濃度を測定すれば現状の処理状態を把握することができるということが判る。また、RO膜の濾過性能低下の兆候を読み取ることができるので、凝集剤の添加量を増減することで、RO膜の濾過性能低下を抑制することができる。 9 and 10, the relationship between the sugar concentration of the component having a molecular weight cut off of 30000 or more converted from the water to be treated and the rate of decrease in the flux of the RO membrane from 0 to 7 days obtained in the RO flat membrane test. FIG. 11 shows a graph summarizing the above. FIG. 11 clearly shows a correlation between the sugar concentration in the component with a molecular weight cut off of 30,000 or more and the flux of the RO membrane, and the current treatment state can be grasped by measuring the sugar concentration. I understand. Moreover, since the sign of the RO membrane filtration performance deterioration can be read, the decrease in the RO membrane filtration performance can be suppressed by increasing or decreasing the amount of the flocculant added.
1 水処理装置
10 凝集固液分離装置
14 撹拌槽
36 残留濃度測定装置
44 限外濾過器
56 限外濾過膜
DESCRIPTION OF
Claims (5)
前記凝集処理を行った被処理水を限外濾過膜で濃縮処理する濃縮処理工程と、
該濃縮処理工程で得られた濃縮水に含まれる有機物の濃度を測定する濃度測定工程と、
測定された有機物濃度に基づいて、被処理水へ添加する凝集剤の添加量を決定する添加量決定工程と、
を有することを特徴とする凝集剤の添加量決定方法。 A method for determining the addition amount of a flocculant in water treatment in which a flocculant is added to water to be treated supplied to a membrane separation apparatus including a separation membrane,
A concentration treatment step of concentrating the treated water subjected to the aggregation treatment with an ultrafiltration membrane;
A concentration measuring step for measuring the concentration of organic matter contained in the concentrated water obtained in the concentration treatment step;
An addition amount determining step for determining the amount of the flocculant added to the water to be treated based on the measured organic matter concentration;
A method for determining the amount of an aggregating agent to be added.
前記凝集処理を行った被処理水を限外濾過膜で濃縮処理する濃縮処理手段と、
濃縮処理された濃縮水に存在する有機物濃度を測定する濃度測定手段と、
測定された有機物濃度に基づいて、被処理水へ添加する凝集剤の添加量を制御する添加量制御手段と、
を備えることを特徴とする水処理装置。 A water treatment apparatus for performing a coagulation treatment by adding a coagulant to water to be treated supplied to a membrane separation apparatus including a separation membrane,
A concentration treatment means for concentrating the treated water subjected to the aggregation treatment with an ultrafiltration membrane;
A concentration measuring means for measuring the concentration of organic substances present in the concentrated water subjected to the concentration treatment;
An addition amount control means for controlling the addition amount of the flocculant added to the water to be treated based on the measured organic substance concentration;
A water treatment apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011079007A JP5935967B2 (en) | 2011-03-31 | 2011-03-31 | Flocculant addition amount determination method, water treatment method, and water treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011079007A JP5935967B2 (en) | 2011-03-31 | 2011-03-31 | Flocculant addition amount determination method, water treatment method, and water treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012213675A true JP2012213675A (en) | 2012-11-08 |
JP5935967B2 JP5935967B2 (en) | 2016-06-15 |
Family
ID=47267028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011079007A Active JP5935967B2 (en) | 2011-03-31 | 2011-03-31 | Flocculant addition amount determination method, water treatment method, and water treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5935967B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013052359A (en) * | 2011-09-05 | 2013-03-21 | Fuji Electric Co Ltd | Water treatment method and water treatment apparatus |
JP2015142903A (en) * | 2013-12-26 | 2015-08-06 | 栗田工業株式会社 | Operational method of reverse osmosis membrane device and reverse osmosis membrane device |
JP2018158310A (en) * | 2017-03-23 | 2018-10-11 | 栗田工業株式会社 | Water treatment method |
JP2019010617A (en) * | 2017-06-30 | 2019-01-24 | 王子ホールディングス株式会社 | Water treatment device and water treatment method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10286567A (en) * | 1997-04-16 | 1998-10-27 | Nkk Corp | Membrane separating process |
