JP2012211259A - Heat conductive sheet - Google Patents

Heat conductive sheet Download PDF

Info

Publication number
JP2012211259A
JP2012211259A JP2011077633A JP2011077633A JP2012211259A JP 2012211259 A JP2012211259 A JP 2012211259A JP 2011077633 A JP2011077633 A JP 2011077633A JP 2011077633 A JP2011077633 A JP 2011077633A JP 2012211259 A JP2012211259 A JP 2012211259A
Authority
JP
Japan
Prior art keywords
graphite
conductive sheet
heat conductive
sheet
graphite piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011077633A
Other languages
Japanese (ja)
Inventor
Masafumi Nakayama
雅文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011077633A priority Critical patent/JP2012211259A/en
Publication of JP2012211259A publication Critical patent/JP2012211259A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat conductive sheet having a desired thickness obtained, high heat conductivity in the thickness direction, and excellent mechanical strength.SOLUTION: The heat conductive sheet 11 is formed to be sheet-like by mixing graphite pieces 13 and a resin 12, wherein the graphite pieces 13 contain a plurality of first graphite pieces 13a made by cutting a pyrolytic graphite sheet into elongate pieces, at least the plurality of first graphite pieces 13a connect an upper face and a lower face of the heat conductive sheet 11, thus, heat conductivity in the thickness direction can be improved.

Description

本発明は、0.5mmから20mm程度の比較的大きな隙間を埋めながら、発生した熱を厚さ方向にスムースに伝えることができる熱伝導シートに関するものである。   The present invention relates to a heat conductive sheet capable of smoothly transferring generated heat in a thickness direction while filling a relatively large gap of about 0.5 mm to 20 mm.

近年電子機器の動作速度の向上が目覚しく、これに伴い半導体素子等の電子部品からの発熱が増大している。これに対して電子機器を安定して動作させるために、これらの発熱素子にグラファイトシート等の熱伝導シートを用いて熱を拡散あるいは放熱させることが行なわれている。しかしながらグラファイトシートは、一般的にその厚さが約0.05mmと薄く、発熱素子とヒートシンクとの間に比較的大きな隙間があるものについては十分に機能しにくかった。   In recent years, the operating speed of electronic devices has been remarkably improved, and accordingly, heat generation from electronic components such as semiconductor elements has increased. On the other hand, in order to stably operate the electronic apparatus, heat is diffused or dissipated using a heat conductive sheet such as a graphite sheet for these heating elements. However, the graphite sheet is generally as thin as about 0.05 mm, and it has been difficult to function sufficiently when there is a relatively large gap between the heating element and the heat sink.

グラファイトシートは、図3に示すように平面状に広がる鱗片状の結晶構造を有しており、面方向(炭素6員環が連なるa−b軸方向)に大きな熱伝導率を有し、厚さ方向であるc軸方向の熱伝導率は比較的小さい。そこで図2のように、グラファイトシート1を複数枚貼り合わせて切断し、厚さ方向に熱伝導を良くしたものが提案されている。   As shown in FIG. 3, the graphite sheet has a scale-like crystal structure that spreads in a plane, has a large thermal conductivity in the plane direction (a-b axis direction in which carbon 6-membered rings are connected), The thermal conductivity in the c-axis direction, which is the vertical direction, is relatively small. Therefore, as shown in FIG. 2, a plurality of graphite sheets 1 are bonded and cut to improve heat conduction in the thickness direction.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2006−303240号公報JP 2006-303240 A

しかしながら、従来のような熱伝導シートでは厚み方向への熱伝導率が高いものが得られるが、発熱部品とヒートシンク、ヒートスプレッダ等の放熱部品を取り付ける時には加圧が必要な場合がある。この場合に薄いシートを貼り合わせて、貼り合わせ面に対して垂直に切断したものでは、加圧力は貼り合わせ面が倒れ込む方向にも力が働いてしまう。この結果、貼り合わせ面や、グラファイトシートの層間で剥離してしまうことがある。また積層した後で切断するという工程が増えるため、コストアップの要因となっていた。さらに上記熱伝導シートでは、グラファイトシートが向いている一方向にしか熱が伝導しにくいため、面方向の熱伝導性は劣ったものとなっていた。   However, although a conventional heat conductive sheet having a high thermal conductivity in the thickness direction can be obtained, pressurization may be required when attaching heat-generating components and heat-dissipating components such as a heat sink and a heat spreader. In this case, when a thin sheet is bonded and cut perpendicularly to the bonding surface, the pressing force also acts in the direction in which the bonding surface falls. As a result, it may peel off between the bonding surface and the graphite sheet. Moreover, since the process of cutting after laminating increases, it has become a factor of cost increase. Further, in the above heat conductive sheet, heat is hardly conducted only in one direction where the graphite sheet is facing, so that the thermal conductivity in the surface direction is inferior.

本発明は、このような課題を解決し、所望の厚さが得られ、厚さ方向および面方向の熱伝導率が高く、機械的強度に優れた熱伝導シートを提供することを目的とする。   An object of the present invention is to solve such problems, and to provide a heat conductive sheet that can obtain a desired thickness, has high thermal conductivity in the thickness direction and in the surface direction, and is excellent in mechanical strength. .

上記目的を達成するために、本発明はグラファイト片と樹脂とを混合してシート状に成形してなる熱伝導シートであって、グラファイト片は熱分解グラファイトシートを細長く切断してなる複数個の第1のグラファイト片を含み、少なくとも複数個の第1のグラファイト片は、熱伝導シートの上面と下面とをつないでいるようにしたものである。   In order to achieve the above object, the present invention is a heat conductive sheet formed by mixing a graphite piece and a resin into a sheet shape, and the graphite piece is formed by cutting a pyrolytic graphite sheet into a plurality of pieces. A first graphite piece is included, and at least the plurality of first graphite pieces connect the upper surface and the lower surface of the heat conductive sheet.

このようにすることにより、熱伝導シートの上面と下面とを熱伝導性に優れたグラファイト片のa−b軸方向でつないでいるため、厚さ方向にも熱伝導性に優れた熱伝導シートを得ることができる。   By doing in this way, since the upper surface and lower surface of the heat conductive sheet are connected in the ab axis direction of the graphite piece excellent in heat conductivity, the heat conductive sheet excellent in heat conductivity also in the thickness direction. Can be obtained.

以上のように本発明によれば、所望の厚さが得られ、厚さ方向および面方向の熱伝導率が高く、機械的強度に優れた熱伝導シートを得ることができる。   As described above, according to the present invention, it is possible to obtain a heat conductive sheet having a desired thickness, a high thermal conductivity in the thickness direction and in the surface direction, and excellent mechanical strength.

本発明の一実施の形態における熱伝導シートの断面図Sectional drawing of the heat conductive sheet in one embodiment of this invention 従来の熱伝導シートの斜視図A perspective view of a conventional heat conductive sheet 一般的なグラファイトの結晶構造を示す図Diagram showing the general graphite crystal structure

(実施の形態1)
以下、本発明の一実施の形態における熱伝導シートについて、図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the heat conductive sheet in one embodiment of the present invention is explained, referring to drawings.

図1は本発明の一実施の形態における熱伝導シート11の断面図であって、アクリルからなる樹脂12と、グラファイト片13により熱伝導シート11を構成している。樹脂12にはアクリル樹脂を用い、熱伝導シート11の厚さを約1mmとしている。グラファイト片13は、柔軟性を有する熱分解グラファイトシートを幅約0.1mm、長さ約5mmに切断した第1のグラファイト片13aと、大きさ約0.01mmに粉砕した第2のグラファイト片13bとの混合物からなっている。   FIG. 1 is a cross-sectional view of a heat conductive sheet 11 according to an embodiment of the present invention. The heat conductive sheet 11 is composed of a resin 12 made of acrylic and a graphite piece 13. An acrylic resin is used for the resin 12, and the thickness of the heat conductive sheet 11 is about 1 mm. The graphite piece 13 includes a first graphite piece 13a obtained by cutting a flexible pyrolytic graphite sheet into a width of about 0.1 mm and a length of about 5 mm, and a second graphite piece 13b pulverized to a size of about 0.01 mm. And consists of a mixture.

このように構成することにより、第1のグラファイト片13a同士を絡み合わせることができ、熱伝導シート11の上面と下面とを多くの第1のグラファイト片13aでつなぐようにでき、熱伝導シート11の厚さ方向の熱伝導率を高くすることができる。また第2のグラファイト片13bは、絡み合った第1のグラファイト片13aの間に入り込むため、熱伝導率をさらに向上させることができる。   By comprising in this way, the 1st graphite piece 13a can be intertwined, the upper surface and lower surface of the heat conductive sheet 11 can be connected with many 1st graphite pieces 13a, and the heat conductive sheet 11 can be connected. The thermal conductivity in the thickness direction can be increased. Further, since the second graphite piece 13b enters between the entangled first graphite pieces 13a, the thermal conductivity can be further improved.

また第1のグラファイト片13a同士が絡み合っているため、外部からの力に対しても非常に強いものとなっている。   Further, since the first graphite pieces 13a are intertwined with each other, they are very strong against external force.

次に本発明の一実施の形態における熱伝導シートの製造方法について説明する。   Next, the manufacturing method of the heat conductive sheet in one embodiment of this invention is demonstrated.

まずポリイミドフィルムを熱処理したあとなめし処理することにより、厚さ約25μmの柔軟性を有する熱分解グラファイトシートを得る。これをカッターあるいはシュレッダーを用いて幅約0.1mm、長さ約5mmに切断し、第1のグラファイト片13aを得る。このとき第1のグラファイト片13aの厚さは薄くなっても構わない。また長手方向の長さは一定である必要はなく、あとでシート状に成形しやすい長さであればばらついても構わない。そのため、第1のグラファイト片13aを作るための熱分解グラファイトシートは、大きなシートでなくても良く、周辺部の端材や、金型で抜いた後の廃材を用いても構わない。このようにすることにより、より低コストの熱伝導シートを得ることができる。   First, a polyimide film having a flexibility of about 25 μm in thickness is obtained by heat treating the polyimide film and then tanning. This is cut into a width of about 0.1 mm and a length of about 5 mm using a cutter or a shredder to obtain a first graphite piece 13a. At this time, the thickness of the first graphite piece 13a may be reduced. The length in the longitudinal direction does not need to be constant, and may be varied as long as it can be easily formed into a sheet later. Therefore, the pyrolytic graphite sheet for making the first graphite piece 13a does not have to be a large sheet, and may be a peripheral edge material or a waste material after being extracted with a mold. By doing in this way, a lower-cost heat conductive sheet can be obtained.

次に第1のグラファイト片13aの一部、あるいはその切れ端、または熱分解グラファイトシートを金型で抜いた後の廃材等をさらに細かく切断する、あるいはジェットミルを用いて粉砕する等により大きさ0.01mm程度の第2のグラファイト片13bを得る。なお、第2のグラファイト片13bは熱分解グラファイトシートから作られたものでなくても良く、例えば天然黒鉛等を粉砕することによって作られたものでも構わない。   Next, a part of the first graphite piece 13a, or a piece thereof, or the waste material after the pyrolytic graphite sheet is extracted with a die is further finely cut, or pulverized using a jet mill. A second graphite piece 13b of about 0.01 mm is obtained. The second graphite piece 13b may not be made from a pyrolytic graphite sheet, and may be made by pulverizing natural graphite or the like, for example.

次に重量比でアクリルポリマー(12%)、酢酸ブチル(48%)、酢酸エチル(40%)を混合した樹脂溶媒に、第1のグラファイト片13aと第2のグラファイト片13bをほぼ同重量混合したものを混ぜ合わせ、押し出し成形によりシート状に成形し、溶剤分を飛ばすことにより厚さ約1mmの熱伝導シート11を得る。なお、さらに厚いものを得たい場合には、以上のように成形したシートを複数枚貼り合わせることにより、所望の厚さを得るようにしても構わない。   Next, the first graphite piece 13a and the second graphite piece 13b are mixed at approximately the same weight in a resin solvent in which acrylic polymer (12%), butyl acetate (48%), and ethyl acetate (40%) are mixed in a weight ratio. The heat conductive sheet 11 having a thickness of about 1 mm is obtained by mixing the obtained materials, forming into a sheet by extrusion, and removing the solvent. In addition, when it is desired to obtain a thicker sheet, a desired thickness may be obtained by bonding a plurality of sheets formed as described above.

このようにすることにより、第1のグラファイト片13a同士が絡み合うことにより、第1のグラファイト片13aの長手方向が、面方向だけでなく、厚さ方向にも向き、長手方向の長さを熱伝導シート11の厚さに対して十分に長くしておくことにより、多数の第1のグラファイト片13aが、熱伝導シート11の上面と下面とをつないでいる状態にすることができる。第1のグラファイト片13aの長手方向は、熱分解グラファイトシートの面方向となっているため、熱伝導に優れ、得られた熱伝導シート11は、厚さ方向にも面方向にも熱伝導性に優れたものとなる。さらに第1のグラファイト片13a同士が絡み合っているために、熱伝導シート11の機械的強度も非常に強いものとなっている。   By doing so, the first graphite pieces 13a are entangled with each other, so that the longitudinal direction of the first graphite pieces 13a is directed not only in the surface direction but also in the thickness direction, and the length in the longitudinal direction is increased. By making it sufficiently long with respect to the thickness of the conductive sheet 11, a large number of first graphite pieces 13 a can be connected to the upper surface and the lower surface of the heat conductive sheet 11. Since the longitudinal direction of the first graphite piece 13a is the surface direction of the pyrolytic graphite sheet, it is excellent in heat conduction, and the obtained heat conduction sheet 11 is thermally conductive both in the thickness direction and in the surface direction. It will be excellent. Furthermore, since the first graphite pieces 13a are intertwined with each other, the mechanical strength of the heat conductive sheet 11 is also very strong.

以上のように、本発明の効果を得るためには、グラファイト片同士を絡み合わせることが重要であり、そのためには、切断する形状が重要となる。熱分解グラファイトシートを矩形状に切断し、その長辺方向の長さと短辺方向との比を変えていくと、4倍以上になると非常に絡みやすくなっていくため、4倍以上とすることが望ましい。この比が大きい分には特性上は問題ないが、あまりに大きいとシート成形がしにくくなってくるため、成形性によって上限が決まる。   As described above, in order to obtain the effect of the present invention, it is important to intertwine the graphite pieces, and for that purpose, the shape to be cut is important. If the pyrolytic graphite sheet is cut into a rectangular shape and the ratio of the long side direction to the short side direction is changed, it becomes very easy to get entangled when it becomes 4 times or more, so it should be 4 times or more. Is desirable. If this ratio is large, there is no problem in characteristics, but if it is too large, sheet molding becomes difficult, and the upper limit is determined by moldability.

さらに、第1のグラファイト片13で、熱伝導シート11の上面と下面とをつなぐためには、第1のグラファイト片13aの長辺側の長さを熱伝導シート11の厚さの3倍以上にすることが望ましい。このようにすることにより多数の第1のグラファイト片13aが、熱伝導シート11の上面と下面とをつないでいる状態にすることができ、厚さ方向の熱伝導率を向上させることができる。   Furthermore, in order to connect the upper surface and the lower surface of the heat conductive sheet 11 with the first graphite piece 13, the length of the long side of the first graphite piece 13 a is at least three times the thickness of the heat conductive sheet 11. It is desirable to make it. By doing in this way, many 1st graphite pieces 13a can be made into the state which has connected the upper surface and lower surface of the heat conductive sheet 11, and can improve the heat conductivity of the thickness direction.

またグラファイト片13の中の第1のグラファイト片13aの重量割合は、少なくとも10%以上とすることが望ましく、40〜60%とすることがより望ましい。   The weight ratio of the first graphite piece 13a in the graphite piece 13 is preferably at least 10% or more, more preferably 40 to 60%.

また樹脂12とグラファイト片13との重量割合は、熱伝導シート11での樹脂含有率を、10〜97%とすることが望ましく、30〜45%とすることがより望ましい。   The weight ratio between the resin 12 and the graphite piece 13 is preferably 10 to 97%, more preferably 30 to 45%, of the resin content in the heat conductive sheet 11.

なお、樹脂には、例えばアクリル酸エステル共重合物のように、硬化した後も微粘着性のある粘土状のものを用いることが望ましく、熱伝導シートの硬さをアスカーC型硬度計で40以下、好ましくは20以下となるようにすることが望ましい。このようにすることにより、発熱体との密着性を向上させることができ、熱抵抗を下げることにより、実効的な熱伝導度をより向上させることができる。   In addition, it is desirable to use a clay-like resin that is slightly sticky after being cured, for example, an acrylic ester copolymer, and the hardness of the heat conductive sheet is 40 with an Asker C-type hardness meter. In the following, it is desirable to make it 20 or less. By doing in this way, adhesiveness with a heat generating body can be improved, and effective thermal conductivity can be improved more by reducing a thermal resistance.

本発明の熱伝導シートは、所望の厚さが得られ、厚さ方向の熱伝導率が高く、機械的強度に優れたものが得られ、産業上有用である。   The heat conductive sheet of the present invention has a desired thickness, has a high thermal conductivity in the thickness direction, and has excellent mechanical strength, and is industrially useful.

11 熱伝導シート
12 樹脂
13 グラファイト片
13a 第1のグラファイト片
13b 第2のグラファイト片
11 Thermal Conductive Sheet 12 Resin 13 Graphite Piece 13a First Graphite Piece 13b Second Graphite Piece

Claims (4)

グラファイト片と樹脂とを混合してシート状に成形してなる熱伝導シートであって、前記グラファイト片は熱分解グラファイトシートを細長く切断してなる複数個の第1のグラファイト片を含み、少なくとも複数個の前記第1のグラファイト片は、前記熱伝導シートの上面と下面とをつないでいることを特徴とする熱伝導シート。 A heat conductive sheet formed by mixing a graphite piece and a resin into a sheet shape, wherein the graphite piece includes a plurality of first graphite pieces formed by cutting a pyrolytic graphite sheet into an elongated shape. Each said 1st graphite piece has connected the upper surface and lower surface of the said heat conductive sheet, The heat conductive sheet characterized by the above-mentioned. 前記第1のグラファイト片は、長辺側の長さが短辺側の長さの4倍以上であることを特徴とする請求項1記載の熱伝導シート。 2. The heat conductive sheet according to claim 1, wherein the first graphite piece has a length on a long side of four or more times a length on a short side. 前記第1のグラファイト片の長辺側の長さは、前記熱伝導シートの厚さの3倍以上であることを特徴とする請求項1記載の熱伝導シート。 2. The heat conductive sheet according to claim 1, wherein a length of a long side of the first graphite piece is not less than three times a thickness of the heat conductive sheet. 前記グラファイト片は、前記第1のグラファイト片の短辺側の長さよりも小さい第2のグラファイト片を含んでいることを特徴とする請求項1記載の熱伝導シート。 The heat conductive sheet according to claim 1, wherein the graphite piece includes a second graphite piece that is smaller than a length of a short side of the first graphite piece.
JP2011077633A 2011-03-31 2011-03-31 Heat conductive sheet Pending JP2012211259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077633A JP2012211259A (en) 2011-03-31 2011-03-31 Heat conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077633A JP2012211259A (en) 2011-03-31 2011-03-31 Heat conductive sheet

Publications (1)

Publication Number Publication Date
JP2012211259A true JP2012211259A (en) 2012-11-01

Family

ID=47265481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077633A Pending JP2012211259A (en) 2011-03-31 2011-03-31 Heat conductive sheet

Country Status (1)

Country Link
JP (1) JP2012211259A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183257A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Thermal interface material and its manufacturing method, and heat dissipation device
JP2014183261A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Thermal interface material and its manufacturing method, and heat dissipation device
JP2014183284A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Heat dissipation device
WO2015022948A1 (en) 2013-08-12 2015-02-19 Kagawa Seiji Heat-radiating film and method and device for producing same
EP2865729A1 (en) 2013-10-25 2015-04-29 Seiji Kagawa Heat-dissipating film, and its production method and apparatus
EP2916352A2 (en) 2014-03-05 2015-09-09 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
EP2940728A1 (en) 2014-05-02 2015-11-04 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
CN111656471A (en) * 2018-03-14 2020-09-11 松下知识产权经营株式会社 Reactor device
EP4187682A1 (en) * 2021-11-25 2023-05-31 Lilium eAircraft GmbH Laminated film for packaging of pouch-type battery cells, pouch-type battery cell and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228471A (en) * 1999-02-05 2000-08-15 Polymatech Co Ltd Heat-conducting sheet
JP2001294676A (en) * 2000-04-13 2001-10-23 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
JP2009149769A (en) * 2007-12-20 2009-07-09 Bando Chem Ind Ltd Elastomer composition, elastomer molded body and heat radiation sheet
JP2010056299A (en) * 2008-08-28 2010-03-11 Teijin Ltd Method of producing thermally-conductive rubber sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228471A (en) * 1999-02-05 2000-08-15 Polymatech Co Ltd Heat-conducting sheet
JP2001294676A (en) * 2000-04-13 2001-10-23 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
JP2009149769A (en) * 2007-12-20 2009-07-09 Bando Chem Ind Ltd Elastomer composition, elastomer molded body and heat radiation sheet
JP2010056299A (en) * 2008-08-28 2010-03-11 Teijin Ltd Method of producing thermally-conductive rubber sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183257A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Thermal interface material and its manufacturing method, and heat dissipation device
JP2014183261A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Thermal interface material and its manufacturing method, and heat dissipation device
JP2014183284A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Heat dissipation device
WO2015022948A1 (en) 2013-08-12 2015-02-19 Kagawa Seiji Heat-radiating film and method and device for producing same
US10538054B2 (en) 2013-08-12 2020-01-21 Seiji Kagawa Heat-dissipating film, and its production method and apparatus
EP2865729A1 (en) 2013-10-25 2015-04-29 Seiji Kagawa Heat-dissipating film, and its production method and apparatus
EP2916352A2 (en) 2014-03-05 2015-09-09 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
US10609810B2 (en) 2014-03-05 2020-03-31 Seiji Kagawa Method for producing heat-dissipating sheet having high thermal conductivity
US10005943B2 (en) 2014-05-02 2018-06-26 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
US9631130B2 (en) 2014-05-02 2017-04-25 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
EP2940728A1 (en) 2014-05-02 2015-11-04 Seiji Kagawa Heat-dissipating sheet having high thermal conductivity and its production method
CN111656471A (en) * 2018-03-14 2020-09-11 松下知识产权经营株式会社 Reactor device
CN111656471B (en) * 2018-03-14 2022-07-26 松下知识产权经营株式会社 Reactor device
US11443883B2 (en) 2018-03-14 2022-09-13 Panasonic Intellectual Property Management Co., Ltd. Reactor device
EP4187682A1 (en) * 2021-11-25 2023-05-31 Lilium eAircraft GmbH Laminated film for packaging of pouch-type battery cells, pouch-type battery cell and battery
WO2023094475A1 (en) * 2021-11-25 2023-06-01 Lilium Eaircraft Gmbh Laminated film for packaging of pouch-type battery cells, pouch-type battery cell and battery

Similar Documents

Publication Publication Date Title
JP2012211259A (en) Heat conductive sheet
JP6669725B2 (en) Graphite composite film, method for producing the same, and heat dissipation component
JP6236631B2 (en) Manufacturing method of heat conductive sheet
Kim et al. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing
JP6145231B2 (en) Adhesive tape
CN108701662B (en) Heat-conducting sheet, method for producing same, and heat-dissipating device
JP7221487B2 (en) thermally conductive sheet
JP6592290B2 (en) Thermal interface material and manufacturing method thereof
JP6881429B2 (en) Laminated body and its manufacturing method, and secondary sheet and secondary sheet manufacturing method
JP6094119B2 (en) Manufacturing method of heat conductive sheet
JP2002164481A (en) Heat conductive sheet
JP6379357B2 (en) Thermal insulation sheet and cooling structure using the same
JP2012104628A (en) Heat conductive sheet
JP2023171393A (en) thermal conductive sheet
CN203968557U (en) High conductive graphite film
JP2018153959A (en) Production method of laminate
JP2012164907A (en) Heat conductive sheet
JP5994100B2 (en) Manufacturing method of heat conductive sheet
KR101457797B1 (en) Heat conduction sheet and heat conduction sheet manufacturing method
JP5987603B2 (en) Manufacturing method of heat conductive sheet
KR20190118305A (en) Thermal conductive sheet using graphite combined with dopamin and method of manufacturing the same
TW201107697A (en) Heat transfer device for heat source
JP7131142B2 (en) thermal conductive sheet
JP2002270739A (en) Manufacturing method and manufacturing equipment of heat conducting sheet
JP6919377B2 (en) Heat conduction sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609