JP2012211747A - Exhaust device - Google Patents

Exhaust device Download PDF

Info

Publication number
JP2012211747A
JP2012211747A JP2011078428A JP2011078428A JP2012211747A JP 2012211747 A JP2012211747 A JP 2012211747A JP 2011078428 A JP2011078428 A JP 2011078428A JP 2011078428 A JP2011078428 A JP 2011078428A JP 2012211747 A JP2012211747 A JP 2012211747A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust port
room
building
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011078428A
Other languages
Japanese (ja)
Inventor
Seiichi Kondo
誠一 近藤
Kensho Wanibuchi
憲昭 鰐淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2011078428A priority Critical patent/JP2012211747A/en
Publication of JP2012211747A publication Critical patent/JP2012211747A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust device in which air in a room can be easily discharged via one exhaust port by preventing the air from coming into an exhaust duct from the other exhaust port and thereby flowing into one exhaust port.SOLUTION: The exhaust device has a first exhaust port 32 and a second exhaust 32 ceiling arranged in a roof, an exhaust passage (exhaust duct 12) communicating the inside of the room and the respective exhaust ports, an opening/closing unit (switching valve unit 51) communicating one of the first exhaust port and the second exhaust port and the inside 7 of the room and blocking the other of the first exhaust port and the second exhaust port and the inside of the room, detector (sensors 52) detecting a pressure around the first and second exhaust ports, and a controller (switching control unit 53) controlling the opening/closing unit so as to communicate one exhaust port in which a surrounding pressure is larger in the negative pressure side of the first exhaust port and the second exhaust port and the inside of the room and block the communication of the other exhaust port and the inside of the room based on the signals from the detecting means.

Description

本発明は、空気を建物の室内から建物の屋根を介して建物外部に排出する排気装置に関する。   The present invention relates to an exhaust device that discharges air from the interior of a building to the outside of the building through the roof of the building.

従来、空気を建物の室内から建物の屋根に設けられた排気口を介して建物外部に排気する排気装置において、建物の屋根における互いに対向する一対の辺縁側にそれぞれ排気口を設けた構成が知られている。   Conventionally, in an exhaust device that exhausts air from the interior of a building to the outside of the building through an exhaust port provided on the roof of the building, a configuration in which an exhaust port is provided on each of a pair of opposite side edges on the roof of the building is known. It has been.

特開2000−170273号公報JP 2000-170273 A

一般に、建物屋根面には負圧が作用することが多い。本発明の発明者は、例えば、横断面及び縦断面が長方形状である直方体形状の複数階建ての集合住宅のような建物の一方の外壁面に向けて風が吹くと、一方の外壁面側の屋上(屋根)部分には大きな負圧が作用し、一方の外壁面側の屋上部分以外のその他の屋上部分には一方の外壁面側の屋上部分よりも小さな負圧が作用することを数値シミュレーションによって確認した(図6参照)。
尚、本明細書では、風が吹いている状態において、建物の外壁面、屋上面等の建物の外表面に作用する風の圧力が建物の外表面から外表面より離れる方向に向いている状態(風により建物の外表面が建物の外側に引張られているような状態)を負圧といい、建物の外表面に作用する風の圧力が建物の外表面に向いている状態(風により建物の外表面が建物の内側に押されているような状態)を正圧という。
ここで、建物の一方の外壁面側の屋上に設けられた一方の排気口と建物の他方の外壁面側の屋上に設けられた他方の排気口とを備え、さらに、建物の室内から一方の排気口及び他方の排気口とに連通する排気ダクトのような排気路を介して排気する構成の場合において、例えば、建物の一方の外壁面に向けて風が吹いている場合、一方の外壁面側の屋上部分に設けられた一方の排気口の周囲には他方の排気口の周囲よりも大きな負圧が作用するため、空気が他方の排気口から排気ダクト内に入り込んで一方の排気口側に流れてしまい、これにより室内の空気が排気されにくくなる可能性があった。
本発明は、例えば、周囲の空気の圧力状態が負圧側に大きい側の一方の排気口と室内とを連通させ、かつ、他方の排気口と室内との連通を遮断することによって、空気が他方の排気口から排気ダクト内に入り込んで一方の排気口側に流れてしまうことを防止できるようにして、室内の空気が一方の排気口を介して排気されやすいようにした排気装置を提供するものである。
In general, negative pressure often acts on the roof surface of a building. The inventor of the present invention, for example, when the wind blows toward one outer wall surface of a building such as a multi-storey apartment building having a rectangular parallelepiped cross section and a vertical cross section, the one outer wall surface side A numerical value indicates that a large negative pressure acts on the roof (roof) portion of the roof, and a smaller negative pressure acts on the other roof portion other than the roof portion on the one outer wall surface side than the roof portion on the one outer wall surface side. This was confirmed by simulation (see FIG. 6).
In addition, in this specification, in the state where the wind is blowing, the state where the pressure of the wind acting on the outer surface of the building such as the outer wall surface of the building or the roof surface is directed in the direction away from the outer surface of the building (The state where the outer surface of the building is pulled outside the building by the wind) is called negative pressure, and the wind pressure acting on the outer surface of the building is facing the outer surface of the building (building by the wind The state where the outer surface of the building is pushed inside the building is called positive pressure.
Here, one exhaust port provided on the roof on the one outer wall surface side of the building and the other exhaust port provided on the roof on the other outer wall surface side of the building, In the case of a configuration in which exhaust is performed through an exhaust path such as an exhaust duct communicating with the exhaust port and the other exhaust port, for example, when the wind is blowing toward one outer wall surface of the building, one outer wall surface Since a larger negative pressure acts on the periphery of one exhaust port provided in the roof portion on the side than the periphery of the other exhaust port, air enters the exhaust duct from the other exhaust port, and the one exhaust port side As a result, the indoor air may not be easily exhausted.
The present invention, for example, allows communication between one exhaust port on the side where the pressure state of the surrounding air is large on the negative pressure side and the room, and blocks communication between the other exhaust port and the room, so that the air is To provide an exhaust device that can prevent indoor air from being easily exhausted through one exhaust port by preventing the air from entering the exhaust duct from the exhaust port and flowing to one exhaust port side. It is.

本発明に係る排気装置は、空気を建物の室内から建物の屋根に設けられた排気口を介して建物外部に排気する排気装置において、屋根の第1の辺縁側に設けられた第1の排気口と、屋根の第2の辺縁側に設けられた第2の排気口と、室内と第1の排気口とを連通させる第1の排気路と、室内と第2の排気口とを連通させる第2の排気路と、第1の排気口及び第2の排気口のうちの一方と室内とを連通させ、かつ、第1の排気口及び第2の排気口のうちの他方と室内との連通を遮断する開閉手段と、第1の排気口の周囲の圧力及び第2の排気口の周囲の圧力を検出するための検出手段と、検出手段からの信号に基づいて第1の排気口又は第2の排気口のうち周囲の圧力が負圧側に大きい一方の排気口と室内とを連通させ、かつ、他方の排気口と室内との連通を遮断するよう開閉手段を制御する制御手段とを備えたので、空気が他方の排気口から排気路内に入り込んで一方の排気口側に流れてしまうことを防止できて、室内の空気は周囲の圧力が負圧側に大きい一方の排気口を介して排気されやすくなる。
第1の排気路の一端部及び第2の排気路の一端部は、室内と連通する共通の排気導入ダクトにより形成され、開閉手段は、排気導入ダクトから第1の排気路及び第2の排気路に分岐する部分に設けられたので、室内から第1の排気口及び第2の排気口に対する切り換えを1つの開閉手段で実現でき、開閉手段の個数を最小限にできる。
第1の排気路及び第2の排気路は、それぞれ、天井裏空間において天井に沿うように設けられた横排気ダクト部分と、建物の壁内に設けられて横排気ダクト部分と排気口とを連通させる縦排気ダクト部分とを備え、開閉手段は、縦排気ダクト部分と横排気ダクト部分との境界部分に設けられたので、横排気ダクト部分の全体を排気口に連通させることができ、横排気ダクト部分内の空気を確実に排気できるので、室内の天井側に位置する横排気ダクト部分の内に空気が停滞してしまうことを防止でき、横排気ダクト部分の内に停滞した空気が室内に漏れてしまうようなことを防止できる。
検出手段が、排気口の近傍に設けられたので、排気口の周囲の圧力をより正確に検出でき、室内の空気を周囲の圧力が負圧側に大きい排気口を介して排気させるための制御を正確に行うことができる。
検出手段が、外壁面に設けられたので、外壁面に吹く風の状態を検出して室内の空気を周囲の圧力が負圧側に大きい排気口を介して排気させるための制御を行うことができる。
検出手段が、第1の排気路内と第2の排気路内とにそれぞれ設けられたので、排気路内の風の状態を検出して室内の空気を周囲の圧力が負圧側に大きい排気口を介して排気させるための制御を行うことができる。
検出手段が、風圧計であるので、排気口の周囲の圧力をより正確に検出でき、室内の空気を周囲の圧力が負圧側に大きい排気口を介して排気させるための制御を正確に行うことができる。
The exhaust device according to the present invention is an exhaust device that exhausts air from the interior of a building to the outside of the building through an exhaust port provided on the roof of the building, and the first exhaust provided on the first edge side of the roof. The opening, the second exhaust port provided on the second edge side of the roof, the first exhaust path for communicating the room and the first exhaust port, and the room and the second exhaust port. The second exhaust path, one of the first exhaust port and the second exhaust port and the room communicate with each other, and the other of the first exhaust port and the second exhaust port and the room Open / close means for blocking communication, detection means for detecting the pressure around the first exhaust port and the pressure around the second exhaust port, and the first exhaust port based on the signal from the detection means One of the second exhaust ports having a large ambient pressure on the negative pressure side communicates with the room, and the other exhaust port Control means for controlling the opening and closing means to cut off the communication with the inside, it is possible to prevent the air from entering the exhaust path from the other exhaust port and flowing to the one exhaust port side, The air is easily exhausted through one exhaust port having a large ambient pressure on the negative pressure side.
One end of the first exhaust path and one end of the second exhaust path are formed by a common exhaust introduction duct communicating with the room, and the opening / closing means is connected to the first exhaust path and the second exhaust from the exhaust introduction duct. Since it is provided at a portion branched into the road, switching from the room to the first exhaust port and the second exhaust port can be realized by one opening / closing means, and the number of opening / closing means can be minimized.
Each of the first exhaust path and the second exhaust path includes a horizontal exhaust duct portion provided along the ceiling in the ceiling space, and a horizontal exhaust duct portion and an exhaust port provided in the wall of the building. A vertical exhaust duct portion that communicates, and the opening / closing means is provided at a boundary portion between the vertical exhaust duct portion and the horizontal exhaust duct portion, so that the entire horizontal exhaust duct portion can communicate with the exhaust port, Since the air in the exhaust duct can be exhausted reliably, it is possible to prevent the air from stagnating in the side exhaust duct located on the ceiling side of the room, and the air stagnated in the side exhaust duct is Can be prevented from leaking.
Since the detection means is provided in the vicinity of the exhaust port, the pressure around the exhaust port can be detected more accurately, and control is performed to exhaust the indoor air through the exhaust port where the ambient pressure is larger on the negative pressure side. Can be done accurately.
Since the detection means is provided on the outer wall surface, it is possible to perform control for detecting the state of the wind blowing on the outer wall surface and exhausting the indoor air through the exhaust port where the ambient pressure is large on the negative pressure side. .
Since the detection means is provided in each of the first exhaust passage and the second exhaust passage, the air condition in the exhaust passage is detected and the room air is discharged to the negative pressure side. Control for exhausting through can be performed.
Since the detection means is an anemometer, the pressure around the exhaust port can be detected more accurately, and the control for exhausting the indoor air through the exhaust port where the ambient pressure is larger on the negative pressure side is performed accurately. Can do.

建物の給排気システムを示した断面図(実施形態1)。Sectional drawing which showed the air supply / exhaust system of the building (Embodiment 1). 建物の屋上に設けられた排気口を示す斜視図(実施形態1)。The perspective view which shows the exhaust port provided in the roof of a building (Embodiment 1). 排気口が設けられた建物の屋上を上から見た平面図(実施形態1)。The top view which looked at the rooftop of the building in which the exhaust port was provided from the top (Embodiment 1). 数値シミュレーションの条件を示す図(実施形態1)。The figure which shows the conditions of numerical simulation (embodiment 1). 数値シミュレーションの結果を示す図(実施形態1)。The figure which shows the result of numerical simulation (embodiment 1). 数値シミュレーションの結果を示す図(実施形態1)。The figure which shows the result of numerical simulation (embodiment 1). 建物の給排気システムを示した断面図(実施形態4)。Sectional drawing which showed the air supply / exhaust system of the building (Embodiment 4).

実施形態1
まず、実施形態1の排気装置を採用した建物の給排気システムについて説明する。
図1乃至図3に示すように、建物の給排気システム1は、建物2と、吸気装置3と、排気装置4とを備える。
建物2は、例えば、横断面及び縦断面が長方形状である直方体形状の集合住宅である。
吸気装置3は、例えば、集合住宅の各戸5の壁6に設けられて外気を室内7に取り込むための吸気口8を備えた構成、又は、吸気口8と吸気口8に設けられた図外の吸気ファン等の吸気機械と吸気機械の図外の制御装置とを備えた構成である。
Embodiment 1
First, a building air supply / exhaust system employing the exhaust device of Embodiment 1 will be described.
As shown in FIGS. 1 to 3, a building air supply / exhaust system 1 includes a building 2, an intake device 3, and an exhaust device 4.
The building 2 is, for example, a rectangular parallelepiped housing having a rectangular cross section and vertical cross section.
For example, the air intake device 3 is provided on the wall 6 of each door 5 of the apartment house and includes an air intake 8 for taking outside air into the room 7, or the air intake device 3 is not shown in the drawings provided at the air intake 8 and the air intake 8. It is the structure provided with intake machines, such as this intake fan, and the control apparatus outside a figure of an intake machine.

排気装置4は、例えば、各戸に設けられた戸別排気部9と、屋上(屋根)10に設けられた2つの屋上排気部11;11と、各戸別排気部9;9・・・と一方の屋上排気部11とを連通させる一方の排気ダクト(第1の排気路)12と、各戸別排気部9;9・・・と他方の屋上排気部11とを連通させる他方の排気ダクト(第2の排気路)12と、排気切換装置50とを備える。   The exhaust device 4 includes, for example, a door-by-door exhaust unit 9 provided at each door, two roof-top exhaust units 11; 11 provided at a roof (roof) 10, and each door-side exhaust unit 9; The one exhaust duct (first exhaust path) 12 that communicates with the roof exhaust part 11 and the other exhaust duct (second exhaust path) that communicates between the individual door exhaust parts 9; ) 12 and an exhaust gas switching device 50.

戸別排気部9は、例えば、各戸5の天井板13に設けられた室内排気口14と、室内排気口14に設けられた排気ファン等の排気機械15と、排気機械15の図外の制御装置とを備えた構成である。室内排気口14は、例えば、浴室や洗面所等の天井に設けられる。   The door-by-door exhaust unit 9 includes, for example, an indoor exhaust port 14 provided in the ceiling plate 13 of each door 5, an exhaust machine 15 such as an exhaust fan provided in the indoor exhaust port 14, and a control device (not shown) of the exhaust machine 15. It is the structure provided with. The indoor exhaust port 14 is provided, for example, on a ceiling of a bathroom or a washroom.

屋上排気部11は、例えば、建物2の屋上10における長方形又は正方形の互いに対向する一対の辺縁側に設けられる。例えば、建物2の屋上10における一方の長辺縁21側(第1の辺縁側)に設けられた一方の屋上排気部11に一方の排気口32(第1の排気口)が設けられ、建物2の屋上10における他方の長辺縁22側(第2の辺縁側)に設けられた他方の屋上排気部11に他方の排気口32(第2の排気口)が設けられる。
図2に示すように、屋上排気部11は、例えば、排気ダクト12の他端開口と屋上10とを連通させるために屋上面16と建物2の壁6の内側とに連通するように形成されて屋上面16に開口する複数の排気路17;17・・・と、排気路17の屋上面開口18より屋上10に排出される空気を集合させる排気集合空間31と排気口32とを形成する囲い30とを備える。
排気路17は、建物躯体に形成された貫通路又は当該貫通路内に配置された排気ダクト12の他端部により形成される。図3では、戸5の排気を排気路17、囲い30の排気集合空間31及び排気口32を介して建物外部に排気するレイアウト構成を示した。
The roof exhaust part 11 is provided, for example, on a pair of opposite edges of a rectangular or square shape on the roof 10 of the building 2. For example, one exhaust port 32 (first exhaust port) is provided in one roof exhaust portion 11 provided on one long side edge 21 side (first edge side) on the roof 10 of the building 2, and the building The other exhaust port 32 (second exhaust port) is provided in the other roof exhaust part 11 provided on the other long side edge 22 side (second edge side) of the second roof 10.
As shown in FIG. 2, the roof exhaust portion 11 is formed to communicate with the roof top surface 16 and the inside of the wall 6 of the building 2 in order to communicate the other end opening of the exhaust duct 12 and the roof 10, for example. And a plurality of exhaust passages 17; 17... Opening to the roof top surface 16 and an exhaust collecting space 31 and an exhaust port 32 for collecting air discharged from the roof top opening 18 of the exhaust passage 17 to the roof top 10. And an enclosure 30.
The exhaust passage 17 is formed by a through passage formed in the building frame or the other end of the exhaust duct 12 disposed in the through passage. FIG. 3 shows a layout configuration in which the exhaust of the door 5 is exhausted to the outside of the building through the exhaust path 17, the exhaust collecting space 31 of the enclosure 30 and the exhaust port 32.

囲い30は、例えば図2に示すように、各屋上面開口18;18・・・の上方に位置する上板30aと、上板30aにおける屋上10の一方の長辺縁21(又は他方の長辺縁22)側の縁面である前縁面と対向する後縁面より延長して屋上面16と連結される後板30bと、上板30aの一方側縁面及び後板30bの一方側縁面より延長して屋上面16と連結される一方側板30cと、上板30aの他方側縁面及び後板30bの他方側縁面より延長して屋上面16と連結される他方側板30dと、排気口構成板30eと、排気口構成板30eに形成された排気口32とを備える。
上板30a、後板30b、排気口構成板30eは、屋上10の長辺縁21(又は長辺縁22)に沿った方向に長い板により形成される。
排気口構成板30eは、上板30aの前縁面と一方側板30cの前縁面と他方側板30dの前縁面とより延長して屋上面16と連結された横長の壁板により形成される。
As shown in FIG. 2, for example, the enclosure 30 includes an upper plate 30a positioned above each roof top surface opening 18; 18... And one long side edge 21 of the roof 10 in the upper plate 30a (or the other length). A rear plate 30b extending from a rear edge surface facing the front edge surface, which is an edge surface on the side edge 22) side, and connected to the roof surface 16, one side edge surface of the upper plate 30a and one side of the rear plate 30b. One side plate 30c extending from the edge surface and connected to the rooftop surface 16, and the other side plate 30d extending from the other side edge surface of the upper plate 30a and the other side edge surface of the rear plate 30b and connected to the rooftop surface 16 The exhaust port constituting plate 30e and the exhaust port 32 formed in the exhaust port constituting plate 30e are provided.
The upper plate 30a, the rear plate 30b, and the exhaust port constituting plate 30e are formed by long plates in the direction along the long side edge 21 (or the long side edge 22) of the rooftop 10.
The exhaust port constituting plate 30e is formed by a horizontally long wall plate that extends from the front edge surface of the upper plate 30a, the front edge surface of the one side plate 30c, and the front edge surface of the other side plate 30d and is connected to the roof surface 16. .

排気口32は、例えば、排気口構成板30eにおいて一方側板30c側と他方側板30d側とに渡って連続して延長するように形成された横長貫通孔により形成される。つまり、排気口32は、排気口構成板30eの一部を貫通させた開口により形成されたものであり、上板30aの前縁面と一方側板30cの前縁面と他方側板30dの前縁面と屋上面16とで囲まれた開口よりも小さい開口により形成される。
そして、横長貫通孔により形成された排気口32における長辺縁21(又は長辺縁22)に沿った横長の開口縁33、即ち、水平方向に延長する上側開口縁33aと下側開口縁33bとが平行な直線に形成される。
互いに平行となるように形成される上側開口縁33aと下側開口縁33bとの間の間隔は、例えば、5cm〜10cm程度に形成される。
即ち、屋上排気部11は、囲い30の内面と屋上面16とで囲まれた排気集合空間31を備え、室内7からの排気が排気ダクト12、排気路17、屋上面開口18を介して囲い30の排気集合空間31内に集まった後に、排気口構成板30eに形成された排気口32を介して囲い30の外部に排気されるように構成されている。
The exhaust port 32 is formed by, for example, a horizontally long through hole formed so as to extend continuously over the one side plate 30c side and the other side plate 30d side in the exhaust port configuration plate 30e. That is, the exhaust port 32 is formed by an opening penetrating a part of the exhaust port constituting plate 30e, and the front edge surface of the upper plate 30a, the front edge surface of the one side plate 30c, and the front edge of the other side plate 30d. The opening is smaller than the opening surrounded by the surface and the roof surface 16.
And the horizontally long opening edge 33 along the long edge 21 (or long edge 22) in the exhaust port 32 formed by the horizontally long through hole, that is, the upper opening edge 33a and the lower opening edge 33b extending in the horizontal direction. Are formed in parallel straight lines.
The distance between the upper opening edge 33a and the lower opening edge 33b formed so as to be parallel to each other is, for example, about 5 cm to 10 cm.
That is, the rooftop exhaust section 11 includes an exhaust collecting space 31 surrounded by the inner surface of the enclosure 30 and the rooftop surface 16, and the exhaust from the room 7 is enclosed via the exhaust duct 12, the exhaust passage 17, and the rooftop opening 18. After collecting in the exhaust collecting space 31, the exhaust is configured to be exhausted to the outside of the enclosure 30 through the exhaust port 32 formed in the exhaust port constituting plate 30 e.

排気ダクト12は、例えば、一端側が分岐されて複数階建ての各階の各室内排気口14;14・・・と連通可能に連結され、かつ、他端側が分岐されて屋上面16上に設けられた屋上排気部11に連通するように構成された集合排気ダクトにより形成される。
実施形態1では、室内7と一方の排気口32とを連通させる一方の排気ダクト12(第1の排気路)の一端部及び室内7と他方の排気口32とを連通させる他方の排気ダクト12(第2の排気路)の一端部が、室内7と連通する共通の排気導入ダクト12cにより形成され、当該排気導入ダクト12cの一端が室内7と連通する室内排気口14に形成される。
即ち、一方の排気ダクト12及び他方の排気ダクト12は、それぞれ、一端に室内7と連通する室内排気口14を備えた排気導入ダクト12cと、一端が排気導入ダクト12cの他端と連通して天井裏空間において天井に沿うように設けられた横排気ダクト部分12bと、建物2内に設けられて一端が横排気ダクト部分12bの他端と連通し他端が排気口32と連通して横排気ダクト部分12bと排気口32とを連通させる縦排気ダクト部分12aとを備える。
The exhaust duct 12 is, for example, branched at one end side and connected to the indoor exhaust ports 14; 14... Of each floor of a plurality of floors, and branched at the other end side and provided on the roof surface 16. It is formed by a collective exhaust duct configured to communicate with the rooftop exhaust section 11.
In the first embodiment, one end of one exhaust duct 12 (first exhaust passage) that communicates the room 7 with one exhaust port 32 and the other exhaust duct 12 that communicates the room 7 with the other exhaust port 32. One end of the (second exhaust passage) is formed by a common exhaust introduction duct 12 c communicating with the room 7, and one end of the exhaust introduction duct 12 c is formed at the indoor exhaust port 14 communicating with the room 7.
That is, one exhaust duct 12 and the other exhaust duct 12 are respectively connected to an exhaust introduction duct 12c having an indoor exhaust port 14 communicating with the room 7 at one end, and one end communicating with the other end of the exhaust introduction duct 12c. A horizontal exhaust duct portion 12b provided along the ceiling in the back space of the ceiling, and one end communicated with the other end of the horizontal exhaust duct portion 12b provided in the building 2 and the other end communicated with the exhaust port 32 to be horizontal. A vertical exhaust duct portion 12a that connects the exhaust duct portion 12b and the exhaust port 32 is provided.

排気切換装置50は、開閉手段としての切換弁装置51と、検出手段としてのセンサー52と、制御手段としての切換制御装置53とを備える。
切換弁装置51は、例えば、共通の排気導入ダクト12cから一方の排気ダクト12及び他方の排気ダクト12に分岐する部分に設けられる。当該切換弁装置51は、切換制御装置53からの制御信号により作動する弁を備え、当該弁により、室内7と一方の排気口32との連通を遮断したり、室内7と他方の排気口32との連通を遮断することにより、一方の排気口32及び他方の排気口32のうちの一方と室内7とを連通させ、一方の排気口32及び他方の排気口32のうちの他方と室内7との連通を遮断する装置である。
センサー52は、一方の排気口32の周囲及び他方の排気口32の周囲の圧力を検出するためのセンサーであり、例えば、一方の排気口32の近傍に設けられた一方の風圧計52a、及び、他方の排気口32の近傍に設けられた他方の風圧計52bである。
切換制御装置53は、センサー52からの信号に基づいて一方の排気口32及び他方の排気口32のうち周囲の圧力が負圧側に大きい例えば一方の排気口32と室内7とを連通させ、かつ、他方の排気口32と室内7との連通を遮断するよう切換弁装置51を制御することにより、空気が他方の排気口32から排気ダクト12内に入り込んで一方のの排気口32側に流れてしまうことを防止できて、室内7の空気は周囲の圧力が負圧側に大きい一方の排気口32を介して排気されやすくなる。
The exhaust gas switching device 50 includes a switching valve device 51 as an opening / closing means, a sensor 52 as a detection means, and a switching control device 53 as a control means.
The switching valve device 51 is provided, for example, at a portion that branches from the common exhaust introduction duct 12 c to one exhaust duct 12 and the other exhaust duct 12. The switching valve device 51 includes a valve that operates according to a control signal from the switching control device 53, and the communication between the indoor 7 and the one exhaust port 32 is blocked by the valve, or the indoor 7 and the other exhaust port 32 are blocked. By blocking the communication with one of the exhaust ports 32 and the other exhaust port 32, the communication with the room 7 is established, and the other of the one exhaust port 32 and the other exhaust port 32 is communicated with the room 7 with the other. It is a device that cuts off the communication with.
The sensor 52 is a sensor for detecting the pressure around the one exhaust port 32 and the pressure around the other exhaust port 32. For example, one anemometer 52a provided near the one exhaust port 32, and The other anemometer 52b provided in the vicinity of the other exhaust port 32.
Based on the signal from the sensor 52, the switching control device 53 communicates, for example, one of the exhaust ports 32 and the other exhaust port 32 with one of the exhaust ports 32 having a large negative pressure side and the room 7, and the like. By controlling the switching valve device 51 so as to cut off the communication between the other exhaust port 32 and the room 7, the air enters the exhaust duct 12 from the other exhaust port 32 and flows to the one exhaust port 32 side. The air in the room 7 is easily exhausted through the one exhaust port 32 whose ambient pressure is larger on the negative pressure side.

以上の給排気システム1によれば、建物2の外部から吸気口8を介して室内7に空気が導入され、かつ、排気機械15が駆動されて室内7の空気が排気ダクト12及び屋上排気部11を介して建物2の外部に排出される。   According to the air supply / exhaust system 1 described above, air is introduced into the room 7 from the outside of the building 2 through the air intake 8, and the exhaust machine 15 is driven so that the air in the room 7 is discharged into the exhaust duct 12 and the roof exhaust unit. 11 and discharged to the outside of the building 2.

尚、発明者らは建物2の外壁面35に風圧が作用した場合に屋上10での圧力分布がどのようになるかを数値シミュレーションで求めた。
図4に示すように、数値シミュレーションでは、横断面及び縦断面が長方形状である直方体形状の建物2の一方の外壁面35Aに直交する方向から建物2の一方の外壁面35Aに向けて風が吹いた場合(図4に白抜き矢印で示すように風向0°で風が吹いた場合(図4の紙面上において下から上に向けて風が吹いた場合))を想定して、建物2の周囲の圧力分布を解析するとともに、図4の紙面上において建物2の中心2Cを中心として風向き0°の位置より右回りに45°回転させた位置から建物2の中心2Cに向けて風が吹いた場合(図4に白抜き矢印で示すように風向45°で風が吹いた場合)を想定して、建物2の周囲の圧力分布を解析した。
尚、図4に示すように、屋上10における長方形の長辺縁21及び長辺縁22が庇23の長辺で構成されている建物2を想定して数値シミュレーションを行った。
In addition, the inventors determined by numerical simulation how the pressure distribution on the rooftop 10 would be when wind pressure acts on the outer wall surface 35 of the building 2.
As shown in FIG. 4, in the numerical simulation, the wind is directed from the direction orthogonal to one outer wall surface 35 </ b> A of the rectangular parallelepiped building 2 having a rectangular cross section and a longitudinal section toward one outer wall surface 35 </ b> A of the building 2. Assuming the case of blowing (when the wind blows at 0 ° as shown by the white arrow in FIG. 4 (when the wind blows from bottom to top on the paper surface of FIG. 4)), the building 2 The pressure distribution around the center of the building 2 is analyzed, and the wind is directed toward the center 2C of the building 2 from the position rotated 45 ° clockwise from the position of the wind direction 0 ° around the center 2C of the building 2 on the paper surface of FIG. The pressure distribution around the building 2 was analyzed on the assumption that it was blown (when the wind was blown at a wind direction of 45 ° as shown by the white arrow in FIG. 4).
In addition, as shown in FIG. 4, the numerical simulation was performed supposing the building 2 in which the long side edge 21 and the long side edge 22 of the rectangle on the rooftop 10 were comprised by the long side of the eaves 23. FIG.

図5(a)は、上記風向0°で風が吹いたと想定した場合の建物横幅方向の中央の部分X(図4参照)での建物2の高さ方向における建物2の周囲の圧力分布を解析した結果を示す図である。
図5(b)は、上記風向45°で風が吹いたと想定した場合の建物横幅方向の中央の部分Xでの建物2の高さ方向における建物2の周囲の圧力分布を解析した結果を示す図である。
図6(a)は、上記風向0°で風が吹いたと想定した場合の屋上面16から500mm上方の位置での建物2の周囲の圧力分布を解析した結果を示す図である。
図6(b)は、上記風向45°で風が吹いたと想定した場合の屋上面16から500mm上方の位置での建物2の周囲の圧力分布を解析した結果を示す図である。
また、図5;図6において、等圧線40に付した数字は圧力係数であり、等圧線40の1間隔は、圧力係数0.1間隔である。尚、圧力係数Cpは、風が吹くことによって建物2の外表面に作用する圧力pを建物頂部高さHにおける速度圧qで除した値(Cp=p/q)である。
FIG. 5A shows the pressure distribution around the building 2 in the height direction of the building 2 at the center portion X (see FIG. 4) in the width direction of the building when it is assumed that the wind is blown at the wind direction of 0 °. It is a figure which shows the result of having analyzed.
FIG.5 (b) shows the result of having analyzed the pressure distribution around the building 2 in the height direction of the building 2 in the center part X of the building width direction when it is assumed that the wind blew at the said wind direction of 45 degrees. FIG.
FIG. 6A is a diagram illustrating a result of analyzing the pressure distribution around the building 2 at a position 500 mm above the roof surface 16 when it is assumed that the wind is blown at the wind direction of 0 °.
FIG. 6B is a diagram showing a result of analyzing the pressure distribution around the building 2 at a position 500 mm above the roof surface 16 when it is assumed that the wind blows at the wind direction of 45 °.
Further, in FIG. 5 and FIG. 6, the numbers given to the isobaric lines 40 are pressure coefficients, and one interval of the isobaric lines 40 is a pressure coefficient 0.1 interval. The pressure coefficient Cp is a value (Cp = p / q H ) obtained by dividing the pressure p acting on the outer surface of the building 2 by the blowing of wind by the velocity pressure q H at the building top height H.

図5;図6から、建物2の外壁面35に向けて風が吹いたと想定した場合に、建物2の屋上10は負圧となることがわかった。
そして、上記風向0°で風が吹いたと想定した場合、図6(a)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16より上方でかつ屋上面16と平行な面上において上記一方の外壁面35Aの上端部に位置する屋上面16の一方の長辺縁(縁)21に沿った湾曲線となることがわかった。即ち、屋上10の一方の長辺縁21の中央側の部分での負圧の等圧線40が建物2の中心2C側(図4参照)に張り出すように湾曲する湾曲線となることがわかった。
また、上記風向45°で風が吹いたと想定した場合も、図6(b)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16より上方でかつ屋上面16と平行な面上において上記一方の外壁面35Aの上端部に位置する屋上面16の一方の長辺縁(縁)21に沿った湾曲線(屋上10の一方の長辺縁21の中央側の部分での負圧の等圧線40が建物2の中心2C側に張り出すように湾曲する湾曲線)となるとともに、建物2の一方の外壁面35Aと直角に隣り合う外壁面35B(図4参照)の上端縁に沿った湾曲線(外壁面35Bの上端縁の中央側の部分での負圧の等圧線40が建物2の中心2C側に張り出すように湾曲する湾曲線)となることがわかった。
さらに、上記風向0°で風が吹いたと想定した場合、図5(a)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16と直交する面上においても上記一方の外壁面35Aの上端部に位置する屋上10の一方の長辺縁21から上方に移動して屋上面16に到達するような湾曲線となることがわかった。
また、上記風向45°で風が吹いたと想定した場合、図5(b)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16と直交する面上においても上記一方の外壁面35Aの上端部に位置する屋上10の一方の長辺縁21から上方に移動して屋上面16に到達するような湾曲線となり、かつ、上記風向0°で風が吹いたと想定した場合と比べて、負圧値の値が小さく、また、負圧の等圧線40の間隔も広くなることがわかった。
FIG. 5; FIG. 6 shows that the roof 10 of the building 2 has a negative pressure when it is assumed that the wind blows toward the outer wall surface 35 of the building 2.
When it is assumed that the wind blows at the wind direction of 0 °, as shown in FIG. 6A, the negative pressure isobar 40 acting on the rooftop 10 is above the rooftop surface 16 and parallel to the rooftop surface 16. It turned out that it becomes a curve line along one long side edge (edge) 21 of the roof surface 16 located on the upper end part of said one outer wall surface 35A on the surface. That is, it was found that the negative pressure isobaric line 40 at the center side portion of one long edge 21 of the rooftop 10 becomes a curved line that curves so as to protrude toward the center 2C side of the building 2 (see FIG. 4). .
Further, even when it is assumed that the wind is blown at the wind direction of 45 °, the negative pressure isobaric line 40 acting on the rooftop 10 is above the rooftop surface 16 and parallel to the rooftop surface 16 as shown in FIG. A curved line along one long side edge (edge) 21 of the roof top surface 16 located at the upper end of the one outer wall surface 35A on a flat surface (at the center side portion of one long side edge 21 of the roof 10) The negative pressure isobaric line 40 is curved so that it protrudes toward the center 2C of the building 2), and the upper end of the outer wall 35B (see FIG. 4) adjacent to the one outer wall 35A of the building 2 at a right angle It turned out that it becomes a curved line along the edge (curved line that curves so that the negative pressure isobaric line 40 at the center of the upper edge of the outer wall surface 35B protrudes toward the center 2C side of the building 2).
Furthermore, when it is assumed that the wind is blown at the wind direction of 0 °, as shown in FIG. 5A, the negative pressure isobaric line 40 acting on the rooftop 10 is the above-mentioned one on the surface orthogonal to the rooftop 16. It turned out that it becomes a curve line which moves upward from one long side edge 21 of the rooftop 10 located at the upper end of the outer wall surface 35A and reaches the rooftop surface 16.
Further, when it is assumed that the wind blows at the wind direction of 45 °, the negative pressure isobaric line 40 acting on the rooftop 10 is also on the surface perpendicular to the rooftop surface 16 as shown in FIG. When assuming a curved line that moves upward from one long edge 21 of the rooftop 10 located at the upper end of the outer wall surface 35A and reaches the rooftop 16, and that the wind blows at the above wind direction of 0 ° It was found that the value of the negative pressure value was smaller than that of and the interval between the negative pressure isobaric lines 40 was increased.

図5;図6からわかることは、例えば、建物2の一方の外壁面35Aに向けて風が吹くと、一方の外壁面35A側の屋上部分には大きな負圧が作用し、一方の外壁面35A側の屋上部分以外のその他の屋上部分には一方の外壁面側の屋上部分よりも小さな負圧しか作用しないことである。
そこで、実施形態1では、建物2の外壁面35に向けて風が吹いた場合に当該外壁面35側の屋上部分に大きな負圧が作用することに鑑み、排気切換装置50を設け、切換制御装置53が、一方の排気口32の近傍に設けた一方の風圧計52a及び他方の排気口32の近傍に設けた他方の風圧計52bからの風圧値を入力して、風圧値の大きい方の排気口32と室内7との連通を遮断し、かつ、風圧値の小さい方の排気口32と室内7と連通させるように切換弁装置51を制御することによって、空気が風圧値の大きい方の排気口32から排気ダクト12内に入り込んで風圧値の小さい方の排気口32側に流れてしまうことを防止できて、室内7の空気は周囲の圧力が負圧側に大きい排気口32(風圧値の小さい方の排気口32)を介して排気されやすくなるようにした。
FIG. 5; FIG. 6 shows that, for example, when wind blows toward one outer wall surface 35A of the building 2, a large negative pressure acts on the roof portion on the one outer wall surface 35A side. It is that only a negative pressure smaller than the roof portion on the one outer wall surface side acts on the other roof portion other than the roof portion on the 35A side.
Therefore, in the first embodiment, when a wind blows toward the outer wall surface 35 of the building 2, in consideration of a large negative pressure acting on the roof portion on the outer wall surface 35 side, the exhaust gas switching device 50 is provided, and switching control is performed. The device 53 inputs the wind pressure value from one anemometer 52a provided in the vicinity of one exhaust port 32 and the other anemometer 52b provided in the vicinity of the other exhaust port 32, and the one having the larger wind pressure value is input. By controlling the switching valve device 51 so as to block communication between the exhaust port 32 and the room 7 and to communicate with the exhaust port 32 having the smaller wind pressure value and the room 7, the air has a larger wind pressure value. It is possible to prevent the air from entering the exhaust duct 12 from the exhaust port 32 and flowing toward the exhaust port 32 having the smaller wind pressure value, and the air in the room 7 has a larger ambient pressure on the negative pressure side. Exhaust through the smaller exhaust port 32) It was made to be more likely to be.

実施形態1の排気装置4によれば、排気切換装置50を備えたことにより、例えば、建物2の一方の外壁面35Aに向けて風が吹いている場合において、風圧値の大きい方の排気口32と風圧値の小さい方の排気口32との連通を遮断させ、かつ、一方の外壁面35A側の屋上10に設けられた風圧値の小さい方の排気口32と室内7とを連通させることによって、風圧値の大きい方の排気口32から風圧値の小さい方の排気口32側への空気の移動を防止でき、室内7の空気は風圧値の小さい方の排気口32を介して排気されやすくなる。
また、一方の排気口32及び他方の排気口32と複数階建ての各階の各室内排気口14;14・・・とが排気ダクト12により連通可能に連結された構成において、排気切換装置50を備えない場合には、周囲の圧力が負圧側に大きい例えば一方の排気口32に他方の排気口32から流入してきた空気が移動する(空気が他方の排気口32側から一方の排気口32側に引張られやすくなるので)ので、下階の室内7からの空気が一方の排気口32まで移動しにくくなり、下階の室内7からの空気が排気されにくくなる恐れがある。これに対して、実施形態1では、排気切換装置50を備えたので、他方の排気口32側から一方の排気口32側への空気の移動が遮断され、下階の室内7からの空気が一方の排気口32を介して排気されやすくなる。
また、切換弁装置51を、共通の排気導入ダクト12cから一方の排気ダクト12及び他方の排気ダクト12に分岐する部分に設けたので、室内7から一方の排気口32及び他方の排気口32に対する切り換えを1つの切換弁装置51で実現でき、切換弁装置51の個数を最小限にできる。
また、排気口32の近傍に風圧計を設けたので、排気口32の周囲の圧力をより正確に検出でき、室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させるための制御を正確に行うことができる。
センサー52として風圧計を用いたので、排気口32の周囲の圧力をより正確に検出でき、室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させるための制御を正確に行うことができる。
また、排気口32が、囲い30における屋上10の辺縁側に位置する面34(図2参照)に形成されたので、排気口32が建物2の外側を向くように設けられ、また、屋上10の辺縁に近いほど負圧が大きくなるので、建物2の外側に向けて効率的に排気できる。
また、一対の囲い30が、屋根における一対の長辺縁のそれぞれに沿うように設けられたので、排気口32の水平方向の長さを長くでき、また、それぞれの長辺縁のどちらに向けて風が吹いた場合でも、建物2の外側に向けて効率的に排気できる。
尚、実施形態1においては、センサー52として風速計を用いてもよい。図5;図6から、等圧線40が密であるところは風速値が大きく負圧となっていると考えることができるので、この場合、切換制御装置53が、一方の排気口32の近傍に設けた一方の風速計及び他方の排気口32の近傍に設けた他方の風速計からの風速値を入力して、風速値の小さい方の排気口32と室内7との連通を遮断し、かつ、風速値の大きい方の排気口32と室内7と連通させるように切換弁装置51を制御すればよい。
According to the exhaust device 4 of the first embodiment, by providing the exhaust switching device 50, for example, when wind is blowing toward one outer wall surface 35A of the building 2, the exhaust port having the larger wind pressure value. The communication between the exhaust port 32 having a smaller wind pressure value and the exhaust port 32 having a smaller wind pressure value is blocked, and the exhaust port 32 having the smaller wind pressure value provided on the roof 10 on the one outer wall surface 35A side is communicated with the room 7. Thus, the movement of air from the exhaust port 32 having the larger wind pressure value to the exhaust port 32 having the smaller wind pressure value can be prevented, and the air in the room 7 is exhausted through the exhaust port 32 having the smaller wind pressure value. It becomes easy.
In addition, in the configuration in which one exhaust port 32 and the other exhaust port 32 are connected to the indoor exhaust ports 14; 14... If not provided, for example, the air flowing from the other exhaust port 32 moves to one exhaust port 32 where the ambient pressure is large on the negative pressure side (air flows from the other exhaust port 32 side to the one exhaust port 32 side). Therefore, it is difficult for the air from the room 7 on the lower floor to move to the one exhaust port 32 and the air from the room 7 on the lower floor is difficult to be exhausted. On the other hand, in the first embodiment, since the exhaust gas switching device 50 is provided, the movement of air from the other exhaust port 32 side to the one exhaust port 32 side is blocked, and the air from the indoor 7 on the lower floor is blocked. It becomes easy to exhaust through one exhaust port 32.
Further, since the switching valve device 51 is provided at a portion that branches from the common exhaust introduction duct 12 c to the one exhaust duct 12 and the other exhaust duct 12, the switching valve device 51 is connected to the one exhaust port 32 and the other exhaust port 32 from the room 7. Switching can be realized by one switching valve device 51, and the number of switching valve devices 51 can be minimized.
Further, since the anemometer is provided in the vicinity of the exhaust port 32, the pressure around the exhaust port 32 can be detected more accurately, and the air in the room 7 is exhausted through the exhaust port 32 where the ambient pressure is larger on the negative pressure side. Can be accurately controlled.
Since the anemometer is used as the sensor 52, the pressure around the exhaust port 32 can be detected more accurately, and the control for exhausting the air in the room 7 through the exhaust port 32 where the ambient pressure is large on the negative pressure side is accurate. Can be done.
Moreover, since the exhaust port 32 is formed in the surface 34 (refer FIG. 2) located in the edge side of the roof 10 in the enclosure 30, the exhaust port 32 is provided so that it may face the outer side of the building 2, and the roof 10 Since the negative pressure increases as it is closer to the edge, the air can be efficiently exhausted toward the outside of the building 2.
In addition, since the pair of enclosures 30 are provided along each of the pair of long side edges on the roof, the horizontal length of the exhaust port 32 can be increased, and to which of the long side edges is directed. Even when the wind blows, the air can be efficiently exhausted toward the outside of the building 2.
In the first embodiment, an anemometer may be used as the sensor 52. FIG. 5; FIG. 6 shows that where the isobaric line 40 is dense, it can be considered that the wind speed value is large and the negative pressure is present. In this case, the switching control device 53 is provided in the vicinity of one exhaust port 32. Input the wind speed value from the other anemometer provided in the vicinity of the other anemometer and the other exhaust port 32 to block the communication between the exhaust port 32 having the smaller wind speed value and the room 7; The switching valve device 51 may be controlled so as to communicate with the exhaust port 32 having the larger wind speed value and the room 7.

実施形態2
実施形態1では、センサー52としての風圧計52a;52bを排気口32の近傍に設置したが、屋上排気部11が設けられている屋上10の辺縁側の一方の外壁面35A及び他方の外壁面35Cのそれぞれに風圧計を設置してもよい。この場合、切換制御装置53が、一方の外壁面35Aに設けた一方の風圧計52a及び他方の外壁面35Cに設けた他方の風圧計52bからの風圧値を入力して、風圧値の小さい方の外壁面側の屋上部分に設けられている排気口32と室内7との連通を遮断し、かつ、風圧値の大きい方の外壁面側の屋上部分に設けられている排気口32と室内7と連通させるように切換弁装置51を制御することによって、室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させることができる。つまり、実施形態2では、外壁面に設けられた風圧計の風圧値が大きいということは、当該外壁面側の屋上部分には大きな負圧が作用していると推定できるので、当該屋上部分に設けられている排気口32を介して排気させるようにしたものである。
実施形態2によれば、外壁面35A;35Cにそれぞれ風圧計を設けたので、外壁面に加わる風圧値を検出して室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させるための制御を行うことができる。
尚、実施形態2においては、センサー52として風向計を用いてもよい。図5;図6から、風上側が負圧となっていると考えることができるので、この場合、切換制御装置53が、1つの外壁面35に設けられた1つの風向計からの値を入力して、排気口32が風上に位置するか風下に位置するかを判定し、風下側に位置する排気口32と室内7との連通を遮断し、かつ、風上側に位置する排気口32と室内7と連通させるように切換弁装置51を制御すればよい。
Embodiment 2
In the first embodiment, the anemometer 52a; 52b as the sensor 52 is installed in the vicinity of the exhaust port 32. However, one outer wall surface 35A on the edge side of the rooftop 10 where the rooftop exhaust portion 11 is provided and the other outer wall surface. A wind pressure gauge may be installed in each of 35C. In this case, the switching control device 53 inputs the wind pressure value from one wind pressure gauge 52a provided on one outer wall surface 35A and the other wind pressure gauge 52b provided on the other outer wall surface 35C, and the wind pressure value is smaller. The communication between the exhaust port 32 provided in the roof portion on the outer wall surface side and the room 7 is blocked, and the exhaust port 32 provided in the roof portion on the outer wall surface side having the larger wind pressure value and the room 7. By controlling the switching valve device 51 so as to communicate with the air, the air in the room 7 can be exhausted through the exhaust port 32 where the ambient pressure is larger on the negative pressure side. That is, in Embodiment 2, since the wind pressure value of the anemometer provided on the outer wall surface is large, it can be estimated that a large negative pressure is acting on the roof portion on the outer wall surface side. The exhaust gas is exhausted through the exhaust port 32 provided.
According to the second embodiment, since the wind pressure gauges are provided on the outer wall surfaces 35A and 35C, respectively, the wind pressure value applied to the outer wall surface is detected, and the air in the room 7 is passed through the exhaust port 32 where the ambient pressure is large on the negative pressure side. Control for exhausting can be performed.
In the second embodiment, an anemometer may be used as the sensor 52. 5; from FIG. 6, it can be considered that the windward side has a negative pressure. In this case, the switching control device 53 inputs a value from one anemometer provided on one outer wall surface 35. Then, it is determined whether the exhaust port 32 is located on the leeward side or on the leeward side, the communication between the exhaust port 32 located on the leeward side and the room 7 is blocked, and the exhaust port 32 located on the upwind side. The switching valve device 51 may be controlled so as to communicate with the room 7.

実施形態3
風圧計を一方の排気ダクト12内と他方の排気ダクト12内とにそれぞれ設けた構成としてもよい。この場合、切換制御装置53が、一方の排気ダクト12内に設けた一方の風圧計52a及び他方の排気ダクト12内に設けた他方の風圧計52bからの風圧値を入力して、風圧値の小さい方の風圧計が設けられている排気ダクト12側の排気口32と室内7との連通を遮断し、かつ、風圧値の大きい方の風圧計が設けられている排気ダクト12側の排気口32と室内7とを連通させるように切換弁装置51を制御することによって、室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させることができる。つまり、実施形態3では、排気ダクト12内に設けられた風圧計の風圧値が大きいということは、当該排気ダクト12の排気端側の屋上部分には負圧が作用していると推定できるので、当該屋上部分に設けられている排気口32を介して集中的に排気させるようにしたものである。
尚、排気ダクト12をバイパスするダミーの排気ダクトを設け、このダミーの排気ダクト内に風圧計を設けてもよい。
実施形態3によれば、一方の排気ダクト12内及び他方の排気ダクト12内、又は、これらをバイパスするダミーの排気ダクト内にそれぞれ風圧計を設けたので、排気ダクト内の風圧値を検出して室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させるための制御を行うことができる。
尚、実施形態3においては、センサー52として風速計を用いてもよい。この場合、切換制御装置53が、一方の排気ダクト(ダミーの排気ダクト)12内に設けた一方の風速計及び他方の一方の排気ダクト(ダミーの排気ダクト)12内に設けた他方の風速計からの風速値を入力して、風速値の小さい方の風速計が設けられている排気ダクト12側の排気口と室内との連通を遮断し、かつ、風速値の大きい方の風速計が設けられている排気ダクト12側の排気口32と室内7とを連通させるように切換弁装置51を制御すればよい。つまり、排気口32の周囲の圧力が負圧側に大きい場合、排気ダクト12内の空気の流れは室内7側から排気口32に向けて速くなると考えられるので、風速値を測定することで、囲の圧力が負圧側に大きい排気口32を特定できる。
Embodiment 3
A wind pressure gauge may be provided in each of the exhaust duct 12 and the other exhaust duct 12. In this case, the switching control device 53 inputs the wind pressure value from one anemometer 52a provided in one exhaust duct 12 and the other anemometer 52b provided in the other exhaust duct 12, and An exhaust port on the exhaust duct 12 side where the exhaust port 32 on the side of the exhaust duct 12 provided with the smaller wind pressure gauge is disconnected from the room 7 and the wind pressure meter on the larger side of the wind pressure value is provided. By controlling the switching valve device 51 so as to allow communication between the chamber 32 and the room 7, the air in the room 7 can be exhausted through the exhaust port 32 where the ambient pressure is large on the negative pressure side. That is, in the third embodiment, it can be estimated that a negative pressure is acting on the roof portion on the exhaust end side of the exhaust duct 12 because the wind pressure value of the anemometer provided in the exhaust duct 12 is large. The exhaust air is intensively exhausted through the exhaust port 32 provided in the roof portion.
A dummy exhaust duct that bypasses the exhaust duct 12 may be provided, and an anemometer may be provided in the dummy exhaust duct.
According to the third embodiment, since the wind pressure gauges are provided in one exhaust duct 12 and the other exhaust duct 12 or in dummy exhaust ducts that bypass them, the wind pressure value in the exhaust duct is detected. Thus, it is possible to perform control for exhausting the air in the room 7 through the exhaust port 32 where the ambient pressure is larger on the negative pressure side.
In the third embodiment, an anemometer may be used as the sensor 52. In this case, the switching control device 53 has one anemometer provided in one exhaust duct (dummy exhaust duct) 12 and the other anemometer provided in the other exhaust duct (dummy exhaust duct) 12. The air velocity value from the air duct is input, the communication between the exhaust port on the exhaust duct 12 side where the anemometer with the smaller wind velocity value is provided and the room is blocked, and the anemometer with the larger wind velocity value is provided. The switching valve device 51 may be controlled so that the exhaust port 32 on the exhaust duct 12 side and the room 7 communicate with each other. That is, when the pressure around the exhaust port 32 is large on the negative pressure side, the flow of air in the exhaust duct 12 is considered to increase from the indoor 7 side toward the exhaust port 32. Therefore, by measuring the wind speed value, The exhaust port 32 having a large pressure on the negative pressure side can be specified.

実施形態1乃至3によれば、切換制御装置53が、排気口の近傍の風の状態、外壁面に吹く風の状態、排気ダクト内の風の状態を検出して、周囲の圧力が負圧側に大きい排気口32を特定できるので、室内7の空気を周囲の圧力が負圧側に大きい排気口32を介して排気させるための制御を正確に行うことができる。
尚、一方の外壁面35A又は他方の外壁面35Cのいずれかにのみ風圧計を設ける構成としてもよい。
According to the first to third embodiments, the switching control device 53 detects the state of the wind in the vicinity of the exhaust port, the state of the wind blowing on the outer wall surface, and the state of the wind in the exhaust duct, and the surrounding pressure is on the negative pressure side. Therefore, it is possible to accurately perform control for exhausting the air in the room 7 through the exhaust port 32 whose ambient pressure is larger on the negative pressure side.
In addition, it is good also as a structure which provides an anemometer only in either one outer wall surface 35A or the other outer wall surface 35C.

実施形態4
図7に示すように、開閉手段として、一方の排気ダクト12の縦排気ダクト部分12aと横排気ダクト部分12bとの境界部分、及び、他方の排気ダクト12の縦排気ダクト部分12aと横排気ダクト部分12bとの境界部分に、それぞれ開閉弁装置51Aを設けてもよい。
この場合、横排気ダクト部分12bの全体を排気口32に連通させることができ、横排気ダクト部分12b内の空気を確実に排気できるので、室内7の天井側に位置する横排気ダクト部分12bの内に空気が停滞してしまうことを防止でき、横排気ダクト部分12bの内に停滞した空気が室内7に漏れてしまうようなことを防止できる。
Embodiment 4
As shown in FIG. 7, as the opening / closing means, the boundary portion between the vertical exhaust duct portion 12a and the horizontal exhaust duct portion 12b of one exhaust duct 12, and the vertical exhaust duct portion 12a and the horizontal exhaust duct of the other exhaust duct 12 are provided. An on-off valve device 51A may be provided at each boundary portion with the portion 12b.
In this case, the entire lateral exhaust duct portion 12b can be communicated with the exhaust port 32, and the air in the lateral exhaust duct portion 12b can be reliably exhausted, so that the lateral exhaust duct portion 12b located on the ceiling side of the room 7 can be It is possible to prevent the air from stagnating inside, and it is possible to prevent the air stagnating in the horizontal exhaust duct portion 12 b from leaking into the room 7.

実施形態5
一方の排気口32及び他方の排気口32のそれぞれに、排気口を開閉する開閉手段としての開閉弁を設けた構成としてもよい。
Embodiment 5
An opening / closing valve as an opening / closing means for opening / closing the exhaust port may be provided in each of the one exhaust port 32 and the other exhaust port 32.

また、横長貫通孔により形成された排気口32は、囲い30の排気口構成板30eの面34に1つ又は面34の上下方向に複数並ぶように設ければよい。
また、排気口32は、縦長貫通孔、又は、屋上面16に対して斜め方向に延長する貫通孔により形成してもよい。
また、囲い30は、上下方向に排気口32を形成する複数の貫通孔が平行に並ぶように設けられたガラリ戸のような排気口構成板30eを備えた構成としてもよい。
Further, the exhaust ports 32 formed by the horizontally long through holes may be provided on the surface 34 of the exhaust port constituting plate 30 e of the enclosure 30 so as to be arranged in a row or in the vertical direction of the surface 34.
Further, the exhaust port 32 may be formed by a vertically long through hole or a through hole extending in an oblique direction with respect to the roof surface 16.
Moreover, the enclosure 30 is good also as a structure provided with the exhaust port structure board 30e like a louver door provided so that the several through-hole which forms the exhaust port 32 in an up-down direction may be located in a line.

上記では、排気口32が、囲いにおける屋上の一辺縁側に位置する排気口構成板30eの面34に形成された例を示したが、排気口32は、囲い30の排気口構成板30e、後板30b、上板30aのうちのいずれか1つに形成されていればよい。   In the above, the example in which the exhaust port 32 is formed on the surface 34 of the exhaust port component plate 30e located on the one edge side of the roof in the enclosure has been shown, but the exhaust port 32 includes the exhaust port component plate 30e of the enclosure 30, the rear What is necessary is just to be formed in any one of the board 30b and the upper board 30a.

尚、屋上排気部11は、建物2の屋上10の3つの辺縁側にそれぞれ設けられたり、建物2の屋上10の4つの辺縁側にそれぞれ設けられた構成としてもよい。このようにすれば、どの方向から風が吹いた場合でも屋上排気部11の排気口32を介して効率的な排気が行われる。
この場合、例えば、一番大きな負圧が作用している屋上部分に設けられた屋上排気部11の排気口32以外の排気口と室内との連通を遮断し、一番大きな負圧が作用している屋上部分に設けられた屋上排気部11の排気口32を介して集中的に排気を行わせる構成とすればよい。
Note that the roof exhaust unit 11 may be provided on each of the three edge sides of the roof 10 of the building 2 or may be provided on each of the four edges of the roof 10 of the building 2. In this way, efficient exhaust is performed through the exhaust port 32 of the roof exhaust part 11 regardless of the direction from which the wind blows.
In this case, for example, the communication between the exhaust port other than the exhaust port 32 of the roof exhaust part 11 provided in the roof portion where the greatest negative pressure is applied and the room is blocked, and the greatest negative pressure is applied. What is necessary is just to set it as the structure which exhausts intensively through the exhaust port 32 of the roof exhaust part 11 provided in the roof part currently provided.

また、制御手段による開閉手段の制御は、制御手段がセンサーからの出力をリアルタイムに入力してリアルタイムに制御を行ってもよいし、制御手段が所定時間間隔でセンサーからの出力を読み込んで所定時間間隔で制御を行ってもよい。   Further, the control means may control the opening / closing means by inputting the output from the sensor in real time and performing the control in real time, or the control means reads the output from the sensor at a predetermined time interval for a predetermined time. Control may be performed at intervals.

2 建物、4 排気装置、7 室内、10 屋上(屋根)、
12 一方の排気ダクト(第1の排気路)、12 他方の排気ダクト(第2の排気路)、12a 縦排気ダクト部分、12b 横排気ダクト部分、12c 排気導入ダクト、
21 一方の長辺縁(第1の辺縁)、22 他方の長辺縁(第2の辺縁)、
32 一方の排気口(第1の排気口)、32 他方の排気口(第2の排気口)、
35A 一方の外壁面、35C 他方の外壁面、50 排気切換装置、
51 切換弁装置(開閉手段)、51A 開閉弁装置(開閉手段)、
52 センサー(検出手段)、52a;52b 風圧計(検出手段)、
53 切換制御装置(制御手段)。
2 building, 4 exhaust system, 7 indoors, 10 rooftop (roof),
12 one exhaust duct (first exhaust passage), 12 other exhaust duct (second exhaust passage), 12a vertical exhaust duct portion, 12b lateral exhaust duct portion, 12c exhaust introduction duct,
21 one long edge (first edge), 22 the other long edge (second edge),
32 one exhaust port (first exhaust port), 32 the other exhaust port (second exhaust port),
35A One outer wall surface, 35C The other outer wall surface, 50 Exhaust gas switching device,
51 switching valve device (opening / closing means), 51A opening / closing valve device (opening / closing means),
52 sensor (detection means), 52a; 52b anemometer (detection means),
53 Switching control device (control means).

Claims (7)

空気を建物の室内から建物の屋根に設けられた排気口を介して建物外部に排気する排気装置において、
屋根の第1の辺縁側に設けられた第1の排気口と、屋根の第2の辺縁側に設けられた第2の排気口と、室内と第1の排気口とを連通させる第1の排気路と、室内と第2の排気口とを連通させる第2の排気路と、第1の排気口及び第2の排気口のうちの一方と室内とを連通させ、かつ、第1の排気口及び第2の排気口のうちの他方と室内との連通を遮断する開閉手段と、第1の排気口の周囲の圧力及び第2の排気口の周囲の圧力を検出するための検出手段と、検出手段からの信号に基づいて第1の排気口又は第2の排気口のうち周囲の圧力が負圧側に大きい一方の排気口と室内とを連通させ、かつ、他方の排気口と室内との連通を遮断するよう開閉手段を制御する制御手段とを備えたことを特徴とする排気装置。
In an exhaust device that exhausts air from the interior of the building to the outside of the building through an exhaust port provided on the roof of the building,
A first exhaust port provided on the first edge side of the roof, a second exhaust port provided on the second edge side of the roof, and a first exhaust port that communicates the interior of the room with the first exhaust port. One of the first exhaust port and the second exhaust port communicates with the room and the second exhaust channel, the second exhaust channel communicating the room with the second exhaust port, and the first exhaust port. Opening / closing means for blocking communication between the other of the opening and the second exhaust port and the room, and detection means for detecting the pressure around the first exhaust port and the pressure around the second exhaust port Based on the signal from the detection means, the first exhaust port or the second exhaust port communicates with one of the exhaust ports whose ambient pressure is larger on the negative pressure side and the room, and the other exhaust port and the room. An exhaust apparatus comprising: control means for controlling the opening / closing means so as to cut off the communication.
第1の排気路の一端部及び第2の排気路の一端部は、室内と連通する共通の排気導入ダクトにより形成され、
開閉手段は、排気導入ダクトから第1の排気路及び第2の排気路に分岐する部分に設けられたことを特徴とする請求項1に記載の排気装置。
One end of the first exhaust passage and one end of the second exhaust passage are formed by a common exhaust introduction duct communicating with the room,
2. The exhaust system according to claim 1, wherein the opening / closing means is provided at a portion branched from the exhaust introduction duct to the first exhaust path and the second exhaust path.
第1の排気路及び第2の排気路は、それぞれ、天井裏空間において天井に沿うように設けられた横排気ダクト部分と、建物の壁内に設けられて横排気ダクト部分と排気口とを連通させる縦排気ダクト部分とを備え、
開閉手段は、縦排気ダクト部分と横排気ダクト部分との境界部分に設けられたことを特徴とする請求項1に記載の排気装置。
Each of the first exhaust path and the second exhaust path includes a horizontal exhaust duct portion provided along the ceiling in the ceiling space, and a horizontal exhaust duct portion and an exhaust port provided in the wall of the building. With a vertical exhaust duct portion that communicates,
2. The exhaust system according to claim 1, wherein the opening / closing means is provided at a boundary portion between the vertical exhaust duct portion and the horizontal exhaust duct portion.
検出手段が、排気口の近傍に設けられたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の排気装置。   The exhaust device according to any one of claims 1 to 3, wherein the detection means is provided in the vicinity of the exhaust port. 検出手段が、外壁面に設けられたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の排気装置。   The exhaust device according to any one of claims 1 to 3, wherein the detection means is provided on an outer wall surface. 検出手段が、第1の排気路内と第2の排気路内とにそれぞれ設けられたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の排気装置。   The exhaust device according to any one of claims 1 to 3, wherein the detection means is provided in each of the first exhaust passage and the second exhaust passage. 検出手段が、風圧計であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の排気装置。   The exhaust device according to any one of claims 1 to 6, wherein the detection means is an anemometer.
JP2011078428A 2011-03-31 2011-03-31 Exhaust device Pending JP2012211747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078428A JP2012211747A (en) 2011-03-31 2011-03-31 Exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078428A JP2012211747A (en) 2011-03-31 2011-03-31 Exhaust device

Publications (1)

Publication Number Publication Date
JP2012211747A true JP2012211747A (en) 2012-11-01

Family

ID=47265847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078428A Pending JP2012211747A (en) 2011-03-31 2011-03-31 Exhaust device

Country Status (1)

Country Link
JP (1) JP2012211747A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194340A (en) * 1989-12-25 1991-08-26 Fujita Corp Wind force ventilation system
JPH0470934U (en) * 1990-01-09 1992-06-23
JPH07324797A (en) * 1994-06-01 1995-12-12 Matsushita Seiko Co Ltd Outside wind pressure ventilating system
JP2000170273A (en) * 1998-12-07 2000-06-20 Kumagai Gumi Co Ltd Natural ventilation structure for building
JP2001208386A (en) * 2000-01-28 2001-08-03 Building Research Inst Ministry Of Construction Ventilating structure
JP2008002708A (en) * 2006-06-20 2008-01-10 Sekisui House Ltd Ventilation structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194340A (en) * 1989-12-25 1991-08-26 Fujita Corp Wind force ventilation system
JPH0470934U (en) * 1990-01-09 1992-06-23
JPH07324797A (en) * 1994-06-01 1995-12-12 Matsushita Seiko Co Ltd Outside wind pressure ventilating system
JP2000170273A (en) * 1998-12-07 2000-06-20 Kumagai Gumi Co Ltd Natural ventilation structure for building
JP2001208386A (en) * 2000-01-28 2001-08-03 Building Research Inst Ministry Of Construction Ventilating structure
JP2008002708A (en) * 2006-06-20 2008-01-10 Sekisui House Ltd Ventilation structure

Similar Documents

Publication Publication Date Title
KR101782774B1 (en) Indoor unit for air conditioning device
JP2008309381A (en) Heat exchange ventilation device
JP5490485B2 (en) Replacement ventilation equipment for large space rooms
KR101441073B1 (en) Apparatus for constant temperature and moisture by using outer air cooling and heat pipe
JP6375101B2 (en) How to ventilate the warehouse
KR20200038477A (en) Modular air cooling and distribution system and method
JP2012211747A (en) Exhaust device
KR20170139388A (en) Ventilating device
PL67862Y1 (en) Regulatory box for ventilating
GB2499582A (en) Modular air movement apparatus
JP2010107054A (en) Air conditioner
KR101255637B1 (en) Ventilation system
JP5710342B2 (en) Exhaust system
JP5693329B2 (en) Exhaust system
JP2021179262A (en) Air supply control device and air conditioning system
JP6342178B2 (en) Building air conditioning
JP2001033072A (en) Ventilation system
KR101092237B1 (en) Performance test system for heat-recovery ventilators
JP6157402B2 (en) Environmental test equipment
JP2014098550A (en) Air supplier
KR101522790B1 (en) Adjustable Airflow Duct Silencer
EP2413051B1 (en) Heat exchange and ventilation device
KR102353692B1 (en) Marine exhaust systems and exhaust control method
KR200397886Y1 (en) Smoke-proof apparatus
US9816714B2 (en) Rainscreen with integrated heat and moisture exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111