JP2002320828A (en) * | 2001-04-27 | 2002-11-05 | Mitsubishi Kakoki Kaisha Ltd | Filter membrane system solid-liquid separator and waste water treatment equipment with the same |
JP2007245078A (en) * | 2006-03-17 | 2007-09-27 | Kurita Water Ind Ltd | Water treatment system and water treatment process |
JP2008068199A (en) * | 2006-09-14 | 2008-03-27 | Kurita Water Ind Ltd | Flocculation device and flocculation method |
JP2008068200A (en) * | 2006-09-14 | 2008-03-27 | Kurita Water Ind Ltd | Flocculation device and flocculation method |
-
2011
- 2011-03-31 JP JP2011079007A patent/JP5935967B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10286567A (en) * | 1997-04-16 | 1998-10-27 | Nkk Corp | Membrane separating process |
JP2002320828A (en) * | 2001-04-27 | 2002-11-05 | Mitsubishi Kakoki Kaisha Ltd | Filter membrane system solid-liquid separator and waste water treatment equipment with the same |
JP2007245078A (en) * | 2006-03-17 | 2007-09-27 | Kurita Water Ind Ltd | Water treatment system and water treatment process |
JP2008068199A (en) * | 2006-09-14 | 2008-03-27 | Kurita Water Ind Ltd | Flocculation device and flocculation method |
JP2008068200A (en) * | 2006-09-14 | 2008-03-27 | Kurita Water Ind Ltd | Flocculation device and flocculation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013052359A (en) * | 2011-09-05 | 2013-03-21 | Fuji Electric Co Ltd | Water treatment method and water treatment apparatus |
JP2015142903A (en) * | 2013-12-26 | 2015-08-06 | 栗田工業株式会社 | Operational method of reverse osmosis membrane device and reverse osmosis membrane device |
JP2018158310A (en) * | 2017-03-23 | 2018-10-11 | 栗田工業株式会社 | Water treatment method |
JP2019010617A (en) * | 2017-06-30 | 2019-01-24 | 王子ホールディングス株式会社 | Water treatment device and water treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP5935967B2 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Koseoglu et al. | Effects of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors | |
Luo et al. | Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system | |
Gkotsis et al. | Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants | |
Farahani et al. | Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis | |
Wang et al. | Impact of polymer flocculants on coagulation-microfiltration of surface water | |
JP4862576B2 (en) | Aggregation apparatus and aggregation method | |
US20150060367A1 (en) | Coagulation processing method, coagulation processing unit, and water processing apparatus | |
MX2007008811A (en) | Method of monitoring treating agent residuals and controlling treating agent dosage in water treatment processes. | |
JP5935967B2 (en) | Flocculant addition amount determination method, water treatment method, and water treatment apparatus | |
WO2015141567A1 (en) | Dispersant for water treatment and water treatment method | |
KR20190088180A (en) | Seawater Desalination Plant and Control Method for the same | |
László et al. | Effect of preozonation on the filterability of model dairy waste water in nanofiltration | |
Fan et al. | Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes | |
JP2012213676A (en) | Water quality evaluation method and operation management method for water treatment apparatus | |
WO2010050325A1 (en) | Membrane separation process | |
Frick et al. | Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes | |
Nouri et al. | Performance of membrane bioreactor in presence of flocculants | |
JP2016131937A (en) | Seawater desalination system and method | |
JP2011056411A (en) | System and method for desalination of water to be treated | |
JP6687056B2 (en) | Water treatment method and water treatment device | |
Zahrim et al. | Tubular nanofiltration of highly concentrated CI Acid Black 210 dye | |
JP7113454B2 (en) | Water treatment method and equipment | |
CN113466420B (en) | Scale inhibitor evaluation method and device | |
JP2012187467A (en) | Membrane separation method and membrane separator | |
Teli et al. | MBR fouling control and permeate quality enhancement by polyaluminium chloride dosage: a case study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150715 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160304 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5935967 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |