JP5693329B2 - Exhaust system - Google Patents

Exhaust system Download PDF

Info

Publication number
JP5693329B2
JP5693329B2 JP2011078326A JP2011078326A JP5693329B2 JP 5693329 B2 JP5693329 B2 JP 5693329B2 JP 2011078326 A JP2011078326 A JP 2011078326A JP 2011078326 A JP2011078326 A JP 2011078326A JP 5693329 B2 JP5693329 B2 JP 5693329B2
Authority
JP
Japan
Prior art keywords
exhaust
roof
exhaust port
building
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011078326A
Other languages
Japanese (ja)
Other versions
JP2012211744A (en
Inventor
近藤 誠一
誠一 近藤
憲昭 鰐淵
憲昭 鰐淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2011078326A priority Critical patent/JP5693329B2/en
Publication of JP2012211744A publication Critical patent/JP2012211744A/en
Application granted granted Critical
Publication of JP5693329B2 publication Critical patent/JP5693329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Ventilation (AREA)

Description

本発明は、空気を建物の室内から建物の屋根を介して建物外部に排出する排気装置に関する。   The present invention relates to an exhaust device that discharges air from the interior of a building to the outside of the building through the roof of the building.

従来、空気を建物の室内から建物の屋根に設けられた排気口を介して建物外部に排気する排気装置において、排気口が建物の屋根の辺縁に沿って延長するように設けられたものが知られている。   Conventionally, in an exhaust device that exhausts air from the interior of a building to the outside of the building through an exhaust port provided on the roof of the building, the exhaust port is provided so as to extend along the edge of the roof of the building Are known.

特開2000−170273号公報JP 2000-170273 A 特開2003−232092号公報JP 2003-232092 A

後述するように、本発明の発明者は、例えば、横断面及び縦断面が長方形状である直方体形状の複数階建ての集合住宅のような建物の一方の外壁面に風圧が作用すると、屋上(屋根)は負圧となり、屋上に作用する負圧の等圧線は、上記一方の外壁面の上端に位置する屋上の一方の辺縁に沿った湾曲線となることを見出した(図6参照)。
尚、本明細書では、風が吹いている状態において、建物の外壁面、屋上面等の建物の外表面に作用する風の圧力が建物の外表面から外表面より離れる方向に向いている状態(風により建物の外表面が建物の外側に引張られているような状態)を負圧といい、建物の外表面に作用する風の圧力が建物の外表面に向いている状態(風により建物の外表面が建物の内側に押されているような状態)を正圧という。
即ち、屋上の一方の辺縁の中央側の部分の負圧の等圧線が建物の中心2C(図8参照)側に張り出すように湾曲する湾曲線となるため、屋上の直線状の一方の辺縁に沿った直線上においては、屋上の一方の辺縁の両端部側と屋上の一方の辺縁の中央側とでは作用する負圧の大きさが異なること、つまり、屋上の一方の辺縁の中央側は負圧が大きく、辺縁の両端部側は負圧が小さいことを数値シミュレーションにより確認した。
図8に示すように、従来の排気口100は、屋上10Aの直線状の辺縁21と平行な例えば長方形状の開口により形成されているので、排気口100における屋上10Aの辺縁21の中央側では負圧が大きくて排気されやすく、かつ、排気口100における屋上10Aの辺縁21の両端部側の位置では負圧が小さいので排気されにくい。つまり、排気口100における屋上10Aの辺縁21の中央側の位置と屋上10Aの辺縁21の両端部側の位置とで負圧の大きさが異なるので、排気口100の位置によって排気のしやすさが異なってしまう。即ち、排気口100における屋上10Aの辺縁21の中央側の位置から集中的に排気が行われるようになって、排気口100全体での排気バランスが悪くなってしまい、排気口100全体での排気効率が悪くなってしまう。
本発明は、排気口全体での排気バランスを良好にでき、排気口全体での排気効率を向上できる排気装置を提供する。
As will be described later, the inventor of the present invention, for example, when the wind pressure acts on one outer wall surface of a building such as a multi-storey apartment building having a rectangular parallelepiped cross section and longitudinal section, the rooftop ( The roof) has a negative pressure, and the negative pressure isobaric line acting on the roof is found to be a curved line along one edge of the roof located at the upper end of the one outer wall surface (see FIG. 6).
In addition, in this specification, in the state where the wind is blowing, the state where the pressure of the wind acting on the outer surface of the building such as the outer wall surface of the building or the roof surface is directed in the direction away from the outer surface of the building (The state where the outer surface of the building is pulled outside the building by the wind) is called negative pressure, and the wind pressure acting on the outer surface of the building is facing the outer surface of the building (building by the wind The state where the outer surface of the building is pushed inside the building is called positive pressure.
That is, the negative pressure isobaric line at the center side of one edge of the roof becomes a curved line that curves so as to protrude toward the center 2C (see FIG. 8) of the building. On the straight line along the edge, the negative pressure acting on the both ends of one edge of the roof and the central side of one edge of the roof differ, that is, one edge of the roof. It was confirmed by numerical simulation that the negative pressure was large at the center side of the, and the negative pressure was small at both ends of the edge.
As shown in FIG. 8, the conventional exhaust port 100 is formed by, for example, a rectangular opening parallel to the linear side edge 21 of the rooftop 10A, so that the center of the side edge 21 of the rooftop 10A at the exhaust port 100 is formed. On the side, the negative pressure is large and it is easy to exhaust, and the negative pressure is small at the both ends of the edge 21 of the rooftop 10A at the exhaust port 100, so it is difficult to exhaust. That is, since the magnitude of the negative pressure is different between the position on the central side of the edge 21 of the rooftop 10A and the positions on both ends of the edge 21 of the rooftop 10A at the exhaust outlet 100, the exhaust air is exhausted depending on the position of the exhaust outlet 100. Ease is different. In other words, exhaust is performed intensively from the position on the central side of the edge 21 of the rooftop 10A in the exhaust port 100, and the exhaust balance in the entire exhaust port 100 is deteriorated. Exhaust efficiency will deteriorate.
The present invention provides an exhaust device that can improve the exhaust balance of the entire exhaust port and improve the exhaust efficiency of the entire exhaust port.

本発明に係る排気装置は、建物の屋根に設けられて屋根の辺縁と平行な直線に沿って形成された排気口を介して空気を建物の室内から建物外部に排気する排気装置において、排気口は、屋根の辺縁の中央側部分の周囲の圧力と屋根の辺縁の端部側部分の周囲の圧力との違いによる排気量の差をなくすために、屋根の辺縁の中央側部分の開口面積が屋根の辺縁の端部側部分の開口面積よりも小さく形成されたので、排気口全体での排気バランスを良好にでき、排気口全体での排気効率を向上できる。
排気口が、建物の屋根上に排出される空気を集合させる排気集合空間を形成する囲いの面板に設けられ、面板が建物の外壁面と平行な面板であるので、建物の外壁面に向けて風が吹いた場合の屋根上における屋根と平行な面上の負圧の等圧線と交差する面板において、交差する等圧線の負圧の値が大きい部分に形成される排気口の面積を小さくし、交差する等圧線の負圧の値が小さい部分に形成される排気口の面積を大きくすることによって、排気集合空間内に集合した排気が排気口のどの位置からでも均等に排気されやすくなり、排気口全体での排気バランスを良好にできて、排気口全体での排気効率を向上できる。
排気口が、囲いにおける屋根の辺縁側に位置する面板に形成されたので、排気口が建物の外側を向くように設けられ、また、屋根の辺縁に近いほど負圧が大きくなるので、建物の外側に向けて効率的に排気できる。
一対の囲いの各面板が、屋根における一対の長辺縁のそれぞれに沿うように設けられたので、それぞれの長辺縁のどちらに向けて風が吹いた場合でも、建物の外側に向けて効率的に排気できる。
An exhaust device according to the present invention is an exhaust device that exhausts air from the interior of a building to the outside of the building through an exhaust port provided on the roof of the building and formed along a straight line parallel to the edge of the roof. In order to eliminate the difference in the displacement due to the difference between the pressure around the central part of the roof edge and the pressure around the end part of the roof edge, the mouth is the central part of the roof edge. Since the opening area is smaller than the opening area of the edge side portion of the roof edge, the exhaust balance in the entire exhaust port can be improved, and the exhaust efficiency in the entire exhaust port can be improved.
Since the exhaust vent is provided in the face plate of the enclosure that forms the exhaust collecting space that collects the air discharged on the roof of the building, and the face plate is a face plate parallel to the outer wall surface of the building, it faces the outer wall surface of the building In the faceplate that intersects the negative pressure isobaric line on the surface parallel to the roof on the roof when the wind blows, reduce the area of the exhaust port formed in the part where the negative pressure value of the intersecting isobaric line is large and intersect By increasing the area of the exhaust port formed in the part where the negative pressure value of the isobaric line is small, the exhaust collected in the exhaust collecting space is easily exhausted from any position of the exhaust port, and the entire exhaust port This makes it possible to achieve a good exhaust balance and improve exhaust efficiency at the entire exhaust port.
Since the exhaust vent is formed on the face plate located on the edge of the roof in the enclosure, the exhaust vent is provided to face the outside of the building, and the negative pressure increases as it approaches the edge of the roof. Efficient exhaust toward the outside.
Since each faceplate of the pair of enclosures is provided along each of the pair of long side edges on the roof, the efficiency is directed toward the outside of the building regardless of which wind blows toward either of the long side edges. Can be exhausted.

建物の給排気システムを示した断面図(実施形態1)。Sectional drawing which showed the air supply / exhaust system of the building (Embodiment 1). 建物の屋上に設けられた排気口を示す斜視図(実施形態1)。The perspective view which shows the exhaust port provided in the roof of a building (Embodiment 1). 排気口が設けられた建物の屋上を上から見た平面図(実施形態1)。The top view which looked at the rooftop of the building in which the exhaust port was provided from the top (Embodiment 1). 数値シミュレーションの条件を示す図(実施形態1)。The figure which shows the conditions of numerical simulation (embodiment 1). 数値シミュレーションの結果を示す図(実施形態1)。The figure which shows the result of numerical simulation (embodiment 1). 数値シミュレーションの結果を示す図(実施形態1)。The figure which shows the result of numerical simulation (embodiment 1). 排気口と負圧の等圧線との関係を示す図(実施形態1)。The figure which shows the relationship between an exhaust port and the isobar of negative pressure (Embodiment 1). 従来の排気口と負圧の等圧線との関係を示す図。The figure which shows the relationship between the conventional exhaust port and the isobar of negative pressure. 建物の屋上に設けられた排気口を示す斜視図(実施形態2)。The perspective view which shows the exhaust port provided in the roof of a building (Embodiment 2). 建物の屋上に設けられた排気口を示す正面図(実施形態3)。The front view which shows the exhaust port provided in the roof of a building (Embodiment 3).

実施形態1
まず、実施形態1の排気装置を採用した建物の給排気システムについて説明する。
図1乃至図3に示すように、建物の給排気システム1は、建物2と、吸気装置3と、排気装置4とを備える。
建物2は、例えば、横断面及び縦断面が長方形状である直方体形状の集合住宅である。
吸気装置3は、例えば、集合住宅の各戸5の壁6に設けられて外気を室内7に取り込むための吸気口8を備えた構成、又は、吸気口8と吸気口8に設けられた図外の吸気ファン等の吸気機械と吸気機械の図外の制御装置とを備えた構成である。
排気装置4は、例えば、各戸に設けられた戸別排気部9と、屋上(屋根)10に設けられた屋上排気部11と、各戸別排気部9;9・・・と屋上排気部11とを連通させる排気ダクト(管路)12とを備える。
戸別排気部9は、例えば、各戸5の天井板13に設けられた室内排気口14と、室内排気口14に設けられた排気ファン等の排気機械15と、排気機械15の図外の制御装置とを備えた構成である。室内排気口14は、例えば、浴室や洗面所等の天井に設けられる。
排気ダクト12は、例えば、一端側が分岐されて各室内排気口14;14・・・と連通可能に連結され、かつ、他端側が分岐されて屋上面16上に設けられた屋上排気部11に連通するように構成された集合排気ダクトにより形成され、建物2内に設けられた縦排気ダクト部分12aと天井裏空間に設けられた横排気ダクト部分12bとを備える。
図1;2に示すように、屋上排気部11は、例えば、建物2の屋上10における長方形又は正方形の互いに対向する一対の辺縁側に設けられる(例えば一方の長辺縁21側と他方の長辺縁22側とにそれぞれ設けられる)。
図2に示すように、屋上排気部11は、例えば、排気ダクト12の他端開口と屋上10とを連通させるために屋上面16と建物2の壁6の内側とに連通するように形成されて屋上面16に開口する複数の排気路17;17・・・と、排気路17の屋上面開口18より屋上10に排出される空気を集合させる排気集合空間31と複数の排気口32aからなる排気口としての排気口群32とを形成する囲い30とを備える。
排気路17は、建物躯体に形成された貫通路又は当該貫通路内に配置された排気ダクト12の他端部により形成される。図3では、戸5の排気を排気路17、囲い30の排気集合空間31及び排気口群32を介して建物外部に排気するレイアウト構成を示した。
以上の給排気システム1によれば、建物2の外部から吸気口8を介して室内7に空気が導入され、かつ、排気機械15が駆動されて室内7の空気が排気ダクト12及び屋上排気部11を介して建物2の外部に排出される。
Embodiment 1
First, a building air supply / exhaust system employing the exhaust device of Embodiment 1 will be described.
As shown in FIGS. 1 to 3, a building air supply / exhaust system 1 includes a building 2, an intake device 3, and an exhaust device 4.
The building 2 is, for example, a rectangular parallelepiped housing having a rectangular cross section and vertical cross section.
For example, the air intake device 3 is provided on the wall 6 of each door 5 of the apartment house and includes an air intake 8 for taking outside air into the room 7, or the air intake device 3 is not shown in the drawings provided at the air intake 8 and the air intake 8. It is the structure provided with intake machines, such as this intake fan, and the control apparatus outside a figure of an intake machine.
The exhaust device 4 includes, for example, a door-by-door exhaust section 9 provided at each door, a roof-top exhaust section 11 provided at the roof (roof) 10, door-by-door exhaust sections 9; 9. An exhaust duct (pipe line) 12 is provided.
The door-by-door exhaust unit 9 includes, for example, an indoor exhaust port 14 provided in the ceiling plate 13 of each door 5, an exhaust machine 15 such as an exhaust fan provided in the indoor exhaust port 14, and a control device (not shown) of the exhaust machine 15. It is the structure provided with. The indoor exhaust port 14 is provided, for example, on a ceiling of a bathroom or a washroom.
The exhaust duct 12 is connected, for example, to a rooftop exhaust section 11 that is branched at one end side so as to be able to communicate with the indoor exhaust ports 14; 14. A vertical exhaust duct portion 12a provided in the building 2 and a horizontal exhaust duct portion 12b provided in the ceiling space is formed by a collective exhaust duct configured to communicate with each other.
As shown in FIGS. 1 and 2, the roof exhaust section 11 is provided, for example, on a pair of opposite sides of a rectangle or square on the roof 10 of the building 2 (for example, one long edge 21 side and the other length). Provided on the edge 22 side).
As shown in FIG. 2, the roof exhaust portion 11 is formed to communicate with the roof top surface 16 and the inside of the wall 6 of the building 2 in order to communicate the other end opening of the exhaust duct 12 and the roof 10, for example. And a plurality of exhaust passages 17; 17... Opening on the roof top surface 16, an exhaust collecting space 31 for collecting air discharged from the roof top opening 18 of the exhaust passage 17 to the roof top 10, and a plurality of exhaust ports 32a. And an enclosure 30 forming an exhaust port group 32 as exhaust ports.
The exhaust passage 17 is formed by a through passage formed in the building frame or the other end of the exhaust duct 12 disposed in the through passage. FIG. 3 shows a layout configuration in which the exhaust of the door 5 is exhausted to the outside of the building through the exhaust path 17, the exhaust collecting space 31 of the enclosure 30, and the exhaust port group 32.
According to the air supply / exhaust system 1 described above, air is introduced into the room 7 from the outside of the building 2 through the air intake 8, and the exhaust machine 15 is driven so that the air in the room 7 is discharged into the exhaust duct 12 and the roof exhaust unit. 11 and discharged to the outside of the building 2.

囲い30は、例えば、図2に示すように、各屋上面開口18;18・・・の上方に位置する上板30aと、上板30aにおける屋上10の一方の長辺縁21(又は他方の長辺縁22)側の縁面である前縁面と対向する後縁面より延長して屋上面16と連結される後板30bと、上板30aの一方側縁面及び後板30bの一方側縁面より延長して屋上面16と連結される一方側板30cと、上板30aの他方側縁面及び後板30bの他方側縁面より延長して屋上面16と連結される他方側板30dと、排気口構成板30eと、排気口構成板30eに形成された排気口群32とを備える。
上板30a、後板30b、排気口構成板30eは、屋上10の長辺縁21(又は長辺縁22)に沿った方向に長い板により形成される。
排気口構成板30eは、上板30aの前縁面と一方側板30cの前縁面と他方側板30dの前縁面とより延長して屋上面16と連結された横長の壁板により形成される。
即ち、排気口群32は、建物2の屋上10に設けられて屋上10の長辺縁21(又は長辺縁22)に沿って延長するとともに建物2の外壁面35A(又は外壁面35C)と平行に位置された面板としての排気口構成板30eに形成される。
As shown in FIG. 2, for example, the enclosure 30 includes an upper plate 30 a located above each roof top surface opening 18; 18... And one long side edge 21 (or the other edge of the roof 10 in the upper plate 30 a). The rear plate 30b extended from the rear edge surface facing the front edge surface which is the edge surface on the long side edge 22) side and connected to the roof surface 16, one side edge surface of the upper plate 30a and one of the rear plate 30b One side plate 30c extending from the side edge surface and connected to the roof surface 16; the other side plate 30d extending from the other side edge surface of the upper plate 30a and the other side edge surface of the rear plate 30b and connected to the roof surface 16; And an exhaust port constituting plate 30e and an exhaust port group 32 formed in the exhaust port constituting plate 30e.
The upper plate 30a, the rear plate 30b, and the exhaust port constituting plate 30e are formed by long plates in the direction along the long side edge 21 (or the long side edge 22) of the rooftop 10.
The exhaust port constituting plate 30e is formed by a horizontally long wall plate that extends from the front edge surface of the upper plate 30a, the front edge surface of the one side plate 30c, and the front edge surface of the other side plate 30d and is connected to the roof surface 16. .
That is, the exhaust port group 32 is provided on the roof 10 of the building 2 and extends along the long side edge 21 (or the long side edge 22) of the roof 10, and the outer wall surface 35 </ b> A (or the outer wall surface 35 </ b> C) of the building 2. It is formed in the exhaust port constituting plate 30e as a face plate positioned in parallel.

上記排気口群32を形成するに際し、発明者は建物2の外壁面35に風圧が作用した場合に屋上10での圧力分布がどのようになるかを数値シミュレーションで求め、当該数値シミュレーションで得られた結果に基づいて排気口群32全体で出来るだけ排気量を多くできるようにするための複数の排気口32aの配置構成を見出した。
図4に示すように、数値シミュレーションでは、横断面及び縦断面が長方形状である直方体形状の建物2の一方の外壁面35Aに直交する方向から建物2の一方の外壁面35Aに向けて風が吹いた場合(図4に白抜き矢印で示すように風向0°で風が吹いた場合(図4の紙面上において下から上に向けて風が吹いた場合))を想定して、建物2の周囲の圧力分布を解析するとともに、図4の紙面上において建物2の中心2Cを中心として風向き0°の位置より右回りに45°回転させた位置から建物2の中心2Cに向けて風が吹いた場合(図4に白抜き矢印で示すように風向45°で風が吹いた場合)を想定して、建物2の周囲の圧力分布を解析した。
尚、図4に示すように、屋上10における長方形の長辺縁21及び長辺縁22が庇23の長辺縁で構成されている建物2を想定して数値シミュレーションを行った。
In forming the exhaust port group 32, the inventor obtains the pressure distribution on the rooftop 10 when the wind pressure acts on the outer wall surface 35 of the building 2 by numerical simulation, and is obtained by the numerical simulation. Based on these results, the present inventors have found an arrangement configuration of a plurality of exhaust ports 32a for increasing the exhaust amount as much as possible in the entire exhaust port group 32.
As shown in FIG. 4, in the numerical simulation, the wind is directed from the direction orthogonal to one outer wall surface 35 </ b> A of the rectangular parallelepiped building 2 having a rectangular cross section and a longitudinal section toward one outer wall surface 35 </ b> A of the building 2. Assuming the case of blowing (when the wind blows at 0 ° as shown by the white arrow in FIG. 4 (when the wind blows from bottom to top on the paper surface of FIG. 4)), the building 2 The pressure distribution around the center of the building 2 is analyzed, and the wind is directed toward the center 2C of the building 2 from the position rotated 45 ° clockwise from the position of the wind direction 0 ° around the center 2C of the building 2 on the paper surface of FIG. The pressure distribution around the building 2 was analyzed on the assumption that it was blown (when the wind was blown at a wind direction of 45 ° as shown by the white arrow in FIG. 4).
In addition, as shown in FIG. 4, the numerical simulation was performed supposing the building 2 in which the long side edge 21 and the long side edge 22 of the rectangle on the rooftop 10 were comprised by the long side edge of the eaves 23.

図5(a)は、上記風向0°で風が吹いたと想定した場合の建物横幅方向の中央の部分X(図4参照)での建物2の高さ方向における建物2の周囲の圧力分布を解析した結果を示す図である。
図5(b)は、上記風向45°で風が吹いたと想定した場合の建物横幅方向の中央の部分Xでの建物2の高さ方向における建物2の周囲の圧力分布を解析した結果を示す図である。
図6(a)は、上記風向0°で風が吹いたと想定した場合の屋上面16から500mm上方の位置での建物2の周囲の圧力分布を解析した結果を示す図である。
図6(b)は、上記風向45°で風が吹いたと想定した場合の屋上面16から500mm上方の位置での建物2の周囲の圧力分布を解析した結果を示す図である。
また、図5;6において、等圧線40に付した数字は圧力係数であり、等圧線40の1間隔は、圧力係数0.1間隔である。尚、圧力係数Cpは、風が吹くことによって建物2の外表面に作用する圧力pを建物頂部高さHにおける速度圧qで除した値(Cp=p/q)である。
FIG. 5A shows the pressure distribution around the building 2 in the height direction of the building 2 at the center portion X (see FIG. 4) in the width direction of the building when it is assumed that the wind is blown at the wind direction of 0 °. It is a figure which shows the result of having analyzed.
FIG.5 (b) shows the result of having analyzed the pressure distribution around the building 2 in the height direction of the building 2 in the center part X of the building width direction when it is assumed that the wind blew at the said wind direction of 45 degrees. FIG.
FIG. 6A is a diagram illustrating a result of analyzing the pressure distribution around the building 2 at a position 500 mm above the roof surface 16 when it is assumed that the wind is blown at the wind direction of 0 °.
FIG. 6B is a diagram showing a result of analyzing the pressure distribution around the building 2 at a position 500 mm above the roof surface 16 when it is assumed that the wind blows at the wind direction of 45 °.
In FIGS. 5 and 6, the numbers attached to the isobaric lines 40 are pressure coefficients, and one interval of the isobaric lines 40 is a pressure coefficient of 0.1 intervals. The pressure coefficient Cp is a value (Cp = p / q H ) obtained by dividing the pressure p acting on the outer surface of the building 2 by the blowing of wind by the velocity pressure q H at the building top height H.

図5;6から、建物2の外壁面35に向けて風が吹いたと想定した場合に、建物2の屋上10は負圧となることがわかった。
そして、上記風向0°で風が吹いたと想定した場合、図6(a)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16より上方でかつ屋上面16と平行な面上において上記一方の外壁面35Aの上端部に位置する屋上面16の一方の長辺縁(辺縁)21に沿った湾曲線となることがわかった。即ち、屋上10の一方の長辺縁21の中央側の部分での負圧の等圧線40が建物2の中心2C側(図4参照)に張り出すように湾曲する湾曲線となることがわかった。
また、上記風向45°で風が吹いたと想定した場合も、図6(b)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16より上方でかつ屋上面16と平行な面上において上記一方の外壁面35Aの上端部に位置する屋上面16の一方の長辺縁(辺縁)21に沿った湾曲線(屋上10の一方の長辺縁21の中央側の部分での負圧の等圧線40が建物2の中心2C側に張り出すように湾曲する湾曲線)となるとともに、建物2の一方の外壁面35Aと直角に隣り合う外壁面35B(図4参照)の上端縁に沿った湾曲線(外壁面35Bの上端縁の中央側の部分での負圧の等圧線40が建物2の中心2C側に張り出すように湾曲する湾曲線)となることがわかった。
さらに、上記風向0°で風が吹いたと想定した場合、図5(a)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16と直交する面上においても上記一方の外壁面35Aの上端部に位置する屋上10の一方の長辺縁21から上方に移動して屋上面16に到達するような湾曲線となることがわかった。
また、上記風向45°で風が吹いたと想定した場合、図5(b)に示すように、屋上10に作用する負圧の等圧線40は、屋上面16と直交する面上においても上記一方の外壁面35Aの上端部に位置する屋上10の一方の長辺縁21から上方に移動して屋上面16に到達するような湾曲線となり、かつ、上記風向0°で風が吹いたと想定した場合と比べて、負圧値の値が小さく、また、負圧の等圧線40の間隔も広くなることがわかった。
From FIGS. 5 and 6, it was found that the roof 10 of the building 2 had a negative pressure when it was assumed that the wind was blown toward the outer wall surface 35 of the building 2.
When it is assumed that the wind blows at the wind direction of 0 °, as shown in FIG. 6A, the negative pressure isobar 40 acting on the rooftop 10 is above the rooftop surface 16 and parallel to the rooftop surface 16. It turned out that it becomes a curve line along one long side edge (edge) 21 of the roof surface 16 located in the upper end part of said one outer wall surface 35A on a surface. That is, it was found that the negative pressure isobaric line 40 at the center side portion of one long edge 21 of the rooftop 10 becomes a curved line that curves so as to protrude toward the center 2C side of the building 2 (see FIG. 4). .
Further, even when it is assumed that the wind is blown at the wind direction of 45 °, the negative pressure isobaric line 40 acting on the rooftop 10 is above the rooftop surface 16 and parallel to the rooftop surface 16 as shown in FIG. A curved line along the one long side edge (edge) 21 of the roof top surface 16 located at the upper end of the one outer wall surface 35A on the flat surface (the portion on the center side of one long side edge 21 of the roof 10) Of the outer wall 35B (see FIG. 4) adjacent to the one outer wall 35A of the building 2 at a right angle. It has been found that the curve is a curved line along the upper edge (a curved line that curves so that the negative pressure isobaric line 40 at the center of the upper edge of the outer wall 35B protrudes toward the center 2C of the building 2).
Furthermore, when it is assumed that the wind is blown at the wind direction of 0 °, as shown in FIG. 5A, the negative pressure isobaric line 40 acting on the rooftop 10 is the above-mentioned one on the surface orthogonal to the rooftop 16. It turned out that it becomes a curve line which moves upward from one long side edge 21 of the rooftop 10 located at the upper end of the outer wall surface 35A and reaches the rooftop surface 16.
Further, when it is assumed that the wind blows at the wind direction of 45 °, the negative pressure isobaric line 40 acting on the rooftop 10 is also on the surface perpendicular to the rooftop surface 16 as shown in FIG. When assuming a curved line that moves upward from one long edge 21 of the rooftop 10 located at the upper end of the outer wall surface 35A and reaches the rooftop 16, and that the wind blows at the above wind direction of 0 ° It was found that the value of the negative pressure value was smaller than that of and the interval between the negative pressure isobaric lines 40 was increased.

即ち、図6(a);(b)からわかることは、屋上面16と平行な面上の負圧の等圧線40は、屋上10の辺縁の両端側は負圧の値が小さく、屋上10の辺縁の中央側は負圧の値が大きいということである。   That is, as can be seen from FIGS. 6A and 6B, the negative pressure isobaric line 40 on the surface parallel to the roof top surface 16 has a small negative pressure value at both ends of the edge of the rooftop 10. This means that the negative pressure value is large at the center of the edge.

そこで、実施形態1では、建物2の屋上10に設けられて屋上10の例えば長辺縁21又は長辺縁22と平行な直線に沿って形成された排気口を備え、当該排気口は、長辺縁の中央側部分の周囲の圧力と長辺縁の端部側部分の周囲の圧力との違いによる排気量の差をなくすために、長辺縁の中央側部分の開口面積が屋根の辺縁の端部側部分の開口面積よりも小さく形成された。例えば、当該排気口は、長辺縁の中央側部分から長辺縁の端部側部分にかけて開口面積が大きくなるように形成された。
具体的には、排気口の排気量Xはほぼ下式(1)によって算出できることから、当該式(1)で求まる長辺縁の端部側の排気口の排気量Xと長辺縁の中央部側の排気口の排気量Xとが同じになるように、端部側の排気口の開口面積と中央部側の排気口の開口面積とを求めればよい。
・排気量X=排気口の開口面積Y×排気口の圧力Z・・・(1)
Therefore, in the first embodiment, an exhaust port provided on the roof 10 of the building 2 and formed along a straight line parallel to the long side edge 21 or the long side edge 22 of the roof 10 is provided. In order to eliminate the difference in displacement due to the difference between the pressure around the central part of the edge and the pressure around the end part of the long edge, the opening area of the central part of the long edge is It was formed smaller than the opening area of the edge side portion. For example, the exhaust port is formed so that the opening area increases from the central side portion of the long side edge to the end side portion of the long side edge.
Specifically, since the exhaust amount X of the exhaust port can be almost calculated by the following equation (1), the exhaust amount X of the exhaust port on the end side of the long edge obtained by the equation (1) and the center of the long edge What is necessary is just to obtain | require the opening area of the exhaust port of an edge part side, and the opening area of the exhaust port of a center part side so that the exhaust amount X of the exhaust port of a part side may become the same.
Exhaust amount X = exhaust port opening area Y × exhaust port pressure Z (1)

例えば、図2;図7に示すように、建物2の屋上10に設けられて屋上10の長辺縁21に沿って延長するとともに建物2の外壁面35Aと平行に位置された面板としての排気口構成板30eに、屋上面16から所定距離だけ上方の位置(屋上面16から500mm上方の位置)に引いた直線であって屋上10の長辺縁21及び屋上面16と平行な直線に沿って設けられた複数の排気口32aを有した排気口群32により排気口が形成される。そして、排気口を構成する排気口群32は、長辺縁21の端部側に設けられる端部側排気口の排気量Xと長辺縁21の中央部側に設けられる中央部側排気口の排気量Xと長辺縁21の両端側と中央側との中間に位置する中間側排気口の排気量Xとが同じになるように、端部側排気口、中央部側排気口、中間側排気口をそれぞれ構成する開口面積の同じ排気口32aの数を例えば以下のように設定した。
負圧の値が小さい(排気口の圧力Zが小さい)屋上10の長辺縁21の両端側に位置する排気口構成板30eの両端側部分36;36に設ける端部側排気口の開口面積を大きくするために排気口32aの数を3個とし、屋上10の長辺縁21の両端側よりも負圧の値が大きくなる(排気口の圧力Zが大きくなる)屋上10の長辺縁21の中央側に位置する排気口構成板30eの中央側部分37に設ける中央側排気口の開口面積を小さくするために排気口32aの数を1個とし、屋上10の長辺縁21の両端側よりも負圧の値が大きくなりかつ屋上10の長辺縁21の中央側よりも負圧の値が小さくなる屋上10の長辺縁21の両端側と中央側との中間に位置する中間側排気口の開口面積を端部側排気口の開口面積より小さくかつ中央側排気口の開口面積を大きくするために排気口構成板30eの左右部分38;38に設ける排気口32aの数を2個とした。例えば、図7に示すように、建物2の外壁面35Aに向けて風が吹いた場合の屋上面16と平行な面上の負圧の等圧線40(例えば図6(a)の等圧線)と交差する面板としての排気口構成板30eにおいて、交差する等圧線40の負圧の値が小さい部分36;36に形成される排気口の開口面積を大きくするために排気口32aの数を多くし、交差する等圧線40の負圧の値が大きい部分37に形成される排気口の開口面積を小さくするために排気口32aの数を、負圧の値が小さい部分36;36に形成される排気口32aの数よりも少なくした。つまり、排気口構成板30において大きな負圧が作用する部分である辺縁の中央側の部分に設ける排気口の開口面積を小さくするために排気口32aの数を少なくするとともに、排気口構成板30において辺縁の中央側よりも小さな負圧が作用する部分である辺縁の端部側の排気口の開口面積を大きくするために排気口32aの数を多くしたことによって、屋上10の辺縁の端部側に設けられる端部側排気口の排気量Xと屋上10の辺縁の中央部側に設けられる中央部側排気口の排気量Xとを同じにして、排気口構成板30eに設けたどの排気口32aからでも均等に排気されやすいように構成し、これにより、排気口群32全体での排気バランスを良好にでき、排気口群32全体での排気効率を向上できるようにした。
また、建物2の屋上10に設けられて屋上10の長辺縁22に沿って延長するとともに建物2の外壁面35Cと平行に位置された面板としての排気口構成板30eにおいても同様に複数の排気口32aからなる排気口群32を構成した。
For example, as shown in FIG. 2; FIG. 7, exhaust as a face plate provided on the roof 10 of the building 2 and extending along the long edge 21 of the roof 10 and positioned parallel to the outer wall surface 35 </ b> A of the building 2. A straight line drawn on the mouth component plate 30e by a predetermined distance above the roof top surface 16 (a position 500 mm above the roof top surface 16) along the straight line parallel to the long edge 21 of the roof 10 and the roof top surface 16. An exhaust port is formed by the exhaust port group 32 having a plurality of exhaust ports 32a provided. The exhaust port group 32 constituting the exhaust port includes an exhaust amount X of the end side exhaust port provided on the end side of the long side edge 21 and a central side side exhaust port provided on the central side of the long side edge 21. So that the exhaust amount X of the intermediate side exhaust port located in the middle between both ends and the center side of the long side edge 21 is the same. For example, the number of the exhaust ports 32a having the same opening area constituting the side exhaust ports is set as follows.
The opening area of the end side exhaust ports provided in the both end portions 36; 36 of the exhaust port constituting plate 30e located on both ends of the long side edge 21 of the rooftop 10 where the negative pressure value is small (the exhaust port pressure Z is small). In order to increase the number of exhaust ports 32a, the value of the negative pressure is larger than the both end sides of the long side edge 21 of the rooftop 10 (the pressure Z of the exhaust port increases). In order to reduce the opening area of the central side exhaust port provided in the central side portion 37 of the exhaust port constituting plate 30e located on the central side of 21, the number of the exhaust ports 32a is one and both ends of the long side edge 21 of the roof 10 An intermediate position between the both ends of the long side edge 21 and the center side of the rooftop 10 where the negative pressure value is larger than the side and the negative pressure value is lower than the center side of the long edge 21 of the rooftop 10. The opening area of the side exhaust port is smaller than the opening area of the end side exhaust port and the center side exhaust port Left and right portions 38 of the exhaust port formation plate 30e in order to increase the opening area; the number of exhaust ports 32a provided at 38 and with two. For example, as shown in FIG. 7, when the wind blows toward the outer wall surface 35A of the building 2, it intersects with a negative pressure isobaric line 40 (for example, the isobaric line in FIG. 6A) on a plane parallel to the roof 16. In the exhaust port constituting plate 30e as the face plate to be crossed, the number of the exhaust ports 32a is increased in order to increase the opening area of the exhaust ports formed in the portions 36; 36 where the negative pressure value of the intersecting isobaric lines 40 is small. In order to reduce the opening area of the exhaust port formed in the portion 37 where the negative pressure value of the isobaric line 40 is large, the number of the exhaust ports 32a is changed to the exhaust port 32a formed in the portion 36; 36 where the negative pressure value is small. Less than the number of. That is, the number of the exhaust ports 32a is reduced in order to reduce the opening area of the exhaust port provided in the central portion of the edge, which is a portion where a large negative pressure acts on the exhaust port constituting plate 30, and the exhaust port constituting plate 30, by increasing the number of exhaust ports 32a in order to increase the opening area of the exhaust port on the end side of the edge, which is a portion where a negative pressure smaller than the central side of the edge acts, The exhaust amount X of the end side exhaust port provided on the end portion side of the edge and the exhaust amount X of the central side exhaust port provided on the center portion side of the edge of the rooftop 10 are the same, and the exhaust port configuration plate 30e. The exhaust ports 32a provided in the exhaust port 32a are configured to be easily exhausted from the exhaust ports 32a, so that the exhaust balance in the entire exhaust port group 32 can be improved, and the exhaust efficiency in the entire exhaust port group 32 can be improved. did.
Similarly, a plurality of exhaust port constituting plates 30e as face plates provided on the roof 10 of the building 2 and extending along the long side edge 22 of the roof 10 and parallel to the outer wall surface 35C of the building 2 are also plural. An exhaust port group 32 composed of the exhaust ports 32a was configured.

排気口32aは、例えば、排気口構成板30eに形成された横長貫通孔により形成される。つまり、排気口32aは、排気口構成板30eの一部を貫通させた開口により形成されたものであり、上板30aの前縁面と一方側板30cの前縁面と他方側板30dの前縁面と屋上面16とで囲まれた開口よりも小さい開口により形成される。
そして、横長貫通孔により形成された排気口32aにおける長辺縁21(又は長辺縁22)に沿った横長の開口縁33、即ち、水平方向に延長する上側開口縁33aと下側開口縁33bとが平行な直線に形成される。
互いに平行となるように形成される上側開口縁33aと下側開口縁33bとの間の間隔は、例えば、5cm〜10cm程度に形成される。
即ち、屋上排気部11は、囲い30の内面と屋上面16とで囲まれた排気集合空間31を備え、室内7からの排気が排気ダクト12、排気路17、屋上面開口18を介して囲い30の排気集合空間31内に集まった後に、排気口構成板30eに形成された排気口群32を介して囲い30の外部に排気されるように構成されている。
また、横長貫通孔により形成された排気口群32を複数個設ける場合は、例えば、排気口構成板30eの上下方向に複数並ぶように設ければよい。
The exhaust port 32a is formed by, for example, a horizontally long through hole formed in the exhaust port configuration plate 30e. That is, the exhaust port 32a is formed by an opening penetrating a part of the exhaust port constituting plate 30e, and the front edge surface of the upper plate 30a, the front edge surface of the one side plate 30c, and the front edge of the other side plate 30d. The opening is smaller than the opening surrounded by the surface and the roof surface 16.
And the horizontally long opening edge 33 along the long edge 21 (or long edge 22) in the exhaust port 32a formed by the horizontally long through hole, that is, the upper opening edge 33a and the lower opening edge 33b extending in the horizontal direction. Are formed in parallel straight lines.
The distance between the upper opening edge 33a and the lower opening edge 33b formed so as to be parallel to each other is, for example, about 5 cm to 10 cm.
That is, the rooftop exhaust section 11 includes an exhaust collecting space 31 surrounded by the inner surface of the enclosure 30 and the rooftop surface 16, and the exhaust from the room 7 is enclosed via the exhaust duct 12, the exhaust passage 17, and the rooftop opening 18. After collecting in the exhaust collecting space 31, the exhaust is configured to be exhausted to the outside of the enclosure 30 through the exhaust port group 32 formed in the exhaust port constituting plate 30 e.
Further, when a plurality of exhaust port groups 32 formed by the horizontally long through holes are provided, for example, a plurality of exhaust port groups 32 may be arranged in the vertical direction of the exhaust port constituting plate 30e.

実施形態1の排気装置4によれば、上記式(1)に基づいて、端部側排気口の排気性能Xと中央部側排気口の排気性能Xと中間側排気口の排気性能Xとが同じになるように、端部側排気口の開口面積と中央部側排気口の開口面積と中間側排気口の開口面積とを決めたので、端部側排気口、中央部側排気口、中間側排気口のどの位置からでも均等に排気されやすくなって、排気口群32全体での排気バランスを良好にでき、排気口群32全体での排気効率を向上できる。
また、排気口群32が、建物2の外壁面35と平行な面板としての排気口構成板30eに形成されたので、建物2の外壁面35に向けて風が吹いた場合の屋上10上における屋上面16と平行な面上の負圧の等圧線40と交差する排気口構成板30eにおいて、交差する等圧線40の負圧の値が大きい部分37に形成される排気口の面積を小さくするために排気口32aの数を少なくし、交差する等圧線40の負圧の値が小さい部分36;36に形成される排気口の面積を大きくするために排気口32aの数を多くすることによって、排気口群32全体での排気バランスを良好にでき、排気口群32全体での排気効率を向上できる。
また、排気口群32が、建物2の屋上10に排出される空気を集合させる排気集合空間31を形成する囲い30に設けられたので、排気集合空間31内に集合した排気がどの排気口32aからでも均等に排気されやすくなる。
また、複数の排気口32aが、囲い30における屋上10の辺縁側に位置する面板としての排気口構成板30eに形成されたので、複数の排気口32aが建物2の外側を向くように設けられ、また、屋上10の辺縁に近いほど負圧が大きくなるので、建物2の外側に向けて効率的に排気できる。
また、一対の囲い30が、屋根における一対の長辺縁21;22のそれぞれに沿うように設けられたので、それぞれの長辺縁21;22のどちらに向けて風が吹いた場合でも、建物2の外側に向けて効率的に排気できる。
According to the exhaust device 4 of the first embodiment, the exhaust performance X of the end side exhaust port, the exhaust performance X of the center side exhaust port, and the exhaust performance X of the intermediate side exhaust port are based on the above formula (1). Since the opening area of the end-side exhaust port, the opening area of the central-side exhaust port, and the opening area of the intermediate-side exhaust port are determined to be the same, the end-side exhaust port, the central-side exhaust port, the middle It becomes easy to exhaust evenly from any position of the side exhaust port, the exhaust balance in the entire exhaust port group 32 can be improved, and the exhaust efficiency in the entire exhaust port group 32 can be improved.
Moreover, since the exhaust port group 32 is formed in the exhaust port constituting plate 30e as a face plate parallel to the outer wall surface 35 of the building 2, the air is blown toward the outer wall surface 35 of the building 2 on the rooftop 10. In order to reduce the area of the exhaust port formed in the portion 37 where the negative pressure value of the intersecting isobaric line 40 is large in the exhaust port constituting plate 30e intersecting the negative pressure isobaric line 40 on the surface parallel to the roof surface 16. By reducing the number of the exhaust ports 32a and increasing the number of the exhaust ports 32a in order to increase the area of the exhaust ports formed in the portions 36; 36 where the negative pressure value of the intersecting isobaric lines 40 is small, the exhaust ports The exhaust balance in the whole group 32 can be made favorable, and the exhaust efficiency in the whole exhaust port group 32 can be improved.
In addition, since the exhaust port group 32 is provided in the enclosure 30 that forms the exhaust collective space 31 that collects the air discharged to the roof 10 of the building 2, which exhaust vent 32 a has exhaust collected in the exhaust collective space 31. It becomes easy to exhaust even from the air.
Further, since the plurality of exhaust ports 32a are formed in the exhaust port constituting plate 30e as a face plate located on the edge side of the roof 10 in the enclosure 30, the plurality of exhaust ports 32a are provided so as to face the outside of the building 2. Also, the closer to the edge of the rooftop 10, the greater the negative pressure, so that exhaust can be efficiently performed toward the outside of the building 2.
In addition, since the pair of enclosures 30 is provided along the pair of long side edges 21; 22 on the roof, the building can be used regardless of whether the wind blows toward either of the long side edges 21; 2 can be efficiently exhausted toward the outside.

実施形態2
実施形態1では、複数の屋上面開口18からの排気が集合する排気集合空間31を形成する囲い30を用いたが、図9に示すように、屋上面開口18毎に排気空間60を形成する複数の囲い30Bを用い、大きな負圧が作用する部分である囲い30Bの排気口構成板30eに設ける辺縁の中央側の排気口の開口面積を小さくするために排気口32aの数を少なくするとともに、小さな負圧が作用する部分36;36の囲い30Bの排気口構成板30eに設ける辺縁の端部側の排気口の開口面積を大きくするために排気口32aの数を多くしたので、実施形態1と同じ効果が得られる。
Embodiment 2
In the first embodiment, the enclosure 30 that forms the exhaust collecting space 31 in which exhaust from the plurality of roof top openings 18 gathers is used. However, as shown in FIG. 9, the exhaust space 60 is formed for each roof top opening 18. Using a plurality of enclosures 30B, the number of exhaust ports 32a is reduced in order to reduce the opening area of the exhaust port on the central side of the edge provided in the exhaust port constituting plate 30e of the enclosure 30B, which is a portion where a large negative pressure acts. In addition, since the number of the exhaust ports 32a is increased in order to increase the opening area of the exhaust port on the edge side provided on the exhaust port constituting plate 30e of the enclosure 30B of the portion 36; 36 where the small negative pressure acts, The same effect as in the first embodiment can be obtained.

実施形態3
図10に示すように、上記式(1)で求まる屋上10の辺縁の端部側に設けられる端部側排気口の排気性能Xと屋上10の辺縁の中央部側に設けられる中央部側排気口の排気性能とが同じになるように、囲い30の排気口構成板30eの両端部に跨って延長する排気口32aと、囲い30の排気口構成板30eの端部から中央側に跨って延長する排気口32aと、囲い30の排気口構成板30eの端部に形成された排気口32aとで構成された排気口群32としてもよい。
Embodiment 3
As shown in FIG. 10, the exhaust performance X of the end side exhaust port provided on the edge side of the edge of the rooftop 10 obtained by the above formula (1) and the center part provided on the center side of the edge of the rooftop 10. The exhaust port 32a extending across both ends of the exhaust port component plate 30e of the enclosure 30 and the end portion of the exhaust port component plate 30e of the enclosure 30 from the end to the center side so that the exhaust performance of the side exhaust port is the same It is good also as the exhaust port group 32 comprised by the exhaust port 32a extended over and the exhaust port 32a formed in the edge part of the exhaust port structure board 30e of the enclosure 30. FIG.

また、排気口群32は、縦長貫通孔、又は、屋上面16に対して斜め方向に延長する貫通孔により形成してもよい。
また、囲い30は、上下方向に排気口群32を形成する複数の貫通孔が平行に並ぶように設けられたガラリ戸のような排気口構成板30eを備えた構成としてもよい。
The exhaust port group 32 may be formed by a vertically long through hole or a through hole extending obliquely with respect to the roof surface 16.
Moreover, the enclosure 30 is good also as a structure provided with the exhaust port structure board 30e like a louver door provided so that the several through-hole which forms the exhaust port group 32 may be located in a line in the up-down direction.

上記では、排気口群32が、囲いにおける屋上の一辺縁側に位置する排気口構成板30eに形成された例を示したが、排気口群32は、囲い30の面板としての排気口構成板30e、又は、面板としての後板30bのうちのいずれか1つに形成されていれば良い。   In the above, the example in which the exhaust port group 32 is formed on the exhaust port constituting plate 30e located on the one edge side of the roof in the enclosure has been shown, but the exhaust port group 32 is an exhaust port constituting plate 30e as a face plate of the enclosure 30. Alternatively, it may be formed on any one of the rear plates 30b as a face plate.

上記では、建物2の屋上10に設けられて屋上10の長辺縁21に沿って延長するとともに建物2の外壁面35Aと平行に位置された面板としての排気口構成板30eに排気口群32を設けた例を示したが、建物2の屋上10に設けられて屋上10の長辺縁21に沿って延長するとともに建物2の外壁面35Aと交差するように位置された面板において長辺縁21と平行な直線に沿って排気口群32を形成する複数の排気口32aを設けても良いし、あるいは、屋上面16において長辺縁21と平行な直線に沿って排気口群32を形成する複数の排気口32aを設けても良い。屋上面16に排気口群32を形成する場合には、屋上面16に各排気路17と連通する排気空間を構成する溝を形成し、屋上面16に開口する溝の上部開口を排気口32aとすればよい。尚、屋上面16に開口する溝の上部開口を大きく形成し、当該溝の上部開口を塞ぐように当該上部開口に、排気口32aが形成されたガラリ戸を載置するようにしてもよい。   In the above, the exhaust port group 32 is provided on the exhaust port constituting plate 30e as a face plate provided on the roof 10 of the building 2 and extending along the long edge 21 of the roof 10 and parallel to the outer wall surface 35A of the building 2. In the face plate that is provided on the roof 10 of the building 2 and extends along the long edge 21 of the roof 10 and is positioned so as to intersect the outer wall surface 35A of the building 2 A plurality of exhaust ports 32 a forming the exhaust port group 32 may be provided along a straight line parallel to 21, or the exhaust port group 32 may be formed along a straight line parallel to the long side edge 21 on the roof surface 16. A plurality of exhaust ports 32a may be provided. When the exhaust port group 32 is formed on the roof surface 16, a groove that forms an exhaust space communicating with each exhaust passage 17 is formed on the roof surface 16, and the upper opening of the groove that opens on the roof surface 16 is an exhaust port 32 a. And it is sufficient. Note that the upper opening of the groove opening in the roof 16 may be formed large, and a louver door having an exhaust port 32a may be placed in the upper opening so as to close the upper opening of the groove.

また、屋上排気部11が屋上10における2つ以上の辺縁側に設けられた構成の建物とした場合において、屋上10のどの辺縁側に向けて風が吹いているかを検出する図外のセンサーと、個別排気部9といずれかの屋上排気部11とのみを連通させる図外の排気流路切替装置と、センサーからの出力に基づいて排気流路切替装置を制御する制御装置とを有した排気切替手段を備えた建物を構成してもよい。
センサーは、例えば、建物2の屋上10、外壁面35、建物2の壁に沿って延長するように設けられた縦排気ダクト部分12a等に設けられる。センサーとしては、風圧計、風速計、風向計等が用いられる。
例えば、排気口群32の近傍に風圧計を設けたり、排気口が設けられている側の外壁面35に風圧計を設けたり、排気口と連通する縦排気ダクト部分12aに風速計を設ける。
排気流路切替装置としては、例えば、個別排気部9と横排気ダクト部分12bとの境界部分に設けられた切替弁装置、又は、横排気ダクト部分12bと縦排気ダクト部分12aとの境界部分に設けられた開閉弁装置を用いる。
排気切替手段を備えた場合、屋上のどの辺縁側に向けて風が吹いているかを検出するセンサーからの検出出力に基づいて制御装置が排気流路切替装置を制御することによって、風圧の大きい側の1つの屋上排気部11と各個別排気部9とを連通させるようにすることで、排気の効率化が図れる。
In addition, in the case where the roof exhaust part 11 is a building having a configuration provided on two or more edge sides of the rooftop 10, a sensor outside the figure that detects which edge side of the rooftop 10 is blowing wind An exhaust having an exhaust passage switching device (not shown) for communicating only the individual exhaust portion 9 and any one of the roof exhaust portions 11 and a control device for controlling the exhaust passage switching device based on an output from the sensor. You may comprise the building provided with the switching means.
The sensor is provided, for example, on the roof 10 of the building 2, the outer wall surface 35, the vertical exhaust duct portion 12 a provided so as to extend along the wall of the building 2, and the like. As the sensor, an anemometer, an anemometer, an anemometer or the like is used.
For example, an anemometer is provided in the vicinity of the exhaust port group 32, an anemometer is provided on the outer wall surface 35 on the side where the exhaust ports are provided, or an anemometer is provided on the vertical exhaust duct portion 12a communicating with the exhaust ports.
As an exhaust flow path switching device, for example, a switching valve device provided at a boundary portion between the individual exhaust portion 9 and the horizontal exhaust duct portion 12b or a boundary portion between the horizontal exhaust duct portion 12b and the vertical exhaust duct portion 12a. The provided on-off valve device is used.
When the exhaust switching means is provided, the control device controls the exhaust flow switching device based on the detection output from the sensor that detects which side of the roof the wind is blowing toward, thereby increasing the wind pressure side. By making one roof exhaust part 11 and each individual exhaust part 9 communicate with each other, the efficiency of exhaust can be improved.

2 建物、4 排気装置、7 室内、10 屋上(屋根)、30 囲い、
30e 排気口構成板(面板)、31 排気集合空間、32 排気口群(排気口)、
32a 排気口、35 建物の外壁面、36 交差する等圧線の負圧の値が大きい部分、
37 交差する等圧線の負圧の値が小さい部分、40 負圧の等圧線。
2 building, 4 exhaust system, 7 indoors, 10 rooftop (roof), 30 enclosure,
30e Exhaust port configuration plate (face plate), 31 Exhaust collecting space, 32 Exhaust port group (exhaust port),
32a exhaust port, 35 outer wall surface of the building, 36 part where the negative pressure value of intersecting isobaric lines is large,
37 The part where the negative pressure value of the intersecting isobaric line is small, 40 isobaric line of negative pressure.

Claims (4)

建物の屋根に設けられて屋根の辺縁と平行な直線に沿って形成された排気口を介して空気を建物の室内から建物外部に排気する排気装置において、
排気口は、屋根の辺縁の中央側部分の周囲の圧力と屋根の辺縁の端部側部分の周囲の圧力との違いによる排気量の差をなくすために、屋根の辺縁の中央側部分の開口面積が屋根の辺縁の端部側部分の開口面積よりも小さく形成されたことを特徴とする排気装置。
In an exhaust system that exhausts air from the interior of the building to the outside of the building through an exhaust port provided on the roof of the building and formed along a straight line parallel to the edge of the roof,
In order to eliminate the difference in the amount of exhaust due to the difference between the pressure around the central part of the roof edge and the pressure around the end part of the roof edge, An exhaust system characterized in that the opening area of the portion is formed smaller than the opening area of the end side portion of the edge of the roof.
排気口が、建物の屋根上に排出される空気を集合させる排気集合空間を形成する囲いの面板に設けられ、面板が建物の外壁面と平行な面板であることを特徴とする請求項1に記載の排気装置。   The exhaust port is provided in a face plate of an enclosure that forms an exhaust collecting space for collecting air discharged on the roof of the building, and the face plate is a face plate parallel to the outer wall surface of the building. The exhaust system described. 排気口が、囲いにおける屋根の辺縁側に位置する面板に形成されたことを特徴とする請求項2に記載の排気装置。   The exhaust device according to claim 2, wherein the exhaust port is formed in a face plate located on the edge side of the roof in the enclosure. 一対の囲いの各面板が、屋根における一対の長辺縁のそれぞれに沿うように設けられたことを特徴とする請求項2又は請求項3に記載の排気装置。   The exhaust device according to claim 2 or 3, wherein each face plate of the pair of enclosures is provided along each of the pair of long side edges of the roof.
JP2011078326A 2011-03-31 2011-03-31 Exhaust system Active JP5693329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078326A JP5693329B2 (en) 2011-03-31 2011-03-31 Exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078326A JP5693329B2 (en) 2011-03-31 2011-03-31 Exhaust system

Publications (2)

Publication Number Publication Date
JP2012211744A JP2012211744A (en) 2012-11-01
JP5693329B2 true JP5693329B2 (en) 2015-04-01

Family

ID=47265844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078326A Active JP5693329B2 (en) 2011-03-31 2011-03-31 Exhaust system

Country Status (1)

Country Link
JP (1) JP5693329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088181B2 (en) 2015-12-16 2018-10-02 Amazon Technologies, Inc. Passive roof exhausting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294954A (en) * 2001-04-04 2002-10-09 National House Industrial Co Ltd Roof ventilation structure
JP2008002708A (en) * 2006-06-20 2008-01-10 Sekisui House Ltd Ventilation structure

Also Published As

Publication number Publication date
JP2012211744A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
KR101085899B1 (en) Air conditioner
CN103270374B (en) Ventilation device
KR101292970B1 (en) Simultaneously supplying/discharging ventilation fan and air conditioner
KR20080035900A (en) Ventilation apparatus
KR20150067918A (en) Dehumidifier
JP2013050283A (en) Outdoor unit of air conditioner
KR101251221B1 (en) Window ventilation system
JP5693329B2 (en) Exhaust system
JP6150742B2 (en) Heat exchange ventilator
JP5710342B2 (en) Exhaust system
KR20070051220A (en) Ventilating apparatus and controlling method of the same
JP2006071226A (en) Ceiling hung-up air conditioning system
KR20080073488A (en) Ventilation apparatus
JP2010107054A (en) Air conditioner
KR101255637B1 (en) Ventilation system
JP2012072937A (en) Air conditioner
JP2007010237A (en) Windbreak chamber, and method for reducing flow of air between interior and exterior in windbreak chamber
JP2017009259A (en) Ventilation device and ventilation system
JP5174951B2 (en) Heat exchange ventilator
JP2006046786A (en) Heat exchange type ventilation device
EP2413051B1 (en) Heat exchange and ventilation device
JP5247610B2 (en) Heat exchange ventilator
JPWO2021014491A1 (en) Heat exchange type ventilation system
JP6257335B2 (en) Air conditioner indoor unit
KR20200068438A (en) Window-type heat exchanger air purification system that exhausts indoor lower air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350